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We develop a real-space method for the calculation of surface electronic structure.
The approach is based on the linear muffin-tin orbitals and recursive Greenís function
and can achieve self-consistency efficiently. As an application, the local density of states
of Fe(OO1) system is calculated. We obtain a few surface states above and below the
Fermi level. The locations of these states are in good agreement with experimental
results.

PACS. 71.15.-m - Methods of electronic structure calculations.
PACS. 71.20.Be - Transition metals and alloys.
PACS. 73.20.At  - Surface states, band structure, electron density of states.

The determination of surface states is very important for research in many physical
systems. The surface states decide the work function and are closely related to surface
adsorption, movement of adatoms,  and some important optical properties. Theoretically,
one can calculate the surface electronic structure by various schemes to construct a realistic
picture of how the electronic states are distributed in the surface layers. The development
of an efficient and accurate method of calculation to achieve that purpose has thus been
always actively pursued.

In this paper we try to use an ab initio  calculation to work out the local density of
states (DOS) of Fe(OO1) in a systematic and fairly simple manner. Recently, experimen-
talists have begun to probe the surface electronic structure using the scanning tunneling
microscope (STM). They are able to record prominent surface states near the Fermi level.
It will be shown that our calculation can connect the DOS to the STM spectra [l] and pho-
toemission experiment [2] to a high degree and can serve as an efficient and useful model
for further investigation into the surface electronic structure.

The calculation is carried out in real space and is an outgrowth of the method proposed
by Yang, Cheng, Dy, and Wu for the Cu(ll0) surface [3]. It has since been modified to
simplify the procedures involved and to make the formulation an exact correspondence to
the real system. It is based on the tight-binding linear-muffin orbit& with the atomic sphere
approximation (TB-LMTO-ASA), as developed by Andersen [4] and was later applied by
Skriver and Rosengaard [5-6] in their study of surface systems. Due to Andersen, Jepsen,
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and Glotzel, the LMTO method that used to be applied in k space was formulated anew
in real space [?ëI,  with screened orbitals adopted to make the formulation of Hamiltonian
more efficient.

We first have to obtain the so called potential parameters that are to be used in the
formulation of the system in real space. Naturally, the parameters are subject to changes in
the subsequent self-consistent calculations. To begin with, a band structure calculation of
Fe crystal is carried out. This is a standard self-consistent k space calculation which results
in very accurate band structure and DOS for combined majority and minority spins. The
(bulk) parameters thus derived are such that they differ not much from those representing
the atoms a few layers below the surface and they serve as a good guess for the parameters
of surface atoms. We also have to construct the system of Fe(OO1) surface. This is done by
assembling 15 layers of Fe atoms and one layer of empty spheres above the surface layer of
Fe. Each layer contains 25 Fe atoms, or empty spheres, if the layer is in the vacuum. The
geometric part of the formulation is separately calculated, which is one of the advantages of
the LMTO method, and it corresponds exactly to the real system of a semi-infinite surface,
with a two-dimensional boundary condition imposed upon each layer. By doing so, the
surface properties are built into the formulation even before the Hamiltonian is calculated.
When the potential parameters and the geometric structure of the system are combined
under the formulation of real-space

We then come to the second
define the Greenís function G(z) as

G(z) = (Z - H)-ë,

LMT6,  we obtain the Hamiltonian for the system.
stage in which the local DOS is calculated. We first

(1)

where z is a complex number and H is the Hamiltonian of the system. The density of states
D(E) can then be obtained from the following equation,

D(E) = -f iim,TrImG(E  + ic),-+

where TT and Im denote the truce of the imaginary part of G(E + id). The inversion of the
matrix is not an easy task since there are now 400 atomic spheres in the system. So we
turn to the theory that was developed by Dy, Wu, and Spratlin [8]. Consider first a small
system with Hamiltonian H(ì) and Greenís function G(ì)  which can be easily calculated
using direct inversion. We next change the system by adding to it a layer of atoms. The
Hamiltonian for the larger system now becomes:

H(ìfí)  --($” 1)) (3)

where h is the Hamiltonian of the added layer and V is the coupling of the layer to the
subsystem. Then, using the recursive equations, the Greenís function G(ì+ë)  of the enlarged
system can be calculated by

&+l) --
i

(4)
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where,

Gi;+') = [@c - h) _ V+&)V]-1, (5)
G(,;ìë)  = G(ì)V&ì),

GE+ë)  = G&+ë)V+G(ì),

&+ë)  = G(ì)  + &+ë)V+G(ì).

