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Objective

The aim of this study was to generate synthetic electronic health records (EHRs). The

generated EHR data will be more realistic than those generated using the existing medical

Generative Adversarial Network (medGAN) method.

Materials and Methods

We modi�ed medGAN to obtain two synthetic data generation models—designated as

medical Wasserstein GAN with gradient penalty (medWGAN) and medical boundary-

seeking GAN (medBGAN)—and compared the results obtained using the three models. We

used 2 databases: MIMIC-III and National Health Insurance Research Database (NHIRD),

Taiwan. First, we trained the models and generated synthetic EHRs by using these three 3

models. We then analyzed and compared the models’ performance by using a few

statistical methods (Kolmogorov–Smirnov test, dimension-wise probability for binary

data, and dimension-wise average count for count data) and 2 machine learning tasks

(association rule mining and prediction).

Results
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Issue Section:  Research and applications

BACKGROUND AND SIGNIFICANCE

Patient electronic health records (EHRs) contribute considerably to the medical industry and to

research on topics such as developing medical software, developing new drugs, investigating

diseases, and inventing cure and preventive measures for advancing medical informatics and

healthcare. However, EHR data are not always freely available. The main reason is that they

often consist of sensitive or regulated medical information about patients. In general, patients

are not comfortable disclosing their personal data. When real EHRs are not available,

healthcare organizations usually generate anonymized data by using de-identi�cation

methods.  However, de-identi�cation techniques such as k-anonymity, l-diversity, and t-

closeness are not robust against re-identi�cation attacks.  Owing to the legal, privacy, and

security concerns surrounding medical data and limited access to them, the healthcare sector

lags behind other sectors in terms of employing information technology, data exchange, and

interoperability.

To circumvent these challenges, an alternative method is to generate realistic synthetic data.

The advantages of using synthetic data include that they are arti�cially created and hence there

is no explicit mapping between real and synthetic data. For this reason, unlike de-identi�ed

data, synthetic data stay resistant to re-identi�cation. If synthetic data can carry attributes

similar to actual data, it must help companies and researchers in public use of information

without the hassle of obtaining real data. Some notable works on synthetic data generation

We conducted a comprehensive analysis and found our models were adequately e�cient

for generating synthetic EHR data. The proposed models outperformed medGAN in all

cases, and among the 3 models, boundary-seeking GAN (medBGAN) performed the best.

Discussion

To generate realistic synthetic EHR data, the proposed models will be e�ective in the

medical industry and related research from the viewpoint of providing better services.

Moreover, they will eliminate barriers including limited access to EHR data and thus

accelerate research on medical informatics.

Conclusion

The proposed models can adequately learn the data distribution of real EHRs and

e�ciently generate realistic synthetic EHRs. The results show the superiority of our

models over the existing model.
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(SDG) across a wide range of domains can be found in the literature.  However, many such

methods often are disease-speci�c, not realistic, work on only several variables of EHR data, or

yet have a privacy concern. For example, an early innovative method, EMERGE, developed by

Lombardo and Moniz and later improved by Buczak et al.  generates synthetic EHR data for an

outbreak illness of interest (tularemia) but is potentially susceptible to re-identi�cation.

McLachlan and et al. developed an approach  that uses a health incidence statistics (HIS)- and

clinical practice guidelines (CPG)-based CareMap for generating synthetic EHRs. The main

problem with this approach is that they did not use any real EHR data and hence need further

experiments to guarantee the realistic properties. Park et al. conducted a good work  related to

our research, but it can handle only a few dimensions of binary data. Very recently, an excellent

framework of SDG named Synthea  has been developed to provide risk-free EHR data suited to

industrial, research, and educational uses, but it is still not validated to work on diverse

diseases and treatment modules. McLachlan in the paper  also performs a comprehensive

domain analysis and validation of di�erent SDG approaches. However, it is still a challenging

problem to generate realistic synthetic EHR data. In addition to preserving statistical features

of the real data, synthetic data should verify its functionality for relevant applications. For

instance, as Choi et al. investigated in the research,  in practice, the resulting synthetic EHR

data are often not su�ciently realistic for machine learning tasks, eg, predictive modeling. The

goal of our research is to address all the issues mentioned above and propose a general model

without focusing on any speci�c disease, number of dimensions, or size of data. The model will

be suitable for generating realistic synthetic EHR data that will be statistically sound as well as

good enough for machine learning tasks.

Recently, generative adversarial networks (GANs) — types of neural networks—have

attracted considerable attention from both researchers and developers because of their

remarkable performance in generating high-quality synthetic images in an adversarial manner

that may mislead a person into accepting such images as original images. A GAN comprises 2

neural networks: a generator (G) for generating fake but realistic images, and discriminator (D)

for predicting (distinguishing) whether the input image is real or fake. Through the 2

competing G and D networks, a GAN can generate synthetic images that are nearly

indistinguishable from the real images. Leveraging this power of creating realistic synthetic

images, GANs have been successfully applied in many applications such as image generation,

 text-to-image synthesis,  image-to-image translation,  video generation,  music

generation,  etc. All these works assert that GAN is the best choice for producing realistic

synthetic samples. As in this research, our objective is to create realistic synthetic EHR data, we

were motivated by the amazing power of GAN and set the target to optimize it. Note that a GAN

exhibits remarkable performance in generating real-valued continuous data, but it has

limitations in generating discrete data.  A major reason is that a GAN fails to learn the

distribution of discrete data in their original form during the gradient update process in

training. To overcome this limitation, Choi et al. proposed an innovative approach called

medical GAN (medGAN)  for synthesizing discrete EHR data. They incorporated an

autoencoder with the original GAN to learn the distribution of discrete data. Moreover, they

incorporated the minibatch averaging method into the adversarial framework to prevent the

problem of “mode collapse” encountered when a GAN tends to generate data with low
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diversity. Within the healthcare domain, the medGAN framework focuses on patients’

aggregated discrete features (eg, binary and count features) derived from longitudinal EHRs for

experimenting with machine learning tasks. The authors achieved performance comparable to

real data on many experiments, including distribution statistics and predictive modeling task.

