
Runtime Hook on Blockchain and Smart Contract
Systems

Wei-Ting Lin
Management Information Systems

National Chengchi University
Taipei, Taiwan

106356001@nccu.edu.tw

Shun-Wen Hsiao
Management Information Systems

National Chengchi University
Taipei, Taiwan

hsiaom@nccu.edu.tw

Fang Yu
Management Information Systems

National Chengchi University
Taipei, Taiwan

yuf@nccu.edu.tw

Abstract—Using hard-fork on the blockchain to recover the
losses caused by attacks contradicts the immutable characteristic
of a blockchain system. To prevent malicious transactions from
getting into blockchains in advance, we propose a runtime hook
technique to synchronize ongoing transactions exposed to the
Ethereum transaction pool. Having a complete view of ongoing
transactions, we are able to identify and enforce abortion of
malicious transactions and prevent losses due to attacks being
executed and recorded in the blockchain. Specifically, we modify
the Ethereum source code to instrument the entry point of a
node to synchronize information, import information into our
local database, and systematically scan suspicious patterns in
transactions to identify potential attacks. As a proof-of-the-
concept, we show how to deploy the proposed runtime hook
system on a private blockchain system, such that we can detect
and prevent transactions of double spending on the 51% attack.

Index Terms—Blockchain, Ethereum, Runtime hook

I. INTRODUCTION

Blockchain is the underlying technology used by Satoshi
Nakamoto for creating Bitcoin [1]. Blockchain is a distributed
technology that does not rely on trust parties to store and verify
data. It forms a peer-to-peer communication network through
several decentralized nodes. A blockchain can be viewed as a
decentralized database but it works with untrusted P2P nodes
to maintain a trusted data repository. When a blockchain stores
transaction data, we view it as a decentralized ledger. Anyone
who joins the blockchain P2P network can store their data
under the same protocol at any time. Whenever a data entry is
added, it will be recorded on the ledger through a consensus
process among all P2P nodes, and all nodes will synchronize
with each other to ensure that all the local ledgers of every
nodes are synchronized. In addition, a consensus algorithm
will ensure that the recorded entries cannot be modified, so
we do not need a trusted third-party entity to keep maintaining
the ledger.

A blockchain protocol is a set of rules that specifies how
participants (a.k.a. nodes) in the P2P network should validate
a new transaction and add it to one of the block. The agree-
ment leverages cryptography, game theory, and economics
to motivate nodes to act correctly and run the blockchain
collaboratively, rather than attacking the blockchain network.
If a blockchain is set up correctly, this system can make

accepting an malicious transaction extremely difficult and
expensive. However, it is relatively easy to validate and accept
a normal transaction. Such secure design makes the blockchain
technology so attractive to many industries, especially in
finance. The upcoming services from well-known institutions,
such as Fidelity Investments, New York Stock Exchange, and
Intercontinental Exchange, will begin to integrate their existing
financial systems with the blockchain. Even some central
banks are considering using blockchain to issue new digital
currency (a.k.a. cryptocurrency).

However, the more complex a blockchain system is, the
more vulnerabilities and possible errors may exist. On Febru-
ary 5, 2019, the company that is responsible for Zcash
cryptocurrency revealed that it secretly fixed a ”subtle crypto-
graphic vulnerability” [2] that occasionally appeared in their
protocol. Attackers can take the advantage on it to create
unlimited fake Zcash. Fortunately, it seems like that actually
no attacker did so. Moreover, some high-profile hackers do
not attack the blockchain, but they attack the cryptocurrency
exchanges. Many cases of looting cryptocurrencies may be
attributed to poor basic security measures, such as well-known
website vulnerability or misconfiguration. In January 2019, the
51% attack on the Ethereum Classic [3] prompted a change
in the robbery.

The 51% attack is most likely to cause a double spending
attack. Dual payments are those in which miners who control
most of the network’s mining capabilities in some way can
deceive other users by sending them a transaction and then
create an alternate version of the blockchain. Payments for
miners who deceive other users in the alternative version
have never occurred. This new version of the blockchain is
called a fork. An attacker who controls most of the mining
capabilities can make the branch a backbone and use the same
cryptocurrency again.

