
DOI 10.1007/s11063-006-6277-0
Neural Processing Letters (2006) 23:201–228 © Springer 2006

Minimal Structure of Self-Organizing HCMAC
Neural Network Classifier

CHIH-MING CHEN1,�, YUNG-FENG LU2 and CHIN-MING HONG3

1Graduate Institute of Learning Technology, National Hualien University of Education,
Hualien, Taiwan. e-mail: cmchen@mail.nhlue.edu.tw
2Department of Computer Science and Information Engineering, National Taiwan University,
Taipei, Taiwan.
3Institute of Applied Electronic Technology, National Taiwan Normal University, Taipei,
Taiwan.

Abstract. The authors previously proposed a self-organizing Hierarchical Cerebellar Model
Articulation Controller (HCMAC) neural network containing a hierarchical GCMAC neural
network and a self-organizing input space module to solve high-dimensional pattern classi-
fication problems. This novel neural network exhibits fast learning, a low memory require-
ment, automatic memory parameter determination and highly accurate high-dimensional
pattern classification. However, the original architecture needs to be hierarchically expanded
using a full binary tree topology to solve pattern classification problems according to the
dimension of the input vectors. This approach creates many redundant GCMAC nodes when
the dimension of the input vectors in the pattern classification problem does not exactly
match that in the self-organizing HCMAC neural network. These redundant GCMAC
nodes waste memory units and degrade the learning performance of a self-organizing
HCMAC neural network. Therefore, this study presents a minimal structure of self-orga-
nizing HCMAC (MHCMAC) neural network with the same dimension of input vectors as
the pattern classification problem. Additionally, this study compares the learning perfor-
mance of this novel learning structure with those of the BP neural network, support vec-
tor machine (SVM), and original self-organizing HCMAC neural network in terms of ten
benchmark pattern classification data sets from the UCI machine learning repository. In
particular, the experimental results reveal that the self-organizing MHCMAC neural net-
work handles high-dimensional pattern classification problems better than the BP, SVM or
the original self-organizing HCMAC neural network. Moreover, the proposed self-organiz-
ing MHCMAC neural network significantly reduces the memory requirement of the original
self-organizing HCMAC neural network, and has a high training speed and higher pattern
classification accuracy than the original self-organizing HCMAC neural network in most
testing benchmark data sets. The experimental results also show that the MHCMAC neu-
ral network learns continuous function well and is suitable for Web page classification.
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1. Introduction

The Cerebellar Model Articulation Controller (CMAC) neural network was devel-
oped by Albus [1, 2] in 1975. The CMAC is trained by local learning approach.
Each training data point is assigned to finite weights shared by its neighboring
data points. Therefore, weights trained by one training data point only interfere
with neighboring data points. Albus’ CMAC uses a constant basis function to per-
form locally weighted approximations of functions. The constant basis function
updates weights by distributing errors evenly among the assigned weights. CMAC’s
output is constant within each quantized state, and does not preserve the deriv-
ative information. Currently, CMAC has been successfully applied in many real-
world applications such as robotic control, signal processing, web page mining,
and pattern recognition [3–6] due to its fast learning, good generalization capabil-
ity, and ease of implementation by hardware.

Previous CMAC studies have tried to develop enhanced CMAC learning algo-
rithms [7–12], improve the CMAC learning structure [13–20], select learning
parameters for improving learning performance [21], implement CMAC model by
hardware [22], and apply the CMAC model in various fields [23–25]. In addition,
CMAC’s convergence properties have also been proved by formal mathematical
procedures [26, 27]. However, CMAC model proposed by Albus has two major
shortcomings: one is the problem of enormous memory size requirement while
modeling multi-variables functions or high-dimensional pattern classification prob-
lems, and another is to perform the uniform input space quantization for learn-
ing spaces [28, 29]. In modeling multi-variables functions, CMAC can produce very
large numbers of memory units for learning as the number of input vector dimen-
sions increases. Additionally, the number of training data points required should
be increased. Therefore, the fast memory requirement limits used fields of CMAC
model in real-world applications. Meanwhile, to perform the uniform input space
quantization for learning spaces neglects the problem of various pattern distri-
butions of training data sets, thus leading to allocating unused memory units as
well as reducing learning performance. This is because the memory space utiliza-
tion for the learned data will not be performed in the most accurate and precise
manner while using the uniform input space quantization approach for learning.
Hash-coding can often substantially reduce CMAC’s memory requirement and
work well for some problems [30, 31], but may lead to divergence and the speed
and performance of convergence may deteriorate [30].

To reduce the memory requirement, several researchers have proposed using
modular CMAC to model multi-variables problems. Albus [2] proposed a time-
inversion technique to refine computations in a CMAC. Time inversion CMAC
uses a serially-connected low order CMAC to solve high order problems, generat-
ing temporary data points from the upper low order CMAC to be used as train-
ing data in later low order CMAC. Moreover, Lin and Li presented a unique
learning structure composed of small two-dimensional CMACs to solve high-
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dimensional problems [14, 15, 32]. However, their proposed structure does not work
well if its sub-module architecture is not properly considered. Actually, Lin and
Li’s method suffers from the permutation explosion problem of input variables
for some pattern classification problems with large feature dimensions (such as
Lung’s data set [33], 56 feature dimensions). Recently, Hung and Jan [34] proposed
an MS CMAC to model multi-variables smooth functions. The MS CMAC con-
nects numerous one-dimensional CMACs as a tree structure trained by time inver-
sion technique. Hung and Jan also developed a quadratic spline scheme to smooth
one-dimensional CMAC outputs by transforming the step-state weights into con-
tinuous-smooth weights. Like Lin and Li’s study, MS CMAC cannot handle high-
dimensional pattern classification problems because its tree structure grows quickly
with the input vector dimensions.