In this study, we aimed to create more realistic synthetic EHR data than those generated by the

medGAN. We applied 2 improved design concepts of the original GAN, namely, Wasserstein

GAN with gradient penalty (WGAN-GP)  and boundary-seeking GAN (BGAN)  as alternatives

to the GAN in the medGAN framework. We call the approaches medWGAN and medBGAN,

respectively. The main contributions of the present study are as follows:

We introduce 2 e�cient models—medWGAN and medBGAN—by integrating WGAN-GP and

BGAN, respectively, as adversarial networks to generate more realistic synthetic EHR data

than those generated by the existing medGAN method.

We evaluated, compared, and analyzed the performance levels of these 3 models. We

observed that the proposed medWGAN and medBGAN outperform medGAN statistically as

well as in machine learning tasks (association rule mining and prediction).

MATERIALS AND METHODS

In this section, we discuss the EHR datasets used in this study, followed by a short description

of the GANs, and �nally, present the details of existing and proposed SDG models.

Data description: The datasets used in this study were obtained from 2 sources. The �rst source

was the Medical Information Mart for Intensive Care (MIMIC-III) database,  a freely available

public database comprising de-identi�ed EHRs associated with approximately 60K patient

admissions to the critical care units of the Beth Israel Deaconess Medical Center between 2001

and 2012. MIMIC-III contains various types of health-related data, of which we used patients’

diagnoses data (DIAGNOSES_ICD) and procedures (PROCEDURES_ICD) data, coded using the

International Statistical Classi�cation of Diseases and Related Health Problems (ICD) system.

In this study, we investigated 2 di�erent MIMIC-III datasets: 1 dataset consists of diagnoses

data and the other (extended MIMIC-III) consists of both diagnoses and procedures data. The

second source was the Taiwan National Health Insurance Research Database (NHIRD),  which

contains data of both patients and medical facilities under the National Health Insurance

program. Access to this NHIRD dataset is limited, but permission is provided for its use for

research work in Taiwan. We used the LHID2005: Longitudinal Health Insurance Database 2005

(a subset of the NHIRD) for the years between 1996 and 2011 and extracted inpatient

expenditures by admission (DD) from it. Similar to MIMIC-III, we separated patients’

diagnoses data coded using the ICD system. Note that although our datasets are of patients’

diagnoses and procedures data, these include a rich set of information of various diseases,

injuries, congenital anomalies, symptoms, signs, abnormal conditions, some supplementary

factors in�uencing health status, operations, and medical services, etc.
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Like medGAN, in this research, we concentrated our investigations on generating aggregated

count data (how many times a patient associated with a speci�c ICD code of disease or

procedure) and binary data (absence or presence of speci�c ICD codes). The use of aggregated

EHR data is common in many studies for machine learning tasks.  The following 2

subsections describe converting longitudinal EHR data to aggregated count and binary data.

Convert to aggregated (count) data: For a fair comparison with medGAN, we reduced the ICD

codes to 3-digit codes for each dataset. Note that in the longitudinal EHR datasets, each row

corresponds to a patient’s admission record of diagnoses data (MIMIC-III and NHIRD) or of

diagnoses and procedures data (extended MIMIC-III), represented by ICD codes. A patient

likely visits a hospital more than once, so s/he may have multiple records in the EHR data. We

aggregated each patient’s longitudinal record into a single �xed-sized vector of ICD codes.

Thus, we represented each dataset as a multidimensional matrix, in which a row corresponds

to a patient’s record and a column to a speci�c ICD code (eg, diagnoses code or procedure code).

Since ICD codes are aggregated by the patients, they are all count variables. The count variables

indicate the number of times a patient was associated with a speci�c ICD code. Table 1 shows a

portion of a sample count dataset. Here, all values in Table 1 are anonymized.

Table 1.

Portion of sample count dataset

Patient ID  ICD_817  ICD_819  ICD_363 

AAAAAA  2  4  5 

BBBBBB  0  0  0 

CCCCCC  3  2  0 

…  …  …  … 

XXXXXX  1  0  4 

Convert to binary data: Note that all the features in our 3 datasets, MIMIC-III, extended
MIMIC-III, and NHIRD, are count variables. As we would like to analyze both count and binary
discrete variables, we prepared a binary version of each count dataset by converting the
aggregated count variables (say ) to binary variables (say ) by using the following equation:  

Table 2 shows a portion of a sample binary dataset derived from the corresponding count

dataset in Table 1. The binary variables indicate whether a patient was associated with a speci�c

ICD code.

33–36

ci bi

(1)

= {  bi

1,  if  > 0 ci

0,  otherwise
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Table 2.

Portion of sample binary dataset

Patient ID  ICD_817  ICD_819  ICD_363 

AAAAAA  1  1  1 

BBBBBB  0  0  0 

CCCCCC  1  1  0 

…  …  …  … 

XXXXXX  1  0  1 

Statistics of datasets: Some basic statistics of the 3 datasets derived the 2 di�erent data sources

are presented in Table 3. Observe that the NHIRD dataset is larger than the MIMIC-III datasets

in terms of the number of patients/records. There are 942 ICD codes in the MIMIC-III

diagnoses dataset, 1651 ICD codes (diagnoses codes: 940 and procedures codes: 711) in the

extended MIMIC-III dataset, and 1015 ICD codes in the NHIRD diagnoses dataset. However, as

can be seen in Figure 1, the NHIRD dataset is sparser than the MIMIC-III datasets. In

Figure 1(a), we plot the empirical cumulative distribution function (ECDF) of the number of

unique ICD codes associated with all the patients in each dataset. In NHIRD, 70% of patients

have 5 or fewer unique ICD codes, whereas, in MIMIC-III and extended MIMIC-III, the same

percentage of patients have up to 13 and 18 unique ICD codes, respectively. In Figure 1(b), we

compute the proportion of patients associated with each ICD code and then plot the ECDF of the

proportion of patients. In NHIRD, 90% of the ICD codes (913 among 1015) are associated with

only 1.31% of patients or less, whereas in MIMIC-III, 90% of the ICD codes (845 among 942)

are associated with up to 2.95% of patients, and in extended MIMIC-III, 90% of the ICD codes

(1487 among 1651) are associated with up to 2.17% of patients. Note that as shown in Table 3,

the MIMIC-III dataset denotes only diagnoses data, whereas the extended MIMIC-III dataset

denotes both diagnoses and procedures data for the onward texts, tables, and �gures.

Table 3.