However, the cost of attacking a blockchain of the current
mainstream cryptocurrency, such as Bitcoin or Ethereum, is
very high. According to Crypto51% [4], an attacker needs to
spend 270,000 dollars per hour to rent enough mining capacity
to attack Bitcoin, and needs 70,000 dollars per hour to attack
Ethereum. But the cost of attacking other non-mainstream
cryptocurrency is low because the value of the cryptocurrency
is low. Since the value is low, the number of miners is

relatively small; so the blockchain network is less protected.
It is easier for the attacker to perform 51% attack on these
lower-value cryptocurrencies. David Vorick, the co-founder of
blockchain-based file storage, Sia, predicts that 51% attack
will continue to grow in frequency and severity.

Attacks on blockchains are often found and caused actual
losses. Cryptocurrency holders usually only count on hard-
fork to recover the losses. However, it violates the design of a
blockchain, which is that a blockchain should be immutable. If
we can find some solutions to prevent attacks or detect attacks
before losses get on chains, we can reduce hard fork risks. One
of the approach to observe the operation of the blockchain is
to connect the observer from the outside to the blockchain
by using web3.js or ethclient API. However, the outside
observer has delay to reveal an attack within the blockchain.
In this paper, we plant our observer in the Ethereum’s EVM
(Ethereum Virtual Machine) and collect every transaction from
a node before it gets into the transaction pool (i.e., before
it gets mined). We also synchronize information of blocks.
Having these information stored in our local database, we are
able to scan malicious patterns and detect possible attacks in
advance.

In sum, we provide a runtime hook mechanism to collect
and scan all online transactions before they are on-chain.
Users (victims) can be notified in advance when a potential
transaction gets aborted or an attack has been detected, so that
they can avoid expectations on transactions not to be taken on
chain in the real world.

II. RELATED WORKS

A. Blockchain monitoring

The method of monitoring a blockchain [5] is usually using
the blockchain client API interface to retrieve the data in the
blockchain.

There are a number of approaches [6]–[10] to limiting
inappropriate blockchain transactions. One approach [9] is to
filter and discard a transaction before the transaction being
committed to the blockchain, and possibly redact transactions
from blockchain. Another approach [6]–[8], [10] is to redact
a transaction after it has mined in the blockchain. It will not
change the immutability characteristic of the blockchain, but
these approaches limit the accessibility to the transaction or
they hide the transaction. So that even though the transaction
still exits in the blockchain, it is not accessible or viewable by
the users.

IBM [9] applied for a patent on monitoring blockchain that
uses a combination of hardware and software to maintain
the security of the blockchain. The detection is based on
the word filter, media filter, and Custom filter set by the
administrator and other users. The Content processor will
receive and process the transaction content and determine if
the content should be added to the blockchain. If there is
no problem with the content, it will be added directly to
the blockchain. If the content causes a potential attack, the
content is redacted by the redaction contract set in the genesis

block. Similar to deploying a custom filter, we inspect nonce,
from address and to address of transactions to detect double
spending in Ethereum. In addition to redacting transactions,
our design informs the to address of redacted transactions. We
further generate an event log that lists information of aborted
transactions. The event log can be searched effectively.

B. Blockchain attacks

The problems that blockchains often encounter are roughly
divided into nine categories [11].

1) 51%attack: The 51% attack [12] occurs when the
blockchain adopts Proof of Work for consensus. If a
miner or group of miners have more than 51% of the
total computation power, then the miner can deliberately
select preferred transactions from the transaction pool to
generate new blocks [13]. Therefore, such an attacker
can trigger double spending attack [14]. In addition, the
51% attacker can generate a longer branch that enforces
the blocks and transactions in the shorter branch need
to be re-mined.

2) Double spending: Double spending is an attack that a
customer uses the same cryptocurrency token multiple
times. [15].

3) Private Key Security: Users private key is regarded
as the identity and security credential. Hartwig et al. [16]
discover a vulnerability in ECDSA (Elliptic Curve Dig-
ital Signature Algorithm) scheme, through which an
attacker can recover the users private key and use that
to obtain illegally income.

4) Criminal Activity: Since the usage of Bitcoin is
anonymous, Bitcoin has been used in illegal activities,
such as ransomware [17], underground [18] and money-
laundering [19].

5) V ulnerabilities in smart contract: Nicola et al. [20]
conduct a systematic investigation of 12 types of vulner-
abilities in smart contract code. A famous example of
the attack is TheDAO [21].