Moreover, to perform input space quantization appropriately, some researches to
address the input space quantization issue can be found in the literature. Moody’s
study [35] proposed to use the layers of multi-resolution CMACs to achieve adap-
tively memory storage allocation. Kim and Lin [36] used iterative CMAC output
feedback to adjust the input quantization function to distribute the target sys-
tem’s output signals uniformly. However, iterative output feedback requires the time
derivative of the target function to update the quantization function [29], making
the training process extremely complicated. Meanwhile, this approach cannot work
for pattern classification problems. Additionally, Berger [37] employed the adaptive
binary method to divide the input space into appropriate ranges for input space
quantization to minimize the training error variance. Moreover, several researchers
have proposed clustering to obtain adaptive resolution [28, 29]. In summary, these
proposed approaches always involve trade-offs between storage savings and compu-
tational complexity of the proposed model.

To solve the above-mentioned two problems with CMAC, our previous study
proposed a self-organizing hierarchical CMAC (HCMAC) neural network contain-
ing an HCMAC neural network that consists of two-dimensional GCMACs with
non-constant differentiable Gaussian basis function [38] and a self-organizing input
space scheme [39]. The proposed HCMAC neural network can overcome the original
CMAC model’s large memory requirement by partitioning a high-dimensional prob-
lem into several manageable two-dimensional sub-problems. Furthermore, the self-
organizing input space scheme is based on Shannon’s entropy measure [40] and the
golden section search method [41] to determine the appropriate input space quan-
tization based on the input training data distribution. Compared with the other
proposed input space quantization approaches [28, 29], [35–37], the self-organizing
input space scheme presented in our previous study [39] does not need the deriva-
tive information and is better suited to handle pattern classification problems, but it
cannot be applied to perform the input space quantization for the problems without
category labels, such as the function approximation problem. After the input space
is quantized into discrete regions, the memory allocation of the HCMAC neural net-
work classifier can be constructed automatically. Our previous study also presented
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a gradient-descent learning rule to train the proposed self-organizing HCMAC clas-
sifier [39]. We demonstrated that the hierarchical HCMAC can reduce the memory
requirement of the conventional CMAC. Additionally, the proposed self-organizing
HCMAC classifier can achieve good high-dimensional pattern classification.

However, the original self-organizing HCMAC neural network’s learning struc-
ture must be hierarchically expanded by a full binary tree topology according to
the dimension of the input vectors to solve pattern classification problems, gen-
erating redundant GCMAC nodes when the pattern classification problem’s input
vector dimensions do not exactly match those of the self-organizing HCMAC
neural network. These redundant GCMAC nodes waste various memory units
and influence the learning performance of a self-organizing HCMAC neural net-
work. Hence, this study presents a minimal structure of a self-organizing HCMAC
(MHCMAC) neural network with the same input vector dimensionality as the
pattern classification problem. Additionally, this study infers the proposed self-
organizing MHCMAC neural network’s complete structural information, automat-
ically-assigned input vector approach and learning rules. The experimental results
show that the proposed self-organizing MHCMAC neural network not only sig-
nificantly reduces the original self-organizing HCMAC neural network’s memory
requirement, but also maintains a high training speed and classifies patterns more
accurately than the original self-organizing HCMAC neural network for most
testing benchmark data sets.

2. CMAC Technique

To derive the novel learning structure of the MHCMAC neural network, this sec-
tion first introduces the CMAC techniques based on different basis functions.

2.1. cmac with constant basis function

The Cerebellar Model Arithmetic Computer (CMAC) [1, 2] is a table look-up
neurocomputing technique. The constant basis function usually is used as associ-
ation memory selection vector in the conventional CMAC to model the hypercube
structure for learning. Furthermore, the behavior of storing weight information in
CMAC is similar to that of the cerebellum of humans, which distributively store
information on different cell layers. Before applying this learning model, the input
data of each state variable must be quantized into discrete regions according to given
learning space. Herein, the number of discrete regions is termed as a resolution. Sev-
eral quantized discrete regions can be accumulated as a block. Each input data can
be mapped to several actual memory units via an association memory selection vec-
tor. These mapped actual memory units are called hypercubes. That is, each input
data is distributively mapped on several different layered hypercubes. Hence, the
actual output can be obtained by summing all mapped hypercube values. CMAC
uses the difference of the desired output and actual output to adjust the mapped
actual memory contents until the total error converges to a tolerable range.
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Assume the actual output for a quantized state is distributively stored in
Ne locations of actual memory, and Nh represents the entire actual memory size
(Nh >Ne). The actual output for an input state is obtained as the sum of stored
contents for hypercubes covering this state. That is, the actual output of a specific
input state s can be mathematically expressed as follows:

y(s)=aT (s)w =
Nh∑

j=1

aj (s)wj (1)

where w = [w1,w2, . . . ,wNh]T is the vector of actual memory contents, and
aT (s)= [

a1(s), a2(s), . . . , aNh(s)
]

is an association memory selection vector which
contains Ne constant 1s’, i.e. the conventional CMAC uses the constant basis func-
tion to model hypercubes structure.

The conventional CMAC uses a supervised learning approach to adjust the
weight values during each learning cycle. Its learning rule can be described as
equation (2).

wt =wt−1 + α

Ne

a(s)(ŷ(s)−aT (s)wt−1) (2)

where wt is the vector of actual memory contents at time t , wt−1 is the vector of
actual memory contents at previous time t −1, α is a learning rate, ŷ(s) is the desired
output value and ŷ(s)−aT (s)wt−1 is the error for the input training state s.

2.2. cmac with gaussian basis function

Since the conventional CMAC uses a constant basis function as association
memory selection vector to model the hypercube structure, its output is always
constant within each quantized state and the derivative information of input and
output variables cannot be preserved [38]. The non-differentiable property leads to
some limitations when using the conventional CMAC in real-world applications,
such as action dependent critical learning [21]. Therefore, Chiang and Lin [38] pro-
posed a differentiable CMAC to solve this problem. Their study includes a non-
constant differentiable Gaussian basis function to model the hypercube structure.
The mathematical formulation of the one-dimensional Gaussian basis function φ

can be described as equation (3).