Basic statistics of datasets

Statistics  MIMIC-III
(diagnoses data) 

Extended MIMIC-III (diagnoses +
procedures data) 

NHIRD, Taiwan
(diagnoses data) 

# of patients / records  46 517  42 214  498 909 

# of unique ICD codes /
dimensions 

942  1651 (diagnoses: 940 and
procedures: 711) 

1015 

Avg. # of codes per
patient 

13.99  20.17  8.42 
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Statistics  MIMIC-III
(diagnoses data) 

Extended MIMIC-III (diagnoses +
procedures data) 

NHIRD, Taiwan
(diagnoses data) 

Max. # of codes for a
patient 

540  610  687 

Min. # of codes for a
patient 

1  2  1 

Tables 4 and 5 list the top 10 frequent ICD codes along with their meaning, frequency of

occurrences, number of unique patients, and percentage of patients associated with each code

in MIMIC-III and NHIRD diagnoses datasets. The detailed description of each ICD code can be

searched on the following website: http://icd9.chrisendres.com/. Table 6 shows the top 10

patient data of MIMIC-III and NHIRD datasets, which include the frequency (ie, the total

number of ICD codes), the total number of unique ICD codes, and percentage of unique ICD

codes for each patient.

Table 4.

Top frequent ICD codes of MIMIC-III

Top ICD
codes 

Meaning  Frequency  No. of patients
associated with 

Percent of patients
associated with 

ICD_401  Essential hypertension  21 329  18 031  38.76 % 

ICD_427  Cardiac dysrhythmias  20 998  14 022  30.14 % 

ICD_428  Heart failure  20 676  10 154  21.83 % 

ICD_276  Disorders of fluid, electrolyte, and
acid-base balance 

20 440  12 645  27.18 % 

ICD_250  Diabetes mellitus  16 454  10 318  22.18 % 

Figure 1.

Open in new tab Download slide

ECDFs of ICD codes and patients for MIMIC-III, extended MIMIC-III, and NHIRD datasets.
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Top ICD
codes 

Meaning  Frequency  No. of patients
associated with 

Percent of patients
associated with 

ICD_414  Other forms of chronic ischemic
heart disease 

15 759  11 926  25.64 % 

ICD_272  Disorders of lipoid metabolism  14 768  12 268  26.37 % 

ICD_518  Other diseases of lung  14 608  11 363  24.43 % 

ICD_285  Other and unspecified anemias  12 910  10 631  22.85 % 

ICD_584  Acute renal failure  11 467  9536  20.50 % 

Table 5.

Top frequent ICD codes of NHIRD, Taiwan

Top ICD
codes 

Meaning  Frequency  No. of patients
associated with 

Percent of patients
associated with 

ICD_250  Diabetes mellitus  170 162  44 284  8.88 % 

ICD_401  Essential hypertension  144 662  66 258  13.28 % 

ICD_599  Other disorders of urethra and
urinary tract 

89 524  47 394  9.50 % 

ICD_295  Schizophrenic disorders  84 584  4622  0.93 % 

ICD_486  Pneumonia, organism unspecified  68 484  41 982  8.41 % 

ICD_650  Normal delivery  67 437  47 154  9.45 % 

ICD_276  Disorders of fluid, electrolyte, and
acid-base balance 

66 082  42 940  8.61 % 

ICD_414  Other forms of chronic ischemic
heart disease 

61 985  28 228  5.66 % 

ICD_V27  Outcome of delivery  60 200  43 896  8.80 % 

ICD_571  Chronic liver disease and cirrhosis  59 547  24 796  4.97 % 

Table 6.

Top patient data of MIMIC-III and NHIRD datasets

SN. of
top
patients 

MIMIC-III

 

NHIRD, Taiwan
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Frequency (No.
of total ICD
codes) 

No. of
unique
ICD codes 

Percent of
unique ICD
codes 

Frequency (No.
of total ICD
codes) 

No. of
unique
ICD codes 

Percent of
unique ICD
codes 

SN. of
top
patients 

MIMIC-III

 

NHIRD, Taiwan

 

Frequency (No.
of total ICD
codes) 

No. of
unique
ICD codes 

Percent of
unique ICD
codes 

Frequency (No.
of total ICD
codes) 

No. of
unique
ICD codes 

Percent of
unique ICD
codes 

1  540  88  9.34 %  687  18  1.77 % 

2  362  85  9.02 %  605  5  0.49 % 

3  361  44  4.67 %  527  23  2.27 % 

4  360  70  7.43 %  505  16  1.58 % 

5  359  61  6.48 %  501  5  0.49 % 

6  332  74  7.86 %  490  14  1.38 % 

7  326  79  8.39 %  487  15  1.48 % 

8  323  42  4.46 %  485  20  1.97 % 

9  316  77  8.17 %  469  7  0.69 % 

10  293  64  6.79 %  466  8  0.79 % 

GANs: The idea of the GAN framework by Ian J. Goodfellow et al. was �rst published in,  and

later they introduced it at the NIPS 2014 conference.  Yann LeCun, Director of AI Research at

Facebook and Professor at NYU, said the following in his Quora session :

“(GANs), and the variations that are now being proposed is the most interesting idea in the

last 10 years in ML, in my opinion.”

The main idea of GANs, as indicated by the authors, is to train 2 neural networks: a generative
model G, which captures the distribution of the original training data, and a discriminative
model D, which classi�es whether a sample originates from the original data (real) or
generator (fake). The training procedure for G is to fool D, ie, to maximize the probability of D
making a mistake by producing high-quality fake samples. This framework resembles a 2-
player minimax game.  A commonly used analogy is that the generator (G) is akin to a
forger (criminal) trying to produce counterfeit money and that the discriminator (D) is akin to
the police attempting to detect the counterfeit money. The objective of the criminal is to
counterfeit money, such that the police cannot discriminate the counterfeit money from real
money. In contrast, the police want to detect the counterfeit money as best as possible.
Formally, the minimax game between G and D with the value function V(G, D) is as follows:  
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 where  is the data distribution and  is the simple noise distribution (eg, uniform
distribution or spherical Gaussian distribution). Initially, G accepts a random prior  and
generates synthetic samples for the certi�cation of D. G is then trained (updated parameters)
by using the error signal from D through backpropagation. In Figure 2, the left part
[Figure 2(a)] shows the main concept of the original GAN architecture.

medGAN: As mentioned, the original GAN can learn only the distribution of continuous values,

and the authors of the medGAN framework ameliorated this limitation by leveraging the power

of autoencoders.  The general idea of an autoencoder is mapping an input dataset  to an

output  (called reconstruction) through an internal representation or hidden layer . An

autoencoder comprises 2 components: an encoder  and a decoder .

