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Abstract—We propose to use overlapped and adaptive Gaus-
sian smoothing (OAGS) and convolutional refinement networks
(CRN) to recover images corrupted by salt-and-pepper noise.
First, the OAGS method identifies noise pixels and recover them.
Then, CRN further improve and restore the recovered results
with sharper and clearer edges. Experimental results demonstrate
the proposed OAGS+CRN method significantly outperforms
state-of-the-art denoising methods.

I. INTRODUCTION

With the popularity of smartphones and digital cameras

where the camera technology has advanced tremendously in

recent years, everyone can take photos anywhere anytime.

However, the quality of images captured by these devices

may not be assured because it is inevitable that noise may be

generated by camera sensors during image acquisition under

different conditions. For example, images are prone to be

contaminated by noise when taken in low light conditions.

Therefore, it is crucial to develop an effective image denoising

approach to remove unwanted noise.

In this work, we are focusing on dealing with one of the

most common types of impulsive noise, which is “salt-and-

pepper noise.” Conventionally, the Median Filter [1] can be

applied to removing such type of noise. Although median

filtering is simple and fast, it blurs the entire image because

it does not differentiate noise pixels from good ones. To

further filter out noise, there were denoising methods proposed

by switching median filters with different thresholds [2]–[4],

where the decision is made based on pre-defined thresholds.

Since it is in general hard to select appropriate thresholds,

these methods often work for limited cases. Esakkirajan et al.

designed the modified decision-based unsymmetric trimmed

median filter (MDBUTMF) [5] to replace a noise pixel by the

median or mean value in a fixed-size window (3×3) centered

at the noise pixel based on predefined conditions. Because this

method only considers a rather small window size for filtering,

it does not do well when an image has higher density noise.

To deal with high-density noise, filters with adaptive window

sizes have been developed to deal with this problem. However,

adopting a larger window may include many unwanted non-

noise pixels not related to the corrupted pixel, which may

instead introduce artifacts to the denoised image. Erkana et

al. developed the different applied median filter [6], which is

a two-pass median filtering with three different window sizes

used (3 × 3, 5 × 5, and 7 × 7). In the first pass, it chooses

the least window size with at least one non-noise pixel for

median filtering. In the second pass, if the first-pass result still

has noise pixels, 3 × 3 median filtering will then be applied

to further remove the rest noise pixels. Although the two-pass

filtering [6] provides decent results to combat high-density

noise, it often introduces fake edges to its denoised results.

Fareed et al. [7] proposed to use selective mean filtering with

adaptive window sizes to include enough non-noise pixels,

and mean filtering can ameliorate the problem of fake edges

generated by smoothing them out. However, using simple

mean filtering will take into account pixels far away from the

corrupt one if the window grows too large, making the output

image more blurry.

In this paper, we propose a method based on Overlapped and

Adaptive Gaussian Smoothing (OAGS) and Convolutional Re-

finement Networks (CRN) for salt-and-pepper noise removal.

The method first utilizes overlapped Gaussian smoothing with

adaptive window sizes to filter out all the noise pixels and

recover them. After that, we refine the filtered result with

CRN to restore the sharpness of image edges and textures.

The contributions of this paper are as follows. 1) We propose a

conventional denoising method that outperforms state-of-the-

art methods. 2) We adopt convolutional neural networks to

refine the denoised output and further analyzing the denois-

ing/refining ability of the CRN. 3) We present comprehensive

experimental results using two full-reference metrics (PSNR

and SSIM) on DIV2K dataset [8] and other often used images

for this topic.

The rest of the paper is organized as follows. In Section II,

we describe the proposed method. Qualitative and quantitative
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experimental results are demonstrated in Section III. Finally,

Section IV summarizes the conclusions.

II. PROPOSED METHOD

For image denoising, we propose to combine a conventional

image denoising method with convolutional neural networks

for refinement. First, we employ overlapped and adaptive

Gaussian smoothing (OAGS) to preliminary remove all the

noise pixels and recover them. Then, the convolutional refine-

ment networks (CRN) use a rather simple network architecture

for non-linearly refining the recovered results to further restore

and to sharpen the edges and textures, instead of building large

and complex networks that take up a lot of memory to handle

the entire denoising task.