φ(s)= e−( s−m
σ )

2
(3)

where m is a hypercube center, σ is a hypercube radius, and s is a specific input state.
Consider an Nv dimensional problem. A Gaussian basis function with Nv

dimensions is included so that equation (1) is revised to be equation (4) as follows:

y(s)=
Nh∑

j=1

⎡

⎣aj (s) ·wj .

⎛

⎝
Nv∐

i=1

e
−

(
si−mji

σji

)2⎞

⎠

⎤

⎦ (4)
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where aj (s) is the j th element of association memory selection vector for a specific
input state s, wj is the j th memory allocation of actual memory, si is the input
value of the ith dimension for a specific input state s, mji is the corresponding
hypercube center, and σji is the corresponding hypercube radius.

The CMAC with a Gaussian basis function as a non-constant differentiable
basis function is termed as GCMAC herein, and both the self-organizing HCMAC
neural network presented in our previous work [39] and the proposed minimal
structure of self-organizing HCMAC neural network (MHCMAC) are based on
the GCMAC technique.

3. The Problems of Self-Organizing HCMAC Neural Network

To derive the self-organizing HCMAC neural network’s minimal structure, this study
first briefly reviews the self-organizing HCMAC neural network techniques, includ-
ing the HCMAC architecture and self-organizing input space approach, then pro-
poses several flaws in this learning structure. A hierarchical CMAC (HCMAC)
neural network consists of two-dimensional differentiable GCMACs as presented in
the previous work [39]. An HCMAC’s learning structure can be arbitrarily expanded
using the full binary tree topology for the pattern classification problems. Figure 1
illustrates the smallest HCMAC neural network topology, in which each GCMAC
includes two features as inputs, and the second layer GCMAC’s output values serve
as the first layer GCMAC’s input values. Thus, a pattern classification problem with
three or four input dimensions is solved using the same self-organizing HCMAC
neural network learning structure based on a full binary tree topology. This struc-
ture generates one redundant GCMAC node (GCMAC3) when solving a pattern
classification problem with three dimensions, thus wasting many memory units. The
memory wastage may become very serious when solving a high-dimensional pattern
classification problem. For example, a pattern classification problem with 513 input
dimensions creates a learning structure with 1024 input dimensions, thus generating
511 redundant input dimensions in the leaf GCMAC nodes. In our previous study
[39], the redundant input feature s4 of GCMAC3 shown in Figure 1 is assigned a zero
feature value when solving a pattern classification problem with three input features.
Although assigning a zero feature value to the redundant inputs in a HCMAC learn-
ing structure can overcome non-exact input dimensions, it may degrade the learn-
ing performance of the HCMAC neural network. Therefore, this study presents an
MHCMAC neural network with the same number of input dimensions as the pat-
tern classification problem, to avoid wasting memory units and enhance the learning
performance in the original HCMAC neural network.

4. Minimal Structure of Self-organizing HCMAC (MHCMAC) Neural
Network

This section derives the MHCMAC neural network’s learning structure and is
organized as follows. Section 4.1 presents the learning structure of the MHCMAC



MINIMAL STRUCTURE OF SELF-ORGANIZING HCMAC 207

GCMAC1

GCMAC3GCMAC2
 The second (hidden) layer

 The first (output) layer

1s 2s 3s
4s

)s(y1

2y 3y

 

Figure 1. A smallest topology structure of the HCMAC neural network.

neural network. Section 4.2 infers some useful structural information for the
MHCMAC neural network. Section 4.3 proposes an automatically assigned fea-
ture inputs approach and gives brief descriptions of self-organizing input space for
the proposed MHCMAC neural network. Section 4.4 compares the self-organizing
HCMAC with the self-organizing MHCMAC neural network. Finally, Section 4.5
details the learning rules of the MHCMAC neural network.

4.1. learning structure of the mhcmac neural network

An MHCMAC neural network is constructed using two-dimensional differentiable
GCMACs, but its learning structure is arbitrarily expandable using exact binary tree
topology. The exact binary tree topology indicates that an MHCMAC learning struc-
ture is constructed using two-dimensional GCMACs, but has the same input vector
dimensions as the pattern classification problem. Figure 2 shows several MHCMAC
neural networks with various numbers of input vector dimensions for solving the
pattern classification problems, where si denotes the assigned input feature sequence.
The automatically assigned approach of input features for the MHCMAC neural
network is explained in Section 4.3 in detail. Clearly, the constructed MHCMAC
structure is the same as the original HCMAC structure when the pattern classifica-
tion problem input vectors have exactly 2n dimensions, where n∈Z, but is different
from the constructed HCMAC structure when the input vectors not have exactly 2n

dimensions. In MHCMAC’s structure, each two-dimensional GCMAC node from
the root node to the last leaf node is assigned a unique serial node number. Each
GCMAC’s node number can be applied to derive the relationships between the par-
ent and the child GCMAC nodes in an MHCMAC structure. The proposed MHC-
MAC structure creates the root GCMAC node, labeled as GCMAC1, in the first
layer, and the second and third GCMAC nodes in the second layer and marked
GCMAC2 and GCMAC3, and so on. That is, the root GCMAC node (GCMAC1)
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Figure 2. Minimal structure of the HCMAC neural networks with various number of input vector
dimensions (where si denotes the assigned input feature sequence). (a) Two dimensions, (b) three dimen-
sions, (c) four dimensions, (d) five dimensions, (e) six dimensions and (f) seven dimensions.

is in the output layer, and the other nodes of the GCMACs are in the hidden layers.
Compared with the original CMAC, the MHCMAC neural network is more difficult
to be implemented by hardware because it has more complicated learning structure
than the original CMAC.