This autoencoder mechanism is widely used to learn the salient features of training samples in

various modern neural network applications.  In the medGAN framework, an autoencoder is

used to capture the salient features of the discrete variables and decode the continuous output

of G. The autoencoder is pretrained before GAN training. As shown in Figure 2(b), the

continuous output of the generator  is passed through the decoder .  can select the

appropriate distribution from  and yield the discrete output . The

discriminator can now determine whether this synthetic discrete sample  is fake or real in a

normal fashion.

Another performance-enhancing technique used in the medGAN framework is minibatch

averaging. Occasionally, in a GAN, G with di�erent random priors  may produce the same

synthetic output rather than diverse outputs because of the min-max optimization strategy of

the GAN instead of max-min.  In the medGAN framework, minibatch averaging mitigates this

“mode collapse” problem and signi�cantly improves the model performance in terms of

generating discrete synthetic data.

V (G,  D) =   [logD (x)] + [log (1 − D (G (z)))],min
G

max
D

Ex∼ (x)pdata
Ez∼ (z)pz

11 pdata pz
z ∼ pz

Figure 2.
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medWGAN: In the proposed medWGAN, we employ an improved generative network called

WGAN-GP instead of the general GAN. The remainder of the structure is the same as that of

medGAN shown in Figure 2. The authors of the WGAN-GP model in  claimed that the

previously developed Wasserstein GAN (WGAN) model  facilitates stable training but

generates low-quality samples or fails to converge in some settings owing to the use of the

weight-clipping technique. To overcome these issues, they o�ered an alternative method of

weight clipping called gradient penalty, which entails penalizing the norm of the gradient of

the discriminator (critic) with respect to its input. The WGAN-GP model performs better than

many GAN architectures, including the standard WGAN. Hence, in this investigation, we

hypothesized that applying medWGAN to generate synthetic EHRs would yield superior

performance to that achieved by applying the original medGAN.

medBGAN: This proposed model is another alternative to medGAN, and we achieved the model

by replacing the traditional GAN with a new algorithm called BGAN.  In this novel approach, a

generator is trained to match a target distribution that converges toward the true distribution

of the data as the discriminator is optimized. This objective can be inferred as training a

generator to create samples that lie on the decision boundary of the current discriminator in

training at each update. Hence, the GAN trained using this algorithm is called BGAN. This

algorithm e�ectively works on both discrete and continuous variables and shows qualitatively

superior performance levels to those of conventional GANs. Similar to medWGAN, medBGAN is

expected to exhibit high performance in terms of generating synthetic EHRs.

EXPERIMENTS

In this section, we discuss our experimental setup for model training, and the process of

training and generating synthetic EHRs. We also describe the methods for evaluating synthetic

EHRs.

Experimental setup: We obtained the source code of medGAN from the GitHub repository on,

trained medGAN, and applied it to generate synthetic data without changing its scripts. In our

medWGAN and medBGAN, we changed a few lines of code to implement WGAN-GP and BGAN.

The source code to reproduce the result is publicly available at

https://github.com/baowaly/SynthEHR.

We split each of the MIMIC-III, extended MIMIC-III, and NHIRD datasets into 2 parts, namely,

training and testing datasets, at a 4:1 ratio. We used the training dataset to train the models and

generate the same number of synthetic EHRs. We reserved the testing dataset to test the

predictive models. Most of the parameter settings of medGAN were retained in our models.

Some of the common settings are listed in Table 7.

Table 7.

Experimental settings
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# of training samples of MIMIC-III  37 213 

# of training samples of extended MIMIC-III  33 771 

# of training samples of NHIRD  399 127 

# of epochs to pre-train the autoencoder  100 

# of epochs to train the model  1000 

Batch size  1000 

Generator size  (128, 128, 128) 

Discriminator size  (256, 128, 1) 

Training the models: We further split the training data into training and validation subsets by a

9:1 ratio. We pre-train the autoencoder for 100 epochs using the training subset and for every

epoch we report the training and validation loss, which is de�ned as binary-cross entropy for

binary variables and mean squared error for count variables. From the training curve, we

observe that 100 epochs are su�cient, and there is no over�tting.

After pre-training the autoencoder, we copy the decoder part and cascade it to be the last layer

of the generator G, and train the GAN networks for 1000 epochs using the 90% training subset.

For every epoch, we use the remaining 10% validation subset to check the performance

(accuracy and AUC) of the discriminator D as a binary classi�er. More importantly, we use the

generator G to randomly generate synthetic data for every 10 epochs during the training

process, and perform some sanity checks on these temporarily generated data, such as

dimension-wise averages and number of nonzero dimensions. As the training process

progresses, we observe that the quality of the temporarily generated synthetic data becomes

better and better with all checking items become stable after 700∼800 epochs in all cases.

We examined di�erent numbers of discriminator and generator training cycles, which we

de�ned as the discriminator-to-generator ratio, to update them for each training epoch. Based

on the correlation coe�cients between the dimension-wise averages of training data and �nal

synthetic data, we set this ratio to 2:1 for medGAN and medWGAN, and 5:1 for medBGAN.

Generation of synthetic binary EHRs: We trained the models and generated synthetic data with

sizes being the nearest multiples of the batch size in the training samples (Table 3), ie, 37 000,

33 000, and 399 000 samples from MIMIC-III, extended MIMIC-III, and NHIRD, respectively.

The raw generated data values were continuous in the range of 0 to . We converted them to

binary (0 or 1) through rounding.

Generation of synthetic count EHRs: Similar to the binary samples, for count variables, we

used the same number of training samples to train the models and generate synthetic data.

However, the raw generated data values were any continuous nonnegative numbers. We

rounded the continuous values of the synthetic data to the nearest integer values.

1
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System information and computation time: Our computing server was equipped with 2 Intel

Xeon E5-2667 (each with 8 physical cores), 512GB RAM, 8 Nvidia GeForce GTX 1080 Ti’s, and

CUDA 8.0; although we used a single GPU at a time for training the models. We implemented

our methods with TensorFlow 1.4. The average running time required to train the models and

generate the synthetic data was 1.88 hours for MIMIC-III, 2.29 hours for extended MIMIC-III,

and 20.12 hours for NHIRD datasets.

