
Abstract

Approximate factor models and their extensions are widely used in forecast-

ing and economic analysis due to their ability to extracting useful information

from a large number of relevant variables. In these models, candidate predictors

are typically subject to some common components. In this paper, we consider to

efficiently estimate an approximate factor model in which the candidate predic-

tors are additionally subject to idiosyncratic large uncommon components such as

jumps or outliers. By assuming that occurrences of the uncommon components

are rare, we propose an estimation procedure to simultaneously disentangle and

estimate the common and uncommon components. We formulate the estimation

problem as a penalized least squares problem in which a norm penalty function is

imposed on the uncommon components. To solve the estimation problem, we pro-

pose an algorithm, which iteratively solves a principal component analysis (PCA)

problem and a one dimensional shrinkage estimation problem. The algorithm

is flexible in incorporating methods for selecting the number of common com-

ponents. We then compare finite-sample efficiency of the proposed method and

traditional PCA method with simulations. We also demonstrate performances of

the proposed method with empirical applications on predicting yearly growths of

important macroeconomic indicators.
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1 Introduction

In this paper we consider robust estimations on a class of approximate factor models

in which the data generating process is subject to large idiosyncratic uncommon com-

ponents. Approximate factor models and their extensions are widely used in economic

analysis and forecasting due to their ability to extracting useful information from a large

number of relevant variables (e.g., Stock and Watson, 2002; Bernanke et al., 2005; Lud-

vigson and Ng, 2009). In such models, data generating process often are specified as a

linear combination of relevant common factors and error terms. Due to the nature that

some of the relevant common factors are not observable, an important goal for estima-

tions of such models is to identify the latent common factors and their factor loadings.

Methods such as maximum likelihood (MLE), Markov Chain Monte Carlo (MCMC) and

Principal Component Analysis (PCA) have been shown to be useful on this task. Nev-

ertheless in econometrics, researchers often estimate the models with high dimensional

data and thus PCA method, which is much less computational intensive than MLE and

MCMC, is often more preferred in practice.

Although PCA method has a computational advantage, it is widely known that the

method may fail to yield accurate estimations on the latent factors and factor load-

ings when large idiosyncratic uncommon components are presented in the data (Jolliffe,

2002). In this paper, we propose a simple and efficient method to estimate a class of

approximate factor models in which the data are additionally subject to the large id-

iosyncratic uncommon components. The estimation problem is formulated as a penalized

least squares problem in which a norm penalty function is imposed on the uncommon

components. The proposed estimation procedure can simultaneously disentangle and

estimate the common and uncommon components and therefore can reduce estimation

biases in the latent common factors and their factor loadings. To solve the estimation

problem, we propose an algorithm, which iteratively solves a principal component analy-

sis (PCA) problem and a one dimensional shrinkage estimation problem. The algorithm

is flexible in incorporating methods for selecting the number of common components.

We call the proposed estimation procedure P-PCA method (Penalized least squares plus

PCA method).

Recently many different approximate factor models and their related estimation pro-

cedures are proposed. Moench et al. (2013) propose a multilevel factor model for large

panel data with between-block variations and idiosyncratic noise. They propose an es-

timation procedure which can both separate block-level shocks and genuinely common

factors and achieve dimension reduction. Ando and Bai (2013) propose a multifactor
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2 Methodology

In this section we introduce our method for estimating an approximate factor model

in which the data are subject to idiosyncratic uncommon components. Specifically we
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model  for  data  with  a  large  number  of  observable  factors  and  unobservable  common

and group-specific pervasive factors.   Their proposed estimation procedure for such a

model can simultaneously select relevant observable factors and determine the number

of common and group-specific unobservable factors. Cheng et al. (2014) propose a factor

model in which both factor loadings and number of factors can have a behaviour of struc-

ture break.  They use a shrinkage estimator that can simultaneously and consistently

estimate  the  number  of  common  factors  before  and  after  the  structure  break.   Their

proposed estimation procedure can be implemented by solving a convex optimization

with the principal components of data matrix as its inputs.

A  main  difference  between  the  aforementioned  research  and  our  paper  is  that  we

consider a data generating process which is subject to the large idiosyncratic uncom-

mon components.  Such a data generating process is more appropriately to be viewed as

an observation occasionally blurred by extreme large signals, like asset price jumps in

financial data, rather than broken by a permanent change of common factors or factor

loadings. Indeed, under suitable assumptions (e.g., Bai and Ng, 2002; Stock and Watson,

2002) on the idiosyncratic uncommon components, the factors and factor loadings might

still be consistently estimated by using PCA method.  However, in term of finite sample

effi ciency, we show that P-PCA estimation procedure can outperform PCA method on

estimating the model parameters through intensive simulations under a wide range of

model settings. In addition, we discuss how the proposed method can be used for a more

general data structure, such as panel data.  We also demonstrate how P-PCA method

performs by empirical applications on predicting yearly growth of important macroeco-

nomic variables and investigating how latent factors affect asset returns.  Throughout

these works, we believe the proposed method can serve as a complementary tool for ro-

bust estimations rather than a competitive approach to those established approximate

factor models.

The rest of paper is organized as follows.  In Section 2 we first review PCA method

and then introduce P-PCA method. In Section 3.1 we discuss how to select number of the

latent common factors in our estimation procedure.  We then report simulation results

in  Section 4.   In Section 5 we perform empirical applications.  Section 6 is a conclu-

sion.



assume the N dimensional time series of candidate predictors Xt and the variable to be

forecast Yt subject to the following data generating process:

Xt = ΛFt + Jt + et, (1)

Yt+h = βT
FFt + βT

WWt + εt+h, (2)

where t = 1, . . . , T , dim (Xt) = N × 1, dim (Λ) = N × r, dim (Ft) = r × 1, dim (Jt) =

N×1, dim (et) = N×1, dim (βF ) = r×1, dim (βW ) = m×1 and dim (Wt) = m×1. In

the data generating process, Λ is a factor loading matrix, Ft is a vector for latent factors

and et is a vector for measurement errors. Jt is a vector for the idiosyncratic uncommon

components. By assuming that occurrences of the uncommon components are rare, Jt

is generically a sparse vector (some of its components are zero). Wt is a vector for

observable exogenous variables. The index h denotes the forecast horizon. Yt+h and

εt+h are the variables to be forecast and error term h periods ahead respectively and

they are scalars. The setting is similar to the dynamic factor model considered in Stock

and Watson (2002) except Xt has an additional idiosyncratic uncommon component Jt,

which can be viewed as a jump or outlier in Xt.

