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Abstract

This paper studied the cost allocation for the unfunded liability in a defined benefit pension scheme incorporating the
stochastic phenomenon of its returns. In the recent literature represented by Cairns and Parker [Insurance: Mathematics and
Economics 21 (1997) 43], Haberman [Insurance: Mathematics and Economics 11 (1992) 179; Insurance: Mathematics and
Economics 13 (1993) 45; Insurance: Mathematics and Economics 14 (1994) 219; Insurance: Mathematics and Economics 14
(1997) 127], Owadally and Haberman [North American Actuarial Journal 3 (1999) 105], the fund level is modeled based on
the plan dynamics and the returns are generated through several stochastic processes to reflect the current realistic economic
perspective to see how the contribution changed as the cost allocation period increased. In this study, we generalize the
previous constant value assumption in cost amortization by modeling the returns and valuation rates simultaneously. Taylor
series expansion is employed to approximate the unconditional and conditional moments of the plan contribution and fund
level. Hence the stability of the plan contribution and the fund size under different allocation periods could be estimated,
which provide valuable information adding to the previous works.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

1.1. Preliminary

There are many indeterminate economic and demographic factors in pension funding such as the volatility of
plan returns, the inflation rates, the employees’ turnovers and the new entrants’ participation. Owing to these
uncertainties, it is inevitable for mismatches in plan valuation and sometimes wild margin of errors (i.e., gains or
losses) in forecasting the plan financial status to occur. Hence the pension actuary has to properly plan a strategy to
allocate these mismatches in advance and disclose such information in the financial balance sheet when it occurs.
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In particular, in a defined benefit pension plan, the benefits are promised by the plan sponsor and the financial
soundness is especially vital for the plan participants.

This study investigates the stability of the cost allocation for unfunded liability and focuses on the uncertainty
arisen from the assumptions on plan returns and valuation rates. How to properly disclose the cost of a pension plan
under uncertainty has become a crucial issue in pension fund valuation. Since statistical fluctuations may appear and
inevitably generate difference between the expected and actual results, it is necessary to allocate such discrepancy
during specific time horizon. In order to reduce the impact of errors on the annual pension cost and stabilize the
volatility of the plan contribution due to stochastic fluctuations, it is important to monitor these errors. The pension
fund usually accumulates a large amount of assets in advance in order to match its promised obligations in the
future. Since the gains and losses affect the pension fund performance directly, careful investigation of the effect
using different amortization strategies is especially important.

Cairns and Parker (1997), Owadally and Haberman (1999)treated fund returns as independently identically
distributed (i.i.d.) random variables to see how the contribution changed as the cost allocation period increased.
While evaluating the proportion 1/ä of the unfunded liability to allocate the deficit by the spread method of
amortization; however, the discount factor is assumed to be constant. In this study, the force of interests used in
discount factors are modeled through several stochastic processes to reflect the possible economic perspectives. The
major improvements are summarized as follows:

1. The fund returns are modeled through several stochastic processes to derive 1/ä , Rt (instead of 1/ä since
Rt are random for allt) in this paper, while constant valuation rate is used in previous work in computing
1/ä .

2. The fund and contribution have been assumed to be stationary, i.e., the means of the fund and contributions are
viewed as constants not depending on time,t . However, we do not restrict these assumptions.

1.2. Literature review

Researches in pension valuation in recent decades can be found inBowers et al. (1982), McKenna (1982),
Dufresne (1988, 1989), Haberman (1992–1994, 1997), Mandl and Mazurova (1996), Gerrard and Haberman (1996),
Haberman and Wong (1997), Cairns and Parker (1997), Owadally and Haberman (1999, 2000).

Dufresne (1988, 1989)discussed the contribution rate and fund level when the return rates of the plan’s assets
were modeled based on an i.i.d. sequence of random variables over a fixed time horizon.Haberman (1992, 1993)
compared different funding methods of computing the expectations and variation in fund sizes and contribution levels
with a time delay when real rates of return were assumed to be generated from i.i.d. and first-order autoregressive
(AR) processes.Haberman and Wong (1997)derived the moment and variation in the contribution rate and fund
level under different pension funding methods. The real investment rates of return were modeled through a moving
average (MA) process considering the optimal allocation period.Haberman (1997)proposed the contribution rate
risk and discussed which periods for spreading valuation surpluses and deficiencies could be chosen to minimize
the risk.