Methods for evaluating synthetic EHRs: After the generation of the synthetic EHRs, the

obvious issue was to evaluate these generated data and compare them with the real EHRs. For

these purposes, we employed some evaluation methods from 2 di�erent perspectives as

follows.

1. Statistical methods: As a basic sanity check to ensure whether our models learned the

distribution of each dimension acceptably, we calculated the dimension-wise probability

for binary data and dimension-wise average count for count data, and performed the

dimension-wise Kolmogorov–Smirnov test (K–S test).

Dimension-wise probability: This refers to the Bernoulli success probability of each dimension
(disease or procedure code) in the binary dataset. The dimension-wise probability is computed
using the following formula:  

Dimension-wise average: This refers to the column average of each dimension (disease or
procedure code) in the count dataset. The dimension-wise average is calculated using the
following formula:  

Dimension-wise K–S test: We performed the K–S test on 2 data samples (synthetic data and real

data) to examine whether the 2 data samples originate from the same distribution. In the K–S

test, the statistic is calculated by �nding the maximum absolute value of the di�erences

between 2 samples’ cumulative distribution functions.  The null hypothesis is that both

samples originate from a population with the same distribution. In our experiment, we rejected

the null hypothesis with a low P-value (typically ≤ 0.05). More details of the K–S test is

discussed in the Results section.

1. Machine learning methods: We applied association rule mining and dimension-wise

prediction to test how interdimensional relationships are preserved in the synthetic data.

Association rule mining: Association rule mining such as Apriori is widely used on EHR data to

identify associations and interpretable patterns among clinical concepts (medications,

laboratory results, and problem diagnoses).  We employed this rule-based machine learning

method for discovering some strong associations or relations among variables in both real and

(2)

Dimension-wise probability =  
Number of patients who had the disease or procedure

Total number of patients

(3)

Dimension-wise average  =  Column sum

Total number of records
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synthetic datasets. We checked whether the relations found in the real dataset were present in

the corresponding synthetic dataset. For simplicity, we considered only one-to-one

relationships with all rules having a length of 2. For MIMIC-III and NHIRD, we set the

parameters of the Apriori algorithm (support and con�dence thresholds) to be the values that

yield roughly 50∼200 rules from the real dataset and use the same parameters for synthetic

datasets generated by the 3 GAN models. To compare the rules found from each of the real

datasets to the rules found from the corresponding synthetic dataset, we used several metrics

such as precisions and recalls. Precision is de�ned as the number of common rules found in

both real and synthetic datasets divided by the number of rules found in the synthetic dataset,

and recall is de�ned as the number of common rules found in both real and synthetic datasets

divided by the number of rules found in the real dataset.

Dimension-wise prediction: As an indirect means of testing interdimensional relationships in

synthetic data, we performed a prediction task for each ICD code. We applied 3 popular machine

learning methods, logistic regression, random forest, and support vector machine (SVM),

which are commonly used for predictive modeling on EHR data.  We compared

dimension-wise prediction results of predictive models trained on synthetic data with those of

the corresponding real data. To describe more speci�cally, suppose that we have totally 

dimensions (disease or procedure codes), where  for MIMIC-III,  for

extended MIMIC-III, and  for NHIRD. The predictive algorithm considers a dimension

 at a time as the target or dependent variable for prediction (ie, whether this disease or

procedure may occur), and the remaining  dimensions as the features or independent

variables . Note that, for the count dataset, the target variable  is converted into binary using

the same technique as in Equation 1. In this way, we built predictive models for each disease or

procedure using both real and synthetic datasets, and these models were subsequently applied

to the heldout testing data to obtain performance scores (F1 scores). To compare prediction

results of the real and synthetic datasets, we computed correlation coe�cients (CCs) and the

root-mean-square errors (RMSEs) by using all F1 scores across all dimensions, as explained in

detail in the following sections.

RESULTS

As mentioned in previous sections, we used the binary and count versions of MIMIC-III,

extended MIMIC-III, and NHIRD datasets. We applied 3 di�erent generative models, namely,

medGAN, medWGAN, and medBGAN, separately to the datasets to generate synthetic data. The

performance levels of the 3 models in terms of producing synthetic EHRs are discussed in this

section.

Dimension-wise probability:Figure 3 shows the dimension-wise probability performance of

the 3 di�erent generative models for MIMIC-III, extended MIMIC-III, and NHIRD synthetic

binary data. Each scatterplot displays the performance of 1 generative model. In the

scatterplots, each dot represents one ICD code. The x-axis represents the Bernoulli success

probability of each disease or procedure (ICD code) in real data, and the y-axis represents the

34–36,46,49
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success probability of each disease or procedure (ICD code) in synthetic data. The diagonal line

indicates the ideal case in which the performance of synthetic data is identical to that of real

data. To measure the performance of each generative model numerically, we use CCs and

RMSEs between real and synthetic data. The plots in Figures 3(a), (b), and (c) show similar

trends of dimension-wise probability for MIMIC-III, extended MIMIC-III, and NHIRD binary

data. The proposed medWGAN and medBGAN yield slightly superior performance to the

baseline model medGAN, but the performances are very close to the highest mark (100%).

Among the 3 models, medBGAN has the best performance.

Dimension-wise average count:Figure 4 shows the dimension-wise average count of the 3

di�erent generative models for MIMIC-III, extended MIMIC-III, and NHIRD synthetic count

data. Each scatterplot displays the performance of 1 generative model. In the scatterplots, each

dot represents 1 ICD code. The x-axis represents the average count of each disease or procedure

(ICD code) in real data, and the y-axis represents the average count of each disease or

procedure (ICD code) in synthetic data. According to Figures 4(a) and (b) for MIMIC-III and

extended MIMIC-III count data, both medWGAN and medBGAN show a small improvement

compared with medGAN. However, for NHIRD count data in Figure 4(c), only medBGAN

outperforms medGAN, but the outputs of medGAN and medWGAN are almost identical.

Figure 3.

Open in new tab Download slide

Scatterplots of dimension-wise probability results of real binary data (x-axis) vs. synthetic counterpart (y-axis)
produced by the 3 generative models.
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K–S test results: We applied the dimension-wise K–S test to examine whether a speci�c

sample (say ) of synthetic data and the corresponding sample (say ) of the real data with

the same dimension name originate from a population with the same distribution (1 or 0).