We first review PCA method for estimating the latent factors Ft and factor loadings

Λ. Let X = (X1, . . . ,XT )T, F = (F1, . . . ,FT )T and J = (J1, . . . ,JT )T. Suppose N > T

and the number of factors r is known. Without the term Jt, we can solve the following

optimization to estimate the factor matrix F and factor loading matrix Λ:

min
F,Λ

1

TN

∥∥X− FΛT
∥∥2

F
, subject to

FTF

T
= Ir. (3)

Here ‖.‖F denotes the Frobenius norm. The above optimization is closely related to the

principal component analysis (PCA). The estimated F, denoted by F̂, can be obtained by√
T times a matrix containing the eigenvectors corresponding to the largest r eigenvalues

of the T × T matrix XXT. Given F̂, the factor loading matrix can be estimated by

using the least squares method: Λ̂ =
((

F̂TF̂
)

F̂TX
)T

= XTF̂/T . When T ≥ N , we

can estimate the factor and factor loading matrices by solving the above optimization

but with the constraint FTF/T = Ir replaced by ΛTΛ/N = Ir. In this situation

the estimated factor loading matrix, denoted by Λ̄, is given by
√
N times a matrix

containing the eigenvectors corresponding to the largest r eigenvalues of the N × N

matrix XTX. Given Λ̄, the factor matrix can be estimated by using the least squares

method: F̄ =
((

Λ̄
T
Λ̄
)

Λ̄
T
XT
)T

= XΛ̄/N . Let Z = FΛT, Ẑ = F̂Λ̂
T

and Z̄ = F̄Λ̄
T

.

The matrices Ẑ and Z̄ can be viewed as low rank approximations for the matrix X. It
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is known that Ẑ = Z̄, and hence the objective function
∥∥X− FΛT

∥∥2

F
/ (TN) has the

same value under the two optimal solutions
(
F̂, Λ̂

)
and

(
F̄, Λ̄

)
.

2.1 Penalized Least Squares plus PCA method

If the term Jt is in the data generating process of Xt, directly apply PCA method to

the matrix XXT or XTX may yield loss of efficiency in estimating F and Λ. In this

situation if J is known, we can apply PCA method to the matrix CCT (or CTC), where

C = X − J, to obtain better estimations of F and Λ. If J is unknown, we can try

to estimate J and disentangle the estimated Ĵ from X, and apply PCA method to the

matrix ĈĈT (or ĈTĈ), where Ĉ = X− Ĵ.

Our strategy to estimate J is to use the property that J is a sparse matrix (by our

assumption). To result in a sparse estimation for J, a commonly adopted method is to

impose an lp norm penalty on J, where 0 ≤ p ≤ 1. In the following, we focus on using

an l1 norm penalty on the idiosyncratic uncommon component matrix J.

Suppose N > T and the number of factors r is known, to estimate F, Λ and J, we

propose to solve the following penalized l1 norm optimization:

min
F,Λ,J

1

TN

∥∥X− FΛT − J
∥∥2

F
+

δ

TN
‖J‖1 , subject to

FTF

T
= Ir. (4)

Here δ ∈ R+ is penalty parameter and the l1 norm penalty is imposed on each entry in

the matrix J (i.e., ‖J‖1 is sum of absolute value of each element in J).

The l1 norm penalty perhaps is the most frequently used norm penalty on sparse

estimations. Famous examples of using the l1 norm penalty on sparse estimations include

the lasso of Tibshirani (1996) and the robust PCA method of Candès et al. (2011). The

l1 norm penalty is a convex function of J, which makes the modified estimation problem

still easily tractable when T and N becomes very large. In fact, except for the l1

norm, there does not exist a norm penalty which can simultaneously produce a sparse

estimation as well as being a convex function for the matrix J.

In the following we provide a step-by-step description on how to implement an algo-

rithm to solve the optimization of (4) given that the number of factors r is known and

the penalty parameter δ is fixed.

Step 1. Set the initial value of J, J(0) = 0.

Step 2. Given J = J(0), solve (4). When J(0) = 0, it is equivalent to solving

(3) and as mentioned we can obtain the optimal solutions by using PCA method.

5



Let
(
F(1),Λ(1)

)
denote the optimal solutions from using PCA method and Z(1) =

F(1)Λ(1)T.

Step 3. Plug Z(1) into (4) and solve the optimization with respect to J, which is

equivalent to solving

min
J

1

TN

∥∥X− Z(1) − J
∥∥2

F
+

δ

TN
‖J‖1 . (5)

Let L(1) =
(
L

(1)
1 , . . . ,L

(1)
T

)T

= X − Z(1) and L
(1)
it and Jit denote the ith elements

in the vector L
(1)
t and Jt, i = 1, . . . , N and t = 1, . . . , T . The optimization of (5)

can be reformulated as

min
Jit,i=1,...,N,t=1,...,T

− 2

NT

N∑
i=1

T∑
t=1

JitL
(1)
it +

1

NT

N∑
i=1

T∑
t=1

J2
it +

δ

NT

N∑
i=1

T∑
t=1

|Jit| . (6)

The reformulated optimization of (6) is separable. It means that each optimal Jit

can be obtained by separately solving the following one dimensional optimization:

min
Jit
−2JitL

(1)
it + J2

it + δ |Jit| .