4.2. structural information of the mhcmac neural network

The MHCMAC neural network topologies shown in Figure 2 infer a general
rule for determining an MHCMAC’s structure automatically. First, the number
of GCMAC nodes required in a single MHCMAC’s structure can be determined
from the number of input vector dimensions in the pattern classification problem
according to the following formula:

NMHCMAC Node =NUM(input dimension)−1 (5)

where NMHCMAC Node denotes the number of GCMAC nodes required in a single
MHCMAC’s structure, and NUM (input dimension) stands for the number of the
input vector dimensions in the pattern classification problem.

Hence, in solving a pattern classification problem with many output categories,
the total number of GCMAC nodes required for the entire MHCMAC structure
can be computed by the following formula:

T NMHCMAC Node =NUM(output category)

× [NUM(input dimension)−1] (6)
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where T NMHCMAC Node represents the total number of GCMAC nodes required
to solve a pattern classification problem with many output categories, and NUM

(output category) stands for the number of output categories of the pattern classi-
fication problem.

Moreover, the parent node of the ith GCMAC node in an MHCMAC structure
can be computed as follows:

PNGCMACi
=

⌊
i

2

⌋
, for i =2,3,4, . . . ,NMHCMAC Node (7)

where PNGCMACi
represents the parent node of the ith GCMAC node, and

NMHCMAC Node denotes the number of GCMAC nodes required in the structure
of a single MHCMAC.

Moreover, the child node of the ith GCMAC can be computed as follows:

CNGCMACi
= imod 2, for i =2, . . . ,NMHCMAC Node (8)

where CNGCMACi
= 0 means that the ith GCMAC node is the left child node of

its parent GCMAC node, and CNGCMACi
= 1 means that the ith GCMAC node

is the right child node of its parent GCMAC node.
The ith GCMAC node, constructed in the hidden layer in an MHCMAC’s

structure can be computed using the following formula;

LNGCMACi
=⌊

log2 (i)
⌋
, for i =2,3, . . . ,NMHCMAC Node (9)

where LNGCMACi
represents the located hidden layer of the layer index of the ith

GCMAC node in an MHCMAC topology.
Finally, in the proposed MHCMAC structure, if the input vectors in the pattern

classification problem have an odd number of dimensions, then the constructed
MHCMAC structure has one GCMAC node whose left and right inputs handle
the output of its child GCMAC node and input feature data, respectively. Con-
versely, if the pattern classification problem has an even number of dimensions,
then the left and right inputs of each constructed GCMAC node at the bottom
layer handle the input feature data. With the odd-numbered input dimensions, the
following formula can be applied to determine which GCMAC node’s left and
right inputs will be used to respectively handle the output of its child GCMAC
node and input feature data;

GCMACi =GCMACNMHCMAC Node
2

, for NMHCMAC Node ∈ even number (10)

where NMHCMAC Node denotes the number of GCMAC nodes required in a single
MHCMACs’ structure.

In summary, Equations (5–8) and (10) can be applied to construct the MHC-
MAC structure required for the pattern classification problem. Equations (7) and
(9) are helpful for deriving learning rules for the MHCMAC’s hidden layers
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because they commonly determine the error back-propagation frequency in each
GCMAC node in a learning cycle. Equations (9) computes the error back-
propagation frequency for each GCMAC node in the hidden layers.

4.3. automatically assigned approach of input features and
self-organizing input space for the mhcmac neural network

The assigned input feature sequence, displayed in Figure 2 is helpful in designing a
computer program to assign input features to the MHCMAC’s learning structure.
Restated, a general rule to assign input features automatically to the MHCMAC’s
learning structure can be induced from the designated input feature sequence. To
induce this rule for the MHCMAC, the notation GCMACl,m determines whether
the ith input feature si should be designated to the GCMAC node’s left or right
input. Herein, the values of l and m are respectively determined by the following
two mathematical formulae:

l =�(i +NMHCMAC Node)/2� (11)

m= (i +NMHCMAC Node) mod 2 (12)

where NMHCMAC Node denotes the number of GCMAC nodes required in the
structure of a single MHCMAC.

When automatically assigning input features, l indicates that the ith input fea-
ture si is assigned to the left input of the lth GCMAC node in the structure of
a single MHCMAC if m = 0. Conversely, the ith input feature si is assigned to
the right input of the lth GCMAC node in the structure of a single MHCMAC
if m=1. This approach is a general rule for MHCMAC neural networks because
it can automatically assign input features to the MHCMAC structure whether the
input features have odd or even dimensions.

Besides, owing to its use of a uniform approach to quantize input space for con-
structing memory structure, the conventional CMAC approach cannot accurately
reflect the actual distribution of training data [28, 29], thus leading to extra cost
of memory requirement or poor learning performance. Therefore, a self-organizing
input space approach based on Shannon’s entropy measure and the golden sec-
tion search method proposed in our previous work [39] is applied to adaptively
determine quantization of each input feature dimension based on the distribution
of training data for the proposed MHCMAC neural network. Because each input
space of a two-dimensional GCMAC is quantized into some intervals, Shannon’s
entropy of each interval is respectively computed to obtain a measure of patterns’
distribution information. Moreover, since adaptive partition points are unknown,
we need an effective strategy to find appropriate partition points for input fea-
ture space. Thus, the golden section search method is adopted to obtain adaptive
partition points. After the quantization information is obtained, the association
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memory selection vectors and actual memory structure for the MHCMAC neu-
ral network are automatically determined. In sum, the learning spaces of the input
variables are quantized first by the self-organizing input space approach, then the
learning structure of the MHCMAC will be automatically constructed through a
predetermined block parameter. Currently, the self-organizing input space for the
proposed MHCMAC is only performed for the leaf GCMAC nodes (i.e. the input
layer) based on the pattern distribution of training data. The other GCMAC nodes
(i.e. the hidden layers) in the MHCMAC learning structure perform the scheme
of uniform input space quantization for input learning spaces. This is because the
input features of hidden layer GCMAC nodes in the MHCMAC learning structure
are always variable during the learning process until the entire learning process is
terminated.

