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Abstract

In this thesis, we investigate the synchronization of coupled systems of
Hindmarsh-Rose neurons. The coupling scheme under consideration is general.
The coupling functions could be non-linear. The connection matrix could have
non-zero and non-diagonal entries with different signs. We also consider the
transmission delays in the coupling terms of the coupled systems. We derive a
delay-dependent criterion that leads to the synchronization of coupled neurons. Two
examples with numerical simulations are illustrated to show the effectiveness of

theoretical result.
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Chapter 1

Introduction

Synchronization is an important phenomenon in several biological, physiological complex
networks systems [14,31]. For instance, there has been an observation that neurons synchronize
each other by coupled dynamic neural network [2, 8, 22, 23,27, 32, 34,37, 38]. The process
of conveying neural information in brain is conducted through mutual interaction of neural
populations [6]. In addition, the information delivering process in the neural systems,
synchronization plays a key role in association and memory [26]. As the basic behavior of
neuron, synchronization is an expression of neuron discharge, widely existing in the neural
system like the visual cortex [25,35]. However, it is shown that too much synchronization
will do harm to the organism and cause such brain diseases as Alzheimer’s disease, epilepsy,
Parkinson’s disease, and schizophrenia based on several physiological experiments [15,24,39].
Since those illnesses have a lot to do with the abnormal synchronization of neuron systems, it is
worth to study the synchronization in coupled dynamic networks.

To obtain a deep understanding of neural network dynamics, lots of neural models such as
the Hodgkin-Huxley model [21, 28], the FitzHugh-Nagumo model [22, 33], the Morris-Lecar
model [1, 3] and the Hindmarsh-Rose model [17,36] have been used by numerous researches
for biological application. Among these models, Hindmarsh-Rose neurons were discovered
from neuron cells in a pond snail which burst after it is depolarized by a pulse of short current
[4,36]. What’s more, it has been shown that the Hindmarsh-Rose neuron model, a system of
three ordinary differential equations, is able to produce abundant neural behavior like spiking,
bursting, and chaotic behavior [7, 11, 13]. In this paper, we will investigate the synchronization

of the coupled systems of Hindmarsh-Rose neurons.
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The dynamics of an isolated single Hindmarsh-Rose neuron could be depicted by the

following system of ordinary differential equations [10]:

l’l(t) = Z'Q(t) — a(xl(t))3 + b(ﬁlﬂ'1<t)>2 — l’g(t) + [7

t3(t) = r(s(x1(t) + xo) — x3(1)),

\

where x; represents the membrane potential of the neuron, x5 the recovery variable, and x3 the
adaptation current. The external input current is represented by / to determine the output mode
of the neuron. The parameters a, b, d, r, s, x are all positive constants.

Time delay, which occurs in the propagation of action potentials along the axon,
transferring signals across the synapse or other artificial units, is an important factor in the
coupled neural systems [5,12]. Itis essential to tackle nonlinear systems under delayed coupling.
Therefore, in this paper, we shall consider the following coupled network consisting of N

identical Hindmarsh-Rose neurons with coupling time delay:

;

i’i’l(t) = Ii’g(t) < CLZL'iJ(t)g T bCL’Z‘J(t)Z 7 IL‘i’g(t) + I

+c Z aij(g(xj1(t — 7)) —g(win(t = 7))),

JEN j#i (1.2)

l"@g(?f) =1- d$171(t)2 — xi’g(t),

T 3(t) = r(s(zi1(t) + z0) — 2 3(1)),

\
fori e N :={1,2,..., N}, where ¢ > 0 is the coupling strength ;

N
A = [aij]NxN, with Qi = — Z aij, (13)
J=L1j#i
is the connection matrix representing the topological structure of the network; g : R — R is
the coupling function; 7 > 0 is the transmission delay. We note that system (1.2) is linearly
coupled if g is linear, otherwise it is non-linearly coupled. Among the existing investigations on

coupled Hindmarsh-Rose neurons, some of the investigations considered with linearly coupling
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function: g(z) = =z, cf. [36]; while some others considered non-linearly coupling function:
g(z) = tanh(x), cf. [17]. Moreover, the work in [36] considered linearly coupled systems of
two Hindmarsh-Rose neurons with time delays (i.e. 7 # 0); the work in [17] considered non-
linearly coupled Hindmarsh-Rose neurons without delay (i.e. 7 = 0), cf. [17]. It is worth noting
that most of the previous investigations on the synchronization of coupled systems required that
the non-zero and off-diagonal entries of connection matrix have the same signs, cf. [9, 16-20,
30]; moreover, most of the previous investigations on the synchronization of coupled systems
considered linear couplings, cf. [2,27].

