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a b s t r a c t

In a multitype (d types) supercritical positively regular Galton–Watson branching process,
let {Xn, Xn−1, . . . , X0} denote the types of a randomly chosen (i.e., uniform distribution) in-
dividual from the nth generation and this individual’s n ancestors. It is shown here that this
sequence converges in distribution to a Markov chain {Y0, Y1, . . .} with transition proba-
bilitymatrix (pij)1≤i,j≤d and having the stationary distribution.We also consider the critical
case conditioned on non-extinction.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Let Zn = (Zn,1, Zn,2, . . . , Zn,d) be the population vector in the nth generation, n = 0, 1, 2, . . . , where Zn,i is the number
of individuals of type i in the nth generation. We assume that each individual of type i, i = 1, 2, . . . , d, lives a unit of time
and, upon death, produces children of all types according to the offspring distribution


p(i)(j) ≡ p(i)(j1, j2, . . . , jd)


j∈Nd and

independently of other individuals, where p(i)(j1, j2, . . . , jd) is the probability that a type i parent produces j1 children of
type 1, j2 children of type 2, . . . , jd children of type d.

Letmij = E(Z1,j|Z0 = ei) be the expected number of type j offspring of a single type i individual in one generation for any
i, j = 1, 2, . . . , d. Then,

M ≡ {mij : i, j = 1, 2, . . . , d} (1.1)

is called the offspring mean matrix.
In a discrete-timemulti-type positively regular Galton–Watson branching process, by the Perron–Frobenius theorem, the

matrixM has amaximal eigenvalue ρ and has associated strictly positive normalized right and left eigenvectorsu = (u1, u2,
. . . , ud) and v = (v1, v2, . . . , vd) such that

u · v = 1 and u · 1 = 1. (1.2)

The maximal eigenvalue ρ of the offspring mean matrix M plays a crucial role. The process is called a supercritical, critical
or subcritical branching process according as 1 < ρ < ∞, ρ = 1 or ρ < 1, respectively (see Athreya and Ney, 2004 for the
details).
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Now, we consider Galton–Watson branching process with a finite offspring mean matrix M whose maximal eigenvalue
1 < ρ < ∞ and with no extinction. Then choose an individual at random, i.e., uniform distribution, from the nth gener-
ation and denote its type Xn. Let Xn−1 be the type of its parent, Xn−2 the type of its grandparent, etc., down to X0 being the
type of the ancestor in the generation 0. We show that, for any integer k, (Xn, Xn−1, . . . , Xn−k) converges in distribution to
(Y0, Y1, . . . , Yk) where {Yn}n≥0 is a Markov chain with a unique stationary distribution.

The work of Jagers and Nerman (1996) considers a similar process in a more general setting. However, their principal
assumption is that the process has been evolving for an infinite amount of time and is already in a stable state. In this pa-
per, we consider the case when the population has evolving up to n generations and prove a limit result about the types of
the ancestors of a random chosen individual as n → ∞. Thus, the work reported here is related to but different from that
in Jagers and Nerman (1996).

2. Main results

The first result is for the supercritical case.Without lose of generality, we assume that each individual in this supercritical
process produces at least one offspring with probability 1 upon death, that is, P(Z1 = 0|Z0 = ei) = 0 for all i = 1, 2, . . . , d.
Thus, the probability of extinction is 0.

Theorem 2.1. Let 1 < ρ < ∞, |Z0| = 1, E

∥Z1∥ log ∥Z1∥

Z0 = ei


< ∞ for any i = 1, 2, . . . , d. Then, for any integer k ≥ 0,
there exists a random vector (Y0, Y1, . . . , Yk) such that

Xn, Xn−1, . . . , Xn−k
 d

−→

Y0, Y1, . . . , Yk


as n → ∞,

and, for any i0, i1, . . . , ik ∈

1, 2, . . . , d


,

P

Y0 = i0, Y1 = i1, . . . , Yk = ik


=

vikmikik−1mik−1ik−2 · · ·mi1 i0

(1 · v)ρk
.

Moreover,

Yn


n≥0 is a Markov chain with the state space


1, 2, . . . , d


,

(a) initial distribution λ0 ≡

λ0(1), λ0(2), . . . , λ0(d)


where

λ0(i) =
vi

1 · v
for any i = 1, 2, . . . , d,

(b) transition probability P ≡

pij : i, j = 1, 2, . . . , d


, where

pij =
vjmji

viρ
for any n = 0, 1, 2, . . . ,

(c) and a unique stationary distribution π ≡

π1, π2 . . . , πd


where

πi =
uivi

u · v
for any i = 1, 2, . . . , d.