4.4. comparison of hcmac neural network with the mhcmac neural
network

Table 1 compares the HCMAC neural network with the MHCMAC neural net-
work in terms of memory requirement, topology structure and input feature
assignment approach. Table I shows that the memory requirement of the origi-
nal HCMAC neural network grows with the power 2 of the ceiling logarithm of
the input dimensions, but the memory requirement of the MHCMAC neural net-
work grows only linearly with the input feature dimensions. Moreover, the learn-
ing structure of the self-organizing HCMAC neural network is expanded based on
a full binary tree topology, but the MHCMAC neural network is expanded based
on an exact binary tree topology. The input features can be arbitrarily assigned to
the leaf GCMAC node inputs for both the original self-organizing HCMAC and
MHCMAC neural networks. However, to implement the MHCMAC neural net-
work more easily, this study presents an automatically input feature assignment
approach in Section 4.3 to assign each input feature to its corresponding GCMAC
node in an MHCMAC learning structure. Finally, the zero value is assigned to the
inputs of redundant leaf GCMAC nodes in the original HCMAC neural network,
but the MHCMAC neural network can improve this problem because it can con-
struct exact GCMAC nodes to solve the pattern classification problems.

4.5. learning rule for the mhcmac neural network

For simplicity, this study applied the five-input MHCMAC topology structure as
shown in Figure 3 to infer the MHCMAC neural network’s learning rule. As
shown in Figure 3, this structure contains five-input features labeled si , where si

(i = 1,2, . . . ,5) represents the ith input feature in the MHCMAC neural network;
yj (j = 1,2,3,4) is the j th output of GCMAC; yj (j = 2, . . . ,4) are the hidden
layer outputs, and y1 is the MHCMAC neural network’s output for a specific input
state s. Moreover, to simplify the inference procedure of learning rules, the five-input
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Table 1. Comparison of the HCMAC neural network with the MHCMAC neural network.

Models

Items HCMAC [39] MHCMAC

Total number of GCMAC

nodes required for the

entire learning structure

NUM(output category) ×(
2

⌈
log2NUM

(
input dimension

)⌉

−1
) NUM(output category) ×

[NUM(input dimension)−1]

Topology structure Full binary tree structure Exact binary tree structure

Input feature assignment

approach

Any order to the leaf GCMAC

node inputs

Any order to the leaf GCMAC

node inputs or using the pro-

posed automatically input feature

assignment approach

Handling approach for

the inputs of redundant

leaf GCMAC nodes

Assign zero values to the inputs of

redundant leaf GCMAC nodes

No redundant leaf GCMAC node

1y

2y 3y
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Figure 3. MHCMAC topology structure with five-input dimensions.

features labeled si also give another corresponding label yj (j =5, . . . ,9). The learn-
ing rule is inferred using differentiable GCMAC and gradient descent. Since the first
layer’s GCMAC is an output node, the original GCMAC learning rule [38] is used
to update the weight parameters. An error cost function is also defined to derive the
weights updating formulae of the hidden layer GCMACs, as follows:

E = 1
2 (ŷ(s)−y(s))2 (13)

where ŷ(s) is the desired output value of the MHCMAC neural network for input
state s, and y(s) is the actual output of the MHCMAC neural network for
input state s.
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The proposed method needs three parameters, i.e. weight w, radius σ and cen-
ter m, to achieve each GCMAC’s learning process. When the actual and desired
output values are different, the three GCMAC1 parameters in the output layer are
updated first. The error is then back-propagated from the first layer to the second
and third layers to update the GCMAC2, GCMAC3, and GCMAC4 parameters.

The MHCMAC neural network architecture (Figure 3) uses the learning rule
inference procedures as follows.

4.5.1. Update the GCMAC1 of the first (output) layer

�wj =− α

Ne

∂E

∂wj

= α

Ne
(ŷ1(s)−y1(s)) ·aj (s) ·

3∏

i=2

e
−

(
yi−mjk

σjk

)2

(14)

where �wj is the update to the weight value of the j th actual memory in the
GCMAC1, wj is the weight value of the j th actual memory in the GCMAC1,
mjk is the center of the kth dimension of the Gaussian basis function in the j th
mapped hypercube; k is determined by the i, if i =2 then k =1; if i =3 then k =2
in the learning rule, σjk is the radius of the kth dimension of Gaussian basis func-
tion in the j th mapped hypercube, α is the learning rate, aj (s) is the j th element
of association memory selection vector for a specific input state s, and Ne is the
number of mapped hypercubes for input state s.

�σji =− α

Ne

∂E

∂σji

= α

Ne
(ŷ1(s)−y1(s)) ·aj (s) ·wj ·

⎡

⎣
3∏

i=2

e
−

(
yi−mjk

σjk

)2⎤

⎦ · 2(yi −mjk)
2

σ 3
jk

(15)

In Equation (15) above, �σji is the update to the ith dimension radius value for
the j th mapped hypercube of input state s in the GCMAC1; σji is the radius of
the ith dimension for the j th mapped hypercube of input state s in the GCMAC1;
k is determined by the i, if i =2 then k =1, if i =3 then k =2 in the learning rule,
and α is the learning rate.

�mji =− α

Ne

∂E

∂mji

= α

Ne
(ŷ1(s)−y1(s)) ·aj (s) ·wj ·

[ 3∏

i=2

e
−

(
yi−mjk

σjk

)2]
· 2(yi −mjk)

σ 2
jk

(16)

In Equation (16), �mji is the update to the ith dimension center value for the
j th mapped hypercube of input state s in the GCMAC1; mji is the center of the
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ith dimension for the j th mapped hypercube of input state s in the GCMAC1; k

is determined by the i, if i = 2 then k = 1; if i = 3 then k = 2 in the learning rule,
and α is the learning rate.

4.5.2. Update the GCMAC2 and GCMAC3 of the second layer

To derive the GCMAC2 and GCMAC3 learning rules in the first hidden layer, the
derivative information of ∂y1(s)/∂y2 and ∂y1(s)/∂y3 are first computed as Equa-
tions (17) and (18).