In this paper, we focus on the first two categories, i.e., 51%
attack and double spending. The reason why we focus on the
categories is that they don’t have much to do with the real
world and they attack the blockchain to make a profit rather
than use the blockchain as part of criminal activities.

C. Background: Double spending

A double spending attack of blockchain [22] may work as
follows.

1) Attacker A requires a product or a service provided by
Victim B.

2) A creates two transactions spending the same digital
token. One of the transactions is paid to B and the other
one is paid to A. The only difference between the two
transactions is the recipient address, and all the other
fields are the same.

3) A broadcasts the “A to B” transaction to other mining
nodes, and then secretly mines another block (Bs).
When Bs is successfully mined, A will continue to mine

new blocks and append them to Bs. A plans to include
“A to A” transaction in this branch to cause double
spending.

4) B delivers the product or service to A after “A to B”
transaction has been issued. However, B does not wait
for enough confirmations [23] before delivering.

5) A has enough computing power to generate a longer
branch than the original branch so that the transactions
in the original branch will be re-mined and then be
included to the longer branch.

6) However, the token of “A to B” transaction has been
spent by “A to A” transaction previously. Hence, “A
to B” transaction will be discarded by nodes. That is,
actually B does not receive the token while the goods
or the services has been delivered.

7) When B realizes that the payment is discarded, A might
left the scene.

III. RESEARCH METHOD

Our analysis framework consists of four steps: 1) Tracing
transactions on Ethereum, 2) Hacking entry points, 3) Infor-
mation collection and 4) Property checking. In the first section,
we introduce the process of Ethereum’s transaction. The sec-
ond section will show how we hook on the Ethereum node and
where we obtain all information from the block, transaction,
and receipt. The third section introduces the information we
obtain in the last section. The last section shows how we use
the information to detect a potential attack.

A. Ethereum: Transaction-based

Ethereum can be seen as a transaction-based state machine.
It starts with a genesis state and then gradually changes to
the final state through transaction processing. The information
contained in the status is address, account balance, input data,
etc.

Figure 1 simply describes the process of launching a
transaction into a block or broadcast to another node. The
new Transaction is issued by the Ethereum user and sent
to the transaction pool after signing and submission. After
new transaction entering the transaction pool, the node check
whether transaction pool already has an old transaction that its
nonce and from address are the same as new transaction’s.If
there is an old transaction, node would check whether the gas
price of new transaction is higher than the old one. If the gas
price of new transaction is higher, node would discard the old
transaction and add the new one into the Pending. If there is
no old transaction having same nonce and same from address
in Pending, the node would check if there is an old transaction
having same nonce and same from address in Queue. If there
is, node would check if the gas price of the new transaction is
higher than the old one. If so, node would discard the old one
and add the new one to Queue. If there is no same nonce and
from transaction in Queue, node would add the new transaction
into Queue directly. The transaction pool then broadcasts the
new transaction to other nodes and sends the event for the new
transaction to the Worker if the node is mining. The worker

Fig. 1. Transaction process

uses the EVM to execute the transaction and obtain Receipt.
Miner collects the transactions through the worker and tries to
generate a new block. If a new block is generated, it would
be sent to the worker. The worker does Proof of Work and the
new block will be broadcast to other nodes.

Other nodes will decrypt the received blocks to obtain
transactions when node synchronizes. Then transactions will
be converted into message objects. The node then builds the
EVM and passes the message objects to the EVM to execute.
EVM is an emulation environment created by Ethereum during
executing transactions. EVM can calculate the consumption
of Gas, and create a receipt object and return it after the
transaction is executed completely. There are three types of
the operation represented by the transactions:

1) Ether transferring: User transfers Ether between two
addresses.

2) Creating smart contract:User creates a smart contract
address.

3) Calling smart contract:User calls smart contracts
function. Transaction’s data contains function name and
input data.

If the transaction is transferring Ether, EVM would directly
modify the corresponding account balance in the StateDB. If
the transaction is a smart Contract creation or calling smart
contract, EVM would load and execute the byte code of
the contract and the StateDB is queried or modified during
transaction execution. The EVM responses for verifying the
correctness of the state. After EVM confirming the state is
correct, the message is stored from the StateDB of the EVM
into the StateDB of the node. In the future, if a new node
requests synchronization, the node’s StateDB is provided for
the new node.

