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Abstract

In this paper, we investigate the nonhomogeneity of state space for solving retrial queues
through the performance of the M/M/S retrial system with impatient customers and S
servers that is modeled under quasi-birth-and-death processes with level-dependent
transient rates. We derive the analytic solution of multiserver retrial queues with orbit and
develop an efficient method to solve this type of systems effectively. The methods proposed
are based on nonhomogeneity of the state space although this queueing model was tackled
by many researchers before. Under a weaker assumption in this paper, we study and
provide the exact expression based on an eigenvector approach. Constructing an efficient
algorithm for the stationary probability distribution by the determination of required
eigenvalues with a specific accuracy, we develop streamlined matrices of state-balanced
equations with the efficient implementation for computation of the performance measures.
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1 Introduction

In this paper, we consider a queueing system with retrials of arrivals following the human
behavior that impatience users can abandon the system with certain probability after an
unsuccessful retry. Retrial queues have been used to model a phenomenon in modern
information and telecommunication systems that blocked customers may retry for service
after a certain timeout (See [1, 9] and reference therein). Many examples of retrial queues
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can be found in communication networks nowadays. By an M/M/S model, Do in [5]
presents the effect of retrials in data transfers along Internet where in retrial queues a
customer who does not receive the allocation of a server joins the orbit and later initiates a
request for service. The M/M/S retrial queue has been analyzed by many researchers.
However, the stationary probability distribution when the number of servers is larger than
two can be only obtained using approximate techniques (e.g., [1, 6]). Our goal in this study
is to develop an effective method with a closed-form solution for solving this type of
problems in which the number of servers is big.

The modeling of repeated attempts has been the subject of numerous investigations in
queueing systems. In [7], it explains that two functional blocks are typically distinguished
in models which consider retrials: a block that accommodates the servers and possibly a
waiting queue, and a block where users that retry are accommodated, usually called a
retrial orbit. Because the retrial rate among customers depends on the number of
customers in the retrial orbit, when it is modeled by a Quasi-Birth-and-Death approach, it
assumably shall build a nonhomogeneous and infinite state space. The term of
nonhomogeneity of state space is used to describe the state transition probability, or the
probability of increments/decrements, is not homogeneous instead it depends on the state
over the studied system. When the state homogeneity condition does not hold for the case
of multiserver retrial queues, the absence of closed-form solutions for the main
performance characteristics is ineluctable. Either the finite truncated or generalized
truncated methods may be used to replace the original infinite state space by a solvable
state space, that is, a model where steady state probabilities can be computed. In this paper
with an eigenvector approach, we investigate a computationally solvable with infinite state
space to tackle this problem.

Falin and Templeton in [9] present necessary and sufficient conditions for ergodicity of the
retrial queues with M/M/S. Falin in [8] presents an approximation which is based on the
truncation of the state space at a sufficiently large level related to the number of customers
in the orbit. Another approximation based on the homogenization of the model was
pioneered by Neuts and Rao in [13], where the M/M/S retrial queue is approximated by the
multiserver retrial queue with the total retrial rate that does not depend on the number of
customers in the orbit as long as the orbit contains the number of customers greater than
the specified value N. Note that the discussion for the choice of N is presented in the book
in [1] on retrial queues. With this assumption, the stationary probabilities of the M/M/S
retrial queue can be estimated by any algorithm of [3, 12] based on the matrix-geometric
method (MGM). Domenech-Benlloch et al. [7] consider a multiserver retrial queue with the
impatient phenomenon of customers waiting in the orbit. They propose two different
generalized truncated methods (called HM1 and HM2) based on the homogenization of the
state space when beyond the number of customers in the retrial orbit. The steady-state
probabilities of the multiserver retrial queue with impatient customers are approximated
with a modified retrial queue where the retrial rate beyond a certain level only depends on
the conditional mean value of the number of customers in the orbit. They in [7] also
compared their methods with other well-known algorithms that belong to different
categories in [2], showing that the proposed HM2 method outperforms previous
approaches from the aspect of accuracy at the price of increasing computation cost. Based
on the HM2 algorithm, Do et al. in [6] propose an approximation that first obtains the
conditional mean value  of the number L of customers in the orbit under the
condition  which is the simple function of both the single eigenvalue and N where N
is suggested in [7].