Pension application of AR(1) models have been considered byHaberman (1994), Mandl and Mazurova
(1996), Cairns and Parker (1997). Using MA(1) models can be found inHaberman and Wong (1997),
Bedard (1999), Owadally and Haberman (2000)for both AR(1) and MA(1) cases (see, e.g.,(Bedard, 1999),
and references therein). We extend their research by modeling the returns and valuation rates simultan-
eously through the plausible term structure, AR and MA time series models. The outline of this article is as
follows. Section 2describes the general framework and the notations used in our model. InSections 3 and 4, we
formulate several potential stochastic models for the interest rates in amortizing the unfunded liability to inves-
tigate the mean and the variance of the contribution level and the fund size. Numerical illustrations obtained
from Taylor series approximation based on an actual data are summarized inSection 5. Section 6contains the
conclusion and identifies the potential areas for the future research. InAppendix A, we explain in detail our
approximation.
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2. Allocating unfunded liability

The fund sizeFt may not be equal to the accrued liability ALt at timet when actuarial cost methods including the
projected unit credit (PUC) and entry age normal (EAN) cost methods are used. As a result, the unfunded accrued
liability at time t , UAL t , occurs. The unfunded accrued liability is defined as the excess of the accrued liability over
the fund size, i.e.,

UAL t = AL t − Ft . (1)

Hence, a strategy must be set up to allocate this unfunded accrued liability and properly disclose such information
in the financial balance sheet. This means that the total contribution at timet should be split into two parts: the
normal cost NCt and a fraction of the unfunded liabilitykUAL t , to compensate the mismatch under some allocation
strategies. In this study, the amortization is recomputed each year on the basis of the current unfunded liability.
Hence the annual contribution could be formulated as

TotalCt = NCt + kUAL t , (2)

wherek depends on the allocation period and the valuation rate we chose to amortize the unfunded accrued liability.
In the literature, a number of ways of presentingk have been investigated:

(a) k = 1/ä
,Rt

where the annuity is calculated using the (deterministic) valuation rate of interest, so that attention
focuses onM.

(b) k itself is considered the parameter, most recently in a proportional control framework.

Also seeDufresne (1988), Cairns and Parker (1997), Owadally and Haberman (1999, 2000), Cairns (2000).
We follow the approach(a) but extend it by allowingk to depend ont and be based on the estimated for-
ward interest rate rather than on a constant value. LetM be the period of amortization, thenk is formulated
by 1/ä

,Rt
where ä

,Rt
is the present value of the certain annuity payment from the beginning of thet th

year to the end of the(t + M − 2)th year calculated at assumed forward interest rateRj wherej = t, t +
1, . . . , t + M − 2. The widely used method is to amortize the unfunded liability with a series of constant dol-
lar payments. It means that UALt is level amortized within the nextM years. We should recognize in advance
that the forward interest rateRj during the periodj up to j + 1 might not be a constant. Instead,Rj be-
haves randomly, which can be described through a sequence of stochastic processes. If we have past data to
which a parsimonious model has been fitted then we can employ the model to forecast the future value ofRj .
As a result,k can be formulated as a function of these forecast values. Therefore, 1/ä

,Rt
has the following

presentation:

1

ä
,Rt

=

1 +

M∑
j=2

j−1∏
i=1

1

1 + Rt+i−1




−1

. (3)

SinceM affects contribution size in pension funding, an optimalM becomes vital in cost allocation. To set up an
optimal rule, a performance measure is required. In this study, the performance criterion originally proposed by
Dufresne (1988)and several subsequent authors is adopted using the first and second moments of the contribution
and fund level. The idea behind this approach is to investigate the relationship between the mean, the variance
of Ct (or Ft ) and the chosen period of amortizationM simultaneously. This can lead to an optimal value of
M∗ at which Var(Ct ) (or Var(Ft )) reaches its minimum under the givenE(Ct ) (or E(Ft )). The optimal spread
periodM∗ obtained from this approach is beneficial to the decision maker in balancing his risk and expected
goal.
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3. Modeling the uncertainty

First, the constant force of interestδt between yeart andt +1 is investigated. It satisfies 1+Rt = exp(δt ). Then,
i.i.d., AR(1), and MA(1) models are employed as the force of interest to derive Var(Ct ) as a function ofM. Thus,
k can be rewritten as the form according toEq. (3):

kt =

1 +

M∑
j=2

exp


−

j−1∏
i=1

δt+i−1






−1

, (4)

whereδt+i−1 is the force of interest during the periodt + i − 1 up tot + i, i = 1,2, . . . ,M − 1.
Let Bt be the benefit outgo in yeart . To simplify the calculations, the amount of benefit payments are assumed

to be provided at the beginning of each year. In other words,Bt is simulated at the beginning of yeart . The plan
contribution is assumed to be made at the beginning of each year. The pension fundFt+1 in yeart +1 is formulated
as

Ft+1 = eδt (Ft + Ct − Bt). (5)

As mentioned above,Ct depends on the normal cost NCt and on the unfunded accrued liability UALt . Combining
Eqs. (1) and (2)yields the overall contribution:

Ct = NCt + kt (AL t − Ft). (6)

The normal costNCt is previously computed by the given actuarial cost methods, such as EAN cost method, under
given actuarial assumptions including decrement rates, future salary increase and the valuation rate of interest. ALt

andBt depend on these assumptions also. To focus on the issue of contribution, NCt ,AL t andBt are obtained based
onChang (1999). From the expectation and variance of the contributionCt and the fundFt+1 in the following year,
the optimal solutionE(kt ) can be determined.