Then, we calculated the total percentage of similarity between each synthetic dataset and the

corresponding real dataset. The derived results are summarized in Table 8. Table 8 shows the

percentage of similarity between synthetic data generated by the 3 generative models and their

real data counterparts. We observed that similar to the previous statistical results, the proposed

medWGAN and medBGAN outperform medGAN. In most cases, medBGAN has the best

performance. The medWGAN exhibits the best result only for MIMIC-III and extended MIMIC-

III count data.

Table 8.

K–S test results

Dataset  Data type  Generative model  K–S test similarity 

MIMIC-III  Binary  medGAN  94.48 % 

medWGAN  95.97 % 

medBGAN  97.45 % 

Open in new tab Download slide

Scatterplots of dimension-wise average count results on real count data (x-axis) vs. synthetic counterpart (y-axis)
produced by the 3 generative models.
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Dataset  Data type  Generative model  K–S test similarity 

Count  medGAN  88.64 % 

medWGAN  95.12 % 

medBGAN  89.70 % 

Extended MIMIC-III  Binary  medGAN  95.34 % 

medWGAN  96.49 % 

medBGAN  97.64 % 

Count  medGAN  93.46 % 

medWGAN  96.24 % 

medBGAN  94.12 % 

NHIRD, Taiwan  Binary  medGAN  92.12 % 

medWGAN  76.35 % 

medBGAN  95.86 % 

Count  medGAN  83.35 % 

medWGAN  80.59 % 

medBGAN  86.31 % 

Association rule mining: As we mentioned in the Experiments section, our main purpose for

association rule mining in this study is to examine how interdimensional relationships are

preserved in synthetic data, not to explore the best performance in terms of �nding the most

number of rules of comorbidities in real data. Therefore, we tried several sets of parameters

with minimum support of 5% to 10% and con�dence of 40% to 50%. We got almost the same

results in evaluating interdimensional relationships between real data and synthetic data

(de�ned by precision/recall) in all cases; therefore, we chose to show 1 evaluation result

(Table 9) here that produced roughly 50∼200 rules from the real datasets. We found 72 rules

from the MIMIC-III real dataset and 154 rules from the extended MIMIC-III real dataset, using

the Apriori algorithm by setting minimum support = 0.05, minimum con�dence = 0.50,

minimum length = 2, and maximum length = 2. As for NHIRD, which is sparser and larger than

MIMIC-III, we set minimum support = 0.01, minimum con�dence = 0.40, minimum length = 2,

and maximum length = 2, and found 63 rules from the real dataset. We maintained this same

parameter setting for the corresponding synthetic datasets. The number of rules found in all

synthetic datasets, as well as the precisions and recalls, are summarized in Table 9.

Table 9.
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Association rule mining results

Dataset  No. of
extracted rules
in real data 

Generative
model 

No. of extracted
rules in
synthetic data 

No. of matched
rules in
synthetic data 

Precision  Recall 

MIMIC-III  72  medGAN  180  61  0.3388  0.8472 

medWGAN  64  52  0.8125  0.7222 

medBGAN  153  67  0.4379  0.9305 

Extended
MIMIC-III 

154  medGAN  274  134  0.4890  0.8701 

medWGAN  201  142  0.7064  0.9220 

medBGAN  229  150  0.6550  0.9740 

NHIRD,
Taiwan 

63  medGAN  1350  56  0.0414  0.8888 

medWGAN  62  50  0.8064  0.7936 

medBGAN  520  60  0.1153  0.9523 

MIMIC-III: As we show in Table 9, under the same settings of parameters, medWGAN yields

the highest precision and medBGAN yields the highest recall for the MIMIC-III dataset. In this

case, we observe that both the proposed medWGAN and medBGAN outperform the original

medGAN. The association rule mining on the extended MIMIC-III dataset outputs results

similar to the MIMIC-III.

NHIRD, Taiwan: Similar to MIMIC-III, we observe for NHIRD that medWGAN yields the highest

precision and medBGAN yields the highest recall. Hence, we can conclude that our models

outperform medGAN.

From the association rule mining, it is clear that medBGAN is able to reproduce most of the

rules seen in the real data and hence it outputs the best recall (93.05% for MIMIC-III, 97.40%

for extended MIMIC-III, and 95.23% for NHIRD). In contrast, medWGAN generates the least

number of spurious rules in the synthetic data, and hence it outputs the best precision (81.25%

for MIMIC-III, 70.64% for extended MIMIC-III, and 80.64% for NHIRD). Note that although

medBGAN shows low precision for NHIRD data, it performs better than medGAN.

Dimension-wise prediction performance: This part involves determining how well our

synthetic data created by the generative models perform compared with the real data in the

machine learning prediction task. Here, we show the dimension-wise prediction performance

of both binary and count variables for MIMIC-III, extended MIMIC-III, and NHIRD synthetic

data using each of the 3 aforementioned predictive models.

Figure 5 shows the dimension-wise prediction performance of the 3 generative models

obtained from the results of the logistic regression model trained on MIMIC-III, extended

MIMIC-III, and NHIRD synthetic binary data and the corresponding real data. In the
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scatterplots, each dot represents 1 ICD code. The x-axis represents the F1 scores of the logistic

regression model trained on the real binary data, and the y-axis represents the F1 scores of the

logistic regression model trained on the synthetic binary data. Regarding the prediction results

for MIMIC-III binary data in Figure 5(a), for extended MIMIC-III binary data in Figure 5(b),

and for NHIRD binary data in Figure 5(c), both medWGAN and medBGAN outperform medGAN.

Notably, medBGAN shows the highest performance of all generative models.

Figure 6 shows the dimension-wise prediction performance of the 3 generative models

obtained from the results of the logistic regression model trained on MIMIC-III, extended

MIMIC-III, and NHIRD synthetic count data and the corresponding real data. In the

scatterplots, each dot represents 1 ICD code. The x-axis represents the F1 scores of the logistic

regression model trained on the real count data, and the y-axis represents the F1 scores of the

logistic regression model trained on the synthetic count data. Regarding the dimension-wise

prediction performance for MIMIC-III count data in Figure 6(a) and for extended MIMIC-III

count data in Figure 6(b), both medWGAN and medBGAN outperform medGAN, but medWGAN

has the best performance for MIMIC-III, and medBGAN has the best performance for extended

MIMIC-III, although they are very close in both cases. In contrast, for NHIRD count data in

Figure 6(c), medWGAN has a slightly higher performance level than those of the other models,

but we observe no signi�cant di�erences among these 3 generative models.