∂y1(s)

∂y2
=

Nh∑

j=1

aj (s) ·wj ·
⎡

⎣
3∏

i=2

e
−

(
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)2⎤

⎦ · −2
(
y2 −mj1

)

σ 2
j1

(17)
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e
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(
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σjk

)2⎤

⎦ · −2
(
y3 −mj2

)

σ 2
j2

(18)

In the above equations, wj is the weight of the j th actual memory in the
GCMAC1, σjk is the radius of the kth dimension for the j th mapped hypercube
of input state s in the GCMAC1; k is determined by the i, if i = 2 then k = 1; if
i =3 then k=2 in the two learning rules, mjk is the center of the kth dimension for
the j th mapped hypercube of input state s in the GCMAC1, and Nh is the entire
actual memory size in the GCMAC1.

Next, the learning rule of the GCMAC2 in the first hidden layer (Figure 3) can
be derived by

�wj =− α
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In Equations (19), (20) and (21), the symbol definitions can refer to Equations
(14), (15) and (16), and k is determined by the i, if i = 4 then k = 1; if i = 5 then
k = 2 in these learning rules. Similarly, the learning rule of the GCMAC3 in the
first hidden layer (Figure 3) can be derived as GCMAC2.

4.5.3. Update the GCMAC4 of the third layer

To derive the learning rule of the GCMAC4 in the second hidden layer, the deriv-
ative information of ∂y2(s)/∂y4 is computed as Equation (22):

∂y2(s)

∂y4
=

Nh∑

j=1

aj (s) ·wj ·
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5∏

i=4

e
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)2⎤

⎦ · −2
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)

σ 2
j1

(22)

where wj is the weight value of the j th actual memory in the GCMAC2, σjk is the
radius of the kth dimension for the j th mapped hypercube of input state s in the
GCMAC2; k is determined by the i, if i =4 then k=1; if i =5 then k=2 in the learn-
ing rule, and mjk is the center of the kth dimension for the j th mapped hypercube
of input state s in the GCMAC2.

Similarly, the GCMAC4 learning rule in the second hidden layer (Figure 3) can
be derived as GCMAC2 using the derivative information as formulae (17) and (22).
Restated, to update GCMAC4’s weights, hypercube centers and radiuses, the gradi-
ent of the error between the desired and the actual outputs must be back-propagated
first from the output layer to the first hidden layer using Equation (17), then from the
first to the second hidden layers using Equation (22). Next, the GCMAC4 learning
rule in the second hidden layer (Figure 3) can be derived as
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In Equations (23), (24) and (25), the symbol definitions can also refer to Equa-
tions (14), (15) and (16), and k is determined by the i, if i = 8 then k = 1;
if i = 9 then k = 2 in these learning rules. Equations (19), (20) and (21) show
that the error is back-propagated from the GCMAC1 in the output layer to
the GCMACs of the first hidden layer by the corresponding derivative informa-
tion from ∂y1(s)/∂y2, ∂y1(s)/∂y3. Moreover, Equations (23), (24) and (25) show
that the error is back-propagated from the GCMAC1 in the output layer to the
GCMACs of the second hidden layer by the corresponding derivative information
of ∂y1(s)/∂y2, ∂y2(s)/∂y4.

5. Experiments

First, a continuous function with three variables was used as a target function to
show the function approximation ability of the proposed MHCMAC neural net-
work. Meanwhile, to demonstrate the classification performance of the proposed
self-organizing MHCMAC neural network classifier, data sets on ten benchmark
pattern classification problems and Syskill & Webert Web page ratings from the
UCI machine learning repository [33] were tested. The experimental results are
described in the following sections.

5.1. experiment on function approximation

In this experiment, a three-dimensional function F(x1, x2, x3) = (1 + sin(x1π)

sin(2x2π) sin(3x3π))/2 for 0 � x1, x2, x3 � 1, is used as a target function to eval-
uate the ability of function approximation of the MHCMAC neural network.
The three-dimensional topology structure of the MHCMAC shown as Figure 2(b)
was employed to solve this problem. To show the three-dimensional plots for the
desired target function output and the learned output of the MHCMAC neural
network, the function F(0.5, x2, x3) was sampled with a sampling interval of 41 for
each variable. In other words, each sampling slice of variables x2 and x3 is 1

41 in
the learning space under the variable x1 was fixed as 0.5. Therefore, the total num-
ber of training patterns was 1681 in this experiment. Besides, the learning rate α

of the MHCMAC is set to be 0.025, the resolution parameter is set to be 61 for
the input dimensions of the used GCMAC nodes, the block parameter which is
equal to the parameter Ne is set to be 3, and the stop criterion of the mean square
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error is set to be 0.00012 in the experiment of function approximation. Figure 4
shows the learning mean square error convergence curve. Figures 5 and 6 show the
3D plots of the desired and learned outputs of F(0.5, x2, x3), respectively. These
experimental results demonstrate that the proposed MHCMAC neural network
approximates the function well.

5.2. experiment on ten benchmark pattern classification problems
from uci machine learning repository

Next, in the experiment of ten benchmark pattern classification problems from
UCI machine learning repository [33], ten independent runs were performed to
yield an average performance; half the original data patterns selected randomly
were used as training data and the remaining patterns were used as testing data.
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Figure 4. Convergence curve of mean square error.

Figure 5. Target function of F(0.5, x2, x3).
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Figure 6. Output result after learning.

Table 2. Several benchmark data sets from UCI machine learning repository [33].

Number Number of
Number of Number of of training testing

Data set features classes instances instances Data type

Iris 4 3 75 75 Continuous

Liver 6 2 173 172 Continuous

Breast 9 2 350 349 Continuous

Echo 11 2 66 66 Continuous

Va-Heart 13 2 100 100 Continuous

Wine 13 3 89 89 Continuous

All-hyper 29 3 486 486 Continuous

Lung 56 3 18 15 Continuous

Soy 208 17 150 139 Binary

Promoter 228 2 53 53 Binary

Table 2 lists the characteristics of these data sets. The ten benchmark data sets
include eight continuous data sets and two binary data sets.