In brief, the approach to determine the optimal cost allocation could be summarized as follows:

1. The contribution cash inflow and benefit payments are assumed to occur at the beginning of the year.
2. Initial NCt ,AL t , Bt andFt are obtained from the plan balance sheet in yeart .
3. The corresponding equations for the contribution and fund are

Ct = NCt + kt (AL t − Ft), Ft+1 = eδt (Ft + Ct − Bt).

4. Approximation

It is difficult to derive the moments ofCt andFt+1 directly. In order to investigate the contribution and fund
level, the variance ofCt is estimated through approximation. The multi-variable Taylor series expansion is adopted
to perform the estimation. Notations used in this paper are as follows:

Notation 1. Let f : Rn → R be a continuous function. If�X is a point inRn where all second-order partial
derivatives off exist and if �Y = (y1, y2, . . . , yn) is an arbitrary point inRn, we can write

1. Djf ( �X): the partial derivative off w.r.t. thej th coordinate;
2. Di,jf ( �X): the partial derivative ofDjf w.r.t. theith coordinate;
3. f ′( �X; �Y ) = ∑n

j=1Djf (
�X)yj , f ′′( �X; �Y ) = ∑n

i=1
∑n
j=1Di,jf (

�X)yiyj .

We hereby need to define some functions which will be used later.
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Definition 2. Let the forward rates�X = (δt , δt+1, . . . , δt+M−2) be any point inRM−1 andf, g, andh be all real
valued functions defined onRM−1:

f ( �X) ≡

1 +

M∑
j=2

exp


−

j−1∑
i=1

δt+i−1






−1

, g( �X) ≡ eδt


1 +

M∑
j=2

exp


−

j−1∑
i=1

δt+i−1






−1

,

h( �X) ≡ e2δt


1 +

M∑
j=2

exp


−

j−1∑
i=1

δt+i−1






−1

.

Note thatδt , δt+1, . . . , δt+M−2 are random variables. Letδ̄t+i−1 be the expected value ofδt+i−1, for i = 1,2, . . . ,
M − 1. Within the neighborhood of�δ = (δ̄t , δ̄t+1, . . . , δ̄t+M−2), by Taylor series expansion,f ( �X) can be
estimated as

f ( �X) ∼= f (�δ)+ f ′(�δ; �X − �δ).
Calculations of the error terms and numerical upper bounds from approximation are given inAppendix A. From
now on, we will usef (�δ)+ f ′(�δ; �X− �δ), g(�δ)+ g′(�δ; �X− �δ) andh(�δ)+h′(�δ; �X− �δ) in replace of the above three
functions inDefinition 2.

First, we derive the general forms of the expectations and variances of contribution and fund level. Then, plausible
stochastic models of interest rate are selected to investigate the relationship between interest rate assumption and
spread period.

Several functions ofkt = 1/ä
,Rt

using the Taylor series expansion are summarized as

1. E(kt ) ∼= f (�δ);
2. Var(kt ) ∼= ∑

i,j Dif (
�δ)Djf (�δ)× Cov(δt+i−1, δt+j−1);

3. E(kt · eδt ) ∼= g(�δ);
4. Var(kt · eδt ) ∼= ∑

i,j Dig(
�δ)Djg(�δ)× Cov(δt+i−1, δt+j−1);

5. Var(eδt ) ∼= Var(eδ̄t + eδ̄t (δt − δ̄t )) = e2δ̄t × Var(δt );
6. Cov(eδt , kt · eδt ) ∼= h(�δ)− eδ̄t × g(�δ) = 0.

Hence

E(Ct ) ∼= NCt + (AL t − Ft)f (�δ), (7)

Var(Ct ) ∼= (AL t − Ft)
2 ×

∑
i,j

Dif (�δ)Djf (�δ)× Cov(δt+i−1, δt+j−1), (8)

E(Ft+1) ∼= eδ̄t (Ft + NCt − Bt)+ g(�δ)(AL t − Ft), (9)

Var(Ft+1) ∼= e2δ̄t × Var(δt )× (Ft + NCt − Bt)
2 +

∑
i,j

Dig(�δ)Djg(�δ)

×Cov(δt+i−1, δt+j−1)× (AL t − Ft)
2. (10)

