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中文摘要

在此論文，我們研究 Hindmarsh-Rose神經元耦合系統的同步化，我們所考慮的

模型之耦合結構可以相等的一般性。模型所具備的耦合函數可以是非線性的，耦合

矩陣可容許非零的非對角元素能有不同的正負號，並且我們也考慮耦合時間延遲。

藉由 [33]的同步化理論，我們推導出與時間延遲相關的同步化條件。我們提供兩個

數值例子來表現本論文同步化理論之效用。
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Abstract

In this thesis, we investigate the synchronization of coupled systems of

Hindmarsh-Rose neurons. The coupling scheme under consideration is general.

The coupling functions could be non-linear. The connection matrix could have

non-zero and non-diagonal entries with different signs. We also consider the

transmission delays in the coupling terms of the coupled systems. We derive a

delay-dependent criterion that leads to the synchronization of coupled neurons. Two

examples with numerical simulations are illustrated to show the effectiveness of

theoretical result.

ii
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Chapter 1

Introduction

Synchronization is an important phenomenon in several biological, physiological complex

networks systems [14,31]. For instance, there has been an observation that neurons synchronize

each other by coupled dynamic neural network [2, 8, 22, 23, 27, 32, 34, 37, 38]. The process

of conveying neural information in brain is conducted through mutual interaction of neural

populations [6]. In addition, the information delivering process in the neural systems,

synchronization plays a key role in association and memory [26]. As the basic behavior of

neuron, synchronization is an expression of neuron discharge, widely existing in the neural

system like the visual cortex [25, 35]. However, it is shown that too much synchronization

will do harm to the organism and cause such brain diseases as Alzheimer’s disease, epilepsy,

Parkinson’s disease, and schizophrenia based on several physiological experiments [15,24,39].

Since those illnesses have a lot to do with the abnormal synchronization of neuron systems, it is

worth to study the synchronization in coupled dynamic networks.

To obtain a deep understanding of neural network dynamics, lots of neural models such as

the Hodgkin-Huxley model [21, 28], the FitzHugh-Nagumo model [22, 33], the Morris-Lecar

model [1, 3] and the Hindmarsh-Rose model [17, 36] have been used by numerous researches

for biological application. Among these models, Hindmarsh-Rose neurons were discovered

from neuron cells in a pond snail which burst after it is depolarized by a pulse of short current

[4, 36]. What’s more, it has been shown that the Hindmarsh-Rose neuron model, a system of

three ordinary differential equations, is able to produce abundant neural behavior like spiking,

bursting, and chaotic behavior [7, 11, 13]. In this paper, we will investigate the synchronization

of the coupled systems of Hindmarsh-Rose neurons.

1
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The dynamics of an isolated single Hindmarsh-Rose neuron could be depicted by the

following system of ordinary differential equations [10]:



ẋ1(t) = x2(t)− a(x1(t))
3 + b(x1(t))

2 − x3(t) + I,

ẋ2(t) = 1− dx1(t)
2 − x2(t),

ẋ3(t) = r(s(x1(t) + x0)− x3(t)),

(1.1)

where x1 represents the membrane potential of the neuron, x2 the recovery variable, and x3 the

adaptation current. The external input current is represented by I to determine the output mode

of the neuron. The parameters a, b, d, r, s, x0 are all positive constants.

Time delay, which occurs in the propagation of action potentials along the axon,

transferring signals across the synapse or other artificial units, is an important factor in the

coupled neural systems [5,12]. It is essential to tackle nonlinear systems under delayed coupling.

Therefore, in this paper, we shall consider the following coupled network consisting of N

identical Hindmarsh-Rose neurons with coupling time delay:

ẋi,1(t) = xi,2(t)− axi,1(t)
3 + bxi,1(t)

2 − xi,3(t) + I

+c
∑

j∈N ,j ̸=i

aij(g(xj,1(t− τ))− g(xi,1(t− τ))),

ẋi,2(t) = 1− dxi,1(t)
2 − xi,2(t),

ẋi,3(t) = r(s(xi,1(t) + x0)− xi,3(t)),

(1.2)

for i ∈ N := {1, 2, ..., N}, where c ≥ 0 is the coupling strength ;

A = [aij]N×N , with aii := −
N∑

j=1,j ̸=i

aij, (1.3)

is the connection matrix representing the topological structure of the network; g : R → R is

the coupling function; τ ≥ 0 is the transmission delay. We note that system (1.2) is linearly

coupled if g is linear, otherwise it is non-linearly coupled. Among the existing investigations on

coupled Hindmarsh-Rose neurons, some of the investigations considered with linearly coupling

2
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function: g(x) = x, cf. [36]; while some others considered non-linearly coupling function:

g(x) = tanh(x), cf. [17]. Moreover, the work in [36] considered linearly coupled systems of

two Hindmarsh-Rose neurons with time delays (i.e. τ ̸= 0); the work in [17] considered non-

linearly coupled Hindmarsh-Rose neurons without delay (i.e. τ = 0), cf. [17]. It is worth noting

that most of the previous investigations on the synchronization of coupled systems required that

the non-zero and off-diagonal entries of connection matrix have the same signs, cf. [9, 16–20,

30]; moreover, most of the previous investigations on the synchronization of coupled systems

considered linear couplings, cf. [2, 27].

In the following, (x1(t), . . . , xN(t)) denotes an arbitrary solution of system (1.2) and

(xt1, . . . , xtN) is the corresponding evolution of system (1.2), where xti ∈ C([−τ, 0];RK), i ∈ N ,

written as xti(θ) = xi(t + θ) for θ ∈ [−τ, 0]. It is said that the system (1.2) achieves global

synchronization if

xi,k(t)− xj,k(t) → 0, as t → ∞, for all i, j ∈ N , k ∈ {1, 2, 3},

for every solution (x1(t), . . . , x3(t)), where xi(t) = (xi,1(t), xi,2(t), xi,3(t)). In this paper, we

shall utilize the approach developed in [33] to investigate the global synchronization of coupled

system (1.2) with the coupling function g in the following class:

{g ∈ C1 : δ := g′(0) > g′(x) > 0, x ̸= 0}. (1.4)

We emphasize that the connection matrix A = [aij]N×N , considered in this thesis, is allowed to

have off-diagonal entries with different signs.

