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SECTION I.
Introduction

Images or videos captured in different conditions sometimes suffer from
visibility degradation because light is scattered and absorbed with
distance from the camera through turbid media, such as fog, haze,
sandstorms, or water. The degradation reduces the visual quality of the
images and videos and affects the performance of computer vision
applications. Thus, developing an effective method to restore color and
contrast for such images is desirable. Fig. 1(a)-(e) shows five different
images degraded by light scattering and absorption.

There has been much research [1]–[2][3][4][5] on image defogging and
visibility restoration using the image formation model (IFM) [6]. Fig. 2
shows how an image is described using the IFM [6]–[7][8]. Here  ,
the observed intensity at pixel  , consists of the scene radiance 
blended with the ambient light  according to the transmission map 

 , where  is one of the red, green, and blue channels. The
transmission describes the portion of the scene radiance which is not
scattered or absorbed and which reaches the camera. Thus, a larger
value in the transmission map means that the corresponding scene point
is closer to the camera.

Using the IFM, He et al. [1] presented the dark channel prior (DCP) to
remove fog/haze in natural terrestrial images via estimation of the
ambient light and transmission. This motivated many image restoration
approaches [2]–[3][4][5], [9]–[10][11][12][13][14][15][16] that improve
and extend the DCP for different goals and applications. However, haze
with different color casts may lead to under- or over-estimated
transmission based on the DCP, causing poor restoration results. In [4]
and [5], restoration methods for hazy and sandstorm images were
presented; they used adaptive gamma correction to solve the
transmission over-estimation caused by the low observed intensity due
to color casts, and adopted color correction to compensate for the color
cast. Nevertheless, the underlying reason for inaccurate transmission
estimation for images with color casts is that the DCP is not as reliable
for such images as for those without color casts. This problem often
cannot be solved only by gamma correction. Hence, these methods are
unable to restore heavily tinted sandstorm images because most blue
light is scattered and absorbed, which causes the DCP to fail and leads to
inaccurate ambient light and transmission estimation. In order to
estimate medium transmission more precisely, some researchers

Fig. 1.
(a)–(e) Examples of different images degraded by light scattering and
absorption. The original image (a) is from [1], (b) is from [4], (c) is from [37]
(d) is from [21] and (e) is from [38].

(x)I c

x (x)J c

Ac

t(x) c

Fig. 2.
Image formation model.

 Contents

IEEE websites place cookies on your device to give you the best user experience. By using our websites,
you agree to the placement of these cookies. To learn more, read our 

Accept & Close
Privacy Policy.

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/83/8310970/8307410/peng1abcde-2813092-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/83/8310970/8307410/peng2-2813092-large.gif
https://www.ieee.org/about/help/security_privacy.html


exploited learning algorithms to generate a mapping function where the
input is a hazy image, and the output is its depth map [17]–[18][19].
However, these methods only consider hazy images that have bright
ambient light and no color cast, and are often unable to restore more
general hazy images with different lighting conditions and color tones.

Several studies also have been conducted on restoring underwater
images based on the DCP [9]–[10][11], [14], [15] or its variants [12], [13].
However, measuring transmission for underwater images based on the
DCP [9]–[10][11], [14] frequently fails to generate accurate results since
red light is more attenuated than other wavelengths underwater, and
thus the DCP based on RGB channels ends up considering only the red
channel, causing unreliable transmission estimation. Several DCP
variants consider only the green and blue channels [12], the RGB
channels with the red inverted [13], or the minimal information loss
principle (MILP) [15] to try to estimate transmission underwater, but
they may still fail due to different underwater lighting conditions and
color tones. Instead of using the DCP, the maximum intensity prior
(MIP) approach [16] calculates the difference between the maximum
intensity of the red channel and that of the green and blue channels to
estimate transmission. However, these methods frequently perform
poorly as the light absorption and lighting conditions that exist in
underwater images invalidate these priors. For example, all the DCP-,
MIP-, and MILP-based restoration methods are unable to restore
underwater images with dim ambient light, where the background pixels
are dark and would be wrongly judged as being close.