A similar result also holds for the critical case conditioned on non-extinction:

Theorem 2.2. Let ρ = 1, |Z0| = 1 and E∥Z1∥2 < ∞. Then, for any integer k ≥ 0, there exists a random vector (Y0, Y1, . . . , Yk)
such that

Xn, Xn−1, . . . , Xn−k
|Zn| > 0

d
−→


Y0, Y1, . . . , Yk


as n → ∞,

and, for any i0, i1, . . . , ik ∈

1, 2, . . . , d


,

P

Y0 = i0, Y1 = i1, . . . , Yk = ik


=

vikmikik−1mik−1ik−2 · · ·mi1 i0

(1 · v)
.

Moreover,

Yn


n≥0 is a Markov chain with the state space


1, 2, . . . , d


,

(a) initial distribution λ0 ≡

λ0(1), λ0(2), . . . , λ0(d)


where

λ0(i) =
vi

1 · v
for any i = 1, 2, . . . , d,

(b) transition probability P ≡

pij : i, j = 1, 2, . . . , d


, where

pij =
vjmji

vi
for any n = 0, 1, 2, . . . ,

(c) and a unique stationary distribution π ≡

π1, π2 . . . , πd


where

πi =
uivi

u · v
for any i = 1, 2, . . . , d.
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Remark 2.1. Georgii and Baake (2003) also investigated the ancestral types of a typical individual for a supercritical mul-
titype Markov branching process under a weaker condition on the moment of Z1. The result in their paper can be derived
from Theorem 2.1 (c) using the law of large numbers and irreducibility. On the other hand, Theorem 2.1 (c) also follows from
the result of Georgii and Baake and a result for Markov chain which asserts that for any irreducible chain the limit of the
marginal distribution is also a stationary distribution.

3. Proofs of main results

We will prove Theorem 2.1 using the principle of mathematical induction.
For k = 0, since, in the supercritical case under the assumptions in the theorem, it is known (Kesten and Stigum, 1966)

that Zn
ρn → vW with probability 1 as n → ∞ where W is a random variable with P(0 < W < ∞) = 1, we have, by the

bounded convergence theorem, as n → ∞,

P

Xn = i0


= E


Zn,i0
|Zn|


= E


Zn,i0/ρ

n

|Zn|/ρn


→ E


vi0W

(1 · v)W


=

vi0

1 · v
≡ λ0(i0).

Also,
d

i=1 λ0(i) =
d

i=1
vi
1·v = 1, i.e.,


λ0(i) : i = 1, 2, . . . , d


is a proper probability distribution and hence there exists

a random variable Y0 with P(Y0 = i) = λ0(i) for i = 1, 2, . . . , d such that Xn
d
−→ Y0 as n → ∞.

Next, we prove that the theorem holds for k = 1.
Let ξ

(i)
n,j =


ξ

(i)1
n,j , ξ

(i)2
n,j , . . . , ξ

(i)d
n,j


be the vector of offsprings of the jth individual of type i in the nth generation. For any

fixed i0, i1 = 1, 2, . . . , d,

ξ

(i1)i0
n,j


j≥1,n≥1

are i.i.d random variables with E

ξ

(i1)i0
n,j


= mi1i0 < ∞.

By the assumption of non-extinction, Zn,i1 → ∞ with probability 1, and then by the strong law of large numbers, as
n → ∞,

1
Zn,i1

Zn,i1
j=1

ξ
(i1)i0
n,j → mi1 i0 with probability 1.

So, by the bounded convergence theorem,

P

Xn−1 = i1

Xn = i0


= E
 Zn−1,i1

j=1
ξ

(i1)i0
n−1,j

Zn,i0


= E


1

Zn−1,i1

Zn−1,i1
j=1

ξ
(i1)i0
n−1,j

Zn−1,i1/ρ
n−1

Zn,i0/ρn

1
ρ



→ E

mi1 i0

vi1W
vi0W

1
ρ


=

vi1mi1 i0

ρvi0
as n → ∞.

Hence, as n → ∞,

P

Xn = i0, Xn−1 = i1


= P


Xn−1 = i1

Xn = i0

P

Xn = i0


→

vi1mi1 i0

(1 · v)ρ
≡ λ1(i0, i1)

and
d

i=1

d
j=1

λ1(i, j) =

d
i=1

1
(1 · v)ρ

 d
j=1

vjmji


=

d
i=1

ρvi

(1 · v)ρ
=

d
i=1

λ0(i) = 1

since v is the left eigenvector ofM associated with the eigenvalue ρ.
So,


λ1(i, j) : i, j = 1, 2, . . . , d


is a proper probability distribution with one marginal distribution λ0. Thus, there exists

a random variable Y1 such that P

Y0 = i, Y1 = j


= λ1(i, j) for i, j = 1, 2, . . . , d and


Xn, Xn−1

 d
−→


Y0, Y1


as n → ∞.