B. Entry point searching

1) Sync procession: When running the node, our node
will request synchronization to the nearby node. During the
synchronization procession, node will sync the blocks and then

Fig. 2. EVM execute transactions

Fig. 3. Sync process

node will obtain the interaction with the smart contract or the
Ether transferring from the transactions in the blocks.

So we search where the node executes all transactions. In
order to do this, we are using normal sync (i.e., full sync) in-
stead of fast sync when doing the blockchain synchronization.

Figure 3 is a blockchain synchronization flowchart traced
from the target log. When an user starts the node, the node
sends a synchronization request to other nodes on the network.
After receiving the blocks from other nodes, node does a pre-
check to ensure that the blocks to be inserted are ordered
link. After pre-check is passed, the node will verify the header
and body of received block. After the previous verification is
completed, the status is read from the parent block and the
transactions contained in the blocks are executed by Process
function’s EVM. EVM will update the state and verify the
updated state to check whether it is consistent with the header.
If the verification is successful, node would append blocks to
the blockchain.

According to the previous synchronization process, we

can know that the code of executing all transactions is in
the Process function. The Process() calls ApplyTransaction()
to execute the transactions in the blocks. The state stores
information about each account, such as account balance and
contract code (for contract accounts only).
func (p *StateProcessor) Process(block *types.Block,
statedb *state.StateDB, cfg vm.Config)
(types.Receipts,[]*types.Log,uint64,error) {

......
for i, tx := range block.Transactions() {

receipt, _, _ := ApplyTransaction(p.config,
p.bc, nil, gp, statedb, header, tx, usedGas,
cfg)
receipts = append(receipts, receipt)
allLogs = append(allLogs, receipt.Logs...)

}
......

}
}

Listing 1. Process()

The ApplyTransaction() does the follows.
1) ApplyTransaction() calls AsMessage() to generate

core.Message with tx. The implementation is to store
some fields in tx into Message and decrypt the tx sender
from the digital signature of tx.

2) Then it calls NewEVMContext() to create an EVM to
execute vm.Context

3) ApplyTransaction() calls NewEVM() to create an EVM.
Its main function is to assemble the previous information
and build a code interpreter, which will be used to
interpret and execute the contract code.

4) Finally, it calls ApplyMessage() to apply the above
information to the current Ethereum’s state and generate
the receipt object.

func ApplyTransaction(config *params.ChainConfig,
bc ChainContext, author *common.Address, gp *

GasPool,
statedb *state.StateDB, header *types.Header,
tx *types.Transaction, usedGas *uint64, cfg vm.

Config
)(*types.Receipt, uint64, error) {
msg, err := tx.AsMessage(types.MakeSigner
(config, header.Number))
if err != nil {
return nil, 0, err

}
context := NewEVMContext(msg, header, bc, author)
vmenv := vm.NewEVM(context, statedb, config, cfg)
_, gas, failed, err := ApplyMessage(vmenv, msg,
gp)

......
receipt.TxHash = tx.Hash()
receipt.GasUsed = gas
if msg.To() == nil {
receipt.ContractAddress =
crypto.CreateAddress(vmenv.Context.Origin,
tx.Nonce())

}
receipt.Logs = statedb.GetLogs(tx.Hash())
receipt.Bloom =
types.CreateBloom(types.Receipts{receipt})
return receipt, gas, err
}

Listing 2. ApplyTransaction()

Fig. 4. Receiving transaction process

When the state machine is changed, the Receipt lists and
associated logs are returned for the next stage. So we insert
our monitoring program before ApplyMessage() and check it
before changing the Ethereum’s state.

2) Transaction pool: According to Fig. 1, the transaction
pool is a collection of all transactions that have not been mined
in the block. Whether it is a transaction initiated by a local
node or a transaction broadcast by other nodes, all transactions
that can be processed and not processed can be stored here.
Once transactions are mined into the block, they are removed
from the transaction pool.