In this experiment, ten benchmark data sets were tested using the original BP
neural network (i.e. multi-layer perceptron) [42], Lin’s support vector machine (LIB-
SVM) [43], self-organizing HCMAC neural network [39], and the proposed self-
organizing MHCMAC neural network. Tables 3 and 4 summarize the training and
testing classification results, respectively. To give a fair comparison, the choice of
learning parameters for the proposed self-organizing MHCMAC neural network is
the same as the self-organizing HCMAC neural network [39]. Lin’s LIBSVM can
automatically determine the SVM parameters including the used kernel ( default as
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Table 4. Testing results of various learning models.

Model

Self-organizing

BP SVM [43] HCMAC [39] MHCMAC

Averaged Standard Averaged Standard Averaged Standard Averaged Standard

accuracy deviation accuracy deviation accuracy deviation accuracy deviation

Data set rate (%) rate (%) rate (%) rate (%)

Iris 96.5 % 0.0039 94.7 0.0052 96.8 0.0032 96.8 0.0041

Liver 71.0 % 0.0041 60.5 0.0014 63.5 0.0053 66.8 0.0022

Breast 95.1 % 0.0043 96.6 0.0044 95.7 0.0044 96.8 0.0027

Echo 90.9 % 0.0015 77.3 0.0052 88.4 0.0032 90.0 0.0021

Va-Heart 99.5 0.0044 69.0 0.0056 87.0 0.0041 86.3 0.0052

Wine 96.6 0.0025 95.5 0.0024 83.1 0.0022 85.1 0.0018

All-hyper 97.7 0.0057 97.1 0.0052 97.3 0.0038 97.1 0.0019

Lung 26.6 0.0025 33.3 0.0047 53.3 0.0030 54.6 0.0026

Soy # – 54.7 0.0017 84.6 0.0037 91.3 0.0016

Promoter # – 66.0 0.0042 77.3 0.0016 83 0.0022

#: divergence

the radial basis function) and kernel parameters by the grid parameter search
approach [43]. The experimental results reveal that the training classification of
the original self-organizing HCMAC and MHCMAC neural networks is more
accurate than those of the BP neural network and support vector machine. The
self-organizing MHCMAC neural network exhibits a slightly lower classification
accuracy on the training data than the original self-organizing HCMAC neural
network, but the self-organizing MHCMAC neural network exhibits a higher clas-
sification accuracy on test data than the original self-organizing HCMAC neural
network on most testing data sets. Restated, the self-organizing MHCMAC neu-
ral network generalizes more effectively than the original self-organizing HCMAC
neural network. This is because the zero-valued inputs and allocating redun-
dant GCMAC nodes indeed affect the learning performance of the self-organizing
HCMAC neural network, but the proposed self-organizing MHCMAC learning
structure with exact input features can obviously improve this flaw that occurred
in the self-organizing HCMAC neural network. From the experimental results,
we find that the improvement of the learning performance of the self-organiz-
ing MHCMAC is highly relevant with the number of the inputs of redundant
leaf GCMAC nodes that occurred in the self-organizing HCMAC. That is, the
ratio of the number of the input dimensions assigned zero value to the num-
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ber of the input dimensions assigned normal input feature value will affect the
learning performance of the self-organizing HCMAC. In particular, the classifica-
tion accuracy rate of the self-organizing HCMAC is obviously poorer than the
self-organizing MHCMAC when the ratio is raised. This phenomenon could be
supported by the experimental results listed in Tables 3 and 4. Based on the obser-
vation, we find that the Soy data set has the best improvement after comparing
the learning performance of the self-organizing HCMAC with the self-organizing
MHCMAC because the ratio is the largest one among the ten testing data sets.
Additionally, the classification accuracy rates of the BP neural network on the
test data surpass those of the SVM and the original self-organizing HCMAC and
MHCMAC neural networks for the Liver, Echo, Va-Heart, Wine and All-hyper
data sets. The BP algorithm could not converge to the specified MSE at sev-
eral assigned learning rates when analyzing the Soy and Promoter binary data,
which respectively include 208 and 228 features. However, the experimental results
obtained from the original self-organizing HCMAC and MHCMAC neural net-
work classifiers are encouraging because they reveal high accuracy classification
rates on the training and testing data for these two data sets with which the
BP algorithm and SVM were not very effective. In particular, the classification
accuracies of the self-organizing MHCMAC on the training and testing data clearly
exceed those of the original self-organizing HCMAC neural network and SVM on
these two data sets. In the experiment, the classification results of the self-organiz-
ing MHCMAC neural network in the Lung, Soy and Promoter data sets are better
than those obtained using the BP neural network, SVM and the original self-orga-
nizing HCMAC neural network. Restated, the MHCMAC neural network handles
high-dimensional pattern classification problems better than the BP, SVM or the
original self-organizing HCMAC neural network.

Moreover, the self-organizing MHCMAC neural network needs much less memory
than the original self-organizing HCMAC neural network. An experimental evalu-
ation of the training CPU time for the proposed novel minimal structure implies
that the self-organizing MHCMAC neural network takes less CPU time than the
original self-organizing HCMAC neural network when applied to Breast, Va-Heart,
All-Hyper, and Promoter data sets, but the self-organizing MHCMAC neural net-
work takes much more CPU time than the original self-organizing HCMAC neural
network when applied to Liver, Echo, Wine, Lung, and Soy data sets. Furthermore,
the structure of the BP neural network is difficult to determine for high-dimensional
pattern classification problems and does not appear to converge well.

5.3. experiment on the data set of the syskill & webert’s web page
ratings from uci machine learning repository

Syskill & Webert’s web page rating system [44, 45] is designed to help users iden-
tify Web pages on a particular topic. This system provides a user interface enabling
the user to rate a page for three different levels of interest, hot, medium or cold.
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The rating results are recorded as a user profile with positive or negative exam-
ples. Each user has a set of profiles for each topic. The system’s data set contains
HTML source code of Web pages and each user’s ratings on four separate subjects,
Bands-recording artists, Goats, Sheep and BioMedical. Except the HTML source
code, each page rating entry includes five records, HTML source file name, rating
level (hot, medium or cold), URL, date visited and title of Web page.