The remainder of this thesis is organized as follows. In chapter 2, we introduce the

synchronization theory developed in [33]. In chapter 3, we establish the synchronization of non-

linearly coupled systems of Hindmarsh-Rose neurons based on the theory in [33]. In chapter

4, we demonstrate two numerical examples to support our theory. In chapter 5, we give some

discussions and conclusions.

3
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Chapter 2

Preliminaries

In this chapter, we shall introduce the synchronization theory developed in [33], the model

considered in [33] is as follows:

ẋi(t) = F(xi(t), t) + c
∑
j∈N

aij(t)G(xj(t− τ(t))), i ∈ N , t ≥ t0, (2.1)

where N = {1, . . . , N}, xi(t) = (xi,1(t), . . . , xi,K(t)) ∈ RK , F = (F1, . . . , FK) is a smooth

function describing the intrinsic dynamics of each subsystem, c ≥ 0 is the coupling strength,

and aij(t), i, j ∈ N , are bounded functions of t. Matrix A(t) := [aij(t)]1≤i,j≤N is referred to as

the connection matrix and is assumed to satisfy the condition:

∑
j∈N

aij(t) = κ(t), for all i ∈ N and t ≥ t0. (2.2)

The function G = (G1, . . . , GK) is assumed to satisfy

Gk(xj(t− τ(t))) = gk(xj,k(t− τ(t))), for all i, j ∈ K and t ≥ t0, (2.3)

4
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where K := {1, . . . , K}, gk is a non-decreasing and differentiable function, and τ(t) ∈ [0, τM ]

stands for the time-dependent transmission delay. For later use, set

κ̄ = sup{|κ(t)| : t ≥ t0}, (2.4)

κ̌ = inf{κ(t) : t ≥ t0}, (2.5)

κ̂ = sup{κ(t) : t ≥ t0}, (2.6)

āij = sup{|aij(t)| : t ≥ t0}, (2.7)

τ̄ = sup{τ(t) : t ≥ t0}. (2.8)

In this section, (x1(t), . . . , xN(t)) denotes an arbitrary solution of system (2.1), and (xt1, . . . , xtN)

is the corresponding evolution of system (2.1), where xti ∈ C([−τM , 0];RK), i ∈ N , are

defined as xti(θ) = xi(t + θ) for θ ∈ [−τM , 0]. System (2.1) is said to attain global (identical)

synchronization, if

xi,k(t)− xj,k(t) → 0, as t → ∞, for all i, j ∈ N , k ∈ K,

for every solution (x1(t), . . . , xN(t)), where xi(t) = (xi,1(t), . . . , xi,K(t)).

Let us introduce two assumptions as follows:

Assumption (D): All solutions of system (2.1) eventually enter and then remain in some compact

set QN := Q× · · · × Q ⊂ RNK , where Q := [q̌1, q̂1]× · · · × [q̌K , q̂K ] ⊂ RK .

Define

CQ := {(Φ1, . . . ,ΦN) : Φi = (ϕi,1, . . . , ϕi,K) ∈ C([−τM , 0];RK), (2.9)

ϕi,k(θ) ∈ [q̌k, q̂k], θ ∈ [−τM , 0], i ∈ N , k ∈ K}.

Decompose Fk(E, t)− Fk(Ẽ, t) as

Fk(E, t)− Fk(Ẽ, t) = hk(xk, x̃k, t) + wk(E, Ẽ, t),

where t ≥ t0, E = (x1, . . . , xK), and Ẽ = (Ẽ1, . . . , ẼK).

5
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Assumption (F): For each k ∈ K, there exist µ̌k, µ̂k ∈ R, ρwk ≥ 0, and µ̄kl ≥ 0, for

l ∈ K − {k}, such that for any E, Ẽ ∈ Q, the following two properties hold for all t ≥ t0:

(F-i):

µ̌k ≤ hk(xk, x̃k, t)/(xk − x̃k) ≤ µ̂k if xk − x̃k ̸= 0,

hk(xk, x̃k, t) = 0 if xk − x̃k = 0,

(F-ii): |wk(E, Ẽ, t)| ≤ ρwk , and |wk(E, Ẽ, t)| ≤
∑

l∈K−{k}

µ̄kl|xl − x̃l|.

For later use, define the following sets of indices:

A := (N − {N})×K and Ai,k := A− {i} × {k}, where (i, k) ∈ A. (2.10)

Assume that (x1(t), . . . , xN(t)), where xi(t) = (xi,1(t), . . . , xi,K(t)), is an arbitrary solution of

system (2.1). Setting

zi(t) := xi(t)− xi+1(t), i ∈ N − {N}, (2.11)

where zi(t) = (zi,1(t), . . . , zi,K(t)), cf. (2.1) and (2.3), then (z1(t), . . . , zN−1(t)) satisfies the

following difference-differential system corresponding to system (2.1):

żi,k(t) = Hi,k(xt1, . . . , xtN , t), (i, k) ∈ A, t ≥ t0, (2.12)

where

Hi,k(Φ1, . . . ,ΦN , t) := Fk(Φi(0), t)− Fk(Φi+1(0), t)

+ c
∑
j∈N

[aij(t)− a(i+1)j(t)]gk(ϕj,k(−τ(t))), (2.13)

for Φj = (ϕj,1, . . . , ϕj,K) ∈ C([−τM , 0];RK), j ∈ N . Clearly, system (2.1) attains global

synchronization if zi,k(t) → 0, as t → ∞, for every (i, k) ∈ A.