In the following sections, we investigate the stability of the contribution and the fund size through their unconditional
and conditional means and standard deviations. In unconditional approach, we assume that there is no given prior
information and i.i.d., AR(1) and MA(1) are employed to model the forward rate process. In conditional approach,
we use Vasicek model to characterize the forward rate pattern and calculate the means and standard deviations based
on the initial rate.
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4.1. Independent and identical distribution

Assume that the force of forward ratesδt forms an i.i.d. sequence of random variables withE(δt ) = δ and
Var(δt ) = σ 2

δ . The force of interests are assumed to resemble white noises.Dufresne (1988), Cairns and Parker
(1997), Owadally and Haberman (1999)treated returns as i.i.d. to see how Var(Ct ) changed asM increases and gave
the condition when Var(Ct ) reached a minimum in i.i.d. case. The results allowing the plan returns and valuation
rates to be i.i.d. are summarized as follows:

1. E(Ct ) ∼= NCt + (AL t − Ft)f (�δ);
2. Var(Ct ) ∼= (AL t − Ft)

2 × σ 2
δ ×∑M−1

j=1 (Djf (
�δ))2;

3. E(Ft+1) ∼= eδ(Ft + NCt − Bt)+ g(�δ)(AL t − Ft);
4. Var(Ft+1) ∼= e2δ × σ 2

δ × (Ft + NCt − Bt)
2 + (AL t − Ft)

2 × σ 2
δ ×∑M−1

j=1 (Djg(
�δ))2.

Note that�δ = (δ, δ, . . . , δ) is a point inRM−1 in this case.

4.2. AR model of AR(1)

Consider the AR(1) model for the force of interest as follows:

δt − δ = φ(δt−1 − δ)+ σεt ,

whereδ is the expected value ofδt , |φ| < 1 andεt , t = 1,2, . . . , an independent and identically distributed sequence
of standard normal random variables. Then we have

E(δt ) = δ, Var(δt ) = σ 2

1 − φ2
, Cov(δt , δs) = φ|t−s|

1 − φ2
σ 2.

Haberman (1994), Mandl and Mazurova (1996), Cairns and Parker (1997), Owadally and Haberman (1999)have
considered this model and focused on variation in the unconditional moments ofCt andFt with φ. The results
allowing the plan returns and valuation rates to be random are summarized as follows:

1. E(Ct ) ∼= NCt + (AL t − Ft)f (�δ);
2. Var(Ct ) ∼= (AL t − Ft)

2 × σ2

1−φ2 ×
{∑M−1

j=1 (Djf (
�δ))2 +∑

i �=j Dif (�δ)Djf (�δ)φ|j−i|
}
;

3. E(Ft+1) ∼= eδ(Ft + NCt − Bt)+ g(�δ)(AL t − Ft);

4. Var(Ft+1) ∼= e2δ × σ2

1−φ2 × (Ft + NCt − Bt)
2 + (AL t − Ft)

2 × σ2

1−φ2

×
{∑M−1

j=1 (Djg(
�δ))2 +∑

i �=j Dig(�δ)Djg(�δ)φ|j−i|
}
.

4.3. Moving average model of MA(1)

The force of interestsδt are assumed to satisfy the following relation:

δt = δ + at − φat−1, at ∼ IIDN (0, σ 2
a ),

whereat , t = 1,2, . . . , is an independent identically distributed sequence of normal random variables with zero
mean and varianceσ 2

a .
We have

E(δt ) = δ, Var(δt ) = (1 + φ2)σ 2
a , Cov(δt , δs) =

{
−φσ 2

a , if |t − s| = 1

0, otherwise
,
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and from the properties of the log-normal distribution

E(eδt ) = exp(δ + 1
2(1 + φ2)σ 2

a ), Var(eδt ) = exp(2δ + (1 + φ2)σ 2
a )(exp((1 + φ2)σ 2

a )− 1).

Haberman and Wong (1997), Bedard (1999)discussed the variability of pension contributions and fund levels in
the model of MA returns. Employing the Taylor approximation, we obtained the following results:

1. E(Ct ) ∼= NCt + (AL t − Ft)f (�δ);
2. Var(Ct ) ∼= (AL t − Ft)

2 ×
{
(1 + φ2)σ 2

a

∑M−1
j=1 (Djf (

�δ))2 − 2φσ 2
a

∑M−2
j=1 Djf (

�δ)Dj+1f (�δ)
}
;

3. E(Ft+1) ∼= exp(δ + 1
2(1 + φ2)σ 2

a )(Ft + NCt − Bt)+ g(�δ)(AL t − Ft);
4. Var(Ft+1) ∼= exp(2δ + (1 + φ2)σ 2

a )(exp((1 + φ2)σ 2
a )− 1)(Ft + NCt − Bt)

2 + (AL t − Ft)
2

×
{
(1 + φ2)σ 2

a

∑M−1
j=1 (Djg(

�δ))2 − 2φσ 2
a

∑M−2
j=1 Djg(

�δ)Dj+1g(�δ)
}
.