These equations specify how a 1arg.z system, and hence a large matrix for the Hamiltonian,
can be manipulated with smaller subsystems which are easily calculated with standard
procedures. The recursive Greenís function has been used for years [g-11].  However the
new approach has distinctive features that make it very suitable for low symmetry systems.
The detail explanations can be found from Wu, Cocks and Jayanthi [la] as well as Ref. 3.

Finally the calculation has to go through the self-consistent procedures, A new set
of potential parameters can be derived from the DOS produced by the recursive equations.
Through a process called canonical scaling [13], the DOS of each layer is adjusted with
the constraint that the whole system remains neutral. The Madelung potential term in
the wave function calculation allows the exchange of charges between the atomic spheres
in different layers. This charge transfer in turn affects the adjustment of DOS, especially
of those in the surface layer and vacuum. When the first-order moment of DOS vanishes
we obtain a new set of parameters to be put back in the system Hamiltonian and Greenís

function for another round of D0.S calculation. The self-consistency is considered attained
when the parameters no longer have significant changes.

We now examine the local DOS of four atomic spheres, each at a different layer. In
Fig. 1 the DOS of the empty sphere is shown. The distribution of the states are such
that they are largely located above the Fermi level, consistent with the fact that electrons
extending out of the surface are more like free electrons and tend to have higher energy
values. It is also obvious both from the figure and Table I that the s and p waves contribute
most to the states in vacuum. Given that the d wave is much more localized than the s and
p waves we think the extension of d wave into the vacuum is negligible, as was witnessed
in the calculation of Cu(ll0)  [3].

The DOS of three Fe atoms in the three different layers starting from the surface
layer downward are shown from Fig. 2 to Fig. 4 respectively. We notice the DOS evolves
from the surface pattern to that of the bulk as we go deeper into the interior. We also find
that surface effects are largely limited to the empty layer and the surface layer. The charge
transfer below the surface layer is almost zero, as the third and fourth rows of Table I show.

The sharp increase in tunneling conductance measured by experiment [l] occurs
at 0.17 eV above the Fermi level. By inspecting Fig. 2 we can immediately identify a
spike of DOS right above the Fermi level which is responsible for the resonance tunneling.
This calculated peak is located 0.10 eV above the Fermi level, which agrees well with the
experiment within the resolution of the calculation. There are two more peaks in Fig. 2,
which appear below the Fermi level. One is located at -1.8 eV, exactly the same as the
value calculated in Ref. 1. Another peak can be found at a lower energy value of -2.4 eV,
which is confirmed by the angle-resolved photoemission [2] that puts the state at 2.5 eV
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T A B L E  I .  Charge transfer between the four layers shown from Fig. 1 to Fig. 4.
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Layer Total charge transfer Contributions from partial waves

S 0.29
1 0 .70

1

0 .36

0 .05

S 0.51
2 -0.77

:
0.46
6.26

S 0.67
3 0.03

:
0.86
6.50

S 0.67
4 0.04

5;
0.89
6.48

below the Fermi level. We also observe that d waves contribute most to the surface states.
So in this context the d waves are responsible for the sharp feature observed in the Fe(OO1)
spectra. However, the d waves do no extend significantly into the vacuum region as is
suggested by Ref. [l].
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FIG. 1. Local density of states of the empty

layer.
FIG. 2. Local density of states of Fe in the

surface layer.
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FIG. 3. Local density of states of Fe in t h e FIG. 4. Local density of states of Fe in the

layer below the surface. 2nd layer below the surface

Since the calculation is based on first principles, it inevitably has to include a few
approximations to streamline the process and to make the computation manageable. The
discrepancies between the calculation and experiments may come from the local density
approximation, the atomic sphere approximation, and the exclusion off orbitals [14].  But
its overall performance is quite satisfactory.

In summary, this a6 initio calculation successfully connects the surface states of
Fe(OO1) above and below the Fermi level to the experiments. It also shows that the d
waves are responsible for these states. The method is straightforward and efficient and
has the advantage of working in real space. It should be an effective tool in predicting
and explaining the surface electronic structure and should see more applications in low
symmetry surface systems.
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