Via A(t) = [aij(t)]1≤i,j≤N , define matrix Ã(t) = [ãij(t)]1≤i,j≤N , where

ãij(t) =

aii(t)− κ(t), if i = j ∈ N ,

aij(t), if i, j ∈ N and i ̸= j.

(2.14)

6
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We introduce matrix Ā(t):

Ā(t) = [αij(t)]1≤i,j≤N−1 := CÃ(t)CT (CCT )−1 ∈ R(N−1)×(N−1), (2.15)

where

C :=



1 −1 0 · · · 0

0 1 −1
. . . ...

... . . . . . . . . . 0

0 · · · 0 1 −1


∈ R(N−1)×N .

Then, Ā(t) in (2.15) is well-defined, and satisfies

CÃ(t) = Ā(t)C, (2.16)

for all t ≥ t0. For later use, set

ᾱij = sup{|αij(t)| : t ≥ t0}, (2.17)

α̌ij = inf{αij(t) : t ≥ t0}, (2.18)

α̂ij = sup{αij(t) : t ≥ t0}, (2.19)

where αij(t), 1 ≤ i, j ≤ N − 1, are entries of Ā(t) defined in (2.15).

Proposition 2.1. ( [33]) Consider system (2.1) which satisfies Assumptions (D) and (F). Then,

functions Hi,k, (i, k) ∈ A, defined in (2.13), can be decomposed as

Hi,k(Φ1, . . . ,ΦN , t) = hi,k(ϕi,k(0), ϕi+1,k(0), t)

+ h̃i,k(ϕi,k, ϕi+1,k, t) + wi,k(Φ1, . . . ,ΦN , t),

hi,k(ϕi,k(0), ϕi+1,k(0), t) = hk(ϕi,k(0), ϕi+1,k(0), t),

h̃i,k(ϕi,k, ϕi+1,k, t) = c[κ(t) + αii(t)][gk(ϕi,k(−τ(t)))− gk(ϕi+1,k(−τ(t)))],

wi,k(Φ1, . . . ,ΦN , t) = wk(Φi(0),Φi+1(0), t)

+ c
∑

j∈N−{i,N}

αij(t)[gk(ϕj,k(−τ(t)))− gk(ϕj+1,k(−τ(t)))].

7
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Moreover, for all (i, k) ∈ A and all (Φ1, . . . ,ΦN) ∈ CQ, where Φi = (ϕi,1, . . . , ϕi,K), i ∈ N ,

the following three properties hold for all t ≥ t0:

(H-i):


µ̌k ≤ hi,k(ϕi,k(0),ϕi+1,k(0),t)

[ϕi,k(0)−ϕi+1,k(0)]
≤ µ̂k if ϕi,k(0)− ϕi+1,k(0) ̸= 0,

hi,k(ϕi,k(0), ϕi+1,k(0), t) = 0 if ϕi,k(0)− ϕi+1,k(0) = 0,

(H-ii): |h̃i,k(ϕi,k, ϕi+1,k, t)| ≤ ρhik, and
β̌ik ≤ h̃i,k(ϕi,k,ϕi+1,k,t)

[ϕi,k(−τ(t))−ϕi+1,k(−τ(t))]
≤ β̂ik if ϕi,k(−τ(t))− ϕi+1,k(−τ(t)) ̸= 0,

h̃i,k(ϕi,k, ϕi+1,k, t) = 0 if ϕi,k(−τ(t))− ϕi+1,k(−τ(t)) = 0,

(H-iii): |wi,k(Φ1, . . . ,ΦN , t)| ≤ ρwik, and

|wi,k(Φ1, . . . ,ΦN , t)| ≤
∑

(j,l)∈Ai,k

{µ̄(jl)
ik |ϕj,l(0)− ϕj+1,l(0)|

+ β̄
(jl)
ik |ϕj,l(−τ(t))− ϕj+1,l(−τ(t))|},

for ρhik and ρwik satisfying

ρhik ≥ 2c[κ(t) + αii(t)]ρ
g
k and ρwik ≥ ρwk + 2cρgk

∑
j∈N−{i,N}

ᾱij,

respectively, and

8
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β̌ik =

c[κ(t) + αii(t)]Ľk if κ(t) + αii(t) ≥ 0,

c[κ(t) + αii(t)]L̂k if κ(t) + αii(t) < 0,

β̂ik =

c[κ(t) + αii(t)]L̂k if κ(t) + αii(t) ≥ 0,

c[κ(t) + αii(t)]Ľk if κ(t) + αii(t) < 0,

µ̄
(jl)
ik =

µ̄kl if i = j, k ̸= l,

0 otherwise,

β̄
(jl)
ik =

cᾱijL̂k if j ̸= i, k = l,

0 otherwise,

where

ρgk := max{|gk(xi)| : xi ∈ [q̌k, q̂k]} ≥ 0, (2.20)

Ľk := min{g′k(xi) : xi ∈ [q̌k, q̂k]} ≥ 0, (2.21)

L̂k := max{g′k(xi) : xi ∈ [q̌k, q̂k]} ≥ 0. (2.22)

Herein, κ̄, κ̌, and κ̂ are defined in (2.6), CQ in (2.9), Ai,k in (2.10), ᾱij , α̌ij , and α̂ij in (2.17),

µ̌k, µ̂k, ρwk , µ̄kl, and functions hk, wk in Assumption (F).

With µ̌k, µ̂k, β̌ik, β̂ik, µ̄
(jl)
ik , and β̄(jl)

ik , introduced in Proposition 2.1, and τ̄ defined in (2.8),

an associated matrix can be defined as follows:

M = [M (kl)]1≤k,l≤K , (2.23)

for each k, l ∈ K,M (kl) = [m
(kl)
ij ]1≤i,j≤N−1 is an (N − 1)× (N − 1) matrix, and its entries are

defined by

m
(kl)
ij =

ηik, if i = j ∈ N − {N} and k = l ∈ K,

−L̄
(jl)
ik , otherwise.