In the following, (x;(),...,Xn(?)) denotes an arbitrary solution of system (1.2) and
(xi,...,x%) is the corresponding evolution of system (1.2), where x! € C([—7,0]; RE), i € N,
written as x5(0) = x;(t + 0) for § € [—7,0]. It is said that the system (1.2) achieves global

synchronization if
zik(t) =z (t) = 0, ast — oo, foralli,j € N, k € {1,2,3},

for every solution (x;(¢),...,X3(t)), where x;(t) = (%;1(t), z;2(t), z:3(t)). In this paper, we
shall utilize the approach developed in [33] to investigate the global synchronization of coupled

system (1.2) with the coupling function g in the following class:

{geC':5:=4(0)>d(x) >0, z #0}. (1.4)

We emphasize that the connection matrix A = [a;;]nxn, considered in this thesis, is allowed to
have off-diagonal entries with different signs.

The remainder of this thesis is organized as follows. In chapter 2, we introduce the
synchronization theory developed in [33]. In chapter 3, we establish the synchronization of non-
linearly coupled systems of Hindmarsh-Rose neurons based on the theory in [33]. In chapter
4, we demonstrate two numerical examples to support our theory. In chapter 5, we give some

discussions and conclusions.
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Chapter 2

Preliminaries

In this chapter, we shall introduce the synchronization theory developed in [33], the model

considered in [33] is as follows:

x;(t) = F(x;(t),t) + CZ ai;(1)G(x;(t —7(t))), i € N, t > o, (2.1)
JEN

where N = {1,..., N} x;(t) = (z;1(¢),...,zi k(1)) € RE,F = (F,..., Fx) is a smooth
function describing the intrinsic dynamics of each subsystem, ¢ > 0 is the coupling strength,
and a;;(t), i, j € N, are bounded functions of ¢. Matrix A(t) := [a;;(t)]1<;j<n is referred to as

the connection matrix and is assumed to satisfy the condition:

> ai(t) = k(t), foralli e Nandt > t,. (2.2)
JEN

The function G = (G, . .., Gk) is assumed to satisfy

Gr(xj(t —7(t))) = gr(xjk(t —7(t))), foralli,j € Landt > ¢, (2.3)

DOI:10.6814/NCCU202000086



where KC := {1,..., K}, gx is a non-decreasing and differentiable function, and 7(t) € [0, 7a/]

stands for the time-dependent transmission delay. For later use, set

R =sup{|x(t)| : t > to}, (2.4)

k=1inf{k(t) : t > 1o}, (2.5)

kR =sup{k(t) : t > to}, (2.6)

aij = sup{fa;;(t)] : t = to}, (2.7)

T =sup{7(t) : t > to}. (2.8)

In this section, (x1(¢), ..., Xy(t)) denotes an arbitrary solution of system (2.1), and (x}, ..., x%)

is the corresponding evolution of system (2.1), where xi € C([—7ar,0];RE), i € N, are
defined as x!(0) = x;(t + 0) for @ € [—7y,0]. System (2.1) is said to attain global (identical)

synchronization, if
zi(t) — xjx(t) — 0, ast — oo, foralli,j € N, k € K,

for every solution (x; (%), ..., Xn(t)), where x;(t) = (@i 1 (%), ..., 2 k(1))

Let us introduce two assumptions as follows:

Assumption (D): All solutions of system (2.1) eventually enter and then remain in some compact

set OV := Q x --- x Q C R¥E 'where Q := [G1, 1] X - -+ % K, Gx] C RE.

Define

Co:={(P1,...,Pn): ®; = (<Z5z‘,17 e 7¢i,K> < C([—TM>0];RK)7 (2.9)
$ie(0) € [Gr: G}, 0 € [T, 0, i €N, k € K}
Decompose Fi,(E,t) — F,(E,t) as

Fo(B,t) — Fi(E,t) = by, T, t) +wi(B, B, t),

where ¢ > to,E = (a:l,...,xK),andE: (El,...,EK).
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Assumption (F): For each £ € K, there exist jiz, jix € R, pf/ > 0, and fiy; > 0, for
I € K — {k}, such that for any F, E € Q, the following two properties hold for all ¢ > t:

(F-D) P < hi(@g, T, t) (@, — Ti) < . if g — &1 # 0,
-1):
hk(xk,ik,t) =0 lf{L‘k—ZZ‘k :0,

(F-ll) |w;€(E, E, t)| S plku, and |wk(E, E,t)| S Z ﬂkl|xl — [fll
leK—{k}

For later use, define the following sets of indices:
A:=(N—{N}) x Kand A, := A— {i} x {k}, where (i, k) € A. (2.10)

Assume that (xy(t),...,Xy(t)), where x;(¢t) = (z;1(t), ..., 2 k(t)), is an arbitrary solution of
system (2.1). Setting
zi(t) = xi(t) = xina (1), € N = {N}, (2.11)

where z;(t) = (z;1(),...,2ik(t)), cf. (2.1) and (2.3), then (z,(¢),...,zZy_1(t)) satisfies the
following difference-differential system corresponding to system (2.1):
217k<t) Q) Hi,k(xtla s 7X§V7t)a (Za k) S A) t 2 tO, (212)

where

Hip (@1, ., B, 1) i= Fi(Pi(0), 1) = Fi(®i11(0), )
+ e lag(t) — g, (0]g(dx(—7(1)), (2.13)

JEN

for ®; = (¢j1,...,9jx) € C([—7a, 0;RE), j € N. Clearly, system (2.1) attains global
synchronization if z; x(t) — 0, as t — oo, for every (i, k) € A.