Figure 4 indicates the process by which Txpool receives
transactions which are sent from the local node and other
nodes. When the user initiates a transaction at the local node,
it will encapsulate the transaction information through json.
Then convert it into golang through json-RPC and pass it into
sendTransaction(). sendTransaction() will use the sender to get
the relative wallet, then generate the transaction structure ob-
ject based on the transaction information, and finally sign the
transaction. After the signature is completed, the node submits
the transaction through the submitTransaction() to addLocal()
to add the transaction into the TxPool. The transaction event
sent by other nodes will be listened to by handle(). When there
is a new transaction event, node calls handleMsg() to process
and sends the transaction to addRemotes() to add it into the
TxPool.

C. Data introduction

1) Block: A block in a blockchain is that stores valuable
information. This is the essence of any kind of cryptocurrency.

The Header is the core of the Block. Its member variables
are all public, and it is convenient to provide the caller with
operations on the Block property. The terminology and notions
used in this paper is the same as the notions used in the official
yellow paper [24].

2) Transaction: The following is the structure of txdata in
Transaction, which is the Transaction information we can get.
There is no initiator of the transaction here because the initiator
can get the information by signing:

1) AccountNonce: The number of transactions the sender
has sent.

2) Price: The gas cost of this transaction.
3) GasLimit: This transaction allows the maximum

amount of gas to be consumed.
4) Recipient: The recipient of the transaction.
5) Amount: The Ether carried by the transaction.
6) Payload: The data carried by the transaction.
7) V,R, S: The signature of the transaction.
3) Receipt: Finally, Receipt, the record information after

the Transaction is completed:
1) PostState: Stores the current state of all accounts in

the entire block when the Received object is created.
2) Status: The status of whether the execution was suc-

cessful.
3) CumulativeGasUsed: The total amount of gas spent

in the implementation of this Transaction in Block.
4) Bloom: Used to verify that a given Log is in the existing

Log array of Receipt.
5) Logs: Log-type arrays, where each Log object records

a small step in the Transaction.
6) TxHash: This transaction’s hash.
7) ContractAddress: The address of the smart contract.
8) GasUsed: How much gas this Transaction costs.

D. Property check: double spending
This section attempts to use the collected data to detect if

a double spending attack can be observed.
There are two types of situations in which an attacker can

cause double Spending:
1) Sending 2 Transactions in different time: The attacker

first sends a transaction to the victim. When the trans-
action is confirmed by the victim but has not yet been
mined, the attacker then sends another transaction that
uses the same digital token with a higher gas price
to the address of the attacker. The miner node will
preferentially mine the subsequent transaction because
there is more gas price. The blockchain will have the
transaction to the attacker, and the victim will not receive
any digital token.

2) With 51% attack: The attacker sends 2 transactions at the
same time, and the content of transactions is the same
except the recipient. When the victim’s transaction is
mined, the attacker privately prepares another malicious
fork to mine another transaction. After the length of
the malicious fork exceeds the original fork length, the
malicious fork will replace the original chain as the main
chain, and the victim’s transaction will be discarded so
that the victim does not get the digital token in the
transaction.

We can observe the second type of double spending after it
happened. So we try to detect the first type of double spending.

We set the following rules for the first type of double spending
before the attacks happen.

1) There is an old transaction in the transaction pool.
2) If the new transaction has same nonce, same from

address, and its to address is same as from address, the
sender may want to replace the old transaction and don’t
send the ether.

3) If the new transaction with the same nonce, same from
address, and its to address is different with from address,
the sender may have incorrect information like wrong to
address in the old transaction and want to replace it or
the sender may want to cause double spending.

Our model has the following assumptions: 1) The system is
used in private chain system. 2) All participating nodes use
this version of the program. 3) Wallet cannot exist without a
node. 4) There is a smart contract which is used to use event
logs to record replaced transaction in genesis block. According
to these assumptions, the nodes should comply with the rules
we set.

We insert the model into the code of transaction replace-
ment. Fig. 5 is the monitor model. The steps of the model are
as follows:

1) The new transaction is sent from the User’s Wallet to
the node via the Ethereum client API or from another
Ethereum node.

2) The new transaction checks whether it already exists in
the transaction pool or fails to pass the basic validation
before entering the transaction pool. New transactions
that already exist or fail to pass basic validation are
discarded directly. If transactions that do not exist and
pass basic validation, node proceeds to the next step.

3) Node checks whether transaction pool already has an
old transaction that its nonce and from address are the
same as new transaction’s. If not, node inserts it directly
into the transaction pool and save it in the database. If
so, node goes to the next step.

