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Highlights
Numerous quantitative image features were developed from brain MR images to
characterize gliomas of different gradings.

Image features including local texture and global histogram moment features were
combined for malignancy evaluation.

The likelihoods of malignancy of tumors were predicted to provide diagnostic
decisions to radiologists.

Abstract

Background and objectives

A computer-aided diagnosis (CAD) system based on quantitative magnetic resonance imaging (MRI)
features was developed to evaluate the malignancy of diffuse gliomas, which are central nervous
system tumors.

Methods

The acquired image database for the CAD performance evaluation was composed of 34
glioblastomas and 73 diffuse lower-grade gliomas. In each case, tissues enclosed in a delineated
tumor area were analyzed according to their gray-scale intensities on MRI scans. Four histogram
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moment features describing the global gray-scale distributions of gliomas tissues and 14 textural
features were used to interpret local correlations between adjacent pixel values. With a logistic
regression model, the individual feature set and a combination of both feature sets were used to
establish the malignancy prediction model.

Results

Performances of the CAD system using global, local, and the combination of both image feature sets
achieved accuracies of 76%, 83%, and 88%, respectively. Compared to global features, the combined
features had significantly better accuracy (p = 0.0213). With respect to the pathology results, the CAD
classification obtained substantial agreement κ = 0.698, p < 0.001.

Conclusions

Numerous proposed image features were significant in distinguishing glioblastomas from lower-
grade gliomas. Combining them further into a malignancy prediction model would be promising
in providing diagnostic suggestions for clinical use.
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1. Introduction
Gliomas are central nervous system (CNS) tumors formed of neoplastic cells that display glial cell
differentiation. According to the World Health Organization (WHO) classification of tumors of the
CNS, diffuse gliomas can be subdivided by the degree of malignancy into WHO grade II (lower
grade) to grade IV (high malignancy) [1], [2]. Glioblastomas (GBMs), WHO grade IV tumors, are the
most aggressive tumor type with a dismal prognosis despite advances in therapeutic management
[3]. In contrast to GBMs, diffuse lower-grade gliomas (LGGs, grades II and III) have more-favorable
outcomes and shared many similar histopathologic and genomic signatures [2], [4]. Since their
therapeutic approaches are also different [5], distinguishing GBM from LGG is a very critical
clinical issue. Determining the tumor grade depends on several pathological features including
cytological atypia, mitotic activity, angiogenesis, and necrosis. However, there are still some pitfalls
in the histopathological analysis which can lead to ambiguity in glioma grading. For example,
interpretation of some criteria can vary because their definitions are semiquantitative or imprecise
[6], [7]. Moreover, the heterogeneous expressions of aggressive cellular features make unguided
surgical biopsies prone tosampling error, resulting in misgrading in up to 30% of cases [7], [8], [9],
[10], [11].
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With the development of diagnostic imaging technologies, the accuracy of estimating the
malignancy of brain tumors has greatly increased by applying magnetic resonance (MR) imaging
(MRI) features [12], [13]. MRI is commonly used because it provides a wide range of physiologically
meaningful contrasts to distinguish different tissues by imaging, and therefore improves
evaluations of heterogeneous patterns of tissue compositions within diffuse gliomas [14]. In
addition to conventional sequences, several MRI techniques including diffusion-weighted imaging
(DWI), MR spectroscopy (MRS), and perfusion-weighted imaging (PWI) are also applied to non-
invasively differentiate LGGs from GBMs [15], [16], [17], [18]. A previous study supported MRI scans
being highly specific for diagnosing brain stem gliomas and can replace biopsies before
radiotherapy in most patients [19]. To avoid unnecessary operations, the role of MRI in the
diagnostic imaging of brain tumors is especially crucial.