Via A(t) = [aij (t)]lﬁiijN’ define matrix A~(t) = [dij(t)]lgi,jSNa where

) — CifiejeN
() a;(t) — k(t), ifi=j€ 2.14)

aw(t), 1fZ7] GNandz#j
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We introduce matrix A(t):

A(t) = [Oéz'j (t)]lgi,jSN—l = CA(t)CT(CCT)_I < R(N_l)X(N_l), (215)
where
1 -1 0 0
0 1 —1 - :
C = e RWV-DxN,
0
0 e 0 1 —1

Then, A(t) in (2.15) is well-defined, and satisfies

CA(t) = A(t)C, (2.16)
for all t > t,. For later use, set
O_él‘j = sup{|ozij(t)| ot Z to}, (217)
dij = 1nf{ozl](t) it > to}, (218)
d/ij = sup{aij(t) it > t()}, (219)

where a;;(t), 1 < 4,7 < N — 1, are entries of A(t) defined in (2.15).

Proposition 2.1. (/33]) Consider system (2.1) which satisfies Assumptions (D) and (F). Then,
Sunctions H, i, (i, k) € A, defined in (2.13), can be decomposed as

H; i (P1,...,Pn,t) = hik(0ix(0), ¢iv1£(0),1)
+ hig(Biks i t) + wige(Pr, .., Oy, ),
hi(9ie(0), Pi41,(0), 1) = hie(ik(0), Piv1,(0), 1),
hise(Diks Givip: ) = clr(t) + aii(®)]gr(Dir(—7(1))) = gr(Dis1 s (=7(1)))];
Wik( 1, Dy, ) = we(®:(0), iyr (0), 1)
+e > (O dia(=7(1) = gr(djr1a(=T(D))]:

JEN—{i,N}
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Moreover, for all (i,k) € Aand all (P,...,PyN) € Co, where ®; = (¢pi1,...,0ik), 1 €N,
the following three properties hold for all t > t,:

- hi k(¢:,1(0),0: 0), A .
fie < ’ffzs(fk’(%()—)iﬂl,f(gﬁ %< i #9ik(0) = Gis1x(0) # 0,

(H-i):
ik (0ix(0), Git1£(0),2) =0 if $i1(0) — ¢it1£(0) =0,
(H-ii): |ﬁzk(¢zka Giv1h )| < P?k: and

5 i (B ksPit1,ks A .
Bin < prptgtni ) < By if fir(—T(t) — G x(—7 () # 0,
R (Digs Bigrpst) =0 if in(—7(t)) — Giv1k(—7(t)) =0,

(H-iii): |w; 5 (P1, ..., PN, 1) < p, and

ik (@1, P )] <D LR 674(0) — j41(0)]

(FDEA &

+ B 1050(=7(6) = b1 (=T (D)1},

for phand p¥ satisfying
ho> 2c[k(t) + aui(t)]pl d p¥ > p¥ +2cp? Vij
pir = 2¢[r(t) + cui(t)lpy, and  piy > pi + 2cp; Qg
JEN—{i,N}

respectively, and
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(

5 clk(t) + au(®)] Ly if w(t) + au(t) >0,
ik =
\C[I{(t) + oy ()L i k(t) + ayu(t) <0,
.
B C[I{(t) + Oé“(t)]Lk lfl'i(t) + Oéiz'<t) Z 0,
ik =
\C[K(t) + ()] Ly if k(t) + ay(t) <0,
(
— (4D ki lf‘Z = j’ k 7& l7
22 -
kO otherwise,
.
B(}gl) _ CO_éiij {fj 7—4 i, k= l,
\0 otherwise,
where
py = max{|gr(z;)| : x; € [gr, dx]} > 0, (2.20)
Ly, := min{g, () : z; € [Gr, @]} > 0, (2.21)
Ly := max{g}(x;) : z; € [Gr, dk]} > 0. (2.22)

Herein, K, R, and k are defined in (2.6), Cq in (2.9), A, in (2.10), &v;, &, and & in (2.17),

[k, [k, P} [k, and functions hy, wy, in Assumption (F).