4) Node checks whether the from address and the to
address of the old transaction are the same. If so, node
ignores the limit of gas price and directly replaces the
old transaction with new one. If not, node does the next
step.

5) Node checks whether the from address and to address of
the new transaction are the same. If they are the same,
node discards the new transaction directly, if not, node
proceeds to the next step.

6) Node checks whether the gas price of the new trans-
action is higher than the old one. If not, discard new
transaction directly. If new transaction’s gas price is
higher, the node sends an alert transaction to the old to
address to notify that the transaction is replaced and calls
deployed smart contract to use event logs to record the
replaced transaction. Then node replaces old transaction
with new transaction.

7) After the replacement is complete, the new transaction
is inserted into the transaction pool and recorded in the

Fig. 5. Research model

database.

IV. EXPERIMENTS

We use the newly created private chain and database to
experiment with the model. This private chain has 4 addresses.
The first address is sender which is as known as eth.coinbase,
the second address is smart contract and the other addresses
are receivers.

1) Sender: 0x07e7c8904f8b6cab9cb4b0b9393d...80f2
2) Smart contract: 0xfcf1538ab751126e47641b4d...c579
3) Receiver A: 0x884d0838de824345653c81b72ca5...1aa8
4) Receiver B: 0x5d0d08f8061c31dc179882cf153c...69c1
In the beginning, there were no transactions in the transac-

tion pool:
> txpool.content
{ pending: {}, queued: {} }

Listing 3. Listing transactions in transaction pool

We first send a new transaction that from address is sender,
to address is sender, and the nonce is 1. At this time, because
there is no transaction that nonce and from address is the same
as the new one in the transaction pool, the new transaction is
directly added to the transaction pool.

> eth.sendTransaction({from: eth.coinbase, to:eth.
coinbase, value: web3.toWei(5, "wei"), nonce:
1})

INFO [05-28|10:44:55.703] Submitted transaction
fullhash=0

x7289275d6b7432c0782aba00a753cff7340a47445b85f4
f89fffd38938b87453
recipient=0x07E7C8904F8b6cab9cb4B0B9393Dd767289E80f2
"0x7289275d6b7432c0782aba00a753cff7340a47445b85f4f89
fffd38938b87453"
> txpool.content

{
pending: {
0x07E7C8904F8b6cab9cb4B0B9393Dd767289E80f2: {
1: {
from: "0x07e7c8904f8b6cab9cb4b0b9393d...80f2",
nonce: "0x1",
to: "0x07e7c8904f8b6cab9cb4b0b9393d...80f2"
},

Listing 4. Add transaction to the transaction pool

Then we send the second transaction that from address is
sender, to address is receiver A, the nonce is 1 and the gas price
is the same. The model enters the transaction pool and detects
the transaction with the same nonce and from address, and
starts the comparison of to address and from address between
the new transaction and the old transaction. After the model
comparison is completed, the to address and from address
of the old transaction are found to be the same, so the old
transaction is directly replaced by the new transaction and the
restriction of the gas price is ignored.

> eth.sendTransaction({from: eth.coinbase, to:"0
x884d0838de824345653c81b72ca5516aabb01aa8",
value: web3.toWei(6, "wei"), nonce: 1})

Old transaction’s to and from the same, rep, caption
={Add transaction to the transaction pool}]lace
it without gasPrice.

INFO [05-28|10:49:56.220] Submitted transaction
fullhash=0

xced4d0a086bc215102e082a9c66cc20cc0e187004652f86
4c2efd749b51f85c6
recipient=0x884D0838dE824345653C81B72Ca5516aABb01Aa8
"0xced4d0a086bc215102e082a9c66cc20cc0e187004652f864
c2efd749b51f85c6"

> txpool.content
{
pending: {
0x07E7C8904F8b6cab9cb4B0B9393Dd767289E80f2: {
1: {
from: "0x07e7c8904f8b6cab9cb4b0b9393d...80f2",
nonce: "0x1",
to: "0x884d0838de824345653c81b72ca5...1aa8"
},

Listing 5. Replace old transaction

We then send the third transaction that from address is
sender, to address is sender, the nonce is 1 and higher gas
prices, trying to replace the previous transaction. After the
model comparison is completed, the to address and from
address of the new transaction are found to be the same, so
the new transaction is directly aborted from replacing the old
transaction. We look at the transaction pool and confirm that
it has not been replaced.