Computer-aided diagnosis (CAD) systems based on quantitative image features and artificial
intelligence classifiers were developed to assist radiologists in determining tumor types and grades
[20], [21], [22]. With machine learning schemes, textural features extracted from MRI scans are used
to classify different tissue types which can assist clinical decision-making regarding initial and
evolving treatment strategies [23]. CAD systems can quantitatively combine numerous imaging
features to estimate the likelihood of tumor malignancy by percentages. Efficient and consistent
procedures can provide reliable suggestions to radiologists to avoid invasive procedures for which
risks outweigh benefits.

In this study, local and global imaging features extracted from the entire tumor area on MRI scans
were quantified to reveal levels of heterogeneity. Quantified image features were combined in a
logistic regression classifier to generate a prediction model for each case. The performances of an
individual image feature set and the combination of both local and global features were evaluated in
the experiment. As a second viewer, the CAD can provide suggestions of tumor grading to the
radiologists on clinical examinations.

2. Materials and methods

2.1. Patient information

2.1.1. The Cancer Genome Atlas (TCGA) and The Cancer Imaging Archive (TCIA)

MRI datasets for 34 GBM and 73 LGG patients were obtained from TCIA
(http://cancerimagingarchive.net/) of the National Cancer Institute, a portal containing images of
TCGA patients for image analysis. The collection of original materials and data provided by TCGA
project was conducted in compliance with all applicable laws, regulations, and policies for the
protection of human subjects. All necessary approvals, authorizations, human subject assurances,
informed consent documents, and IRB approvals were obtained [24]. The images used in this
research were generated from three institutes: Henry Ford Hospital, Thomas Jefferson University,
and Case Western hospitals as shown in Table 1. All images used in this research were created
before any operative procedure including surgical biopsy.

Table 1. Common parameters of contrast enhanced T1WI in three institutions.a
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MR machine GE Signa HDxt Siemens Magnetom Vision Siemens Avanto

Magnetic field

strength

1.5 T 1.5 T 1.5 T

TE (ms) 13 3.5 2.81

TR (ms) 500 7.6 2160

Slice thickness

(mm)

2.5 1.5 1

Flip angle 90 15 15

FOV(mm) 240 280 250

Matrix 256 × 192 512 × 256 256 × 256

Contrast medium Gadolinium-based contrast

medium

Gadolinium-based contrast

medium

Gadolinium-based contrast

medium

a

The detailed parameters of each image varied from case to case. Here lists the common imaging

parameters of the representative cases from three institutions.

There were a total of 34 GBMs (grade 4) (http://dx.doi.org/10.7937/K9/TCIA.2016.RNYFUYE9) and 73
LGGs (grades 2 and 3) (http://dx.doi.org/10.7937/K9/TCIA.2016.L4LTD3TK) included in this study.
In the LGG group, there were 33 oligodendrogliomas, 16 oligoastrocytomas, and 24 astrocytomas.
Nineteen oligodendrogliomas were classified into grade 2, and 14 cases were classified into grade 3.
Seven cases of oligoastrocytoma were classified into grade 2, and nine cases were classified into
grade 3. Among astrocytomas, four cases were classified into grade 2, and 20 cases were classified
into grade 3. Therefore, we had a total of 30 grade 2 and 43 grade 3 gliomas in the LGG group
(Fig. 1).

Henry Ford Hospital Thomas Jefferson University Case Western
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Fig. 1. Examples selected from the acquired database showing the challenge of distinguishing
between lower-grade gliomas (a, b) and glioblastomas (c, d) (http://cancerimagingarchive.net/ -
“License” and the CC BY license (https://creativecommons.org/licenses/by/3.0/).

2.2. Image analysis

The MRI sequence used for the analysis was the contrast-enhanced axial T1-weighted image
(T1WI). Imaging features were quantitatively analyzed by procedures described herein. A board-
certified neuroradiologist (K.H., with 12 years of experience) who was blinded to the clinical
information selected the most representative 2D image of each tumor. An image normalization
procedure which stretched the gray-level distribution of each image to the whole dynamic range (0–
255) was performed before tumor contour delineation to provide enough contrast between tumor
area and background tissues. Regions-of-interests (ROIs) were then outlined manually using OsiriX
in the selected contrast-enhanced T1WI. Pixels encircled in the ROI were used for feature analysis.