With jig, i, Bik, Bik, ﬂgil), and Bi(,zl), introduced in Proposition 2.1, and 7 defined in (2.8),

an associated matrix can be defined as follows:

M = [M(kl)]lgk,zgl(, (2.23)

for each k, 1 € K, M) = [mgfl)]lgingjv_l isan (N — 1) x (N — 1) matrix, and its entries are
defined by

ik ifi=jeN—-{N}tandk=1€eK,
_ (2.24)

LYY otherwise.

%

(k)

m”
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where

Bik = maX{|Bz’k|7 |sz\}7 (2.25)
Mk = —fk — Bir + BT (fu, + fur, + Bir, + Bm), (2.26)
P e ) A 020

Let us introduce the following condition:

Condition (S): For all (i, k) € A, iz + Bir, < 0 and

BT < 3P?k;(ﬂk: + sz:)/[(ﬂk + fi + sz: + sz)(igpfk + pix)]-

We note that Condition (S) involves 7, and is thus delay-dependent.

Theorem 2.2. ( /33]) Consider system (2.1) which satisfies Assumptions (D) and (F). Then,
the system globally synchronizes if Condition (S) holds, and the Gauss-Seidel iterations for the
linear system:

Mv = 0, (2.28)

converge to zero, the unique solution of (2.28),; or equivalently,

Asyn 1= max  {|A\;|: A, : eigenvalue of (Dy — Ly) 'Um} < 1. (2.29)

1<o<Kx(N-1)

where M is defined in (2.23) and Dy, — Ly, and —Uy; represent the diagonal, strictly lower-

triangular, and strictly upper-triangular parts of M, respectively.

10
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Chapter 3

Synchronization of Hindmarsh-Rose

neurons

To apply the synchronization theory in [33], we first rewrite system (1.2) into the form of

(2.1). Recalling (1.3), we rewrite the coupling part of (1.2) as follows:

c Z aij(g(ij(t — 7)) — g(xi,l(t —7)))

JEN—{i}
=c] Z ai;g(z;1(t—7)) = Z aijg(ia(t —7))]
JeEN—{i} JeEN—{i}
=c| Z aijg(zja(t = 7)) — g(ia(t = 7)) Z a;j] (3.1
JEN—{i} JEN—{i}
=c| Z ai;g(z;1(t = 7)) + aug(zi(t — 7))]
JeN—{i}

= CZ aijg(ji(t —7)).

JEN

11
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By (3.1), system (1.2) can be written as follows :
(
jfi71(t) = T2 (t) — CLI’Z',l(t)s + b$i71(t)2 — T3 (t) + 1
+c Z a;jg(zjq(t — 7)),
JEN (3.2)
11'2'1'72(75) =1- dxm(t)Q — .in,z(t),

Ti3(t) = r(s(z;1(t) + xo) — xi3(1)),

for all i € N. Notably, the terms k, defined in (2.2), now satisfies the diffusive coupling

condition:
k=k=Kk=0
Accordingly,
Qi — K = Q4, le:j€N7
Giij = (3.3)
A5, 1fz,j€./\/andz7é]

Thus, A(t) in (2.14) is now A(t) = A. Applying (2.15) yields that A(t) satisfies A(t) = A =

[aij]lgi,jSN—l = CACT<CCT>~1 S R(N_l)X(N_l). HCl’lCC, ééij, OA./Z‘j, dij in (217) arc now

dij = ééij = Cl{ij, (34)

Qi = |ag;l, 3.5)

foralli,j € N — {N}. In addition, for system (3.2), the time delay 7(¢) is now independent of
t (i.e. 7(t) = 7) and the functions Fj(x;(t),t) and G(x;(t — 7(t))) defined in (2.1) and (2.3)

12
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arc now

F1 (Xz(t), t) = l‘@g(f) — CLI’Ll(t)g + b$i71(t)2 — l’i73<t) + I,
FQ(Xi(t), t) =1- d$i,1 (t)Q — 33'@2(25), (36)

F3(xi(t),t) = r(s(2i1(t) + 20) — m13(1)),

Gi(x;(t = 7(1)))
Ga(x;(t = 7(1)))

Gs(x;(t — 7(2)))

g(zja(t — 7)),
0 3.7)

Y

0,

\

respectively.
Let us introduce a condition for system (3.2), which plays the role as Condition (D) for

system (2.1):

Condition (D)*: All solutions of system (3.2) eventually enter and then remain in some
compact set QN := Q* x - - - x Q* C R3N, where Q* := [—p?, pi] x [—p3, p5] ¥ [—p35, p3] C R3
with p; > 0,k =1,2,3.

Next, let us establish Assumption (F) for system (3.2) under Condition (D)*.

Proposition 3.1. Assume that Condition (D)* holds, then system (3.2) satisfies Assumption (F)
with fin = —3a(py)? — 2bp}, fu = V*/3a, fiz = flo = =1, fi3 = fi3 = —7, e = juz = 1,
fis = fiz2 = 0, fi;r = 2p7d, fiz1 = 78, p{’ = 2(p5 + p3), py = 4d(p})%, py = 2rsp;, where
pr, k =1,2,3, are defined in Condition (D)*.