(2.24)

9
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where

β̄ik := max{|β̌ik|, |β̂ik|}, (2.25)

ηik := −µ̂k − β̂ik + β̄ikτ̄(µ̌k + µ̂k + β̌ik + β̂ik), (2.26)

L̄
(jl)
ik := µ̄

(jl)
ik + β̄

(jl)
ik . (2.27)

Let us introduce the following condition:

Condition (S): For all (i, k) ∈ A, µ̂k + β̂ik < 0 and

β̄ikτ̄ < 3ρhik(µ̂k + β̂ik)/[(µ̌k + µ̂k + β̌ik + β̂ik)(3ρ
h
ik + ρwik)].

We note that Condition (S) involves τ̄ , and is thus delay-dependent.

Theorem 2.2. ( [33]) Consider system (2.1) which satisfies Assumptions (D) and (F). Then,

the system globally synchronizes if Condition (S) holds, and the Gauss-Seidel iterations for the

linear system:

Mv = 0, (2.28)

converge to zero, the unique solution of (2.28); or equivalently,

λsyn := max
1≤σ≤K×(N−1)

{|λσ| : λσ : eigenvalue of (DM − LM)
−1UM} < 1. (2.29)

where M is defined in (2.23) and DM, −LM, and −UM represent the diagonal, strictly lower-

triangular, and strictly upper-triangular parts ofM, respectively.

10
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Chapter 3

Synchronization of Hindmarsh-Rose

neurons

To apply the synchronization theory in [33], we first rewrite system (1.2) into the form of

(2.1). Recalling (1.3), we rewrite the coupling part of (1.2) as follows:

c
∑

j∈N−{i}

aij(g(xj,1(t− τ))− g(xi,1(t− τ)))

= c [
∑

j∈N−{i}

aijg(xj,1(t− τ))−
∑

j∈N−{i}

aijg(xi,1(t− τ))]

= c [
∑

j∈N−{i}

aijg(xj,1(t− τ))− g(xi,1(t− τ))
∑

j∈N−{i}

aij]

= c [
∑

j∈N−{i}

aijg(xj,1(t− τ)) + aiig(xi,1(t− τ))]

= c
∑
j∈N

aijg(xj,1(t− τ)).

(3.1)

11
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By (3.1), system (1.2) can be written as follows :

ẋi,1(t) = xi,2(t)− axi,1(t)
3 + bxi,1(t)

2 − xi,3(t) + I

+c
∑
j∈N

aijg(xj,1(t− τ)),

ẋi,2(t) = 1− dxi,1(t)
2 − xi,2(t),

ẋi,3(t) = r(s(xi,1(t) + x0)− xi,3(t)),

(3.2)

for all i ∈ N . Notably, the terms κ, defined in (2.2), now satisfies the diffusive coupling

condition:

κ = κ̌ = κ̂ = 0.

Accordingly,

ãij =

aii − κ = aii, if i = j ∈ N ,

aij, if i, j ∈ N and i ̸= j.

(3.3)

Thus, Ã(t) in (2.14) is now Ã(t) = A. Applying (2.15) yields that Ā(t) satisfies Ā(t) = Ā =

[αij]1≤i,j≤N−1 := CACT (CCT )−1 ∈ R(N−1)×(N−1). Hence, α̌ij , α̂ij , ᾱij in (2.17) are now

α̌ij = α̂ij = αij, (3.4)

ᾱij = |αij|, (3.5)

for all i, j ∈ N − {N}. In addition, for system (3.2), the time delay τ(t) is now independent of

t (i.e. τ(t) ≡ τ ) and the functions Fk(xi(t), t) and Gk(xj(t − τ(t))) defined in (2.1) and (2.3)

12
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are now 
F1(xi(t), t) = xi,2(t)− axi,1(t)

3 + bxi,1(t)
2 − xi,3(t) + I,

F2(xi(t), t) = 1− dxi,1(t)
2 − xi,2(t),

F3(xi(t), t) = r(s(xi,1(t) + x0)− xi,3(t)),

(3.6)


G1(xj(t− τ(t))) = g(xj,1(t− τ)),

G2(xj(t− τ(t))) = 0,

G3(xj(t− τ(t))) = 0,

(3.7)

respectively.

Let us introduce a condition for system (3.2), which plays the role as Condition (D) for

system (2.1):

Condition (D)*: All solutions of system (3.2) eventually enter and then remain in some

compact setQN := Q∗×· · ·×Q∗ ⊂ R3N , whereQ∗ := [−ρ∗1, ρ
∗
1]× [−ρ∗2, ρ

∗
2]× [−ρ∗3, ρ

∗
3] ⊂ R3

with ρ∗k ≥ 0, k = 1, 2, 3.

Next, let us establish Assumption (F) for system (3.2) under Condition (D)*.

Proposition 3.1. Assume that Condition (D)* holds, then system (3.2) satisfies Assumption (F)

with µ̌1 = −3a(ρ∗1)
2 − 2bρ∗1, µ̂1 = b2/3a, µ̌2 = µ̂2 = −1, µ̌3 = µ̂3 = −r, µ̄12 = µ̄13 = 1,

µ̄23 = µ̄32 = 0, µ̄21 = 2ρ∗1d, µ̄31 = rs, ρw1 = 2(ρ∗2 + ρ∗3), ρw2 = 4d(ρ∗1)
2, ρw3 = 2rsρ∗1, where

ρ∗k, k = 1, 2, 3, are defined in Condition (D)*.