2.3. Image features

2.3.1. Global statistics

Observing the gray-scale distribution of the tumor region, the composition of pixel values in the
region can be presented by a probability distribution (Fig. 2). The regional distribution formed a
histogram which contained global statistics of the tissue properties which can be characterized by
the histogram moments [25], [26]. Quantification of the moments provided objective measures of
the shape which were used to express the difference between LGGs and GBMs in the experiment.
The first-, second-, third-, and fourth-order central moments of the gray-scale histograms were
calculated as the global statistical features, i.e., the mean, variance, skewness, and kurtosis.
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Fig. 2. Examples of delineated tumor areas and corresponding gray-scale distributions of
histograms shown in Fig. 1 (http://cancerimagingarchive.net/ - “License” and the CC BY license
(https://creativecommons.org/licenses/by/3.0/), tumor areas in this figure were extracted from the
original images).

P  is the gray-scale pixel value. The mean is the center of a distribution obtained by summarizing all
pixel values and dividing this by the number of pixels in a tumor region. Variance measures how far
the gray-scale values are spread out. Skewness estimates the symmetry of a distribution such as a
bias to the left or right side. Compared to a normal distribution, kurtosis is a single-peaked shape
with heavily weighted tails.

2.3.2. Local statistics

Detailed correlations between adjacent image pixels were the local statistics of tumor
characteristics. For pattern recognition, local statistics were used to describe textures to identify
different objects. Because the compositions of MRI scans are intensities with gray-level values, the
gray-level co-occurrence matrix (GLCM) [27] which presents the local statistics can be calculated and
are features distinguishing LGGs and GBMs. An original image was first quantified into an image,
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G, with intensity bins. From G, co-occurrence matrices P = [p(i,j|d,θ)] were generated to express the
frequencies of each pixel (gray value i) and its neighboring pixels (gray value j) at distance d and
direction θ. As shown in Fig. 3, d = 1 and θ = 0°, 45°, 90°, and 135° were used in the experiment for
the defined local area. From the matrices, the GLCM features were extracted:

where µ , µ , σ  and σ  are the mean and standard deviation (SD) of the marginal distributions of
p(i,j|d,θ).
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Fig. 3. Co-occurrence matrices established with distance = 1 and directions = 0°, 45°, 90°, and 135°
for each pixel and its neighboring pixels.

2.4. Statistical analysis

The image features proposed above, including global and local statistics, were evaluated as to
whether they could distinguish between LGG and GBM tumors. The feature value distributions
were first evaluated by the Kolmogorov–Smirnov test [28] to determine their normalities. Normal
image features were subjected to Student's t-test [28], and non-normal image features were evaluated
by the Mann–Whitney U-test [28]. Resulting p values of <0.05 indicated that features were
statistically significant in distinguishing between LGG and GBM tumors.

Another evaluation method was the prediction performance of these image features. Using a binary
logistic regression as the classifier, global and local image features were combined into respective
feature sets. First, the performance of an individual feature set was generated. Then, the two feature
sets were combined to see the complementary power. When establishing a prediction model,
biopsy-proven pathology results were acquired as the gold standard in the classifier. Step-wise
backward elimination removed redundant features based on their abilities, and the most relevant
features with the smallest error rates were selected. Leave-one-out cross-validation [28] was used to
evaluate the generalizability of the selected features. In the iteration loop, one case was separated
from the total n cases and was used to test the trained model from the remaining n − 1 cases.

According to the pathology results, the performance of the prediction model can be presented
using five general performance indices: accuracy, sensitivity, specificity, positive predictive value
(PPV), and negative predictive value (NPV). In the determination of an LGG or GBM, cases with a
predicted probability of >0.5 were regarded as GBMs to obtain the best tradeoff between the
sensitivity and specificity. Different points of tradeoff combinations were also calculated and
illustrated using a receiver operating characteristic (ROC) curve. To provide an overall performance

(19)

(20)
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evaluation, the area under the ROC curve, Az, was formulated using ROCKIT software (C. Metz,
University of Chicago, Chicago, IL, USA).