In this paper, we improve DCP-based image restoration using a new
approach to estimating ambient light (which is needed by the DCP
restoration methods), and using adaptive color correction incorporated
into the IFM. The method can be applied to enhancing and restoring
foggy, hazy, sandstorm, and underwater images, including both well-lit
and dimly lit images. The algorithmic contributions of this work,
compared to [22], include the depth-dependent color change for
estimating ambient light for a wide range of degraded images, and
adaptive color correction in the IFM. We demonstrate that our approach
is a generalization of the DCP, and we present both subjective and
objective experimental results.

The rest of the paper is organized as follows. In Section II, we review
DCP-based image restoration [1] and its limitations. Section III details
the new method. Section IV reports experimental results, and Section V
summarizes the conclusions.

SECTION II.
Enhancement and Restoration Based
on DCP

In this section, we review dehazing based on the DCP [1], which was
broadly adopted and improved to apply to hazy, sandstorm, and
underwater images [2]–[3][4][5], [9]–[10][11][12][13][14]. Assuming
that light attenuation is homogeneous, the IFM [6] is given by:

View Source

where  is the observed intensity in color channel  at pixel  ,  is
the scene radiance,  is the ambient light, and  is the transmission,
where  is one of the RGB channels. Note that we assume  ,  , and 

 .

For each pixel  in an image, the DCP finds the minimum value among
RGB channels in a local patch  centered at  , that is: 

 . For an outdoor terrestrial

(x) = (x)t(x) + (1 − t(x)), c ∈ {r, g, b}I c J c Ac (1)

(x)I c c x J c

Ac t

c I c J c

∈ [0, 1]Ac

x

Ω(x) x

(x) = { (y)}J
rgb
dcp miny∈Ω(x) minc∈{r,g,b} J

c
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haze-free image,  is often close to zero, because at least one of the

three color channels will typically have a low-intensity pixel in the local
patch in  . It was asserted in [4, eq. (9)] that  for about

75% of non-sky pixels in haze-free images.

Dividing both sides of Eq. (1) by  and applying the minimum
operators to it, the term involving  is dropped as being close to zero,
and the transmission estimate  , described in
[4, eq. (11)], is

View Source

Since  has block-like artifacts, it can be refined by median filtering
[3], image matting [25], or guided filtering [26]. To estimate  , the
DCP for a hazy image is calculated as:

View Source

For the DCP of a hazy image, far and close scene points,  and  ,
generally have  because of scattered light. Therefore,

 provides depth information for hazy images. Based on  ,

ambient light  is selected from one of the farthest and haziest pixels in
the input image. Let  be the set of positions of the top 0.1% largest
valued (assumed farthest) pixels in  . Among these pixels, the one

with the highest intensity in the input image provides the estimate of
ambient light  [1]:

View Source

Finally, by putting  ,  and  into Eq. (1), the estimated scene
radiance is calculated as:

View Source

where  is empirically set in the range [0.1, 0.4] to increase the
exposure of  for display.

In general, the DCP-based methods are based on three assumptions
made for hazy terrestrial images: overcast lighting, spatially invariant
attenuation coefficients, and wavelength-independent attenuation.
Sandstorm and underwater images have different possible lighting
conditions and color casts, which may violate the assumptions
underlying these priors, producing poor restoration results. For
example, red light is strongly abosorbed underwater, so small values in
the red channel make the DCP values of a far scene small, causing
inaccurate image depth and ambient light estimation (e.g., Fig. 3(d)).
Therefore, several DCP variants [12], [13], [23], [24] were created for
ambient light and transmission estimation with different lighting
conditions and color casts, shown in Table I and Table II.

J
rgb
dcp

Ω(x) = 0J
rgb
dcp

Ac

J c

(x) = t(y)t̃ rgb miny∈Ω(x)

(x) = 1 − { }.t̃ rgb min
y∈Ω(x)

min
c∈{r,g,b}

(y)I c

Ac
(2)

t̃ rgb

Ac

(x) = { (y)}.I
rgb
dcp min

y∈Ω(x)
min

c∈{r,g,b}
I c (3)

xf xc

( ) ≤ ( )I
rgb
dcp xc I

rgb
dcp xf

I
rgb
dcp I

rgb
dcp

Ac

P 0.1%

I
rgb
dcp

Ac

= (x) .Ac I c
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⎝
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x∈P 0.1%
∑
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I c
⎞
⎠