> eth.sendTransaction({from: eth.coinbase, to:eth.
coinbase, value: web3.toWei(6, "wei"), nonce: 1,
gasPrice:10000000000000})

New transaction’s to and from the same, abort it.
INFO [05-28|10:57:25.817] Served eth_sendTransaction

reqid=43 t=776.409 s err="
replacement transaction underpriced"

Error: replacement transaction underpriced
at web3.js:3143:20
at web3.js:6347:15
at web3.js:5081:36
at <anonymous>:1:1

> txpool.content
{
pending: {
0x07E7C8904F8b6cab9cb4B0B9393Dd767289E80f2: {
1: {
from: "0x07e7c8904f8b6cab9cb4b0b9393d...80f2",
nonce: "0x1",
to: "0x884d0838de824345653c81b72ca5...1aa8"
},

Listing 6. Confirm transaction replacement

Finally, we send the fourth transaction that from address is
sender, to address is receiver B, the nonce is 1 and higher
gas price, trying to replace the previous transaction. After
the model comparison is completed, the to address and from
address of the new transaction are found to be inconsistent,
so the new transaction is checked for the gas price and then
replaced if it passes the check. At this point, the program will
send a alert transaction to the old to address as a notification.

> eth.sendTransaction({from: eth.coinbase, to:"0
x5d0d08f8061c31dc179882cf153c1b2a815969c1",
value: web3.toWei(8, "wei"), nonce: 1,gasPrice
:10000000000000})

INFO [05-28|10:58:41.441] Submitted transaction
fullhash=0

xe1b51eff65383f4e56971af41653c940f9403b59f9d1f
48f6dee0955df95c19e
recipient=0x5d0d08F8061c31Dc179882cF153C1b2a815969C1
"0xe1b51eff65383f4e56971af41653c940f9403b59f9d1f
48f6dee0955df95c19e"

> txpool.content
{
pending: {
0x07E7C8904F8b6cab9cb4B0B9393Dd767289E80f2: {
1: {
from: "0x07e7c8904f8b6cab9cb4b0b9393d...80f2",
nonce: "0x1",
to: "0x5d0d08f8061c31dc179882cf153c...69c1"
},
2: {
from: "0x07e7c8904f8b6cab9cb4b0b9393d...80f2",
nonce: "0x2",
to: "0x884d0838de824345653c81b72ca5...1aa8"
},
3: {
from: "0x07e7c8904f8b6cab9cb4b0b9393d...80f2",
nonce: "0x3",
to: "0xfcf1538ab751126e47641b4d36ad...c579",
hash: "0x38ea75ac52dd619a513b93be26...6ad3",
input: "0xf9fbd554000000000000000b...3b588"
},

Listing 7. Replacement notification and smart contract
invocation

We can see the event logs in the transaction after the
transaction being mined. The value in topics can be used as a
filter. The first parameter in topics field is this event’s identifier.
The second parameter in the topics field is the filter we set
and we can use this filter to find all transactions that have the
same event logs’ filter. The value in the data field is general
data and we save the replaced transactions’ hash value.
> eth.getTransactionReceipt("0

x38ea75ac52dd619a513b93be264ebdd07b9005c6f...6
ad3")

{
from: "0x07e7c8904f8b6cab9cb4b0b9393dd767289e80f2"

,
logs: [{

data: "0x000000000000000000000000000000000000
...0000",

topics: ["0
x61aef8cd79541943c29722c77e582aa0e9b580c7
...3280", "0
xa728aa3d202cfdae8bc312089ffc2e631127b1...
b298"],

}],
to: "0xfcf1538ab751126e47641b4d36ad281be217c579",
transactionHash: "0x38ea75ac52dd619a513b93be26

...56ad3",
}

Listing 8. Transaction event logs

V. CONCLUSION

Although Ethereum has a certain degree of protection
against double spending attacks, it can still see the attack
happens. The attacker uses the 51% attack or the replacement
transaction to discard the original transaction to cause a double
spending attack. Because of the PoW consensus mechanism,
the 51% attacks can only be observed afterward and cannot be
completely blocked beforehand. Therefore, the double spend-
ing attack generated by the 51% attack cannot be completely
avoided. Since these attacks on Ethereum do not violate any
internal rules, the attacks can only be detected after they have
occurred, so we hope to notify potential victims as soon as
possible when their transactions have been replaced. We use
the database in the private chain environment to record all the
replacement information. The model first discards transactions
that may be problematic when the transaction enters the
transaction pool. Then the model sends a transaction with a
warning message to the to address of the replaced transaction
so that the user can know the potential attack as early as
possible without surrendering products and services.