The agreement between the prediction model of the CAD system and the pathology results was
obtained by Cohen's kappa statistic (κ) [28]. Generally, the agreement was slight if the κ value was
<0.20; fair if κ was in the range of 0.21–0.40; moderate if κ was in the range of 0.41–0.60; substantial
if κ was in the range of 0.61–0.80; and almost perfect, if κ was in the range of 0.81–1.00. The test and
correlation analyses were carried out using SPSS software (vers. 16 for Windows; SPSS, Chicago, IL,
USA).

3. Results
According to distributions of feature values, the proposed global and local image features were
tested by either Student's t-test (for those with a normal distribution) or the Mann–Whitney U-test
(for those with a non-normal distribution). Table 2, Table 3 show the statistical data and p values,
respectively, of significant features in distinguishing LGG from GBM tumors. Three of four global
image features achieved p values of <0.001, and nine local image features had p values of <0.05.

Table 2. Significant global image features and corresponding p values evaluated using Student's t-test
(for those with a normal distribution, mean values) or the Mann–Whitney U-test (for those with a
non-normal distribution, median values).

Mean 85.58 ± 44.32 125.23 ± 28.63 <0.001

Variance 256.32 1412.15 <0.001

Kurtosis 3.85 2.76 <0.001

a

A p value of <0.05 indicates a statistically significant difference.

Table 3. Significant local image features and corresponding p values evaluated using Student's t-test
(for those with a normal distribution, mean values) or the Mann–Whitney U-test (for those with a
non-normal distribution, median values).

Contrast 0.02 0.04 <0.001

Feature

Lower-grade gliomas Glioblastomas

p valueMean ± SD Median Mean ± SD Median

a

a

a

Feature

Lower-grade gliomas Glioblastomas

p valueMean ± SD Median Mean ± SD Median

a
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Correlation 0.95 0.92 <0.001

Dissimilarity 0.021 ± 0.007 0.026 ± 0.008 <0.01

Homogeneity 1.00 ± 0.01 0.99 ± 0.01 <0.05

Difference variance 0.02 0.04 <0.001

Difference entropy 0.04 ± 0.02 0.06 ± 0.02 <0.05

Information measure of correlation −0.81 ± 0.05 −0.76 ± 0.02 <0.001

Inverse difference normalized 0.9989 ± 0.0008 0.9985 ± 0.0008 <0.01

Inverse difference moment normalized 0.9996 ± 0.0003 0.9994 ± 0.0003 <0.001

PPV, positive predictive value; NPV, negative predictive value; Az, area under the curve.

a

A p value of <0.05 indicates a statistically significant difference.

Taking the pathology results as the standard for tumor grading, performances of the global image
feature sets achieved an accuracy of 76%, a sensitivity of 68%, a specificity of 79%, and an Az of 0.78,
while local image feature sets achieved an accuracy of 83%, a sensitivity of 79%, a specificity of 85%,
and an Az of 0.89 (Table 4). Overall, the local image feature set performed better than the global
image feature set. However, differences in performances were not significant. Combining both
global and local image features together for the tumor classification achieved even better
performance: an accuracy of 88%, a sensitivity of 82%, a specificity of 90%, and an Az of 0.89.
Compared to the global image feature set, the combined features achieved significantly better
accuracy (p = 0.0213) and Az (p = 0.0197) (Table 5).

Table 4. Performances of different image feature sets for the classification of lower-grade gliomas
(LGGs) and glioblastomas (GBMs).