The optimal Jit, denoted by J
(1)
it , is then given by

J
(1)
it =


L

(1)
it − δ

2
, if L

(1)
it > δ

2
,

0, if − δ
2
≤ L

(1)
it ≤ δ

2
,

L
(1)
it + δ

2
, if L

(1)
it < − δ

2
,

or more concisely,

J
(1)
it = ST

(
L

(1)
it ,

δ

2

)
,

where ST (x, y) := sign(x)(|x| − y)+ is the softthresholding function.

Step 4. Let J
(1)
t be the vector in which the ith element is J

(1)
it , i = 1, . . . , N and

t = 1, . . . , T and J(1) =
(
J

(1)
1 , . . . ,J

(1)
T

)T

. Update J with J(1) and plug it into (4)

and solve the optimization with respect to (F,Λ), which is equivalent to solving

min
F,Λ

1

TN

∥∥C(1) − FΛT
∥∥2

F
, subject to

FTF

T
= Ir, (7)
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where C(1) = X−J(1). Again we solve (7) by using PCA method, and let
(
F(2),Λ(2)

)
be the optimal solutions and Z(2) = F(2)Λ(2)T.

Step 5. Plug Z(2) into (4) and solve the optimization with respect to J as we do

in step 3. Let the optimal solution denoted by J(2) and use it to update J.

Step 6. Repeat step 4 and 5 to obtain
(
F(k),Λ(k)

)
, Z(k) and J(k), k = 1, . . . , until

the following convergence condition met:∥∥∥Z(k̄) − Z(k̄−1)
∥∥∥
F∥∥Z(k̄−1)

∥∥
F

≤ ε,

where k̄ ≥ 1 is the number of iterations for step 4 and 5. The outputs
(
F(k̄),Λ(k̄)

)
and J(k̄) are used as the estimations for (F,Λ) and J.

The above algorithm can be summarized as the following.

Algorithm 1 Robust Approximate Factor Model Estimation with l1 Norm Penalty
Input: Data matrix X, penalty penalty parameter δ, tolerance ε, and number of factors r and maximum

iteration kmax

Output: F̂, Λ̂ and Ĵ

1: Set J(0) = 0 and δ > 0

2: for k = 1 to kmax do

3: Given C(k−1) = X − J(k−1), where J(k−1) = (J
(k−1)
1 , . . . ,J

(k−1)
T )T, compute

(
F(k),Λ(k)

)
by

using PCA method and least squares method

4: Given L(k) =
(
L
(k)
1 , . . . ,L

(k)
T

)T
= X−Z(k), where Z(k) = F(k)Λ(k)T, update J

(k)
it the ith element

of vector J
(k)
t , t = 1, . . . , T as follows

J
(k)
it = ST

(
L
(k)
it ,

δ

2

)
.

Here ST (x, y) := sign(x)(|x| − y)+ is the softthresholding function and L
(k)
it is the ith element

in vector L
(k)
t , t = 1, . . . , T

5: if
∥∥Z(k) − Z(k−1)

∥∥
F
/
∥∥Z(k−1)

∥∥
F
≤ ε then

6: break

7: end if

8: end for

9: Set outputs F̂ = F(k), Λ̂ = Λ(k) and Ĵ = J(k)

We call the proposed estimation procedure P-PCA method (Penalized least squares

plus PCA method). Note that in the algorithm, to identify J, it is not necessary to
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identify the factor F and factor loading matrices Λ and only knowing their product

Z = FΛT is enough.

2.2 Convergence of the Algorithm

The algorithm can be viewed as iteratively choosing a low rank matrix and a sparse

matrix to minimize the objective function. In the following we show that the algorithm

indeed decreases the objective function in each iteration. We first show that using PCA

and OLS to estimate the factors and factor loadings is equivalent to solving a low rank

approximation problem.

2.2.1 Low Rank Matrix Approximation

From the theorem of singular value decomposition (SVD), a matrix C ∈ RT×N admits

a decomposition of the form:

C = UL̃VT, L̃ =

(
L 0

0 0

)
,

where U ∈ RT×T , UTU = IT and V ∈ RN×N , VTV = IN . The matrix L̃ ∈ RT×N

and L = diag (l1, . . . , lq) is a q × q diagonal matrix and q ≤ min (T,N) is rank of the

matrix C. The diagonal elements l1, . . . , lq, called singular values of the matrix C, are

all positive and unique. The first q columns of U are called left singular vectors of C

and the first q columns of V are called right singular vectors of C. With the SVD,

it can be shown that CCT = UL̃L̃TUT and CTC = VL̃TL̃VT. It is known that

nonzero eigenvalues of CCT and CTC are the same and are given by l21, . . . , l
2
q . The

corresponding eigenvectors of CCT and CTC are U and V respectively (the left and

right singular vectors of C).

If the matrix J is known and N > T , solving (4) is equivalent to solving

min
F,Λ

1

TN

∥∥C− FΛT
∥∥2

F
, subject to

FTF

T
= Ir,

where C = X − J. Using PCA method yields the estimated F̂ =
√
TUr, where Ur is

a matrix containing the eigenvectors corresponding to the largest r eigenvalues of the

T × T matrix CCT. Using OLS method yields the estimated Λ̂ = CTF̂/T . By using
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the fact UT
r U = (Ir,0), it can be shown that

Ẑ = F̂Λ̂
T

= UrU
T
r UL̃VT

= UL̃rV
T,

where

L̃r =

(
Lr 0

0 0

)
,

is a T × N matrix and Lr = diag (l1, . . . , lr) . The matrix Ẑ is in fact the best r-rank

approximation for C by solving

min
Z
‖C− Z‖F , subject to rank (Z) = r.

Note that if Ẑ minimizes ‖C− Z‖F , it also minimizes ‖C− Z‖2
F . Therefore the above

procedures for estimating F and Λ is equivalent to finding an optimal r-rank matrix to

approximate C.