Figure 5.

Open in new tab Download slide

Scatterplots of dimension-wise prediction results (F1-scores) of logistic regression model trained on real binary
data (x-axis) vs. synthetic counterpart (y-axis) produced by the 3 generative models.

https://academic.oup.com/jamia/article-pdf/26/3/228/27642536/ocy142.pdf
javascript:;
https://s100.copyright.com/AppDispatchServlet?publisherName=OUP&publication=1527-974X&title=Synthesizing%20electronic%20health%20records%20using%20improved%20generative%20adversarial%20networks&publicationDate=2018-12-07&volumeNum=26&issueNum=3&author=Baowaly%2C%20Mrinal%20Kanti%3B%20Lin%2C%20Chia-Ching&startPage=228&endPage=241&contentId=10.1093%2Fjamia%2Focy142&oa=&copyright=Oxford%20University%20Press&orderBeanReset=True
javascript:;
https://academic.oup.com/view-large/figure/130214857/ocy142f5.tif
https://academic.oup.com/DownloadFile/DownloadImage.aspx?image=https://oup.silverchair-cdn.com/oup/backfile/Content_public/Journal/jamia/26/3/10.1093_jamia_ocy142/2/ocy142f5.png?Expires=1586413816&Signature=yRh0vZqaMEfnEfVMN~gn8jxiH5Yb5Al5990JjHv9D9hk6lxy9IXYsPQIP7i4UL7UmShehi-~~vUacccrLJW7PYn3uOvsFYvo~gDlCma44mBCdrkVdDaBmqhxTiY4l6WkKnchgaJVSiSlylLhYFAjyY3ioynnYUoaukIRMyvKZZggupNFZ6E1aoTClWm3uIBzpZVq8Bs7u2LVIsF10DwE8xOGClTybZ9bQezZ~hHtuCicdTm3F7wIetSJF7OW8Lk9Qz4YNu3TTYd-QS-u2EARiw-zp2H16avsv--uTfVmgLqiQA5H8D-ArTEebcKaV6uofLiXqn0LzqUeDwMIoq2w1A__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA&sec=130214857&ar=5235390&xsltPath=~/UI/app/XSLT&imagename=&siteId=5396


Skip to Main Content

PDF  Split View Cite  Permissions  Share  

We evaluated the prediction results of the other 2 machine learning classi�ers, random forest

and SVM, in a similar fashion as we did for the logistic regression method as discussed above.

The prediction performances of the 3 generative models obtained from the results (F1 scores)

of the 3 predictive classi�ers are shown in Table 10. In the random forest prediction results, we

see that medBGAN shows better results than the remaining 2 generative models, except in

extended MIMIC-III and NHIRD count datasets. In SVM predictions, medBGAN always

outperforms the other generative models, although in some cases, the results are very close.

Table 11 summarizes the prediction performances, which shows the best generative models of

the prediction tasks on various synthetic data. From Tables 10 and 11, we can say that our

models (medBGAN and medWGAN) outperform the baseline model medGAN for each of the 3

predictive modeling tasks.

Table 10.

Prediction performances of the 3 generative models

Dataset  Data
type 

Generative
model 

Correlation coefficients (CCs) between synthetic and real
data prediction results

 

Logistic regression  Random forest  SVM 

Figure 6.

Open in new tab Download slide

Scatterplots of dimension-wise prediction results (F1-scores) of logistic regression model trained on real count
data (x-axis) vs. synthetic counterpart (y-axis) produced by the 3 generative models.
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Dataset  Data
type 

Generative
model 

Correlation coefficients (CCs) between synthetic and real
data prediction results

 

Logistic regression  Random forest  SVM 

MIMIC-III  Binary  medGAN  0.9217  0.8907  0.9406 

medWGAN  0.9490  0.9564  0.9505 

medBGAN  0.9794  0.9733  0.9540 

Count  medGAN  0.9050  0.9190  0.9469 

medWGAN  0.9582  0.9470  0.9507 

medBGAN  0.9441  0.9593  0.9589 

Extended
MIMIC-III 

Binary  medGAN  0.9298  0.9248  0.9445 

medWGAN  0.9340  0.9450  0.9389 

medBGAN  0.9724  0.9700  0.9655 

Count  medGAN  0.9255  0.8985  0.9278 

medWGAN  0.9503  0.9371  0.9474 

medBGAN  0.9615  0.9282  0.9553 

NHIRD,
Taiwan 

Binary  medGAN  0.9030  0.8339  0.8970 

medWGAN  0.9318  0.8471  0.9132 

medBGAN  0.9609  0.9232  0.9705 

Count  medGAN  0.9639  0.9325  0.9750 

medWGAN  0.9702  0.9325  0.9520 

medBGAN  0.9656  0.9282  0.9756 

Table 11.

Summary of prediction performances

Dataset  Data type  Best generative model of prediction

 

Logistic regression  Random forest  SVM 

MIMIC-III  Binary  medBGAN  medBGAN  medBGAN 

Count  medWGAN  medBGAN  medBGAN 
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Dataset  Data type  Best generative model of prediction

 

Logistic regression  Random forest  SVM 

Extended MIMIC-III  Binary  medBGAN  medBGAN  medBGAN 

Count  medBGAN  medWGAN  medBGAN 

NHIRD, Taiwan  Binary  medBGAN  medBGAN  medBGAN 

Count  medWGAN  medWGAN  medBGAN 

DISCUSSION

A summary of our evaluation results is presented in Table 12. The table indicates the best model

for each evaluation criterion of the synthetic datasets. Clearly, in each case of the evaluations,

our models, either medBGAN or medWGAN, outperform the baseline model medGAN. As

mentioned in the Results section, in very few cases, the improvement o�ered by the proposed

models was not signi�cant; nevertheless, in most cases, we obtained impressive results for

both binary and count data.

Table 12.