4.4. Conditional approach through Vasicek model

The previous subsections contain the approximated unconditional results of the plan return and valuation rates
under i.i.d., AR(1) and MA(1) assumptions. These time series models are however restricted in reflecting the
economic perspectives in terms of time horizon. In this subsection, the concept of the term structure of interest rates
is employed to investigate the first and second moment of the plan contribution and fund level incorporating current
fund performance. Many stochastic interest rate models based on the term structure have been discussed. Among
these models, the general structure of single-factor models proposed byVasicek (1977), Cox et al. (1985), Hull and
White (1987)are widely employed in financial literatures. Expression for the general model is as follows:

dR = u(R, t)dt + w(R, t)dX, dX ∼ N(0,dt), (11)

whereu(R, t) andw(R, t) represent the drift coefficient and the diffusion coefficient, respectively, in the stochastic
process,R(t). u(R, t) andw(R, t) are functions of the random variablesR andt . If these independent variables
R andt are considered inEq. (11), the complexity of this model would increase. Hencew(R, t) andu(R, t) are
reduced to unknown constantsu andw in our study. Under this assumption,Eq. (11)is expressed as

dR = α(γ − R)dt + ρ dX. (12)

The mean reverting process was originally proposed byVasicek (1977). The drift coefficientα(γ − R) shows that
the long-term structure of the plan return approachesγ with velocityα. In real life, return rates are quoted at discrete
time intervals. Therefore, a practical lower bound dt for the basic time-step exists. In order to investigate the explicit
solution, the Vasicek model is rewritten into a discrete form as

%R = α(γ − R)%t + ρ%X, α > 0, %X ∼ N(0,%t). (13)

Discrete format of Vasicek model can also be modeled as AR(1) model. The proposed model can easily be extended
to reflect more realistic economic scenario. If we denote the instantaneous interest rate between yeart − 1 andt by
rt−1, thenRt+j can be expressed as:

Rt+j = 1 − (1 − α)j+1

α
(αγ + ρ%X)+ (1 − α)j+1rt−1. (14)

The conditional expectation and variance ofRt+j , givenRt−1 = rt−1 is derived as follows:

µt+j |t−1 ≡ E(Rt+j |Rt−1 = rt−1) = [1 − (1 − α)j+1]γ + (1 − α)j+1rt−1,

σ 2
t+j |t−1 ≡ Var(Rt+j |Rt−1 = rt−1) =

(
1 − (1 − α)j+1

α
ρ

)2

and the covariance ofRt+i andRt+j at givenRt−1 = rt−1 is
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γt+i,t+j |t−1 ≡ Cov(Rt+i , Rt+j |Rt−1 = rt−1) = [1 − (1 − α)i+1][1 − (1 − α)j+1]

α2
ρ2.

In the beginning of this section, we have defined three functions,f ( �X), g( �X) andh( �X). To reduce the complexity,
these three functions are used. Let�R = (Rt , Rt+1, . . . , Rt+M−2) ∈ RM−1, l : RM−1 → RM−1 be defined by

l( �R) = ( ln(1 + Rt), ln(1 + Rt+1), . . . , ln(1 + Rt+M−2))

and the new expressions for̃f , g̃ andh̃ will be

f̃ ( �R) ≡ f (l( �R)) =

1 +

M∑
j=2

j−1∏
i=1

1

1 + Rt+i−1




−1

,

g̃( �R) ≡ g(l( �R)) = (1 + Rt)


1 +

M∑
j=2

j−1∏
i=1

1

1 + Rt+i−1




−1

,

h̃( �R) ≡ h(l( �R)) = (1 + Rt)
2


1 +

M∑
j=2

j−1∏
i=1

1

1 + Rt+i−1




−1

.

Fig. 1. Graph shows the pattern of mean versus standard deviation of contribution in AR(1) model with each point on the curves related to the
identified values ofM at timet = 1997.
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Using this approach, the approximations off̃ , g̃ andh̃ can be obtained. By noting that

f̃ ( �R) ≈ f̃ ( �µ)+ f̃ ′( �µ; �R − �µ),
where�µ = (µt |t−1, µt+1|t−1, . . . , µt+M−2|t−1) in RM−1 and �R is in the neighborhood of�µ and we have

f̃ ′( �µ; �R − �µ) =
M−1∑
j=1

Dj f̃ ( �µ)(Rt+j−1 − µt+j−1|t−1).