Assume that there exist random variables Y0, Y1, . . . , Yk such that

P

Y0 = i0, Y1 = i1, . . . , Yk = ik


=

vikmikik−1 · · ·mi1i0

(1 · v)ρk
≡ λk(i0, i1, . . . , ik)

and, as n → ∞,
Xn, Xn−1, . . . , Xn−k

 d
−→


Y0, Y1, . . . , Yk


.
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Then

P

Xn−(k+1) = ik+1, Xn−k = ik, . . . , Xn−1 = i1

Xn = i0


= E
 Zn−(k+1),ik+1

jk+1=1

ξ
(ik+1)ik
n−(k+1),jk+1

jk=1
· · ·

ξ
(i2)i1
n−2,j2
j1=1

ξ
(i1)i0
n−1,j1

Zn,i0



= E


1
Zn−(k+1),ik+1

1
ξ
n−(k+1),j

(ik+1)ik
k+1

· · ·
1

ξ
(i2)i1
n−2,j2

Zn−(k+1),ik+1
jk+1=1

ξ
(ik+1)ik
n−(k+1),jk+1

jk=1

· · ·

ξ
(i2)i1
n−2,j2
j1=1


ξ

(ik+1)ik
n−(k+1),jk+1

· · · ξ
(i2)i1
n−2,j2

ξ
(i1)i0
n−1,j1


Zn−(k+1),ik+1/ρ

n−(k+1)

Zn,i0/ρn

1
ρk+1


and, again by the strong law of large numbers and the bounded convergence theorem, we have that, as n → ∞,

P

Xn−(k+1) = ik+1, Xn−k = ik, . . . , Xn−1 = i1

Xn = i0


→
vik+1mik+1 ikmikik−1 · · ·mi1 i0

vi0ρ
k+1

.

Hence, as n → ∞,

P

Xn = i0, Xn−1 = i1, . . . , Xn−(k+1) = ik+1


= P


Xn−(k+1) = ik+1, Xn−k = ik, . . . , Xn−1 = i1

Xn = i0

P

Xn = i0


→

vik+1mik+1 ikmik ik−1 · · ·mi1 i0

(1 · v)ρk+1
≡ λk+1(i0, i1, . . . , ik)

and
d

i0=1

d
i1=1

· · ·

d
ik+1=1

λk+1(i1, i1, . . . , ik+1) =

d
i0=1

d
i1=1

· · ·

d
ik=1

λk(i1, i1, . . . , ik) = 1.

So, there exists a random variable Yk+1 such that

P

Y0 = i0, Y1 = i1, . . . , Yk = ik, Yk+1 = ik+1


= λk+1(i0, i1, . . . , ik, ik+1)

=
vik+1mik+1 ik · · ·mi1 i0

(1 · v)ρk+1

and

Xn, Xn−1, . . . , Xn−k, Xn−(k+1)

 d
−→


Y0, Y1, . . . , Yk, Yk+1


as n → ∞.

By the principle of the mathematical induction, we have proved the existence of the random variables Y0, Y1, . . . , Yk for
any integer k ≥ 0 and have found their joint distribution.

Now, we prove the Markov property of

Yn


n≥0.

For any n ≥ 1 and any i, j, i0, . . . , in−1 ∈

1, 2, . . . , d


, we have

P

Yn+1 = j

Yn = i, Yn−1 = in−1, . . . , Y0 = i0


=
P

Yn+1 = j, Yn = i, Yn−1 = in−1, . . . , Y0 = i0


P

Yn = i, Yn−1 = in−1, . . . , Y0 = i0


=

vjmjimiin−1 · · ·mi1 i0/(1 · v)ρn+1

vimiin−1 · · ·mi1 i0/(1 · v)ρn

=
vjmji

viρ
≡ pij.

So, the conditional probability distribution of the future state of the chain

Yn}n≥0, given the present state and the past

states, only depends on the present state. Therefore,

Yn}n≥0 is a Markov chain with the state space


1, 2, . . . , d


such that

(a) the initial distribution λ0 ≡

λ0(1), λ0(2), . . . , λ0(d)


where

λ0(i) =
vi

1 · v
for any i = 1, 2, . . . , d,

(b) the transition probability P ≡

pij : i, j = 1, 2, . . . , d


, where

pij =
vjmji

viρ
for any n = 0, 1, 2, . . .

It remains to show that the Markov chain

Ỹn


n≥0 has a stationary distribution π ≡


π1, π2 . . . , πd


where

πi =
uivi

u · v
for any i = 1, 2, . . . , d.
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Since u > 0 and v > 0, πi =
uivi
u·v > 0. Also,

d
i=1

πi =

d
i=1

uivi

u · v
=

u · v
u · v

= 1.

So, π ≡

π1, π2 . . . , πd


is a probability distribution.

Moreover, since u is a right eigenvector of M associated with the eigenvalue ρ, for any j = 1, 2, . . . , d,
d

i=1

πipij =

d
i=1

uivi

u · v
vjmji

viρ

=
vj

ρ(u · v)

d
i=1

mjiui =
vj

ρ(u · v)
ρuj =

vjuj

u · v
= πj

and hence π is a stationary distribution of the transition probability P.
Therefore, the proof is complete.

Remark 3.1. A similar proof can be adopted to prove the result in Theorem 2.2 for the critical case.
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