Proof. We first compute quantities µ̌k, µ̂k, µ̄kl ρ
w
k , where k, l ∈ {1, 2, 3} and k ̸= l. By (3.6),

applying the mean value theorem yields that



F1(E, t)− F1(Ẽ, t) = h1(x1, x̃1, t) + w1(E, Ẽ, t),

F2(E, t)− F2(Ẽ, t) = h2(x2, x̃2, t) + w2(E, Ẽ, t),

F3(E, t)− F3(Ẽ, t) = h3(x3, x̃3, t) + w3(E, Ẽ, t),

(3.8)

13
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for E = (x1, x2, x3) ∈ R3, Ẽ = (x̃1, x̃2, x̃3) ∈ R3, and t ≥ t0, where

h1(x1, x̃1, t) = [−3as2 + 2bs](x1 − x̃1), (3.9)

w1(E, Ẽ, t) = x2 − x̃2 − (x3 − x̃3), (3.10)

h2(x2, x̃2, t) = −(x2 − x̃2), (3.11)

w2(E, Ẽ, t) = −d(x2
1 − x̃2

1), (3.12)

h3(x3, x̃3, t) = −(x3 − x̃3), (3.13)

w3(E, Ẽ, t) = rs(x1 − x̃1), (3.14)

and s is some number between x1 and x̃1. Recall Assumption (F), where E = (x1, x2, x3),

Ẽ = (x̃1, x̃2, x̃3) ∈ Q∗ = [−ρ∗1, ρ
∗
1] × [−ρ∗2, ρ

∗
2] × [−ρ∗3, ρ

∗
3] which leads to s ∈ [−ρ∗1, ρ

∗
1];

moreover,

−3a(ρ∗1)
2 − 2bρ∗1 ≤ −3as2 + 2bs ≤ b2/3a, (3.15)

|w1(E, Ẽ, t)| ≤ 2(ρ∗2 + ρ∗3), (3.16)

|w2(E, Ẽ, t)| ≤ 4d(ρ∗1)
2, (3.17)

|w3(E, Ẽ, t)| ≤ 2rsρ∗1. (3.18)

Based on (3.9)-(3.18), we shall show that system (3.2) satisfies Assumption(F) for which

quantities are chosen as follows:

By (3.9) and (3.15), we can choose µ̌1 = −3a(ρ∗1)
2 − 2bρ∗1 and µ̂1 = b2/3a.

By (3.11), we can choose µ̌2 = µ̂2 = −1.

By (3.13), we can choose µ̌3 = µ̂3 = −r.

By (3.10) and (3.16), we can choose µ̄12 = µ̄13 = 1 and ρw1 = 2(ρ∗2 + ρ∗3).

By (3.12) and (3.17), we can choose µ̄21 = 2ρ∗1d, µ̄23 = 0 and ρw2 = 4d(ρ∗1)
2.

By (3.14) and (3.18), we can choose µ̄31 = rs, µ̄32 = 0 and ρw3 = 2rsρ∗1.

From Proposition 3.1, system (3.2) satisfies Assumption (D) and (F) under Condition (D)*.

Accordingly, the assumption for the assertion in Proposition 2.1 holds for system (3.2) under

Condition (D)*. In addition, the quantities in the assertion of Proposition 2.1 can be chosen as

those in the following proposition.

14
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Proposition 3.2. Assume that Condition (D)* holds. The assertion in Proposition 2.1 holds with

ρhik =

2cᾱiiρ
g, if k = 1,

v, if k = 2, 3,

(3.19)

β̌ik =


cαiiδ̌, if k = 1, αii ≥ 0,

cαiiδ, if k = 1, αii < 0,

0, if k = 2, 3,

(3.20)

β̂ik =


cαiiδ if k = 1, αii ≥ 0,

cαiiδ̌ if k = 1, αii < 0,

0 if k = 2, 3,

(3.21)

ρwik =



2(ρ∗2 + ρ∗3) + 2cρg
∑

j∈N−{i,N}

ᾱij, if k = 1,

4d(ρ∗1)
2, if k = 2,

2rsρ∗1, if k = 3,

(3.22)

µ̄
(jl)
ik =



1, if i = j, (k, l) = (1, 2) or (1, 3),

2ρ∗1d, if i = j, (k, l) = (2, 1),

rs, if i = j, (k, l) = (3, 1),

0, otherwise,

(3.23)

β̄
(jl)
ik =

cᾱijδ, if j ̸= i, k = l = 1,

0, otherwise,
(3.24)

where δ = max{g′(xi) : xi ∈ [−ρ∗1, ρ
∗
1]} is defined in (1.4), ᾱii and ᾱij in (3.4), ρ∗k in Condition

(D)*, µ̄kl in Proposition 3.1; v is an arbitrary positive number and δ̌ := min{g′(x) : x ∈

[−ρ∗1, ρ
∗
1]}.

15
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Proof. By (3.7), for E = (x1, x2, x3) ∈ R3, we have



g1(x1) = G1(E) = g(x),

g1(x2) = G2(E) = 0,

g1(x3) = G3(E) = 0.

(3.25)

By Proposition 2.1 and (3.25), Ľk and L̂k, k = 1, 2, 3, are now Ľ1 = δ̌, L̂1 = δ = max{g′(x) :

x ∈ [−ρ∗1, ρ
∗
1]} and Ľ2 = L̂2 = Ľ3 = L̂3 = 0, where δ is defined in (1.4). By (3.25), ρgk defined

in (2.20), k = 1, 2, 3, can be chosen as

ρg1 = ρg,

ρg2 = ρg3 = v,

for an arbitrary v > 0. Combining those quantities of Ľk, L̂k and ρgk, k = 1, 2, 3, chosen above

as well as µ̌k, µ̂k, µ̄kl and ρwk , for k, l ∈ {1, 2, 3} and k ̸= l, chosen in Proposition 3.1, the

quantities in the assertion of Proposition 2.1 can be determined as those in (3.19)-(3.24).