2.2.2 Descent Algorithm

Let

Q (Z,J) :=
1

TN
‖X− Z− J‖2

F +
δ

TN
‖J‖1 .

We next show that under our algorithm, each iteration indeed reduces the value of

Q (Z,J). In our algorithm, given J(0), we find an optimal r-rank matrix Z(1) to minimize

Q
(
Z,J(0)

)
and given Z(1) we find an optimal J(1) to minimize Q

(
Z(1),J

)
. Given J(1) we

then find an optimal r-rank matrix Z(2) to minimize Q
(
Z,J(1)

)
and given Z(2) we find

an optimal J(2) to minimize Q
(
Z(2),J

)
and so on. By induction we can get

Q
(
Z(k),J(k)

)
≥ min

z,rank(z)=r
Q
(
Z,J(k)

)
= Q

(
Z(k+1),J(k)

)
≥ min

J
Q
(
Z(k+1),J

)
= Q

(
Z(k+1),J(k+1)

)
,

which shows that Q
(
Z(k),J(k)

)
is a decreasing function of the number of iterations k.
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2.2.3 Convergence Condition

The convergence condition in step 6 only considers convergence of Z(k) = F(k)Λ(k)T.

The reason is that, if Z(k) converges, J(k) can also converges. To see this, we show

that
∥∥J(k+1) − J(k)

∥∥
F
≤
∥∥Z(k+1) − Z(k)

∥∥
F

. Note that at the kth iteration, the following

condition holds,

−
(
X− Z(k) − J(k)

)
+
δ

2
S(k) = 0, (8)

where S(k) =
(
S

(k)
1 , . . . ,S

(k)
T

)T

is a T × N matrix. The ith element in vector S
(k)
t ,

t = 1, . . . , T is s
(k)
it ∈ [−1, 1], i = 1, . . . , N . Equation (8) is the matrix form of the KKT

conditions for solving (6) and it holds for each k. It then can be shown that

〈
J(k+1) − J(k),Z(k+1) − Z(k)

〉
+
∥∥J(k+1) − J(k)

∥∥2

F
+
δ

2

〈
J(k+1) − J(k),S(k+1) − S(k)

〉
= 0,

where 〈a,b〉 denotes Trace
(
aTb

)
. The third term in the above equality is trace of an

N ×N matrix with the ith diagonal element

δ

2

T∑
t=1

(
J

(k+1)
it − J (k)

it

)(
s

(k+1)
it − s(k)

it

)
.

It is known that if J
(k)
it 6= 0, s

(k)
it = sign

(
J

(k)
it

)
and if J

(k)
it = 0, s

(k)
it ∈ [−1, 1]. Thus it

can be proved that
(
J

(k+1)
it − J (k)

it

)(
s

(k+1)
it − s(k)

it

)
≥ 0 always holds1, and

δ

2

〈
J(k+1) − J(k),S(k+1) − S(k)

〉
≥ 0,

if δ is positive. It then follows that

∥∥J(k+1) − J(k)
∥∥2

F
≤

∥∥J(k+1) − J(k)
∥∥2

F
+
δ

2

〈
J(k+1) − J(k),S(k+1) − S(k)

〉
= −

〈
J(k+1) − J(k),Z(k+1) − Z(k)

〉
≤

∥∥J(k) − J(k+1)
∥∥
F

∥∥Z(k+1) − Z(k)
∥∥
F
.

1Let JSit =
(
J
(k+1)
it − J (k)

it

)(
s
(k+1)
it − s(k)it

)
. If J

(k)
it , J

(k+1)
it 6= 0 and have the same sign, JSit = 0

by s
(k+1)
it − s

(k)
it = 0. If J

(k)
it , J

(k+1)
it 6= 0 and have different same signs, JSit > 0 since J

(k+1)
it −

J
(k)
it and s

(k+1)
it − s

(k)
it will have the same sign. If J

(k+1)
it = 0 and J

(k)
it > 0

(
J
(k)
it < 0

)
, JSit =

−J (k)
it × ([−1, 1]− 1) ≥ 0

(
JSit = −J (k)

it × ([−1, 1] + 1) ≥ 0
)

. The same logic applies to the case of

J
(k+1)
it > 0

(
J
(k+1)
it < 0

)
and J

(k)
it = 0. Finally, if J

(k)
it , J

(k+1)
it = 0, JSit = 0. Thus we conclude that(

J
(k+1)
it − J (k)

it

)(
s
(k+1)
it − s(k)it

)
≥ 0 holds.
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Note that ∥∥J(k) − J(k+1)
∥∥
F

=
∥∥J(k+1) − J(k)

∥∥
F
.

Therefore ∥∥J(k+1) − J(k)
∥∥
F
≤
∥∥Z(k+1) − Z(k)

∥∥
F
,

which means convergence of Z(k) implies convergence of J(k).

3 Choices of r and δ

3.1 Selecting the Number of Factors

For estimating F and Λ, so far we assume the number of factors r is known, but such

assumption in general does not hold in real data applications. When r is unknown,

several methods have been proposed to consistently estimate it. These methods rely on

either minimizing certain loss functions (Bai and Ng, 2002; Alessi et al., 2010) or on

using test statistics constructed from eigenvalues of the (transformed) data matrix X

(Onatski, 2009, 2010; Ahn and Horenstein, 2013). Since our algorithm separately deals

with estimations of (F,Λ) and J, usages of these methods for consistently estimating r

can be easily incorporated into the algorithm when we estimate (F,Λ).

For simulations in Section 4 and empirical applications in Section 5, we use the ICp

criteria proposed by Bai and Ng (2002) to consistently estimate the number of common

factors r. Suppose N > T . Let F̂ (r) be the estimated T × r factor matrix (a matrix

containing
√
T times the first r eigenvectors of ĈĈT), and let

V
(
r, F̂ (r)

)
= min

Λ

1

NT

∥∥∥Ĉ− F̂ (r) ΛT
∥∥∥2

F
.