Proof. We first compute quantities fi, fix, fir py, Where k, 1 € {1,2,3} and k # [. By (3.6),

applying the mean value theorem yields that

Fi(E,t) — F\(E,t) = hy(z1,71,t) + wi(E, E, t),
Fy(E,t) — Fy(E, t) = hy(xq, £, t) + wa(E, B, t), (3-8)

FS(E,t) — Fg(E,t) = h3<$3,f3,t) —+ wg(E, E,t),

\

13
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for E = (11,20, x3) € R®, F = (&1, &5, 45) € R3, and t > t,, where

hl(ZEh fl, t) = [—3(182 + 2b8](1’1 — i‘l),

(3.9)
(3.10)
(3.11)
(3.12)
(3.13)
(3.14)

and s is some number between x; and Z;. Recall Assumption (F), where £ = (x1, s, x3),

E = (i1,%,%5) € Q = [—p}, pi] X [=p5, p] X [—p, p3] which leads to s € [—p}, pil;
MmOoreover,
—3a(ph)? — 2bpt < —3as® + 2bs < b*/3a, (3.15)
w1 (B, B, )| < 2(p5 + p3), (3.16)
w(E, E,1)| < 4d(p})?, (3.17)
lws(E, E,t)| < 2rsp}. (3.18)

Based on (3.9)-(3.18), we shall show that system (3.2) satisfies Assumption(F) for which

quantities are chosen as follows:

By (3.9) and (3.15), we can choose ji; = —3a(p})* — 2bp} and ji; = b*/3a.

By (3.11), we can choose fis = jios = —1.
By (3.13), we can choose fi3 = fi3 = —7.

By (3.10) and (3.16), we can choose fi12 = fi3 = 1 and p}’ = 2(p} + p3).
By (3.12) and (3.17), we can choose fig; = 2pid, jizs = 0 and p¥ = 4d(p})>.

By (3.14) and (3.18), we can choose [i3; = 75, ji32 = 0 and p§’ = 2rsp].

]

From Proposition 3.1, system (3.2) satisfies Assumption (D) and (F) under Condition (D)*.

Accordingly, the assumption for the assertion in Proposition 2.1 holds for system (3.2) under

Condition (D)*. In addition, the quantities in the assertion of Proposition 2.1 can be chosen as

those in the following proposition.
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Proposition 3.2. Assume that Condition (D)* holds. The assertion in Proposition 2.1 holds with

QC@iina U[k = ]-7
M = (3.19)
U? lfk = 27 37

(

cad, ifk =1, a; >0,
Bz’k = caiié, l]p/{? =1, a4 < O, (320)

0, ifk =23,

COéiié lfk' — 1, (6773 Z 0,
Bik ~— COéiiS lf‘k =1, a4 <0, (321)

0 ifk =23,

20p5 +p3) +2cp7 D @y, ifk=1,

JEN—{i,N}
2rsp}, ifk =3,
1, ifi=7, (k1) =(1,2)or(1,3),
\ 2p5d, ifi =7, (k1) =(2,1),
i = <1 ol =@ (3.23)
rs, ifi=j (k1) =(3,1),
\0, otherwise,
iy ca;;i0, ifj#iLk=1=1,
BY = ’ (3.24)

0, otherwise,

where § = max{¢'(z;) : x; € [—p7, pi]} is defined in (1.4), &v; and & in (3.4), p;. in Condition
(D)*, [ix; in Proposition 3.1; v is an arbitrary positive number and 6 := min{g'(z) : = €

[—p1, P31}
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Proof. By (3.7), for E = (z1, 12, 23) € R?, we have

91(71) = G1(E) = g(z),

g1(z2) = Go(E) =0, (3.25)

g1(x3) = G3(E) = 0.

\

By Proposition 2.1 and (3.25), Ly, and Ly, k=1,2,3,arenow Ly =0, L, =8 = max{¢'(z) :
xe[—pt,pt]}and Ly = Ly = Ly = Ly = 0, where 0 is defined in (1.4). By (3.25), py defined
in (2.20), k = 1,2, 3, can be chosen as

for an arbitrary v > 0. Combining those quantities of Lu, j}k and pi, k =1,2,3, chosen above
as well as [, fu, iigg and py’, for k.l € {1,2,3} and k& # [, chosen in Proposition 3.1, the

quantities in the assertion of Proposition 2.1 can be determined as those in (3.19)-(3.24). O

Let us now introduce the following condition for system (3.2) which plays the role as
Condition (S) for system (2.1):
Condition (S)*: b*/3a + ca;d < Oand 7 < 77, foralli € {1,2,... N — 1},
where

75 o= =3pP (0% /3a + caud) /(B30 + o)),
with

pr = 2cdyp?,

B 1= cayd[b®/3a — 3a(p})® — 2bp} + caii (0 + )],

pr=20p5p3) +2e Yy
JEN—{i,N}

Therein, the quantities 0 and p? are defined in Propositions 3.2; Pr, k = 1,2,3, 1s defined in

Condition (D)*; &;; and &; are defined in (3.4).
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In the following lemma, we shall show the matrix M in (2.23) in terms of the quantities
shown in Proposition 3.2. Moreover, the matrix M in (2.23) is determined by quantities in

Proposition 2.1. Basically, the following lemma comes from Proposition 3.1 and 3.2.

