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T h e  impuri ty states of a single Cr and ;\ln atom in a simulated ZnO crystal are
calculat.ed by using the real space recursive Greenís function and Linear hIuffm-Tin
Orbit& method. The results show that most of the impurity states are in the ZnO
band gap and could significantly affect the conduction of a ZnO-based varistor.

PXCS.  71.2@.-b  - Electronic density of states.

Pf\CS.  71.%-i  - Impurity and defect levels.
PACS. 74.25.  J b ~ Electronic st,ructure.

The nonlinear electrical conduction of ZnO-based varistor has long been investigated

by esperimentalists  [l-G]. It is well known that impurities in ZnO are closely related to

the nonlinearity [l-3], which exhibits high resistance at low voltage and low resistance at

high voltage. The electronic  structures of impurities in ZnO are therefore essential for

better understanding of the conduction mechanism. There have been several articles [7-111

devoted to the investigation of transition metal (TM)Irn urities in ZnO.  Most of them usedp

the cluster method and zinc-blende  structure. Recently, Bertoncello et nl. [ll] used the

LCAO molecular-cluster approach to calculate the electronic structure of a substitutional

Cu impurity in hexagonal ZnO and obtained very accurate results. In this article, we also

maintain the actual hexagonal wurtzite structure of ZnO and simulate the bulk nature of

ZnO crystal in the ca.lculation.  The goal is to use the recursive Greenís function to calculate

the local density of states of a substitutional TM impurity atom in ZnO crystal.

1Ve  first give a brief review of how the recursive Greenís function method, as developed

by Dy, 1Vu  and Spratlin  [12.13], is a.pplied  to the calculation. For a system with Hamiltonian

/I, the Greenís function is defined as the follo\ving:
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G(z) = (z - II)-ë, (1)
where z is a complex number. The density of states D(E) can be derived from the Greenís

function by

D(E) = -$ !ime TrImG(E  + ic), (2)

where Tr and Im denote the truce and imaginary part, respectively.

Consider first a small system with Hamiltonian H(ìl  and Greenís function G(ì)  which

can be easily calculated using standard procedures. We next change the system by adding

to it a layer of atoms. The Hamiltonian for the larger system now becomes:

where h is the Hamiltonian of the added layer and V is the coupIing  of the layer to the

subsystem. Then, using the recursive equations, the Greenís function G(ì+ë)  of the enlarged

system can be calculated by

G&+ë)  = [@ - h) - V+ G(ì)  VI-’  , (5)

G$;Sí)  = G(ì)  J,’  ($+I) ,

G(ì+l)  = G&tí)  vt G(ì)  ,
21

(G)

(7)

G(ì+ë)  = Gb) + &+ë)  V+ Gb) .
11 (8)

Thus, using this recursive set of equations, we can perform our calculation using small

matrices while enla.rging the system until it includes the whole system or until it converges

for the case of infinite system.

For practical reasons, we perform calculation for a system of limited size, which,

however, simulates the infiniteness of the crystal structure. This can be achieved by con-

structing a supercell based on the ZnO wurtzite lattice and applying periodic boundary

conditions that make it look like a ZnO crystal. Our supercell contains 120 atomic spheres,

40 each of Zn, 0, and empty spheres. The introduction of empty spheres into the supercell

is an integral part of the calculation [14], which remedies the muffin-tin approximation in an

open structure like the wurtzite. In Fig. 1, one of the 5 layers in the supercell is illustrated,
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FIG. 1. Schematic depiction of a layer in the supercell.

where two types of chains, labeled (1) and (a), are specified. There are in total 4 chains in

a layer and each chain contains 6 atomic spheres.

Two transition metal atoms, Cr and Mn, are calculated respectively, each going into

the supercell substitutionally for Zn. The Ha.miltonian is formulated using real space linear

muffin-tin orbitals with self-consistent potential parameters [15].  The real space method

not only greatly simplify the formulation but, coupled with recursive Greenís function also,

considerably enhance the computing efficiency [13].

In Fig. 2, the local density of states of Cr in ZnO is presented, where the splitting

of E and T2 states is immediately identified. The separation of the states is approximately

0.68 eV, which is generally consistent with the literature data [7-111  of TM impurity states

in ZnO.  Consider, for example, the separation reported by Gemma  [7],  which is about 0.72

eV. The two states are mostly populated by 3d electrons, as shown in Table I, with a very

small amount of p electrons and a.n almost negligible contribution coming from the s orbital.

The position of the E state, measured with respect to the top of valence bands of ZnO, is

about 2.45 eV. This is done by comparing the bands derived from intrinsic ZnO with that
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FIG. 2. Density of states of a single impurity Cr in ZnO crystal.

TABLE I.  The  E a.nd T2 states of Cr and hln in ZnO a.nd the contributions from the s, p,

and d orbitals.

Cr hiln

eV Yo eV Yo

S 0.2 S 0.2
T2 3.13 P 3.2 572 2.18 P 3.0

d 96.6 d 96.8

s 0.2 S 0.1
E 2.45 P 0.5 E 1.50 P 0.4

d 99.3 d 99.5

from impurity Cr. Here we also define the zero of energy as the top of 2110  valence bands.

Since the band gap of ZnO is around 3.40 eV, it is obvious that both E and T2 states of Cr

are within the gap region. We calculate the number of states of Cr up to the energy of the

bottom of ZnO conduction bands. And it is foulid that approximately 3.70 electrons are
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FIG. 3. Density of states of a single impurity hIn in ZnO crystal.

needed to fill up these states. This suggests that the impurity is likely to become the ion

Cr3f(d3), losing two d electrons and one s electron, when the Fermi level is located in the

upper part of the gap region.

In the case of Mn impurity, the splitting is the same value of 0.M eV and 3d electrons

also occupy almost esclusively  the states, as can be checked out from Fig. 3 and Table I.

However, the E state is 1.50 eV above the top of ZnO valence bands and is 0.95 eV lower

than the E state of Cr. This result is also consistent with literature data pertaining to TM

impurities in III-V semiconductors. In particular, the splitting reported by Gemma [7] is

0.75 eV. However, his values, including that of Cr mentioned in the previous paragraph, are

derived from a less accurate procedure, a.s expla.ined  by Ikrtoncello et al. [ll]. The number

of electrons occupying the states below the bottom of ZnO conduction bands is around

4.50, which means that the Mn impurity atom is most likely the ion Mn3+(d4)  losing two

d electrons and one s electron for a Fermi level in the gap region.

In summary, we have successfully developed a real space method to calculate the

impurity states of Cr and híln  in ZnO by combinin,(+ the recursive Greenís function with

LMTO. The wurtzite structure and the bulk nature are incorporated into our calculation.

The results show that the impurity states E and Tz of Cr and Mn are located in the gap

region of ZnO and that Mn and Cr are ions for a Fermi level in that region. In a ZnO-

based varistor, some electrons relcxed from the impurity ions could move to occupy the

- _L
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surface or interface states at the ZnO-ZnO grain boundaries, which, according to Cordaro

et al. [2] may be in a Gaussian distribution centered approximately at 1.3 eV below the

conduction bands. The electrons trapped on these states thus form the schottky barriers

which partly give rise to the nonlinear conduction. míe  will continue to improve the self-

consistent procedures and to try different impurity atoms in future calculations.
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