The three ICp criteria of Bai and Ng (2002) are defined as:

ICp1 (r) = lnV
(
r, F̂ (r)

)
+ r

(
N + T

NT

)
ln

(
NT

N + T

)
,

ICp2 (r) = lnV
(
r, F̂ (r)

)
+ r

(
N + T

NT

)
ln (min (N, T )) ,

ICp3 (r) = lnV
(
r, F̂ (r)

)
+ r

(
ln (min (N, T ))

min (N, T )

)
.

Let r̂i = arg minr ICpi (r), i = 1, 2 and 3. We use r̂BN = min (r̂1, r̂2, r̂3) as an estimate

for r. For each iteration of the algorithm, we implement the method of ICp criteria. We

then use F̂ (r̂BN), which is a matrix containing the first r̂BN eigenvectors of ĈĈT, and

11



Λ̂ (r̂BN) = ĈTF̂ (r̂BN) /T as the estimated factor and factor loading matrices.

3.2 Setting the Penalty Parameter

The penalty parameter δ is important for using P-PCA method, however, there is no rule

of thumb to specify it. We propose to set the penalty parameter as δnaive = ¯̂σ
√

8 lnT ,

where ¯̂σ = N−1
∑N

i=1 σ̂i and σ̂i is sample standard deviation of the residuals êit from

using PCA method. We call the setting of δnaive as a “naive” setting due to its simplicity.

The naive setting, however, works well over entire simulations. We give some intuitions

on why we propose such a naive setting for the penalty parameter. The idea comes from

that using a softthresholding estimator with a proper setting of δ to estimate Jit can

attain an ideal loss (Donoho and Jonhstone, 1994). Let ωit = Jit + eit denote the part

of uncommon idiosyncratic component and error term in data Xit and assume each eit,

t = 1, . . . , T , is i.i.d. normally distributed with mean zero and variance σ2. Consider

estimating Jit with either ωit or 0. An ideal mean squared loss of using such an estimator

over t = 1, . . . , T is given by Lossoraclei =
∑T

t=1 min (J2
it, σ

2) when |Jit| > σ is known.

Without such an information, however, it can be shown that if J̃it = ST
(
ωit, σ

√
2 lnT

)
is used to estimate Jit, mean squared loss of J̃it over t = 1, . . . , T can still approach closely

to Lossoraclei (Donoho and Jonhstone, 1994; Wasserman, 2006, pp.172). Let L̂it denote

that Xit subtracts the product of the estimated common factors and factor loadings

and let Ĵit = ST
(
L̂it, σ

√
2 lnT

)
, which is equivalent to setting δ = σ

√
8 lnT in P-

PCA method. Now if the common factors and factor loadings are accurately estimated,

L̂it ≈ ωit and Ĵit ≈ J̃it. Then over t = 1, . . . , T , mean squared loss of Ĵit may well

approximate mean squared loss of J̃it and therefore may approach closely to Lossoraclei .

In order to guarantee that the naive setting works in theory, even though some

technical conditions in data generating process mentioned above should be satisfied, we

find the naive setting still works well for P-PCA method over various data generating

process in our simulations. In addition, due to its simplicity, using the naive setting

also avoids intensive computations. Theoretically the naive setting may not be the best

choice, however, it indeed serves as an easily implemented guidance and a benchmark

for further adjustments to obtain the best results.

4 Simulation Results

The model for generating data for the simulations is given by (1) and (2). Except for

Ft, Λ and et, we uniformly use the following settings in the data generating process:

12



• T = N = 50, 100, 200 and 400, r = 5.

• Jit ∼ i.i.d. Pois (ν)×N (0, σ2
J), ν = 0, 0.01, 0.05 and 0.1, σJ = 5×

√
θ and θ = r.

• Number of columns of X has the idiosyncratic jump components = ba×Nc, a =

0, 0.1, 0.5 and 1. The ba×Nc columns are randomly chosen from the N columns

without replacement.

• βF = (1, . . . , 1), dim (βF ) = r × 1 and βW = 0.

• εt+1 ∼ i.i.d. N (0, 1), t = 1, . . . , T .

For generating Ft, Λ and et, we consider five different models as follows.

1. Model 1 (i.i.d. error):

• Ft ∼ i.i.d. N (0, Irr), λij ∼ i.i.d. N (0, 1), i = 1, . . . , N and j = 1, . . . , r.

• et ∼ i.i.d. N (0, θ × INN) and θ = r.

2. Model 2 (AR(1) error):

• Ft ∼ i.i.d. N (0, Irr), λij ∼ i.i.d. N (0, 1), i = 1, . . . , N and j = 1, . . . , r.

• eit =
√
θuit, uit = 0.5uit−1 + vit, vit ∼ i.i.d.N (0, 1), i = 1, . . . , N , t = 1, . . . , T

and θ = r.

3. Model 3 (Large break Model, Bates et al. (2013)):

• Ft ∼ i.i.d. N (0, Irr).

• For the factor loading λij, we first randomly select a subset B of i (without

replacement), i = 1, . . . , N with size 4
√
N . If i /∈ B, we set the factor

loading as λij = (0.4/0.45) × λ̄ijλ̃i, where λ̄ij ∼ i.i.d. N (0, 1) and λ̃i ∼
i.i.d.U (0.1, 0.8). If i ∈ B, we set the factor loading as

λLBij =

λij for t ≤ b0.5T c ,

λij +4j for t > b0.5T c ,

where 4j ∼ i.i.d. N (0, 0.16) for j = 1, . . . , r.

• et ∼ i.i.d. N (0, θ × INN) and θ = r.

4. Model 4 (Cross sectionally correlated error):

13



• Ft ∼ i.i.d. N (0, Irr), λij ∼ i.i.d. N (0, 1), i = 1, . . . , N and j = 1, . . . , r.