Before investigating the optimal amortization period for the unfunded liability, the conditional expectation and
variance ofCt andFt+1 using the Taylor series expansion are as follows:

E(Ct |Rt−1 = rt−1) ≈ NCt + (AL t − Ft)f̃ ( �µ),
Var(Ct |Rt−1 = rt−1) ≈ (AL t − Ft)

2Var(f̃ ′( �µ; �R − �µ))

= (AL t − Ft)
2


M−1∑
j=1

(Dj f̃ ( �µ))2σ 2
t+j−1|t−1 +

∑
i �=j

Dif̃ ( �µ)Dj f̃ ( �µ)γt+i−1,t+j−1|t−1


 ,

E(Ft+1|Rt−1 = rt−1) ≈ (1 + µt |t−1)(Ft + NCt − Bt)+ (AL t − Ft)g̃( �µ),

Fig. 2. Graph shows the pattern of mean versus standard deviation of contribution in MA(1) model with each point on the curves related to the
identified values ofM at timet = 1997.
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Var(Ft+1|Rt−1 = rt−1) = Var[(1 + Rt)(Ft + Ct − Bt)]

= Var[(1 + Rt)(Ft + NCt − Bt + kt (AL t − Ft))]

= (Ft + NCt − Bt)
2Var(1 + Rt)+ (AL t − Ft)

2Var(kt (1 + Rt))+ 2(Ft + NCt − Bt)(AL t − Ft)

×Cov(1 + Rt , kt (1 + Rt)) ≈ (Ft + NCt − Bt)
2σ 2
t + (AL t − Ft)

2

×

M−1∑
j=1

(Dj g̃( �µ))2Var(Rt+j−1)+
∑
i �=j

Dig̃( �µ)Dj g̃( �µ)Cov(Rt+i−1, Rt+j−1)




+2(Ft + NCt − Bt)(AL t − Ft)(h̃( �µ)− (1 + µt)g̃( �µ)) = (Ft + NCt − Bt)
2σ 2
t + (AL t − Ft)

2

×

M−1∑
j=1

(Dj g̃( �µ))2σ 2
t+j−1|t−1 +

∑
i �=j

Dig̃( �µ)Dj g̃( �µ)γt+i−1,t+j−1|t−1


 .

Fig. 3. Graph shows the pattern of mean versus standard deviation of contribution in Vasicek model with each point on the curves related to the
identified values ofM at timet = 1997.
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5. Numerical illustrations

In this section, we illustrate and evaluate the numerical approximation proposed inSection 4in cost allocation
for a realistic pension plan. Taiwan public employees retirement system (Tai-PERS) is used for illustration purpose.
The cash flows of the benefit payment, accrued liability and normal cost in 20 years starting from 1997 are estimated
based on 50 dynamic simulations using EAN cost method and open group assumption. Detailed benefit scheme
and the procedure in performing the calculations can also be found inChang (1999, 2000). The specific pension
financial information of this plan at timet = 1997 is specified as follows:Bt = 106,636,560, ALt = 585,530,240,
NCt = 264,658,176,Ft = 373,211,585 (measured in NT dollar). Since Tai-PERS provides a comprehensive
compensation plan for its member and the funding policy is constrained by the current government regulation,
this scheme starts with a significant deficit (i.e.,Ft < AL t ). The numerical results using stochastic models (i.e.,
unconditional approach using AR(1), MA(1) and conditional approach using Vasicek model) in generating the
forward rates are investigated in detail.

Figs. 1–6illustrate the estimated mean and standard deviation of contribution level and fund size based on these
models.Fig. 1shows how the standard deviation and expected contribution varies byM under AR(1). The expected
interest rates are set at different values to monitor the impact on funding stability given various cost allocation

Fig. 4. Graph shows the pattern of mean versus standard deviation of fund in AR(1) model with each point on the curves related to the identified
values ofM at timet = 1997.
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periods. It shows that the variances of contributions are higher when interest rates increase in each given scenario.
Increasing the cost allocation period fromM = 2 results in decreasing the expected contributions, while the
variances of the contribution increase and then decrease gradually afterM = 6. Based on outcomes from these
scenarios, the plan manager can choose an optimalM according to his aimed financial status.

Fig. 2 shows how the standard deviation and expected contribution varies byM under MA(1). The expected
contributions decrease and their variance increase when larger M is used in amortizing the unfunded. There are
no significant difference on the patterns between different expected interest rates. InFig. 3, Vasicek model is used
to investigate the funding stability. The volatility of the interest rates are varied to analyze the mean and variance
of the contribution at differentM and investigate the optimal cost allocation. The volatility of the returns is set to
be 4%, 3% and 2% to monitor the funding stability. It shows that variance of the contributions are larger when
volatility of interest rates increases. Changing the cost allocationM results in decreasing the expected contribution
and increasing in its variation. WhenM increases and more than 6, the variance increases dramatically. Hence,
increasingM over a certain level fund manager can suffer large funding instability.