(4)

I c t̃ rgb Ac

(x) = + ,J c (x) −I c Ac

max ( (x), )t̃ rgb t0

Ac (5)

t0

J c

TABLE I Formulas for Estimation of Depth [1], [12], [13], [24]
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The original images in the first two columns of Fig. 3 have lighting
conditions appropriate to the DCP-based methods. Dark foreground
pixels cause the dark channel to have a small value, so they are correctly
estimated as being close. The background lacks dark pixels, so these
regions are correctly estimated to be relatively far away. By contrast, the
DCP works poorly for the original images in the last two columns of Fig.
3. The sandstorm image has small values in the blue channel, so the DCP
in Eq. (3) has small values everywhere coming from the blue channel;
the entire scene is mistakenly judged as being very close. The
underwater image in the fourth column was captured with artificial
lights. The bright foreground is erroneously viewed as being far while the

TABLE II Formulas for Estimation of transmission [1], [12], [13], [24]

Fig. 3.
Examples of depth estimation via the DCP (  ); (a) and (b) are successful
cases while (c) and (d) are failure cases. The original images of (a), (b), and
(d) come from [1], [38], and [16].

I
rgb
dcp
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dark background is incorrectly deemed to be close. In Section IV, we will
show other examples where the DCP-based methods do not work
properly because of different lighting conditions and color casts.

SECTION III.
Description of the Method

Fig. 4 depicts the overall flowchart of our method. The steps are
explained in the following sections.

A. Ambient Light Estimation

We generalize the DCP based on the depth-dependent color change,
which describes whether a given color channel tends to have larger or
smaller values as depth from the camera increases. A three-bit indicator 

 is used, where  means that light for channel  tends to
increase with depth, while  indicates that light for  tends to
decrease, where  . There are 8 different values for the
indicator:  . To determine the indicator for an
image, we estimate a rough depth map  based on the observation that
far scene points tend to have smoother regions (due to scattering) and so
have smaller gradients than close scene points. A gradient map is first
computed as  , where  and  are the
horizontal and vertical  Sobel operators applied to the input image.
Assuming depth in a small local patch is uniform, a modified gradient
map  is estimated by dilating  and filling holes [27]. Then, we set 

 , where  linearly stretches  to the range
[0, 1].

The relationship between depth and  is modeled via regression: 

 , where  and  are estimated using 

 . The indicator  for channel 
equals 1 if  and equals 0 otherwise, where  . In
addition, a larger  means higher significance of the corresponding
channel  to determine the scene depth. Rather than using Eq. (3) as the
depth map estimate for purposes of estimating ambient light, we
estimate the depth map  using the indicator  and  as:

View Source

where  is the significance weighting factor for channel 
, where  is an empirical constant. Here the function 

 is the hyperbolic tangent.

Fig. 4.
Overall flowchart of our method. The original image is from [5].
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Fig. 5 shows the flowchart of calculation of the depth-dependent color
change. There are two main reasons why we chose to use linear
regression for capturing correlation between RGB intensity values and
scene depth. First, the linear fit is simple, and is sufficient for our
purposes. Second, the error of the linear fit between RGB intensities and
depth tends to be smaller when an accurate depth map is used. For
example, the fit is much better in Fig. 6 where the RGB intensities of
image  are plotted with the improved depth map  from Fig. 5. We also
tried other color spaces but found the RGB color space to be the best fit
for our method.

Using the indicator  and the significance weighting factors 
 , we have developed a general formulation for DCP-

based methods. The approach for hazy images [1], sandstorm images [4],
[5], and some underwater images [9]–[10][11], two approaches for
night-time terrestrial images [23], [24], and two approaches for
underwater images [12], [13] are all special cases of Eq. (6), as will be
discussed later.

Fig. 7 shows comparisons of depth estimation based on the DCP [1], DCP
variants [12], [13], [24], and our depth estimation. Fig. 7(a) shows a hazy

image and its estimated depth maps.  works for the hazy image since

its  and  indicate that the values of all three color channels, which are
all significant, tend to increase with depth. Fig. 7(b) shows an

underwater image where both  and  work since  and 

are similar to those for  in Fig. 7(a). However, the depth estimated

using  is not accurate for Fig. 7(b), because its  means the

I D

Fig. 5.
The flowchart of calculation of the depth-dependent color change.