REFERENCES

[1] S. Nakamoto et al., “Bitcoin: A peer-to-peer electronic cash system,”
2008.

[2] “Zcash counterfeiting vulnerability successfully remediated.” https://z.
cash/blog/zcash-counterfeiting-vulnerability-successfully-remediated/.

[3] “Deep chain reorganization detected on
ethereum classic (etc).” https://blog.coinbase.com/
ethereum-classic-etc-is-currently-being-51-attacked-33be13ce32de.

[4] “Pow 51% attack cost.” https://www.crypto51.app/.
[5] “Etherscan api.” https://etherscan.io/apis.
[6] G. Ateniese, B. Magri, D. Venturi, and E. Andrade, “Redactable

blockchain–or–rewriting history in bitcoin and friends,” in 2017 IEEE
European Symposium on Security and Privacy (EuroS&P), pp. 111–126,
IEEE, 2017.

[7] D. Deuber, B. Magri, and S. A. K. Thyagarajan, “Redactable blockchain
in the permissionless setting,” arXiv preprint arXiv:1901.03206, 2019.

[8] I. Puddu, A. Dmitrienko, and S. Capkun, “µchain: How to forget without
hard forks.,”

[9] S. Anderson and B. Q. Nguyen, “Filtering and redacting blockchain
transactions,” 2018. US Patent App. 15/348,581.

[10] M. Florian, S. Beaucamp, S. A. Henningsen, and B. Scheuermann,
“Erasing data from blockchain nodes,” CoRR, vol. abs/1904.08901,
2019.

[11] X. Li, P. Jiang, T. Chen, X. Luo, and Q. Wen, “A survey on the security
of blockchain systems,” Future Generation Computer Systems, 2017.

[12] I.-C. Lin and T.-C. Liao, “A survey of blockchain security issues and
challenges.,” IJ Network Security, vol. 19, no. 5, pp. 653–659, 2017.

[13] I. Eyal and E. G. Sirer, “Majority is not enough: Bitcoin mining is
vulnerable,” Commun. ACM, vol. 61, pp. 95–102, June 2018.

[14] G. O. Karame, “Two bitcoins at the price of one? double-spending
attacks on fast payments in bitcoin,” in In Proc. of Conference on
Computer and Communication Security, 2012.

[15] G. O. Karame, E. Androulaki, M. Roeschlin, A. Gervais, and S. Čapkun,
“Misbehavior in bitcoin: A study of double-spending and accountabil-
ity,” ACM Transactions on Information and System Security (TISSEC),
vol. 18, no. 1, p. 2, 2015.

[16] H. Mayer, “Ecdsa security in bitcoin and ethereum: a research survey,”
CoinFaabrik, 2016.

[17] “Wannacry ransomware attack.” https://en.wikipedia.org/wiki/
WannaCry ransomware attack.

[18] N. Christin, “Traveling the silk road: A measurement analysis of a
large anonymous online marketplace,” in Proceedings of the 22nd
international conference on World Wide Web, pp. 213–224, ACM, 2013.

[19] “Uk national risk assessment of money laundering and terrorist
financing.” https://assets.publishing.service.gov.uk/government/uploads/
system/uploads/attachment data/file/468210/UK NRA October 2015
final web.pdf.

[20] N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks on ethereum
smart contracts.,” IACR Cryptology ePrint Archive.

[21] “The dao (organization).” https://en.wikipedia.org/wiki/The DAO
(organization).

[22] C. Pinzón and C. Rocha, “Double-spend attack models with time ad-
vantange for bitcoin,” Electronic Notes in Theoretical Computer Science,
vol. 329, pp. 79–103, 2016.

[23] V. Buterin et al., “Ethereum white paper,” GitHub repository, pp. 22–23,
2013.

[24] G. Wood et al., “Ethereum: A secure decentralised generalised transac-
tion ledger,” Ethereum project yellow paper, vol. 151, pp. 1–32, 2014.