The numerical results for the stability of fund sizes are plotted inFigs. 4–6. Fig. 4 shows that the variance of
fund size decreases when larger cost allocationM is used under AR(1). Then different interest rates are selected to
analyze their impacts on the stability of fund. It shows that variation increases when interest rate increases. Using

Fig. 5. Graph shows the pattern of mean versus standard deviation of fund in MA(1) model with each point on the curves related to the identified
values ofM at timet = 1997.
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Fig. 6. Graph shows the pattern of mean versus standard deviation of fund in Vasicek model with each point on the curves related to the identified
values ofM at timet = 1997.

largeM in allocating the unfunded liability results in smaller variation in fund size.Fig. 5shows that the variance
of fund size decreases when larger cost allocationM is used under MA(1). The pattern is similar with that in AR(1),
except some small differences in shape.

Based on the numerical investigation of these results, the shapes of variation of fund level and contribution as
function ofM shown inFigs. 1 and 4for AR results resemble those ofHaberman (1994), Cairns and Parker (1997).
While, the shapes presented for MA results have also shown the similar patterns with those ofHaberman and Wong
(1997), Bedard (1999)for Figs. 2 and 5.

Fig. 6 indicates that larger volatility of the interest rates in Vasicek model generates larger variation in fund
sizes. AsM increases in cost allocation, larger variation results in fund level. Hence select largerM may cause
volatile fund levels, while employing smallerM in allocating the costs may be intervened by the political reasons
and confront the plan short term insolvency. Hence the decision maker need to carefully measure the trade-off and
reach a reasonable conclusion.

6. Concluding remarks

This paper studies the mean and standard deviation of the contribution and fund under several plausible stochastic
models. The Taylor series expansion is used in approximating the mean and variance as functions of the allocation
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periodM. The empirical results presented in this paper can provide valuable information in cost allocation. The
optimal contribution can then be determined from the trade-off between the expected contribution and the associated
variation.

In practice, the valuation actuary may need to select the proper stochastic model for the interest rates before he
sets up the cost allocation period for the unfunded liability. In future research, these results will be extended to
monitor the optimal cost allocation period in a more general framework.

Appendix A. The error terms of f ( �X), g( �X) and h( �X)

Consider the neighborhood of�δ, by the Taylor series expansion, we have

f ( �X) = f (�δ)+ f ′(�δ; �X − �δ)+ 1

2!
f ′′( �Zx; �X − �δ),

g( �X) = g(�δ)+ g′(�δ; �X − �δ)+ 1

2!
g′′( �Wx; �X − �δ),

h( �X) = h(�δ)+ h′(�δ; �X − �δ)+ 1

2!
h′′( �Ux; �X − �δ),

where �Zx , �Wx and �Ux are on the line segment with two endpoints�δ and �X. If f ( �X), g( �X) andh( �X) are replaced
by f (�δ) + f ′(�δ; �X − �δ), g(�δ) + g′(�δ; �X − �δ) andh(�δ) + h′(�δ; �X − �δ), respectively, then the error terms will be
(1/2!)f ′′( �Zx; �X − �δ), (1/2!)g′′( �Wx; �X − �δ) and(1/2!)h′′( �Ux; �X − �δ) accordingly. We could estimate the error
terms and show that the error terms could be quite small when�X is sufficiently close to�δ.

Lemma 3. Recall that �X = (δt , δt+1, . . . , δt+M−2) and �δ = (δ̄t , δ̄t+1, . . . , δ̄t+M−2). Let (1/2!)f ′′( �Zx; �X − �δ),
(1/2!)g′′( �Wx; �X − �δ) and(1/2!)h′′( �Ux; �X − �δ) be defined as above. Then

1.
∣∣∣ 1

2!f
′′( �Zx; �X − �δ)

∣∣∣ < 1
2! r

2∑M−1
i=1

[∑M−1
j=1

(
r2(i,M−1)
(r1(0,M−1))2

+ 2r2(0,j−1)r2(i,M−1)
(r1(0,M−1))3

)
+∑M−1

j=i+1
r2(i,j−1)

(r1(0,M−1))3

]
for

|δt+j−1 − δ̄t+j−1| < r,∀j = 1,2, . . . ,M − 1.