Global image features 76% (81/107) 68% (23/34) 79% (58/73) 61% (23/38) 84% (58/69) 0.78

Local image features 83% (89/107) 79% (27/34) 85% (62/73) 71% (27/38) 90% (62/69) 0.89

Combined features 88% (94/107) 82% (28/34) 90% (66/73) 80% (28/35) 92% (66/72) 0.89

Table 5. Statistical test results of performance differences between different image feature sets for the
classification of lower-grade gliomas (LGGs) and glioblastomas (GBMs).

Feature

Lower-grade gliomas Glioblastomas

p valueMean ± SD Median Mean ± SD Median

a

a

a

a

a

a

a

a

Accuracy Sensitivity Specificity PPV NPV Az
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Local vs. global 0.1760 0.2716 0.3869 0.3335 0.3120 0.0540

Combined vs. global 0.0213 0.1614 0.0642 0.0701 0.1654 0.0197

Combined vs. local 0.3315 0.7578 0.3140 0.3756 0.7101 0.8436

a

A p value of <0.05 indicates a statistically significant difference.

Trade-offs between sensitivity and specificity are illustrated as ROC curves in Fig. 4 to show the
performances with different cutoff points. Compared to the pathology results, the classification
results of the proposed CAD system obtained substantial agreement κ = 0.698, p < 0.001. Fig. 5 shows
a successfully classified GBM tumor by the combined image features, but it was misclassified by
both the global and local image feature sets.
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Fig. 4. Trade-offs between the sensitivity and specificity of tumor classification illustrated by
receiver operating characteristic (ROC) curves.

p value Accuracy Sensitivity Specificity PPV NPV Az

a a
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Fig. 5. A malignant glioblastoma (GBM) tumor which was misclassified by both the global
(malignancy likelihood = 33%) and local image features (malignancy likelihood = 22%) but correctly
classified by the combined image features (malignancy likelihood = 58%). (a) Original MRI image
and (b) the delineated tumor area (http://cancerimagingarchive.net/ - “License” and the CC BY
license (https://creativecommons.org/licenses/by/3.0/), tumor areas in this figure were extracted
from the original images).

4. Discussion
Brain MRI provides an advanced diagnostic imaging technology to interpret tumor characteristics
for evaluating tumor type and grade. Based on the gray-scale distribution of tissues in the tumor
area, CAD systems can perform malignancy estimations using numerous quantitative image
features to provide more-objective and -reliable suggestions. In this study, global image features as
statistics of the image moment describing the histogram shape were quantified to express the
overall brightness distribution in the tumor area. Local image features were textural patterns
describing correlations among neighboring pixels. Benefiting from the complementary power, the
combination of both global and local image features achieved an accuracy of 88%, a sensitivity of
82%, a specificity of 90%, and an Az of 0.89. Originally, local image features performed better than
global image features without significance. Nevertheless, the combined features achieved
significantly better accuracy (p = 0.0213) and Az (p = 0.0197) than the global image feature set. This
shows that global image features interpret some characteristics which local features cannot reveal.
Previous studies [29], [30], [31] which only used GLCM features as local image features for tumor
classification might have been insufficient. Also, too many features may induce additional
computational complexity. Whether the image features truly interpret the underlying tissue
characteristics should reasonably be discussed. For this study, some misclassified cases seemed to
have irregular enhancement rings surrounding central necrosis according to the image features
used in the CAD system and the conventional diagnosis criteria in clinical use. The dimension of
this kind of characteristic is regional rather than pixel-wise. More regional features should be
developed via the separation of the enhancement regions and the other regions in tumors for the
performance improvement. Besides, although many of the proposed features were formulated using
relative intensity distributions such as Variance in global features and Contrast in local features,
more intensity-invariant image features can be developed to reduce the effect of intensity variation
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in the next study. For the acquired database, different patients have different settings for the same
MR sequence, even they were all scanned in the same MR machine. Since there is wide-variation of
the parameters used in both groups, we do not think this is the cause of our statistically valid
differences of computed features between LGG and GBM. Completely quantifying characteristics in
tumor area is also important. In this experiment, proposed image features were extracted from the
entire tumor area, which should provide more-reliable tissue characteristics and possibly be
reproducible in clinical use compared to some studies [23], [32] using one or more squares or circles
as the ROI to define tumor tissues.