A. Overlapped and Adaptive Gaussian Smoothing

For an image with salt-and-pepper noise, we assume a noise

pixel has either the highest or lowest intensity, which are

normalized to be 1 and 0. Thus, first of all, we will generate

a non-noise map B ∈ ZN for the input image I ∈ RN as

B(x) =

{
0, I(x) = 0 or 1;
1, otherwise,

(1)

where N represents the total number of pixels, and x is the

position of a pixel. Next, each pixel I(p) will be visited, and

the proper size of the square filtering window centered at I(p)
will be determined, which is that of the one with at least one

non-noise pixel in it, denoted Ωp,rI with its radius r, where

1 ≤ r ≤ 6. It means that r equals to the minimum value

between 1 and 6 to contain at least one non-noise pixel in the

filtering window. That is, the window size is (2r + 1)2, and

in the paper. For each pixel in Ωp,rI , if a noise one, it will be

recovered by Gaussian smoothing and saved in the temporary

result map T as

T (x)← T (x) +

∑
∀y G

r(‖x− y‖2)× Ωp,rI (y)× Ωp,rB (y)∑
∀z Gr(‖x− z‖2)× Ωp,rB (z)

,

(2)

where Gr is a Gaussian kernel using the zero mean and

standard deviation r, and ‖x − y‖ stands for the Euclidean

distance between x and y. Note that ∀y and ∀z mean all the

valid pixel indices in Ωp,rI . Since using overlapped averaging to

make the output more smooth, we need to save our temporary

result in an accumulating way as Eq. (2). Additionally, we

have a counter map C ∈ ZN that stores the number of

times a recovered value is calculated for a noise pixel. In

the end, the denoised result is attained by averaging all the

recovered values calculated, which equals to T divided by C.

The detailed algorithm is described in Algo. 1, where .× and

./ are the element-wise multiplication and division.

B. Convolutional Refinement Networks

Following OAGS, CRN is devised to refine the recovered

result. The architecture of the CRN is rather simple, which

consists of five convolutional layers with 3 × 3 kernels used.

The number of the input and output channels for each layer

is 64 except for the number of the first input and the last

Algorithm 1 Overlapped and Adaptive Gaussian Smoothing

Input: Noise image I ∈ RN
Output: Denoised image Id ∈ RN
Lookup Table: Gaussian kernel Gσ

Internal Vars: Kernel radius r, Window centered at p with

radius r in I: Ωp,rI ∈ R(2r+1)2 , Non-noise map B ∈ ZN ,

Temporary result map T ∈ RN , Smooth counter C ∈ ZN .

function GAUSS(Ωp,rI , Ωp,rB , x, r)

return
∑

∀y G
r(‖x−y‖2)×Ωp,r

I
(y)×Ωp,r

B
(y)∑

∀z G
r(‖x−z‖2)×Ωp,r

B
(z)

end function

function OAGS(I)
B ← Get NonNoise Map(I)
T ← B.× I

C ← B

for each pixel index p in I do
r ← Find Kernel Radius(I, p)
for each pixel index x in Ωp,rI do
if Ωp,rI (x) is a noise pixel then
T (x)← T (x) + GAUSS(Ωp,rI ,Ω

p,r
B , x, r)

C(x)← C(x) + 1
end if

end for
end for
return Id ← T./C
end function

output channel(s), which must be based on the input and output

image. The activation function used is the Rectified Linear

Unit, ReLU, and the loss function is the mean square error as

Lmse =
1

n

n∑
i=1

‖F (Idi ; Θ)− Yi‖2, (3)

where n is the training samples, the CRN can be represented

in a form of the non-linear function F with Id and Θ as its

input and well-trained parameters, Y is the noise-free version

of I , and Id is the recovered result by OAGS. The flowchart of

the proposed method is shown in Fig. 1. The training details

will be stated in the Sec. III.

III. EXPERIMENTAL RESULTS

To evaluate the performance of denoising methods, we

use 80 often used images for image processing tests plus

the DIV2K dataset [8], which consists of 800 training and

100 testing images. Therefore, the number of test images is

100+80 in total. Note that all the images are transformed into

grayscale images and are resized to 512×512. To simulate im-

ages with different levels of noise, we choose to randomly add

salt-and-pepper noise to images with 50%, 60%, 70%, 80%,
and 90% noise levels because most denoising methods gener-

ally work well for lower noise levels. To train the CRN, we

adopt the Adam optimizer with a fixed learning rate 1e− 3 to

train our networks on the 4000 images (800× 5 noise levels)
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Fig. 1: A flowchart of the proposed method.

and run 500 epochs with batch size 16 without dropout or

regularization terms used. The entire CRN has merely about

0.11 million parameters.