Fig. 6.
The regression analysis plot using image  and the improved depth map 
from Fig. 5.

I D
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values of the red channel increase with depth but  , which inverts

the red channel, considers the red values decrease with increasing depth.
The sandstorm image in Fig. 7(c) has small blue values, causing  to

only consider the blue channel and to fail to produce a proper depth

map. As can be seen in Fig. 7(d),  works well for the underwater

image since red values tend to decrease and green and blue values tend
to increase with depth based on its  while  , assuming an opposite

tendency for red, does not work.  works somewhat imprecisely (fish

is wrongly judged as being far) because it does not consider the red
channel. Fig. 7(e) and (f) show two underwater images with artificial

lighting, for which  and  all do poorly estimating the depth

because none of them works when green values decrease with increasing

depth.  works well when the values in all three color channels tend

to decrease as the depth increases, such as the underwater image in Fig.
7(f) and the dimly-lit image in Fig. 7(g). Our method, which incorporates
the depth-dependent color change indicators and significance weighting
factors, is capable of generating proper depth maps for all of these
degraded images with different color change and lighting conditions.

Ambient light is estimated from the input pixels corresponding to the
top 0.1% farthest pixels in  :

View Source

where  is the set of positions of the top 0.1% largest-valued pixels
in  .

B. Scene Transmission Estimation

Transmission estimation based on scene ambient light differential was
presented in our preliminary work [22], but here we explain it from a
different perspective to show the DCP generalization. In [1], the DCP-

based transmission estimate  can

also be expressed as:

I
gbr′

dcp

I
rgb
dcp

I
gbr′

dcp

s I
rgb
dcp

I
gb
dcp

,  I
rgb
dcp I

gb
dcp I

gbr′

dcp

I
r′g′b′

dcp

Fig. 7.
Comparisons of depth estimation based on the DCP [1], [4], [5], [9]–[10][11],
DCP variants [12], [13], [24], and our method for images with different light
lighting conditions and color casts. The first row of images shows (a) A hazy
image with s = 111, (b) an underwater image with s = 111, (c) a sandstorm
image with s = 111, (d)-(f) underwater images with s = 011, 001, 000, and
(g) a dimly lit image with s = 000. The next four rows show the estimated
depth images using various methods. The last row shows our depth images.
The original image of (g) and depth images shown here undergo simple
individual contrast stretching or scaling steps for display. Original images are
taken from [1], [38], [37], [16], [39], and [44].
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View Source

The transmission is commonly written as an exponential decay term
based on the Beer-Lambert law [30] of light attenuation as 

 , where  is the distance from the camera to the
radiant object and  is the spectral volume attenuation coefficient, so 

 . In [1], whenever Eq. (8) would yield a negative number (that is, 
 ), then  gets clipped to zero. Therefore,

scene transmission estimated using Eq. (8) would be inaccurate. To
address this, we estimate transmission [22] as:

View Source

where median filtering [3] and linear stretching (to the range 
 ) are applied to refine the estimated transmission. The

intuition behind this expression for  is that the numerator captures
the absolute difference between the observed intensity and the ambient
light, and large values of this quantity correlate with proximity to the
camera. That is, observed intensity for close scene points consist more of
scene radiance and less of ambient light, and based on Eq. (9), will have
large  . By contrast, observed intensity for a farther scene point
consists less of scene radiance and more of ambient light, and  is
small.

C. Generalization of the DCP

Our approach is a generalization of the DCP-based approaches both for
ambient light estimation and transmission estimation. First, consider
transmission estimation (Eq. (9)).