Lemma 3.3. Assume that Condition (D)* holds. Then, the matrix M = [M"V],; ;< x, where
ME) = [m(kl)]lgmg\z,l, in (2.23) is now denoted by M = [M(kl)]lgk,ng, where M*) =

1)
~ (kD) .
[y J1<ij<n—1, with

( ~ —
—b%/3a — ca;d — 78;, ifi = jand (k1) = (1,1),

1, ifi=jand (k1) = (2,2),
Al . (k,1) =(2,2) (3.26)
r, ifi =jand (k1) =(3,3),
k—,u%l) — Bi(,gl), otherwise,
where
.
1, ifi =7, (k1) = (1,2) or (1,3),
, 2p1d, ifi =7, (k1) =(2,1),
pd) = ' P =t (3.27)
rs, ifi =g, (k1) = (3,1),
\O, otherwise,
(
\O, otherwise.

Herein, 3}; := cajo, b is defined in Proposition 3.2; f3; is defined in Condition (S1)*; Qi is
defined in (3.4), pi is defined in Condition (D)*.

Proof. From Propositions 3.1 and 3.2, system (3.2) satisfies Condition (D)* with Q" =
[=p1, 1] % [=p3, p5] X [=05, p3), fiws fis P, fOr ke =1,2,3, and fige, k, 1 € {1,2,3} and k # [,
determined in Proposition 3.1. As seen from (3.7), the terms Ly, and ka, k =1,2,3, defined in
Proposition 2.1, are now chosen as those in Proposition 3.2. Notably, Condition (S)* implies that
ai; < O0foralli=1,..., N — 1, because b*/3a > 0, ¢ > 0, and § > 0. Based on Propositions

3.1 and 3.2, system (3.2) satisfies the assertion of Proposition 2.1, with ji; = —3a(p})? — 2bp},

i = b2/3a, fio = fig = —1, Bz’l = coy;0, Bil = com'g, Bn = Bn = Bz’?; = Bz‘B =0, ﬂ%l) - uﬁi”,

17
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BZ.(,ZI) = ﬁi(,zl). In particular, 7 = 7 for system (3.2), cf. (2.8). As seen from the definition of 7;

in (2.27), n;x is now 1;;, = 7. Consider 7j;;, satisfying
ik == — o — B + BT (fw + fe + Bir + B, (3.29)

where 3] = coy;0 and 35, = (5 = 0 by (2.25), (3.20), and (3.21). Thus, by (3.29),

¢

—b?*/3a — coyid — T, ifk=1,

Mk = 4 1, ifk =2, (3.30)

7, ifk=3.
Moreover, by (3.23) and (3.24), E%l), defined in (2.27), is now
LY = pnd” + B3 (3.31)

with ;7" and 8" defined in (3.27) and (3.28). By (3.29) and (3.31), the matrix M *) —

[ (k)

mij ]1§2}j§N—1 defined in (224), now satisfies

= (kD) _ Niks ifi:jEN—{N}andk:lelC,

v

(3.32)

— L9 otherwise.

Therefore, the entries of M defined in (3.26) come from (3.27), (3.28), (3.30), and (3.32). [

Theorem 3.4. Assume that Conditions (D)* and (S)* hold. Then, the system (3.2) globally

synchronizes if the Gauss-Seidel iterations for the linear system:
Mv =10 (3.33)
converges to zero, the unique solution of (3.33), or equivalently,

Aggn 1= max  {|A,|: A\, : eigenvalue of (Dgy — Lyg) Uy} < 1, (3.34)

1<o<Kx(N-1)

where M is defined in Lemma 3.3, and Dy, — Ly, —Uy; represent the diagonal, strictly lower-

triangular and strictly upper-triangular parts of M, respectively.

18
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Proof. By Proposition 3.1, system (3.2) satisfies Assumption (D) and (F) under Condition (D)*.
In addition, system (3.2) satisfies Condition (S) under Condition (S)*, and the matrix M in (2.28)
is now M in Lemma 3.3. By Theorem 2.2, system (3.2) achieves global synchronization, if the
Gauss-Seidel iterations for the linear system (3.33), converge to zero. Hence, we complete the

proof. ]
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Chapter 4

Numerical examples

In this chapter, we will illustrate two examples with numerical simulations to demonstrate

the effectiveness of the theoretical result derived in this thesis.