Let us now introduce the following condition for system (3.2) which plays the role as

Condition (S) for system (2.1):

Condition (S)*: b2/3a+ cαiiδ̌ < 0 and τ < τ̃ ∗i , for all i ∈ {1, 2, . . . , N − 1},

where

τ̃ ∗i := −3ρ̄hi (b
2/3a+ cαiiδ̌)/[β̄i(3ρ̄

h
i + ρ̄wi )],

with

ρ̄hi := 2cᾱiiρ
g,

β̄i := cαiiδ[b
2/3a− 3a(ρ∗1)

2 − 2bρ∗1 + cαii(δ + δ̌)],

ρ̄wi := 2(ρ∗2 + ρ∗3) + 2c
∑

j∈N−{i,N}

ᾱijρ
g.

Therein, the quantities δ̌ and ρg are defined in Propositions 3.2; ρ∗k, k = 1, 2, 3, is defined in

Condition (D)*; ᾱij and ᾱii are defined in (3.4).

16
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In the following lemma, we shall show the matrix M in (2.23) in terms of the quantities

shown in Proposition 3.2. Moreover, the matrix M in (2.23) is determined by quantities in

Proposition 2.1. Basically, the following lemma comes from Proposition 3.1 and 3.2.

Lemma 3.3. Assume that Condition (D)* holds. Then, the matrix M = [M (kl)]1≤k,l≤K , where

M (kl) = [m
(kl)
ij ]1≤i,j≤N−1, in (2.23) is now denoted by M̃ = [M̃ (kl)]1≤k,l≤K , where M̃ (kl) =

[m̃
(kl)
ij ]1≤i,j≤N−1, with

m̃
(kl)
ij :=



−b2/3a− cαiiδ̌ − τ β̄i, if i = j and (k, l) = (1, 1),

1, if i = j and (k, l) = (2, 2),

r, if i = j and (k, l) = (3, 3),

−µ
(jl)
ik − β

(jl)
ik , otherwise,

(3.26)

where

µ
(jl)
ik :=



1, if i = j, (k, l) = (1, 2) or (1, 3),

2ρ∗1d, if i = j, (k, l) = (2, 1),

rs, if i = j, (k, l) = (3, 1),

0, otherwise,

(3.27)

β
(jl)
ik :=

β∗
ij, if j ̸= i, (k, l) = (1, 1),

0, otherwise.
(3.28)

Herein, β∗
ij := cᾱijδ, δ̌ is defined in Proposition 3.2; β̄i is defined in Condition (S1)*; ᾱij is

defined in (3.4); ρ∗1 is defined in Condition (D)*.

Proof. From Propositions 3.1 and 3.2, system (3.2) satisfies Condition (D)* with Q∗ =

[−ρ∗1, ρ
∗
1]× [−ρ∗2, ρ

∗
2]× [−ρ∗3, ρ

∗
3], µ̌k, µ̂k, ρwk , for k = 1, 2, 3, and µ̄kl, k, l ∈ {1, 2, 3} and k ̸= l,

determined in Proposition 3.1. As seen from (3.7), the terms Ľk, and L̂k, k = 1, 2, 3, defined in

Proposition 2.1, are now chosen as those in Proposition 3.2. Notably, Condition (S)* implies that

αii < 0 for all i = 1, . . . , N − 1, because b2/3a > 0, c > 0, and δ̌ > 0. Based on Propositions

3.1 and 3.2, system (3.2) satisfies the assertion of Proposition 2.1, with µ̌1 = −3a(ρ∗1)
2 − 2bρ∗1,

µ̂1 = b2/3a, µ̌2 = µ̂2 = −1, β̌i1 = cαiiδ, β̂i1 = cαiiδ̌, β̌i2 = β̂i2 = β̌i3 = β̂i3 = 0, µ̄(jl)
ik = µ

(jl)
ik ,

17
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β̄
(jl)
ik = β

(jl)
ik . In particular, τ̄ = τ for system (3.2), cf. (2.8). As seen from the definition of ηik

in (2.27), ηik is now ηik = η̃ik. Consider η̃ik satisfying

η̃ik := −µ̂k − β̂ik + β∗
ikτ̄(µ̌k + µ̂k + β̌ik + β̂ik), (3.29)

where β∗
i1 = cαiiδ and β∗

i2 = β∗
i3 = 0 by (2.25), (3.20), and (3.21). Thus, by (3.29),

η̃ik =


−b2/3a− cαiiδ̌ − τ β̄i, if k = 1,

1, if k = 2,

r, if k = 3.

(3.30)

Moreover, by (3.23) and (3.24), L̄(jl)
ik , defined in (2.27), is now

L̄
(jl)
ik = µ

(jl)
ik + β

(jl)
ik (3.31)

with µ
(jl)
ik and β

(jl)
ik defined in (3.27) and (3.28). By (3.29) and (3.31), the matrix M̃ (kl) =

[m̃
(kl)
ij ]1≤i,j≤N−1 defined in (2.24), now satisfies

m̃
(kl)
ij =

η̃ik, if i = j ∈ N − {N} and k = l ∈ K,

−L̄
(jl)
ik , otherwise.

(3.32)

Therefore, the entries of M̃ defined in (3.26) come from (3.27), (3.28), (3.30), and (3.32).

Theorem 3.4. Assume that Conditions (D)* and (S)* hold. Then, the system (3.2) globally

synchronizes if the Gauss-Seidel iterations for the linear system:

M̃v = 0 (3.33)

converges to zero, the unique solution of (3.33); or equivalently,

λ̃syn := max
1≤σ≤K×(N−1)

{|λ̃σ| : λ̃σ : eigenvalue of (DM̃ − LM̃)
−1UM̃} < 1, (3.34)

where M̃ is defined in Lemma 3.3, and DM̃, −LM̃, −UM̃ represent the diagonal, strictly lower-

triangular and strictly upper-triangular parts of M̃, respectively.

18
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Proof. By Proposition 3.1, system (3.2) satisfies Assumption (D) and (F) under Condition (D)*.