1. When the ambient light is bright (  ) and 
 , which holds for many foggy and hazy

images, then  , so the expression becomes
identical to the DCP [1]:

View Source

2. When ambient light is dark (  ) and 
, which holds for most dimly lit images, Eq. (9) reduces to the
method [24] which uses inverted RGB channels and is meant for
night videos:

View Source

3. When  and  , and  and 
 , which holds for some underwater images

where red light is greatly absorbed, Eq. (9) reduces to the method
[13] which uses RGB channels with red inverted:

View Source

4. In [4] and [5], Huang et al. found that sometimes images with
strong color casts (in which one color channel had a small value in 

 and  ) would lead to transmission over-estimation.
They adopted adaptive gamma correction to try to solve this
transmission over-estimation problem. Our general formulation
has a solution to this situation as well. For example, when 

(x) =t̃ e−βd(x) d(x) ≥ 0
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 , and  and  , which
holds for most sandstorm images where blue light is greatly
absorbed by sand, Eq. (9) can be considered as a variant of  [1]
which uses the RGB channels with the blue adjusted:

View Source

where  is a multiplicative factor that down weights

the blue channel to overcome the over-estimation problem. That
is, as  gets darker and  ,  becomes smaller, making
the blue channel less important in estimating transmission.

Next, ambient light estimation based on the depth-dependent color
change (Eq. (6) and (7)) is a generalization of the DCP-based methods as
follows:

1.  reduces to  [1] when  and  , which

means that RGB values tend to increase with depth. This is the
situation for most hazy images and some underwater images. In
such cases,

View Source

2.  reduces to  [12] when  and 

(“ – ” in  means don’t care), which means that green and blue
values tend to increase with depth while red values are ignored in
estimating depth. This corresponds to some underwater images
where red light is almost completely absorbed. In such cases,

View Source

3.  reduces to  [13] when  and  , which

means that blue and green values tend to increase with depth
while red tends to decrease. This is the situation for most
underwater images where red color attenuates more as depth
increases. In such cases,

View Source

4.  reduces to  [23], [24] when  and  ,

which means that RGB values all tend to decrease as depth
increases. This is the situation for most images taken at night with
artificial lighting. In such cases,

View Source

D. Radiance Restoration With Adaptive Color
Correction
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Some input images have color casts which need to be removed in the
restoration. If scene radiance is recovered from a degraded image with a
color cast using Eq. (5), it often leads to an even stronger color cast.
Thus, we incorporate color correction into the IFM. The approach is to
adjust ambient light. Based on Eq. (5), we have:

View Source

where  , and  . Hence,

large values in  result in small values in  and vice versa. Without
considering what the “true” ambient light is, if the algorithm assumes a
bright ambient light has suffused throughout the observed image, and
attempts to restore the image based on that assumption, the resulting
restored image will be darker, as the extra brightness is removed,
compared to the restoration that would have resulted from an
assumption of a dimmer ambient light. An example is shown in Fig. 8
row 1, where as the ambient light is estimated as being brighter, the
restored scene radiance gets darker.

In the same fashion, a small value in one color channel of the ambient
light leads to a substantial increase in that color in the restored image. In
Fig. 8 row 2, going from (b) to (c) to (d), the assumed values of the green
and blue channels remain constant, but the red value drops from 0.65 to
0.35 to 0.05. As the ambient is assumed to have less red, the restored
image based on that assumed ambient has more red. That is, we can
adjust the estimate of ambient light based on the input image to remove
color casts.

Iqbal et al. [28] proposed to keep constant the color channel with the
dominant color cast, and scale up the other channels to correct the
image color based on the gray world assumption [31]. This approach
may suffer from color distortion when there is a strong color cast.
Motivated by [28], [29], we calculate color correction coefficients  as

View Source

where  .  is defined in [29]

for measuring the intensity of a color cast, where 

(x) = − [ − 1]J c (x)I c

f(x)

1

f(x)
Ac (18)

f(x) = max( (x), ) ∈ [ , 1]t̃ rgb t0 t0 − 1 ≥ 01

f(x)

Ac J c

Fig. 8.
Examples of changing hue or brightness of restored scene radiance by
adjusting ambient light with given transmission estimated using our method.
(a) Original images. (b), (c), and (d) are the restored images using different
ambient light. The original images are from [4] and [38].
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represents the means of the chromatic components in the CIELab color
space, and  has the chromatic variances. A larger 
means a stronger color cast, and  is taken to mean no color cast,
where  is a threshold. Here, we set  . The original work [29] used
symmetrical positive and negative thresholds to define regions of color
cast, ambiguity, and no color cast, but we simplify this with a single
threshold. This choice could be adjusted based on the application (e.g.,
optimized separately for underwater or sandstorm or haze images).