• eit =
√
θuit, uit = vit +

∑i+L
l=i−L,l 6=i(0.5)|l−i|vlt, vit ∼ i.i.d.N (0, 1),

• L = max (N/20, 10), i = 1, . . . , N , t = 1, . . . , T and θ = r.

5. Model 5 (AR(1) factor):

• λij ∼ i.i.d. N (0, 1), i = 1, . . . , N and j = 1, . . . , r.

• Fit = 0.5Fit−1 + vf,it, vf,it ∼ i.i.d.N (0, 1).

• et ∼ i.i.d. N (0, θ × INN) and θ = r.

Some concerns on using ICρ in the simulations should be addressed. In Lemma 2 of

Amengual and Watson (2007), it was showed that when the noise-contained data X̃it =

Xit + wit are used for PCA, where wit is an additive error, if (NT )−1∑N
i=1

∑T
t=1w

2
it =

Op

(
C−2
NT

)
, where CNT = min

(√
N,
√
T
)

, then information criteria ICp proposed by Bai

and Ng (2002) can still consistently estimate the number of PC’s. Without the jump

terms, the data in Model 3 can be viewed as such noise-contained data, and the noise

wit has the following form

wit =


0, if i /∈ B,

0, if i ∈ B and t ≤ b0.5T c ,∑r
j=1 Fit4j, if i ∈ B and t > b0.5T c .

Note that if i ∈ B and t > b0.5T c, w2
it =

(∑r
j=1 Fit4j

)2

= O (1) . Thus by setting

|B| = O
(√

N
)

,

1

NT

N∑
i=1

T∑
t=1

w2
it =

1

NT

T∑
t=b0.5T c+1

∑
i∈B

w2
it

= Op

(
N−

1
2

)
,

which has a rate greater than Op

(
C−2
NT

)
when N � T . It is still unknown whether

the rate Op

(
C−2
NT

)
can be improved (Bai and Ng, 2002). Hence for Model 3, in order

to obtaining a fair comparison, we will assume the number of factors is know (r̂ = 5)

rather than using ICp on estimating the number of factors.

We report four performance measures:

14



1. Distance correlation (DCOR): The performance measure is proposed by Szekely

et al. (2007). It measures dependence between two sets of random vectors and

has a range from zero to one. The higher (lower) the DCOR, the higher (lower)

the dependence between the two sets of random vectors. We apply the measure

to gauge dependence between the true factors F and estimated factors F̂. Since

PCA and P-PCA can only identify the factors up to a change of sign of the true

factors, using a measure of dependence between F and F̂ is reasonable.

2. Squared predictive error:
(
ŷT+1|T − ỹT+1|T

)2
, where ŷT+1|T = β̂F F̂T and ỹT+1|T =

β̃FFT . β̂F

(
β̃F

)
is obtained by regressing yt onto F̂t (yt onto Ft) with the OLS.

3. Trace R2 between the true factors F and estimated factors F̂ (Stock and Watson,

2002):

R2
F̂,F

=

avg

(∥∥∥F (FTF
)−1

FTF̂
∥∥∥2

F

)
avg

(∥∥∥F̂∥∥∥2

F

) .

4. Proportions of better performances in the 2000 simulations: Proportions that P-

PCA method has a higher DCOR (or a lower squared predictive error) than does

PCA method in the 2000 simulations.

Figure 1 to 4 show the simulation results. In each Figure, from top to bottom are plots

corresponding to Model 1 to Model 5 and from left to right are plots corresponding to

different T and N . In Figure1 and Figure 2, we show averages of the DCOR between

the true and estimated factors and averages of the squared predictive errors together

with their 99% confidence intervals obtained from the 2000 simulations. In Figure 3

and Figure 4 we show trace R-Square and proportions that P-PCA method has a higher

DCOR or a lower squared predictive error than PCA method among the 2000 simula-

tions. In x-axis of each plot is (a, ν), where a = 0, 0.1, 0.5 and ν = 0, 0.01, 0.05 are two

parameters for controlling proportion of entries in the data matrix X that have nonzero

idiosyncratic jump components. We sort (a, ν) in the x-axis according to the value of

a× ν.

From Figure 1 to 3, in terms of the DCOR, squared predictive error and trace R-

Square, we can see that P-PCA method on average outperforms PCA method in almost

cases in which the nonzero idiosyncratic jump components present (both a and ν are not

zeros). Furthermore, as can be seen in Figure 4, among the 2000 simulations, a large

proportion of results show that when the uncommon components present, ((a, ν) 6=
(0, 0)), the estimated factors from P-PCA method can have a higher DCOR with the
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true factors than those from PCA method. This suggests that with a high probability,

P-PCA can produce more accurate estimations for the factors than PCA method. As

the data have the the uncommon components present, estimated factors from P-PCA

method also can have a better chance to produce a lower predictive error as T , N and

a× ν increase.

However, the performance measures vary a lot with (a, ν), T and N . Given T and

N , as a× ν increases, in general the performance measures become worse. On contrary

given (a, ν), the performance measures become better as T and N increase. Except in

a few cases, the patterns of the performance measures v.s. (a, ν) are consistent over

different model settings. The performance measures become worse as the proportion of

entries in X having the idiosyncratic components a×ν becomes higher, but they become

better as the sample size T and number of variables N become larger.

16

5 Forecas t ing  Year ly  Growths  o f  Impor tan t  Macroeconomic
Ind ica tors

In this section, we demonstrate how P-PCA method performs with real data.  The first

application we consider is on forecasting yearly growths of important macroeconomic

indicators with common factors extracted from a number of macroeconomic variables.