In addition, system (3.2) satisfies Condition (S) under Condition (S)*, and the matrixM in (2.28)

is now M̃ in Lemma 3.3. By Theorem 2.2, system (3.2) achieves global synchronization, if the

Gauss-Seidel iterations for the linear system (3.33), converge to zero. Hence, we complete the

proof.

19
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Chapter 4

Numerical examples

In this chapter, we will illustrate two examples with numerical simulations to demonstrate

the effectiveness of the theoretical result derived in this thesis.

Example 1. Consider three coupled Hindmarsh-Rose neurons (3.2) with a = 1, b = 3, I = 3.0,

d = 5, r = 0.005, s = 4, x0 = 1.6, c = 50, g(x) = 10 tanh(x/10), τ = 0.00001 and

A = [aij]1≤i,j≤3 =


−1.0 0.6 0.4

0.4 −0.8 0.4

−0.1 0.6 −0.5


. (4.1)

From (1.4), (2.6), and (2.8), we have κ̄ = κ̌ = κ̂ = 0, ā = 2.0 and τ̄ = τ = 0.00001. By (2.15)

and (4.1), we obtain

Ā = [αij]1≤i,j≤2 =

 −1.4 0

0.5 −0.9

 . (4.2)

By (4.2), the quantities defined in (2.17) are now α̌11 = α̂11 = −1.4, ᾱ11 = 1.4, α̌22 = α̂22 =

−0.9, ᾱ22 = 0.9, ᾱ12 = 0, ᾱ21 = 0.5. By numerical simulation cf. Figure 4.1, we can observe

that the system satisfies Condition (D)* with Q∗ = [−ρ∗1, ρ
∗
1]× [−ρ∗2, ρ

∗
2]× [−ρ∗3, ρ

∗
3], where

ρ∗1 = 2, ρ∗2 = 9, ρ∗3 = 3.5. (4.3)
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We note that Figure 4.1 demonstrates the evolution for the solution of the considered system,

evolved from (3.5, 0.3,−2.1, 3.6, 0.4,−2.2, 3.7, 0.5,−2.3) at t0 = 0. It appears that the solution

eventually enters, and then remains in Q∗ × Q∗ × Q∗, where Q∗ is defined in (4.3). From

Propositions 3.1 and 3.2, Lemma 3.3, and (4.3), we can obtain b2/3a = 3, δ̌ ≈ 0.97104, ρ̄h1 ≈

276.32545, ρ̄h2 ≈ 177.63779, ρ̄w1 ≈ 25, ρ̄w2 ≈ 123.68766, β̄1 ≈ 11079.11062, β̄2 ≈ 4916.11204,

τ̃ ∗1 ≈ 0.00563, τ̃ ∗2 ≈ 0.00664, β∗
12 = β∗

13 = β∗
23 = β∗

31 = β∗
32 = 0, and β∗

21 = 25. By the

quantities above and Lemma 3.3, we can further verify that Condition (S)* holds and matrix M̃

in (3.33) is approximately



64.16221 0 −1.0 0 −1.0 0

−25.0 40.19777 0 −1.0 0 −1.0

−20.0 0 1.0 0 0 0

0 −20.0 0 1.0 0 0

−0.02 0 0 0 0.005 0

0 −0.02 0 0 0 0.005



. (4.4)

By the matrix in (4.4), we can compute the corresponding value λ̃syn ≈ 0.60, cf. (2.29).

Hence, the system attains global synchronization by Theorem 2.2. Figure 4.2 and 4.3

demonstrate that the evolution for the solution of the considered system, evolved from

(3.5, 0.3,−2.1, 3.6, 0.4,−2.2, 3.7, 0.5,−2.3) at t0 = 0. It appears that the solution remains

oscillatory. Figures 4.3(a), 4.3(b) and 4.3(c) show that the solution (x1(t), x2(t), x3(t)), xi(t) =

(xi,1(t), xi,2(t), xi,3(t)), with zi,k = xi,k(t) − xi+1,k(t) converging to zero for i = 1, 2 and

k = 1, 2, 3. This demonstrates that the solution synchronizes.

If we consider large coupling delay τ = 0.05 instead of τ = 0.00001, then Condition

(S)* does not hold. Figures 4.4(a), 4.4(b) and 4.4(c) show that each of the solution does not

synchronize, and exhibits asynchronous oscillatory behavior. This shows that large delay may

destroy synchronization.
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Figure 4.1: Simulation for the solution of the system considered in Example 1, with τ =
0.00001: evolution of components xi,k(t), i = 1, 2, 3, and k = 1, 2, 3.
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(a) (x1,1, x1,2, x1,3)

(b) (x2,1, x2,2, x2,3)

(c) (x3,1, x3,2, x3,3)

Figure 4.2: Simulation for the solution of the system considered in Example 1, with τ =
0.00001: evolution of components (xi,1(t), xi,2(t), xi,3(t)), i = 1, 2, 3.
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Figure 4.3: Simulation for the solution of the system considered in Example 1, with τ =
0.00001: evolution of components zi,k(t), i = 1, 2, and k = 1, 2, 3.
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Figure 4.4: Simulation for the solution of the system considered in Example 1, with τ =
0.05: evolution of components zi,k(t), i = 1, 2, and k = 1, 2, 3.
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Example 2. Consider three coupled Hindmarsh-Rose neurons (3.2) with a = 1, b = 3, I = 3.0,

d = 5, r = 0.005, s = 4, x0 = 1.6, c = 200, g(x) = [tanh(x) + x]/2, τ = 0.00002 and

A = [aij]1≤i,j≤3 =


−0.4 0.3 0.1

0.2 −0.7 0.5

0.1 0.8 −0.9


. (4.5)

From (1.4), (2.6), and (2.8), we have κ̄ = κ̌ = κ̂ = 0, ā = 3.2 and τ̄ = τ = 0.00002. By (2.15)

and (4.5), we obtain

Ā = [αij]1≤i,j≤2 =

 −0.6 0.4

0.1 −1.4

 . (4.6)