Four state-of-the-art denoising methods are chosen for com-

parisons in this paper, including [4]–[7]. In the following

results, we will show our OAGS method has already out-

performed the state-of-the-art methods. Moreover, the OAGS

results can be further refined and improved by the proposed

CRN. An ablation study on CRN, OAGS, and OAGS+CRN is

also included.

As can be seen in Fig. 2, although the images corrupted with

90% noise pixels are very hard to be recovered, OAGS works

better than the methods [4]–[7] with more smooth recovered

results. Furthermore, OAGS+CRN refines the OAGS recov-

ered results with sharper edges restored. In Table I, we can

clearly see that OAGS+CRN outperforms all the other methods

over the 180 test images in terms of average PSNR and SSIM

values. In line with the subjective assessment, OAGS does

better than all the compared state-of-the-art methods.

To further analyze whether basic convolutional networks can

already outdo conventional image denoising methods, we train

standalone CRN with noise images and their noise-free ver-

sions as the input and output in the same way as OAGS+CRN

is trained. Interestingly and even surprisingly, it does better

in almost every category in Table I than the methods [4]–[7]

with simple convolutional neural networks, and only OAGS

and OAGS+CRN can beat it. Fig. 3 shows subjective visual

comparisons of denoised results of different noise levels by

CRN, OAGS, and OAGS+CRN. We can observe noise still

exists in the recovered results by the standalone CRN while

one can barely find noise in the results using OAGS. However,

CRN will restore sharper edges than OAGS. Thus, without a

doubt, OAGS+CRN has the best denoised results.

IV. CONCLUSION AND ACKNOWLEDGMENT

We propose a denoising method using OAGS and CRN for

salt-and-pepper noise. OAGS first recover pixels corrupted by

noise, and CRN refine the recovered results. Based on exper-

imental results, the proposed method remarkably outperforms

TABLE I: Average PSNR/SSIM values of denoised results for

180 test images with 50% − 90% noise pixels from all the

compared methods.

PSNR/SSIM 50% 60% 70% 80% 90%
[4] 27.02/.84 26.03/.80 25.00/.75 23.78/.69 21.10/.56
[5] 28.15/.87 25.49/.78 22.12/.60 18.32/.37 14.45/.17
[6] 28.91/.89 27.58/.85 26.25/.81 24.79/.75 22.71/.65
[7] 29.50/.90 28.16/.86 26.78/.82 25.24/.75 23.28/.65

CRN 30.07/.89 28.73/.86 27.25/.82 25.56/.77 23.30/.66
OAGS 30.36/.91 29.01/.88 27.60/.84 26.03/.78 24.09/.69

OAGS+CRN 31.13/.91 29.97/.89 28.57/.85 26.88/.80 24.63/.71

the state-of-the-art methods subjectively and objectively. This

work was supported in part by the Ministry of Science and

Technology of Taiwan (MOST) AI Biomedical Research Cen-

ter under Grant MOST 108-2634-F-019-001, by the MOST

under Grant MOST 108-2634-F-004-001 through Pervasive

Artificial Intelligence Research (PAIR) Labs, Taiwan, and by

Qualcomm through a Taiwan University Research Collabora-

tion Project.
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Fig. 2: Subjective comparisons with PSNR/SSIM shown. (a) Original images. (b) Images with 90% noise pixels added. The

denoised results obtained using: (c) [4], (d) [5], (e) [6], (f) [7], (g) OAGS, and (h) OAGS+CRN.

Fig. 3: Subjective comparisons of CRN, OAGS, and OAGS+CRN with PSNR/SSIM shown. (a) Original image. The denoised

results with (b) 50%, (c) 60%, (d) 70%, (e) 80%, and (f) 90% noise pixels added. From (b) to (f), the results in the first,

second, and third row are obtained by CRN, OAGS, and OAGS+CRN, respectively.
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