Two data sets of such macroeconomic variables are used.   The first one contains 131

monthly  macroeconomic  variables  of  the  U.S.  from  July-1960  to  December-2011,  and

is  a  subset  of  the  one  used  in  Jurado  et  al.  (2013)2 .   We  will  use  the  data  set  on

forecasting annual growth rate of industrial production index (IP) and annual change of

civilian unemployment rate (UNR) of the U.S..  The second one contains 109 quarterly

macroeconomic variables of the U.S. from Q2-1960 to Q4-2008, which was used in Stock

and Watson (2012)3 .   We will  use the data  set on forecasting annual  growth rates of

three macroeconomic variables of the U.S.:  real GDP (RGDP), industrial production

2 In Jurado et al. (2013), the authors used the data set on constructing what so called “uncertainty
index” of macro economy by using predictive errors induced from some commonly used method on fore-
casting macroeconomic variables.  The data set of Jurado et al. (2013) actually have 132 macroeconomic
variables, but one of them seems not to have a suitable transformation form.  This is why we only use
131 of them.  The data set can be downloaded from Professor Sydney Ludvigson’s website

3 The 109 variables are a subset of 143 variables used in Stock and Watson (2012) on investigating
performances of the predictive regression estimated from different statistical methods. The 109 variables
are lower-level disaggregated variables and are suitable for estimation of the common factor.  They can
be downloaded from Professor James Stock’s website.



index (IP) and real gross private domestic investment (RPINV) and annual change of

civilian unemployment rate (UNR) of the U.S..

For estimating the common factors, we first transform the raw data to stationary time

series4. Then the transformed data are standardized before they are used to estimate the

common factors with PCA or our method. The forecasts are real time with expanding

window scheme and initial window length of the scheme is set to 131 and 109 for the

monthly and quarterly data sets, respectively. We detail how to implement the real time

forecasts in the Appendix.

We set the penalty parameter δ = δnaive = ¯̂σ
√

8 log (Tt). For estimating the number

of factors r, we consider two choices. The first choice is r̂BN as defined in Section 3.1

and in the three ICρ criteria, the maximum r can be chosen is restricted to 8. The

second choice is simply fixing r =2, 4, 6 and 8. Note that under the real time forecast

with the expanding window scheme, ¯̂σ and r̂ also need to be updated when new data

are included. Finally, when our method is used, we also add ŜJ t = N−1
∑N

i=1 Ĵit in the

predictive regressions to see whether including the information of the uncommon jumps

can improve the forecasts.

For comparing performances of PCA and our methods, we report out-of-sample R2

of their forecasts from period T + h to T̄ :

R2
oos = 1−

∑T̄
t=T+h (ŷt−h,t − yt)2∑T̄
t=T+h (yt − ȳ)2

,

where ŷt−h,t is the oos forecast of yt at time t − h and ȳ is the sample mean of yt over

period T + h to T̄ 5.

Table 1 shows results for using the data set of 131 monthly macroeconomic variables.

For forecasting the annual growth of IP, our method (P-PCA) can have higher R2
oos than

PCA method. Adding the uncommon jump components as predictors is not helpful on

forecasting the annual growth of IP. For the annual change of UNR, however, adding

the uncommon jump components can slightly improve the forecasts when our method

is used. For both forecasts, fixing r often performs better than using the IC criteria.

The R2
oos of forecasting the two macroeconomic variables are quite different. Using the

estimated common factors results in relatively more improvements on forecasting the

annual change of UNR than on forecasting the annual growth of IP.

4On line supplement materials of Jurado et al. (2013) and Stock and Watson (2012) provide details
on how to transform the variables in each of the two data sets.

5For the 131 monthly macroeconomic variables, T =May-1971, h = 12 months, T̄ =Dec-2012 and
total number of the oos forecasts generated is 488. For the 109 quarterly macroeconomic variables,
T =Q2-1987, h = 4 quarters, T̄ =Q4-2009 and total number of the oos forecasts generated is 87.
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Table 2 shows the results for using the data set of 109 quarterly macroeconomic

variables. Our method performs better than PCA on forecasting the annual growth

of IP and PRINV, and depending on the settings for estimating r, differences between

their performances can be significant. For example, R2
oos of our method is more than

two times larger than that of PCA when r is estimated by r̂BN . As for forecasting the

annual growth of RGDP and annual change of UNR, when four or six common factors

are used in the forecasts, our method fails to generate higher R2
oos than PCA, even

though in some cases our method still performs better. The estimated common factors

have better performances on forecasting annual change of UNR and annual growth of

PRINV than on forecasting annul growth of RGDP and IP. Unlike in cases of using the

monthly data, the uncommon jump components cannot improve the forecasts when our

method is used. To sum, the results shown here suggest that P-PCA method can delivery

at least comparable performances as PCA method on forecasting these macroeconomic

variables.

18

6    Conc lus ion

We propose a penalized least squares estimation method, called P-PCA method, to es-

timate an approximate factor model in which the candidate predictors are subject to

idiosyncratic  large  uncommon  components.   The  proposed  algorithm  for  the  method

can be easily implemented and incorporated with methods for selecting the number of

common factors.  Simulation results indicate that the proposed method can have better

finite-sample performances than PCA method when data have the uncommon compo-

nents. Empirically we first show that P-PCA method can have comparable performances

as PCA method when forecasting annual growth rates of important macroeconomic vari-

ables.



Appendix

A. Constructions of Macroeconomic Data

Suppose we have data from period 1 to T , and we want to predict a variable YT+h at

period T + h. The real time forecast proceeds as follows. We first estimate the common

factors with data from period 1 to T . To estimate the predictive regression, we use the

estimated factors F̂t, t = 1, . . . , T − h as the regressors and variable Yt, t = 1 + h, . . . , T

as the regressand. Let f̂T (.) denote the estimated predictive regression, the real time

forecast for YT+h at time T is then given by ŶT,T+h = f̂T

(
F̂T

)
, i.e., the fitted value of

YT+h given f̂T and F̂T .