Results summary

Dataset  Data type  Evaluation criteria  Best generative model 

MIMIC-III  Binary  Dimension-wise probability performance  medWGAN/medBGAN 

K–S test  medBGAN 

Association rule mining  medWGAN/medBGAN 

Dimension-wise prediction performance  medBGAN 

Count  Dimension-wise average count  medWGAN/medBGAN 

K–S test  medWGAN 

Dimension-wise prediction performance  medBGAN 

Extended MIMIC-III  Binary  Dimension-wise probability performance  medWGAN/medBGAN 

K–S test  medBGAN 

Association rule mining  medWGAN/medBGAN 

Dimension-wise prediction performance  medBGAN 
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Dataset  Data type  Evaluation criteria  Best generative model 

Count  Dimension-wise average count  medWGAN/medBGAN 

K–S test  medWGAN 

Dimension-wise prediction performance  medBGAN 

NHIRD, Taiwan  Binary  Dimension-wise probability performance  medBGAN 

K–S test  medBGAN 

Association rule mining  medWGAN/medBGAN 

Dimension-wise prediction performance  medBGAN 

Count  Dimension-wise average count  medBGAN 

K–S test  medBGAN 

Dimension-wise prediction performance  medWGAN 

MIMIC-IIIvs.Extended MIMIC-III: There was an important purpose of using 2 di�erent

MIMIC-III datasets in this study to investigate whether our proposed models can be applied to

the dataset of several EHR data types simultaneously. For this reason, in addition to the

MIMIC-III diagnoses dataset, we employed the extended MIMIC-III dataset, which included

both diagnoses and procedures EHR data. Table 12 shows that the evaluation results of the

extended MIMIC-III dataset are the same as the MIMIC-III dataset, which proves the

e�ectiveness of our models.

medWGANvs.medBGAN: A comparison of the proposed models is warranted. For MIMIC-III

data, medWGAN outperforms medBGAN only in the K–S test on count data, and medBGAN

yields the best performance for all the remaining evaluations. On the contrary, in NHIRD data,

medBGAN shows the best performance in all cases except in the prediction of count data.

However, the improvement of medWGAN was trivial. In association rule mining, each model

shows better performance than the other does from di�erent perspectives.

Because in a few cases, medWGAN shows little improvement or comparable performances to

medBGAN, we analyzed its performance from a di�erent perspective here, ie, the total number

of all-zero dimensions in the synthetic data. While generating the synthetic data, we observed

that in our real dataset, some diseases rarely occurred among the patients, ie, some dimensions

(columns) consisted of all zeros or very few nonzero values. For these dimensions, the models

might have generated synthetic data with some all-zero dimensions. Table 13 lists these

statistics for count datasets, indicating that for the synthetic datasets with count variables,

medWGAN generates more dimensions with all zeros than medBGAN and medGAN do.

Table 13.

All-zero dimensions
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Dataset (count
variables) 

# of dimensions with all zeros

 

MIMIC-III (total
dimensions: 942) 

Extended MIMIC-III (total
dimensions: 1651) 

NHIRD, Taiwan (Total
dimensions: 1015) 

Original (real)
data 

6 (0.64 %)  26 (1.57 %)  5 (0.49 %) 

medGAN
synthetic data 

324 (34.39 %)  620 (37.55 %)  172 (16.94 %) 

medWGAN
synthetic data 

607 (64.43 %)  1135 (68.75 %)  694 (68.37 %) 

medBGAN
synthetic data 

163 (17.30 %)  453 (27.44 %)  128 (12.61 %) 

The all-zero dimensions produced by medWGAN are 607 (64.43%) for MIMIC-III data, 1135

(68.75%) for extended MIMIC-III data, and 694 (68.37%) for NHIRD data. Although medGAN

generates good results here, as shown in Table 13, it did not exhibit superior performance to

medWGAN in the other previous evaluations. By contrast, medBGAN performs the best, as well

as producing fewer numbers of all-zero dimensions (17.30% for MIMIC-III, 27.44% for

extended MIMIC-III, and 12.61% for NHIRD datasets). Therefore, overall, we can conclude that

the proposed medBGAN outperforms both medWGAN and medGAN.

Implications and Limitations: This research has been conducted to build realistic and useful

discrete synthetic EHR data leveraging the idea of improved GANs. In this extensive work, in

addition to the basic statistical analysis, we applied 3 popular machine learning methods for

predictive modeling and 1 widely used method (Apriori) for association rule mining. The whole

study was conducted on 3 diverse EHR datasets—MIMIC-III (diagnoses data), extended

MIMIC-III (diagnoses + procedures data), and NHIRD (diagnoses data)—in terms of their

source, size, and sparsity. The evaluation results of all the conducted experiments prove the

superiority of our models over the existing medGAN model in producing realistic synthetic EHR

data. It also ensures us that the generated synthetic data are good enough for machine learning

tasks. Note that in this study, we investigated patients’ diagnoses and procedures data as a case

study. However, our proposed method is not restricted to these data because we did not use any

diagnosis-speci�c or procedure-speci�c knowledge during GAN training. Additionally, the

original GAN-based methods perform well to generate continuous data. Therefore, as a general

method, our model can be used to generate any realistic EHR data, even beyond the medical

domain.

The use of our generated synthetic data can help to mitigate the di�culty in obtaining real EHR

data for research purposes. We hope this study will play a signi�cant role in forwarding the

development of medical research and technology.
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Privacy consideration: For privacy consideration, as we mentioned in the �rst section,

synthetic data are arti�cially created, and hence there is no explicit mapping between real and

synthetic data. For this reason, intuitively, we can say that our generated synthetic data also

stay resistant to re-identi�cation. More importantly, Choi et al. performed a formal

assessment of medGAN’s privacy risks based on both attributed disclosure and presence

disclosure in the synthetic dataset.  The privacy experiments showed that medGAN generates

diverse synthetic samples that reveal little information to potential attackers. As we used an

architecture similar to medGAN, it inherits privacy preservation in our models. We will explore

this issue in the future.

CONCLUSION

We propose 2 variations of the medGAN model, namely, medWGAN and medBGAN, which can

adequately learn the distribution of real-world EHRs and exhibit remarkable performance in

generating realistic synthetic EHRs for both binary and count variables. We comprehensively

analyzed the synthetic EHR data generated by the 3 generative models and compared their

evaluation results with real EHR data. Based on this investigation, we conclude that the

proposed models outperformed the existing medGAN, and that among these 3 models,

medBGAN performed the best.
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