Then, we adjust the ambient light estimate with  . By using 

in Eq. (5), the estimate of scene radiance is

View Source

where we set  to 0.3. Lower values of  remove more haze but may
produce images that are noisy or look less natural, so the exact choice of
this parameter depends on the type or purpose of the image. According
to Eq. (19), when  , which means there is no color cast, then 

 , and  .

Eq. (19) can be explained in two parts. First we ignore the exponent and

consider the quantity  . For an image with a reddish

cast, the average red value is larger, so this  quantity would equal 1 for
red and have larger values for blue and green. Using a large value in
ambient light produces small values in the restored output whereas a
small ambient value leads to an opposite result, so using these  values
in the denominator means that we lower the green and blue ambient
values, thus increasing blue and green output scene radiance for color
balance. The exponent  aims to avoid color distortion when

there is a strong color cast. For example, if a scene shows entirely green
plants,  is large because the green color cast is very strong, but one
does not want to remove it (of course there are some images with strong
color cast that would benefit from color correction). The exponent
ensures that as  grows large,  goes to 1, so there is no color
correction.

Fig. 9 shows examples of scene radiance restoration with and without
adaptive color correction. The restored images with color correction
have more color-balanced results. Therefore, instead of performing color
correction on the recovered  , we can achieve both scene radiance
restoration and color correction by adjusting the ambient light estimate
with the color correction coefficients.

σ = ( ,σa σb)T Dσ
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ϵ ϵ = 0

=Ac
φ

Ac

φc Ac
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(x) = + ,J c
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Fig. 9.
Examples of scene radiance restoration with and without adaptive color
correction. (a) Original images with estimated ambient light. Restored scene
radiance (b) without, and (c) with color correction. The original images are
from [5], kkj.cn, and [40].
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SECTION IV.
Experimental Results

In this section, we compare our method against various DCP-based
restoration methods for foggy, hazy, sandstorm, and underwater images.
For terrestrial images, we compare against several state-of-the-art IFM-
based image restoration methods described in [4], [5], [17], and [19]. For
underwater images, we compare with the methods described in [12] and
[14]–[15][16]. First we present a qualitative visual comparison
(including transmission maps) and then present objective no-reference
quality assessment, and a subjective evaluation using 35 test subjects. At
the end of the section, failure cases for our method are discussed.

A. Qualitative Assessment

We show 10 degraded images, including 2 hazy/foggy, 4 sandstorm, and
4 underwater images, with different color tones and lighting conditions.
In Fig. 10, the original image is hazy with bright ambient light and does
not have a color cast. All methods work well for this case.

Fig. 11 gives an example of restoring a dark hazy image with a bluish
color cast using restoration methods without color correction. The
methods [17], [19] barely enhance the contrast of the image because of
imprecise transmission estimation for dark hazy images. The processed
result using our method has better contrast. Fig. 12 demonstrates more
restoration results for the dark hazy image in Fig. 11(a) but using
methods with color correction incorporated into the algorithm. The
image obtained using [4] presents an even stronger color cast. The
method [5] wrongly estimates the entire scene as very close to the
camera, leading to negligible restoration. Our method, adjusting
ambient light using color correction coefficients  ,
removes the color cast by magnifying red and green intensities while
enhancing contrast.

Fig. 10.
Restoration example where all methods are successful. (a) Original image.
Restored results and corresponding transmission maps obtained using: (b)
[17], (c) [19], (d) [4], (e) [5], and (f) our method. The original image is from
[6].

= [1.44, 1.28, 1]φc
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Fig. 13 shows four sandstorm examples with different color
distributions. Based on the histograms of the original images, we
consider the images from the first to last row to be shot in progressively
thicker sandstorms. In the first row, the scene transmission estimated by
[5], [17], and [19] is inaccurate, so their processed images are not
sufficiently enhanced. The processed images by our method and [4] both
look color corrected, but our method has better contrast.

Fig. 11.
An example of restoring a dark hazy image with a color cast. (a) Original
image. Restored results and transmission maps obtained using: (b) [17], (c)
[19], and (d) our method without color correction (  ). The original
image is from [6].