Example 1. Consider three coupled Hindmarsh-Rose neurons (3.2) witha = 1,b = 3, [ = 3.0,
d=5,r=0.005, s =4, zg = 1.6, c = 50, g(z) = 10 tanh(x/10), 7 = 0.00001 and

—-1.0 0.6 0.4
A = laijlicijes = 0.4 08 0.4 : (4.1)
—0.1 0.6 —0.5

From (1.4), (2.6), and (2.8), wehave k =k = k = 0,a = 2.0and T = 7 = 0.00001. By (2.15)

and (4.1), we obtain

) —14 0
A = [aij]lgi,j§2 = . (42)

0.5 -0.9

By (4.2), the quantities defined in (2.17) are now &3 = a1 = —1.4, &gy = 1.4, Ggg = Qo =
—0.9, age = 0.9, @12 = 0, ap; = 0.5. By numerical simulation cf. Figure 4.1, we can observe

that the system satisfies Condition (D)* with Q* = [—p7, pi] x [—p5, p5] X [—p3, p3], where

pI =2, p5=9, p;=3.5. 4.3)
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We note that Figure 4.1 demonstrates the evolution for the solution of the considered system,
evolved from (3.5,0.3, —2.1,3.6,0.4, —2.2,3.7,0.5, —2.3) at t, = 0. It appears that the solution
eventually enters, and then remains in Q" x Q* x Q*, where Q* is defined in (4.3). From
Propositions 3.1 and 3.2, Lemma 3.3, and (4.3), we can obtain b?/3a = 3, 6 ~ 0.97104, S
276.32545, ph ~ 177.63779, p¥ =~ 25, p¥ ~ 123.68766, B, ~ 11079.11062, 5, ~ 4916.11204,
77 ~ 0.00563, 75 ~ 0.00664, Bi, = Bi3 = B33 = B3 = B3y = 0, and 335, = 25. By the
quantities above and Lemma 3.3, we can further verify that Condition (S)* holds and matrix M

in (3.33) is approximately

64.16221 0 —1.0 0 —-1.0 0
—25.0 40.19777 0 —1.0 0 —1.0
—20.0 0 1.0 0 0 0
(4.4)
0 —20.0 0 1.0 0 0
—0.02 0 0 0 0.005 0
0 —0.02 0 0 0 0.005

By the matrix in (4.4), we can compute the corresponding value :\Syn ~ 0.60, cf. (2.29).
Hence, the system attains global synchronization by Theorem 2.2. Figure 4.2 and 4.3
demonstrate that the evolution for the solution of the considered system, evolved from
(3.5,0.3,-2.1,3.6,0.4,—2.2,3.7,0.5,—2.3) at t, = 0. It appears that the solution remains
oscillatory. Figures 4.3(a), 4.3(b) and 4.3(c) show that the solution (x; (¢), Xa(t), X3(¢)), X;(t) =
(i1 (t), wia(t), x;5(t)), with 2z, = X;x(t) — X;11.(t) converging to zero for i = 1,2 and
k = 1,2, 3. This demonstrates that the solution synchronizes.

If we consider large coupling delay 7 = 0.05 instead of 7 = 0.00001, then Condition
(S)* does not hold. Figures 4.4(a), 4.4(b) and 4.4(c) show that each of the solution does not
synchronize, and exhibits asynchronous oscillatory behavior. This shows that large delay may

destroy synchronization.
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time t
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Figure 4.1: Simulation for the solution of the system considered in Example 1, with 7

0.00001: evolution of components z; 4 (t), 7 = 1,2,3,and k = 1,2, 3.
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Figure 4.2: Simulation for the solution of the system considered in Example 1, with 7 =

0.00001: evolution of components (z;1(t), z;2(t), x;3(t)), i = 1,2, 3.
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Figure 4.3: Simulation for the solution of the system considered in Example 1, with 7 =
0.00001: evolution of components z; ;(¢),i = 1,2, and k = 1,2, 3.
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Example 2. Consider three coupled Hindmarsh-Rose neurons (3.2) witha = 1,0 =3, [ = 3.0,
d=>5,r=0.005,s =4, xy = 1.6, c =200, g(z) = [tanh(z) + z|/2, 7 = 0.00002 and

—-0.4 0.3 0.1
A = laijlicijes = 0.2 0.7 0.5 : (4.5)
0.1 0.8 —-0.9

From (1.4), (2.6), and (2.8), wehave k = i =~ =0,a = 3.2 and 7 = 7 = 0.00002. By (2.15)

and (4.5), we obtain

_ —0.6 0.4
A= laigjlicijen = \ (4.6)