With respect to the classifier, artificial neural network (ANN) was also used for comparison.
Generally, using one kind of classifier to be the technique of choice in all circumstances is unlikely.
ANN is particularly useful if complex nonlinearities existed in a dataset. On the other hand, logistic
regression provides a clear choice to understand the relationships between the diagnostic result and
the predictor variables. Based on logistic regression, tumor malignancy can be divided by using
different weights on different characteristics to express the individual importance. The diagnostic
result based on ANN with back-propagation achieved an accuracy of 84%, a sensitivity of 79%, and a
specificity of 86%, which are slightly lower than that of logistic regression (accuracy: 88%,
sensitivity: 82%, and specificity: 90%) as shown in Table 6. According to the result and purpose,
logistic regression is considered to be appropriate to provide accurate and meaningful malignancy
estimation in brain tumor classification.

Table 6. Performances of different classifiers for the classification of lower-grade gliomas (LGGs) and
glioblastomas (GBMs).

Logistic Regression 88% (94/107) 82% (28/34) 90% (66/73) 80% (28/35) 92% (66/72) 0.89

ANN 84% (90/107) 79% (27/34) 86% (63/73) 73% (27/37) 90% (63/70) 0.83

p-value 0.4309 0.7578 0.4389 0.4829 0.7306 0.2036

In this study, only contrast-enhanced T1WIs were used instead of complete MR sequences to
estimate the tumor grading. The obvious shortcoming of this design is that peri-tumoral edema
might not be well depicted on T1WIs. However, key determinants for differentiating grades II and
III from grade IV gliomas are necrosis and/or angiogenesis. Necrosis is an area of a non-enhanced
region within the neoplasm with a signal similar to that of cerebrospinal fluid, which can always be
clearly demonstrated in contrast-enhanced T1WIs [13]. Also, the degree of contrast enhancement
was found to be associated with the activity of the angiogenesis module within the tumor [33], [34].
Since both necrosis and angiogenesis are important criteria applied in histopathology to
differentiate GBM from LGG, therefore, we believe that measurements of signal intensities on
CET1WI can be key determinants to differentiate GBM from LGG. Nevertheless, further
investigation of the role of other important sequences like fluid-attenuated inversion recovery
(FLAIR), PWI, DWI, and MRS is warranted.

Accuracy Sensitivity Specificity PPV NPV Az
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One limitation of this study is that only two-dimensional tumor areas were delineated for feature
extraction and subsequent classification. Using the three-dimensional volume for malignancy
evaluation would be more convincing. However, contour delineation would be a time-consuming
task. Automatic tumor segmentation is a better way to save time. With respect to the anatomical
structures in the brain, normal tissues with various gray-scale intensities surrounding the tumors
can barely be separated. A more-sophisticated method would be helpful such as a learning model
with prior knowledge about the anatomical structures in the brain. Second, the LGG group
contained both grade 2 and 3 gliomas with three different histological cell types. It is possible that
tumors belonging to each subset may have different MR imaging signatures. Further research about
distinguishing the grades and types of glioma is warranted. Currently, the proposed CAD system
could rapidly provide suggestions about glioma malignancy to radiologists based on preoperative
clinical examinations.

Using CAD with the quantitative approach, the diagnostic procedure can be speeded up with
reduced diagnostic errors. The consistent estimation can also provide reliable suggestions to
radiologists to avoid invasive procedures for which risks outweigh benefits. Whether CAD can
improve radiologists' performances is absolutely the most meaningful utility on clinical
examinations. The next experiment would be an observers' study.

5. Conclusions
Twelve proposed MR image features were significant in distinguishing glioblastomas from diffuse
lower-grade gliomas (p < 0.05). Combining them further into a malignancy prediction model was
very promising (accuracy: 88%, κ = 0.698, p < 0.001) in providing diagnostic suggestions for clinical
use.
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