By (4.6), the quantities defined in (2.17) are now α̌11 = α̂11 = −0.6, ᾱ11 = 0.6, α̌22 = α̂22 =

−1.4, ᾱ22 = 1.4, ᾱ12 = 0.4, ᾱ21 = 0.1. By numerical simulation cf. Figure 4.5, we can observe

that the system satisfies Condition (D)* with Q∗ = [−ρ∗1, ρ
∗
1]× [−ρ∗2, ρ

∗
2]× [−ρ∗3, ρ

∗
3], where

ρ∗1 = 2, ρ∗2 = 9, ρ∗3 = 3.5. (4.7)

We note that Figure 4.5 demonstrates the evolution for the solution of the considered system,

evolved from (0.7; 2.5;−2.8; 1; 2.7;−2.5; 0.5; 2.9;−2.2) at t0 = 0. It appears that the solution

eventually enters and then remains in Q∗ × Q∗ × Q∗, where Q∗ is defined in (4.7). From

Propositions 3.1 and 3.2, Lemma 3.3, and (4.7), we can obtain b2/3a = 3, δ̌ ≈ 0.53533, ρ̄h1 ≈

444.60414, ρ̄h2 ≈ 1037.40965, ρ̄w1 ≈ 321.40276, ρ̄w2 ≈ 99.10069, β̄1 ≈ 37694.82178, β̄2 ≈

195427.36302, τ̃ ∗1 ≈ 0.00165, τ̃ ∗2 ≈ 91427.56468, β∗
12 = 99.99999, β∗

21 = 25.0, and β∗
13 =

β∗
23 = β∗

31 = β∗
32 = 0. By the quantities above and Lemma 3.3, we can further verify that
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Condition (S)* holds and matrix M̃ in (3.33) is approximately



60.74648 −80.0 −1.0 0 −1.0 0

−20.0 144.36613 0 −1.0 0 −1.0

−20.0 0 1.0 0 0 0

0 −20.0 0 1.0 0 0

−0.02 0 0 0 0.005 0

0 −0.02 0 0 0 0.005



. (4.8)

By the matrix in (4.8), we can compute the corresponding value λ̃syn ≈ 0.64,

cf. (2.29). Hence, the system attains global synchronization by Theorem 2.2. Figures

4.5 and 4.6 demonstrate that the evaluation for the solution of the considered system,

evolved from (0.7, 2.5,−2.8, 1, 2.7,−2.5, 0.5, 2.9,−2.2) at t0 = 0. It shows that the

solution remains oscillatory. Figures 4.7(a), 4.7(b) and 4.7(c) illustrate that the solution

(x1(t), x2(t), x3(t)), xi(t) = (xi,1(t), xi,2(t), xi,3(t)), with zi,k = xi,k(t)− xi+1,k(t) converging

to zero for i = 1, 2 and k = 1, 2, 3. This demonstrates that the solution synchronizes.

If we consider large coupling delay τ = 0.1 instead of τ = 0.00002, then Condition

(S)* does not hold. Figures 4.8(a), 4.8(b) and 4.8(c) show that each of the solution does not

synchronize, and exhibits asynchronous oscillatory behavior. This shows that large coupling

delay may lead to asynchrony.

Remark 4.1. Among the existing studies on synchronization of coupled systems, the synchronization

theories in [9, 16–20, 30] required that all non-zero and off-diagonal entries of the connection

matrix have the same sign. The connection matrices considered in Examples 1 and 2 have off-

diagonal entries with the mixed signs, and do not satisfy the circulant condition required in [29].

Therefore, the synchronization of systems considered in Examples 1 and 2 can not be treated by

previous approaches in [9, 16–20,29, 30].

27



DOI:10.6814/NCCU202000086

‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i Univ

ers
i t

y

0 200 400 600 800 1000

time t

-2

0

2

x
i,
1

(a) xi,1

0 200 400 600 800 1000

time t

-10

-5

0

x
i,
2

(b) xi,2

0 200 400 600 800 1000

time t

0

2

4

x
i,
3

(c) xi,3

Figure 4.5: Simulation for the solution of the system considered in Example 2, with τ =
0.00002: evolution of components xi,k(t), i = 1, 2, 3, and k = 1, 2, 3.
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(b) (x2,1, x2,2, x2,3)

(c) (x3,1, x3,2, x3,3)

Figure 4.6: Simulation for the solution of the system considered in Example 2, with τ =
0.00002: evolution of components (xi,1(t), xi,2(t), xi,3(t)), i = 1, 2, 3.
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Figure 4.7: Simulation for the solution of the system considered in Example 2, with τ =
0.00002: evolution of components zi,k(t), i = 1, 2, and k = 1, 2, 3.
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Figure 4.8: Simulation for the solution of the system considered in Example 2, with τ =
0.1: evolution of components zi,k(t), i = 1, 2, and k = 1, 2, 3

31



DOI:10.6814/NCCU202000086

‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i Univ

ers
i t

y

Chapter 5

Conclusion

In the literature, there has been some investigationswhich addressed the global synchronization

of coupled systems of Hindmarsh-Rose neurons. Among these investigations, most of them

considered linear coupling functions and did not consider coupling time-delays. In addition,

these studies commonly required that all nonzero and non-diagonal entries of the connection

matrix have the same sign. In this thesis, we establish the global synchronization of non-linearly

coupled systems of Hindmarsh-Rose neurons based on the theory in [33]. The coupling terms

could be with time delays, the coupling function could be nonlinear, and the connection matrix

could be with both negative and positive off-diagonal entries. By applying the synchronization

criterion derived in this thesis, we can investigate the synchronization of systems of coupled

Hindmarsh-Rose neurons, which cannot be treated by the previous methods, cf. Remark 4.1

and Examples 1, and 2.
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