0.1 —1.4

By (4.6), the quantities defined in (2.17) are now &y; = a1 = —0.6, ay; = 0.6, digg = Qg =
—1.4, dige = 1.4, aiyp = 0.4, n; = 0.1. By numerical simulation cf. Figure 4.5, we can observe

that the system satisfies Condition (D)* with Q* = [—p7, pi] X [=p5, p5] X [—p3, p3], where
p1 =2, p5=9, p3=3.5. 4.7)

We note that Figure 4.5 demonstrates the evolution for the solution of the considered system,
evolved from (0.7;2.5; —2.8; 1;2.7; —2.5;0.5; 2.9; —2.2) at t, = 0. It appears that the solution
eventually enters and then remains in Q* x Q* x Q*, where Q* is defined in (4.7). From
Propositions 3.1 and 3.2, Lemma 3.3, and (4.7), we can obtain b?/3a = 3, 6 ~ 0.53533, ﬁ}f =~
444.60414, ph ~ 1037.40965, p¥ ~ 321.40276, pY ~ 99.10069, B, =~ 37694.82178, [ ~
195427.36302, 77 ~ 0.00165, 75 ~ 91427.56468, By = 99.99999, 35, = 25.0, and (3 =

B33 = Ba = Ba, = 0. By the quantities above and Lemma 3.3, we can further verify that
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Condition (S)* holds and matrix M in (3.33) is approximately

60.74648 —80.0 -1.0 0 —-1.0 0
—20.0 144.36613 0 —1.0 0 —-1.0
—20.0 0 1.0 0 0 0
(4.8)
0 —20.0 0 1.0 0 0
—0.02 0 0 0 0.005 0
0 —0.02 0 0 0 0.005

By the matrix in (4.8), we can compute the corresponding value S\Syn ~ 0.64,
cf. (2.29). Hence, the system attains global synchronization by Theorem 2.2. Figures
4.5 and 4.6 demonstrate that the evaluation for the solution of the considered system,
evolved from (0.7,2.5,—-2.8,1,2.7,—2.5,0.5,2.9,—-2.2) at t, = 0. It shows that the
solution remains oscillatory. Figures 4.7(a), 4.7(b) and 4.7(c) illustrate that the solution
(x1(t),x2(t),x3(¢)), Xi(t) = (2;1(£), wi0(t), zi3(t)), with z; . = X; 1 (t) — X;41 4(¢) converging
to zero for s = 1,2 and k = 1, 2, 3. This demonstrates that the solution synchronizes.

If we consider large coupling delay 7 = 0.1 instead of 7 = 0.00002, then Condition
(S)* does not hold. Figures 4.8(a), 4.8(b) and 4.8(c) show that each of the solution does not
synchronize, and exhibits asynchronous oscillatory behavior. This shows that large coupling

delay may lead to asynchrony.

Remark 4.1. Among the existing studies on synchronization of coupled systems, the synchronization

theories in [9, 1620, 30] required that all non-zero and off-diagonal entries of the connection
matrix have the same sign. The connection matrices considered in Examples 1 and 2 have off-
diagonal entries with the mixed signs, and do not satisfy the circulant condition required in [29].
Therefore, the synchronization of systems considered in Examples 1 and 2 can not be treated by

previous approaches in [9, 1620, 29, 30].
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time t
(c) Z; 3

Figure 4.5: Simulation for the solution of the system considered in Example 2, with 7 =
0.00002: evolution of components z; x(¢), 7 = 1,2,3,and k = 1,2, 3.
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(©) (x3,1,23,2,733)

Figure 4.6: Simulation for the solution of the system considered in Example 2, with 7 =
0.00002: evolution of components (z; 1 (), z;2(t), z;5(t)), i = 1,2, 3.
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Figure 4.7: Simulation for the solution of the system considered in Example 2, with 7 =
0.00002: evolution of components z; ;(t),i = 1,2, and k = 1,2, 3.
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Figure 4.8: Simulation for the solution of the system considered in Example 2, with 7 =
0.1: evolution of components z; (¢),7 = 1,2, and k = 1,2,3
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Chapter 5

Conclusion

In the literature, there has been some investigations which addressed the global synchronization
of coupled systems of Hindmarsh-Rose neurons. Among these investigations, most of them
considered linear coupling functions and did not consider coupling time-delays. In addition,
these studies commonly required that all nonzero and non-diagonal entries of the connection
matrix have the same sign. In this thesis, we establish the global synchronization of non-linearly
coupled systems of Hindmarsh-Rose neurons based on the theory in [33]. The coupling terms
could be with time delays, the coupling function could be nonlinear, and the connection matrix
could be with both negative and positive off-diagonal entries. By applying the synchronization
criterion derived in this thesis, we can investigate the synchronization of systems of coupled
Hindmarsh-Rose neurons, which cannot be treated by the previous methods, cf. Remark 4.1

and Examples 1, and 2.
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