Forecasts in subsequent periods T + 1, . . . , are obtained with an expanding window

scheme, i.e., adding new data to the data used for previous predictions without deleting

any of them. Or simply to say, all data from period 1 to T + l are used for constructing

the forecasts. For example, at period T + l, l ≥ 1, the common factors are estimated

with data from period 1 to T + l. Accordingly in the predictive regression, F̂t, t =

1, . . . , T + l− h are the regressors and Yt, t = 1 + h, . . . , T + l are the regressand, and at

time T + l, the real time forecast for YT+l+h is then given by ŶT+l,T+l+h = f̂T+l

(
F̂T+l

)
,

To describe how the real time forecasts are implemented, we use predicting annual

growth of IP of the U.S. with the 131 monthly macroeconomic variables as an example.

We first standardize the (transformed) monthly 131 macroeconomic variables from July-

1960 to May-1971 (131 months which equals to our initial window length) and then

use the standardized data to estimate the factors Ft with PCA or our method. For

estimating the predictive regressionwe use the estimated F̂t from July-1960 to May-

1970 as the regressors and the annual growth of IP of U.S. from July-1961 to May-1971

(monthly data) as the regressand. The predictive regression is estimated with the OLS.

Let α̂May−1971 and β̂F,May−1971 be the estimated intercept and coefficient vector of the

predictive regression. The first forecast is for the annual growth of IP of the U.S. at

May-1972, which is constructed by using F̂t at May-1971:

ŶMay−1971,May−1972 = α̂May−1971 + β̂F,May−1971F̂May−1971.

Under the expanding window scheme described above, a subsequent forecast is con-

structed with all data from July-1960 to the month that the forecast is used. For

example, for forecast at June-1971, we expand the data used for the first forecast to

include new data in June-1971 (e.g.,131 variables and Ann. growth of IP of the U.S. in

June-1971) and the expanded data are used to estimate the common factors. To estimate
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the predictive regression, we now use estimated factor F̂t from July-1960 to June-1970

as the regressors and annual growth of IP of U.S. from July-1961 to June-1971 (monthly

data) as the regressand. For forecast at July-1971 and afterwards, the procedures follow

in the same way.
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Table 1: The Table shows out-of-Sample R2 for predictions of annual growth of industrial
production index (IP) and annual change of civilian unemployment rate (UNR) of the
U.S. with common factors extracted from 131 macroeconomic variables. Monthly data of
the 131 macroeconomic variables from July-1960 to December-2011 are used to extract
the common factors.

Method IP UNR
r = 2 P-PCA 0.2517 0.3687

PCA 0.2415 0.3650
P-PCA-J 0.2262 0.3714

r = 4 P-PCA 0.2619 0.3714
PCA 0.2568 0.3675

P-PCA-J 0.2108 0.3467
r = 6 P-PCA 0.2615 0.3780

PCA 0.2524 0.3731
P-PCA-J 0.2591 0.3799

r = 8 P-PCA 0.2774 0.3924
PCA 0.2715 0.3862

P-PCA-J 0.2760 0.3921
r = r̂BN P-PCA 0.2602 0.3772

PCA 0.2456 0.3805
P-PCA-J 0.2584 0.3809
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Table 2: The Table shows out-of-Sample R2 for predictions of annual growths of three
macroeconomic variables of the U.S.: real GDP (RGDP), industrial production index
(IP) and real gross private domestic investment (RPINV) and annual change of civilian
unemployment rate (UNR) of the U.S.. with common factors extracted from 109 macroe-
conomic variables. Quarterly data of the 109 macroeconomic variables from Q2-1960 to
Q4-2008 are used to extract the common factors.

Method RGDP IP UNR RPINV
r = 2 P-PCA 0.0835 0.0800 0.3219 0.2100

PCA 0.0535 0.0577 0.2889 0.1635
P-PCA-J 0.0290 0.0000 0.2544 0.1543

r = 4 P-PCA 0.0791 0.1605 0.3830 0.1859
PCA 0.0888 0.1542 0.3878 0.1751

P-PCA-J 0.0366 0.1152 0.3480 0.1455
r = 6 P-PCA 0.1600 0.1822 0.3834 0.2224

PCA 0.1137 0.1385 0.3864 0.1776
P-PCA-J 0.1380 0.1584 0.3614 0.1970

r = 8 P-PCA 0.1778 0.1582 0.3853 0.2553
PCA 0.1081 0.1095 0.3551 0.1827

P-PCA-J 0.1692 0.1487 0.3789 0.2323
r = r̂BN P-PCA 0.1295 0.1100 0.3721 0.2168

PCA 0.0718 0.0457 0.3042 0.1959
P-PCA-J 0.0980 0.0677 0.3413 0.1818
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Figure 1: The Figure shows averages of Distance Correlations between the true and esti-
mated factors (DCOR’s) together with their 99% confidence intervals for each combina-
tion of (a, ν) over 2000 simulations. Plots in the first row to fifth row are corresponding
to Model 1 to Model 5.
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Figure 2: The Figure shows averages of squared predictive errors together with their
99% confidence intervals for each combination of (a, ν) over 2000 simulations. Plots in
the first row to fifth row are corresponding to Model 1 to Model 5.
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Figure 3: The Figure shows Trace R2 between the true and estimated factors for each
combination of (a, ν) from 2000 simulations. Plots in the first row to fifth row are
corresponding to Model 1 to Model 5.
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Figure 4: The Figure shows the proportion that P-PCA method has a higher Distance
Correlation between the true and estimated factors (DCOR) or a lower squared predic-
tive error than does PCA method for each combination of (a, ν) over 2000 simulations.
Plots in the first row to fifth row are corresponding to Model 1 to Model 5.
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Figure 5: The Figure shows the l2 distance between the estimated β and the oracle
estimation of β (the first row), averages of Distance Correlations between the true and
estimated factors (DCOR’s) together with their 99% confidence intervals (the second
row), Trace R2 (the third row) and the proportion that P-PCA method has a higher
DCOR than does PCA method (the fourth row) for each combination of (a, ν) over 2000
simulations. The data generating process used here is Model 6.
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