= 1φ
c

Fig. 12.
Restoring the dark hazy image with a color cast in Fig. 11 (a) using methods
with color correction. Restored results and transmission maps obtained using:
(a) [4], (b) [5], (c) our method (  ).= [1.44, 1.28, 1]φ

c

Fig. 13.
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For the second image, the transmission estimated using the methods
[17], [19] is wrong, and the restored images are similar to the original.
The method [5] fails to enhance contrast of the image and does poorly on
color correction. Our method and [4] both correct color while our
restored image has better contrast.

For the third image, the processed images obtained using the methods
[4], [5], [17] are hardly enhanced. The method [5] does not correct color
properly, so the result image looks a little greenish. Although [19]
enhances contrast, its color cast problem worsens. Our method is able to
produce a better enhanced and color-corrected result. The last original
image with a thick sandstorm has very little blue color, which invalidates
all the methods except for ours.

Lastly, Fig. 14 demonstrates restoration of underwater images with
different color tones and lighting. All methods work well for the first
case, and the result images all look restored and enhanced although
some color differences exist. The second original image of Fig. 14 is
dimly lit, which invalidates the DCP-, MIP-, and MILP-based methods.
The processed images by the DCP-based [12], [14], MIP-based [16], and
MILP-based [15] methods look insignificantly restored because of the
incorrect transmission estimation. Our method generates a much
brighter result with more details. The third input image has more blue
and green color than red. The processed images from [12], [14], and [16]
are negligibly restored because of inaccurate transmission estimation.
Although [15] can slightly enhance the contrast of this image, our
processed image is more vivid and has better contrast. The last image is
very greenish, and the methods [12], [14]–[15][16] only slightly alter the
image, whereas our method produces an output with better contrast and
more balanced color.

B. Objective Assessment

Image restoration methods can involve objective evaluation [32]–[33]
[34][35]. We choose 58 terrestrial images (Fig. 15), with haze, fog, and
sandstorm, etc., and use three no-reference image quality metrics. The
Natural Image Quality Evaluator (NIQE) [33] uses space domain natural
scene statistics, and a small value represents better quality. The other
two,  and  , are blind contrast metrics for which larger values mean
better contrast [32]. Table III shows the average  ,  and NIQE values
for the various restored images of Fig. 15, and our method performs

Restoring sandstorm images with different color distributions. (a) Original
images and their color histograms. Restored results and transmission maps
obtained using: (b) [17], (c) [19], (d) [4], (e) [5], and (f) our method. The
original images are from [4], [41], and [42]. Note that it is better to view this
figure on a screen.

Fig. 14.
Restoring underwater images. (a) Original images. Restored results and
transmission maps obtained using: (b) [16], (c) [12], (d) [14], (e) [15], (f)
our method. The original images come from [38], and [13]. Note that it is
better to view this figure on a screen.
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better. We also choose 55 underwater images (Fig. 16) with different
color tones and lighting, and use NIQE and two other no-reference
quality metrics, Underwater Image Quality Measure, UIQM [34], and
Underwater Color Image Quality Evaluation Metric (UCIQE) [35], for
which larger values represent higher quality. Table IV shows average
UIQM, UCIQE, and NIQE values of the original images in Fig. 16 and
their various restored versions. Our method outperforms the other
methods.

TABLE III Average  ,  and NIQE Values for the Images of Fig. 15 Restored
by Various Methods

e r¯̄

TABLE IV Average UIQM, UCIQE, and NIQE Values of the Original Images in
Fig. 16 and Their Restored Versions From All Methods

Fig. 15.
Terrestrial test images from [1], [4]–[5][6] and Google Images.
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C. Subjective Evaluation

For the subjective experiment, we pick 25 images from each set (Fig. 15
and Fig. 16). Similar to [36], each method is compared against our
method with all possible image pairs generated using the 25 terrestrial
and 25 underwater images. There were 35 participants (26 males and 9
females), all of whom are in their twenties or thirties except for one in
his forties. The participants were non-experts, consisting of students and
a faculty member from UC San Diego. They all have normal or corrected
to normal vision.