In this experiment, the proposed self-organizing MHCMAC neural network clas-
sifier was applied to predict user rating via learning user profiles for personalized
navigation. Although the rating system can be used by several users, here we only
use web page rating data from one user. Table 5 summarizes the data set using
rating topics, together with the lists of different levels of interests and the total
number of Web pages rated by a single user. Most studies merge the ‘medium’
and ‘cold’ interest levels [6, 44, 45] because very few Web pages are marked as
‘medium’. To evaluate the effectiveness of the classification algorithms fairly, this
study also merged these two interest levels. A random process was used to parti-
tion the data set in Table 5 into training and testing data sets, both comprising
half the original data set.

To process Web pages into a vector representation with reduced dimensionality
for the classification algorithms, three processing components, HTML parser, text
processing, and keywords selection, are needed to generate informative keywords.
In this experiment, an HTML parser was first designed to remove all tags from
the HTML documents, since the tags are not relevant to the topics, and the text
contents was then used for further text processing and feature selection. Text pro-
cessing refers to removing non-textual words (e.g., numeric data, symbols, nota-
tion and ASCII drawings) and stop-words from the original Web documents, and
transferring the remaining words into stems by a stemming rule [46]. The Brown
corpus stop-list [47] was used to preprocess Web documents. To identify informa-
tive keywords to characterize Web documents in vector representation, a fair fea-
ture subset selection algorithm [48] proposed in our previous study was applied to

Table 5. Topics used in our experiments.

Interesting levels and corresponding number of pages

Number of hot Number of Number of cold Total number of
Topic pages medium pages pages pages

Bands-recording artists 15 7 39 61

Goat 32 1 37 70

Sheep 14 0 51 65

BioMedical 32 3 101 136
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select the informative keywords from the training data set. After the useful features
were identified, the TF × IDF approach [46] was used to assign an importance,
i.e. weight, to each feature in the Web document. This study employed a feature’s
occurrence frequency to indicate its representativeness in a given Web document.
That is, if a keyword appears frequently in a particular Web document, then it is
highly representative of the document’s subject.

Next, to explore the impact of selecting different numbers of features for
learning user profiles, four classifiers, Vector Space Model (VSM) [46], Linear Text
Classifier (LTC) [49, 50], BP neural network [42] and self-organizing MHCMAC
neural network, were compared using Syskill & Webert’s Web page ratings data
set, using half the examples for training and the other half for testing. Table 6
lists the training results of the self-organizing MHCMAC neural network, aver-
aging ten independent trials. The proposed method achieves an average training
accuracy of almost 100% on four topics of user profiles. Figures 7–10 show the
testing accuracy rates from selecting other numbers of features for each of the
four classifiers. These experiments show that the proposed self-organizing MHC-
MAC did not achieve best prediction accuracy rates for all four user profiles with
various data distribution on the Syskill & Webert’s Web page ratings data set.
However, no machine learning method can guarantee to solve all data distribu-
tion problems well, especially for highly changeable Web page classification prob-
lems. Generally, the average performance is a logical and reasonable benchmark for
Web page classification problems. Accordingly, Figure 11 summarizes the previous
results, showing that the proposed self-organizing MHCMAC predicted best for
all different numbers of informative features on the four user profiles. Moreover,
the self-organizing MHCMAC also performs better than the earlier self-organizing
HCMAC result in this experiment [6]. The experimental results also show that
the self-organizing MHCMAC neural network is better suited to high-dimensional
problems than BP neural network.

Table 6. The average training accuracy of varying the number
of informative features for the MHCMAC neural network.

Topics

Features BioMedical Bands Goats Sheep

16 94.5 100 100 97.0
32 97.5 100 100 100
64 98.5 100 100 96.8
96 98.5 100 100 100

128 100 100 100 100
200 100 100 100 100
256 98.5 100 100 100
400 98.5 100 100 100



224 CHIH-MING CHEN ET AL.

BioMedical

50

60

70

80

90

0 100 200 300 400
Number of features

T
es

ti
ng

 a
cc

ur
ac

y VSM

LTC

BP

MHCMAC

Figure 7. The predicting effect of varying the number of informative features on the user profile of Bio-
Medical.
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Figure 8. The predicting effect of varying the number of informative features on the user profile of
Bands.
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Figure 9. The predicting effect of varying the number of informative features on the user profile of
Goats.
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Figure 10. The predicting effect of varying the number of informative features on the user profile of
Sheep.

60

70

80

90

0 100 200 300 400

Number of features

T
es

tin
g 

ac
cu

ra
cy VSM

LTC

BP

MHCMAC

Figure 11. The average predicting effect of varying the number of informative features on the four user
profiles.

6. Conclusion

This study presents a minimal structure of a self-organizing HCMAC neural net-
work, called as MHCMAC, to eliminate the wasted extra memory units in the
original self-organizing HCMAC neural network. The problem is solved using the
structural expansion approach of the exact binary tree topology when solving pat-
tern classification problems. The proposed self-organizing MHCMAC neural net-
work is based on two-dimensional differentiable GCMACs, but this study presents
an exact structural expansion approach to replace the full binary tree topology
structure herein. The experimental results show that the proposed self-organizing
MHCMAC neural network can not only significantly reduce the memory require-
ment in the original self-organizing HCMAC neural network, but also maintain a
high training speed and a higher pattern classification rate than the original self-
organizing HCMAC neural network when applied to most testing benchmark data
sets. Meanwhile, experiments on the four topics of user profiles also show that



226 CHIH-MING CHEN ET AL.

the MHCMAC neural network predicts Web pages of interest to users better than
other well-known classifiers.
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