2.
∣∣∣ 1

2!g
′′( �Wx; �X − �δ)

∣∣∣ < 1
2! r

2∑M−1
i=2

[∑M−1
j=1

(
r2(i,M−1)
(r1(0,M−1))2

+ 2r2(0,j−1)r2(i−1,M−2)
(r1(0,M−1))3

)
+∑M−1

j=i+1
r2(i−1,j−2)
(r1(0,M−1))3

]
+

(∑M−1
j=1

2r2(j−1,M−2)r2(1,M−1)
(r1(0,M−1))3

)
+

(∑M−1
i=1

r2(i−1,M−2)
(r1(0,M−1))2

)
+ eδ̄〈t〉+r

r1(0,M−1) for |δt+j−1 − δ̄t+j−1| < r,

∀j = 1,2, . . . ,M − 1.

3.
∣∣∣ 1

2!h
′′( �Ux; �X − �δ)

∣∣∣ < 1
2! r

2∑M−1
i=2

[∑M−2
j=1 eδ̄t+r

(
r2(i−1,M−2)
(r1(0,M−1))2

+ 2r2(0,j−1)r2(i−1,M−2)
(r1(0,M−1))3

)
+∑M−1

j=i+1
r2(i−1,j−2)
(r1(0,M−1))3

]
+ ∑M−1

j=1 eδ̄〈t〉+r
(
r2(j−1,M−2)
(r1(0,M−1))2

+ 2r2(j−1,M−2)r2(1,M−1)
(r1(0,M−1))3

)
+ ∑M−1

i=1

(
2 eδ̄〈t〉+r r2(i−1,M−2)

(r1(0,M−1))2

)
+ 4 e2(δ̄〈t〉+r)

r1(0,M−1) for

|δt+j−1 − δ̄t+j−1| < r,∀j = 1,2, . . . ,M − 1, where

r1(i, j) =
j∑
n=i

exp

(
−

n∑
l=1

(δ̄t+l−1 + r)

)
, j ≥ i, r2(i, j) =

j∑
n=i

exp

(
−

n∑
l=1

(δ̄t+l−1 − r)

)
, j ≥ i.

Proof. We only prove the case off ( �X); the others can be obtained by the same technique.
Let S(t, t + j − 1) = exp(−∑j

n=1 δt+n−1), j = 1,2, . . . ,M − 1, S(t, t − 1) = 1,

Zt(i, j) = ∑j
n=i S(t, t + n− 1), i, j = 1,2, . . . ,M − 1 andj ≥ i.
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Thus

f ( �X) = 1

Zt(0,M − 1)
, Djf ( �X) = Zt(j,M − 1)

(Zt (0,M − 1))2
, j = 1,2, . . . ,M − 1,

Di,j f ( �X) =



Dif ( �X)− 2Zt(0, j − 1)Zt (i,M − 1)

(Zt (0,M − 1))3
, if j ≤ i

Dif ( �X)+ Zt(i, j − 1)

(Zt (0,M − 1))3
− 2Zt(0, j − 1)Zt (i,M − 1)

(Zt (0,M − 1))3
, if j > i.

For |δt+j−1 − δ̄t+j−1| < r,∀j = 1,2, . . . ,M − 1,
we have,

δ̄t+j−1 − r < δt+j−1 < δ̄t+j−1 + r

⇒ −(δ̄t+j−1 + r) < −δt+j−1 < −(δ̄t+j−1 − r)

⇒ exp(−(δ̄t+j−1 + r)) < exp(−δt+j−1) < exp(−(δ̄t+j−1 − r))

⇒ exp

(
−

n∑
l=1

(δ̄t+j−1 + r)

)
< S(t, t + n− 1) < exp

(
−

n∑
l=1

(δ̄t+j−1 − r)

)

⇒
j∑
n=i

exp

(
−

n∑
l=1

(δ̄t+j−1 + r)

)
< Zt(i, j) <

j∑
n=i

exp

(
−

n∑
l=1

(δ̄t+j−1 − r)

)
,

i.e.,

r1(i, j) < Zt(i, j) < r2(i, j).

By a straightforward process, we get an upper bound for(1/2!)f ′′( �Zx; �X − �δ):∣∣∣∣ 1

2!
f ′′( �Zx; �X − �δ)

∣∣∣∣
<

1

2!
r2
M−1∑
i=1


M−1∑
j=1

(
r2(i,M − 1)

r1(0,M − 1)2
+ 2r2(0, j − 1)r2(i,M − 1)

(r1(0,M − 1))3

)
+

M−1∑
j=i+1

r2(i, j − 1)

(r1(0,M − 1))3


 . �

The upper bounds of(1/2!)f ′′( �Zx; �X− �δ) and the error ratios(1/2!)f ′′( �Zx; �X− �δ)/f (�δ) givenM between 2 and
20 andr = 0.001,0.005,0.01 and 0.02 are evaluated. The results are listed inTable 1for numerical illustrations.
In our numerical calculations, we set�δ = 0.06× (1, . . . ,1)1×(M−1) for simplicity.
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