For each image pair (  pairs for each image set) the subject was
asked to choose which image is preferred, or if the images have the same
visual quality. The total number of comparisons that each participant
performed is 200. All the image pairs shown to each participant were in
a random order. For each pair, the images were displayed side by side
randomly. Participants could observe an image pair as long as they like
before making a choice, but their choice cannot be changed once made.

The results, in Table V, show our method substantially outperforms each
of the other methods for both terrestrial and underwater image sets.
Average-max-min preference charts are shown in Fig. 17, where we
average (and take maximum and minimum values) across participants.
So, for each method, the maximum and minimum possible values of the
scores for a method are 25 and 0 for a single participant, meaning the
participant votes for the method 25 or 0 times. The figure demonstrates
our method is highly preferred. In Fig. 18, the chart shows the average
percent (over the compared methods) of participants who preferred the
proposed method for each terrestrial or underwater image, which
further supports that our method is preferred for each image. Note that
the images are re-numbered to go from highest average percent to lowest
average percent.

Fig. 16.
Underwater test images from [13], [16], [38] and Google Images.

25 × 4

TABLE V Subjective Experiment Results. The Numbers Represent How Many
Times the Comparison Algorithm or Our Algorithm was Chosen as Preferred,
and the Number of Times They were Viewed as Having the Same Quality
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D. Failure Cases

As our method is based on the IFM, it fails when the input image cannot
be explained by the model. For example, an image with multiple
illumination sources may violate the underlying assumption that
ambient light is uniform. Fig. 19(a) has lights at different depths, and
cannot be properly restored based on the IFM. Also, our assumption that
RGB values tend to increase or decrease roughly linearly with scene

Fig. 17.
Average-max-min preference charts based on all participants for the subjective
experiment. (a) Terrestrial images, (b) Underwater images. (Left: The number
of times our method was preferred over the comparison methods; Right:
number of times compared methods were preferred. Same quality responses
are ignored in this figure.)

Fig. 18.
The chart shows the average percent (over the compared methods) of
participants who preferred the proposed method for each
terrestrial/underwater image for the subjective experiment.

IEEE websites place cookies on your device to give you the best user experience. By using our websites,
you agree to the placement of these cookies. To learn more, read our 

Accept & Close
Privacy Policy.

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/83/8310970/8307410/peng.t5-2813092-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/83/8310970/8307410/peng17ab-2813092-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/83/8310970/8307410/peng18-2813092-large.gif
https://www.ieee.org/about/help/security_privacy.html


depth does not hold, which leads to wrong ambient light selection (the
yellow dot in Fig. 19(a)) and transmission estimation (the second row of
Fig. 19(a)).

To calculate the depth-dependent color change, it is assumed that
gradients of far scene points tend to be smaller than those of close scene
points. The original image of Fig. 19(b) has sharp edges in both close and
far scene points, which violates our assumption and causes the
algorithm to fail. So extremely clear water will reduce the validity of the
algorithm, but such cases need less restoration in any case.

Other failure cases may arise with large uniform foreground objects. For
example, a submarine or ship hull in the foreground may be very smooth
with small gradients, and would be wrongly judged as being far away. If
it encompassed a small area of the image, it might not be a problem, but
if it were sufficiently large, and depending on the object color, it could
cause the RGB color change analysis to fail.

Fig. 19.
Failure cases showing original images and their transmission maps. Yellow dots
represent locations from which ambient light is estimated.

SECTION V.
Conclusion

We use the depth-dependent color change, scene ambient light
differential, and adaptive color-corrected IFM to better restore degraded
images, such as hazy, foggy, sandstorm, and underwater images. We first
analyze the depth-dependent color change of the input image to measure
scene depth for ambient light estimation. With this estimate, the scene
ambient light differential is calculated to estimate scene transmission.
Lastly, the input image is restored based on the adaptive color-corrected
IFM. Using a wide variety of degraded images with different color
tones/casts, contents, and lighting conditions, we demonstrate that our
method produces satisfying restored and enhanced results and
outperforms other IFM-based methods. Our approach was shown to
unify and generalize a wide variety of other DCP-based methods which
are aimed at underwater, nighttime, haze, and sandstorm images.
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