Our contributions allow an efficient computation for the stationary probability distribution
and the performance measures. The research direction is to evaluate the maximal
eigenvalue of  without actually having computed . Instead, we adopted an approach
based on the nonhomogeneity of the state space and provide an efficient method with the

E[L|L≥N ]
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time complexity of only O(S) to compute the eigenvectors of matrix . Then, we develop
simplified equations that allow the efficient implementation of the computation of the
performance measures. With a given precision level , we may construct an efficient
computation algorithm for solving the stationary probability distribution, which guarantees
a specific accuracy for the computation of performance measures.

The paper is organized as follows. A nonhomogeneous quasi-birth-and-death queueing
model with orbit for impatient customers is constructed in Sect. 2. Matrix analytic
derivation is presented in Sect. 3. The algorithmic solution procedures are described in
Sect. 4. In Sect. 5, numerical test examples are presented for comparison with the results in
[6].

2 A Queueing System with Orbit for Impatient
Customers

In the system under study, we consider a queueing system with S servers. Customers arrive
according to a Poisson process with rate  and upon encountering an available server,
request an exponentially distributed service time with rate . Without loss of generality,
assume that each customer occupies one resource unit. When a new request finds all
servers occupied, it joins the retrial orbit immediately. There is an infinite capacity for the
retrial orbit with a random service discipline. After a random time that is exponentially
distributed of rate  this customer retries, being a successful retrial if it finds a free server.
Otherwise, the customer leaves the system with probability p or returns to the retrial orbit
with probability  independently of the occupancy rate of the servers and start the
retrial procedure again. Conventionally, denote by  the average load of the system.

The model considered here can be represented as a bi-dimensional continuous-time
Markov chain (MC) whose state space is defined by the number of customers in the retrial
orbit and the number of customers being served, constituting a Level Dependent Quasi-
Birth-and-Death Process (LDQBD). In QBD related literature, the term level refers to a set
of states with the same first coordinate. Consider a retrial queueing model with S
homogeneous servers and impatient customers. Let a random variable J(t) represent the
number of occupied servers at time t, . When , a customer joins the
orbit in order to wait and retry. Let L(t) be the number of customers in the orbit waiting for
retrial at time t. Each customer retries with rate . A retrying customer either leaves the
queue with probability p if all servers are busy upon the retrial or rejoins the orbit with
probability . Note that a time between subsequent retrials of a specific customer
follows the exponential distribution with parameter . The main characteristics of this
model are its infinite state space (L(t), J(t)) and also its space of nonhomogeneity produced
by the fact that the retrial rate depends on the number of customers in the retrial orbit.

Suppose the system is stable and  exists. This system can be
represented by two-dimensional continuous-time Markov chain (CTMC) 
with state space . We will use a two dimensional state space
description where state  denotes that the number of customers in orbit equals  (

) and that j ( ) servers are busy. Hence, the total effective
retrial rate is  when . The infinitesimal generator of this process has an infinite
block tridiagonal structure  defined in (1). Let  and  be the row vector in
which the ith component is 1, 0 elsewhere, . Denote by  the transpose of
the vector . Construct a discrete-time and nonhomogeneously infinitesimal generator for
X as the following ,
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(1)
where

and

and  denotes a diagonal matrix with the diagonal elements defined as

3 LDQBD Model Formulation

Let the steady-state probabilities of X be denoted by 
. Define the row vector , 

. Throughout the paper, we adhere to the convention, unless stated
otherwise, that probability vectors are row vectors.  in (1) is an irreducible stochastic
matrix, its steady state probability vector associated to it is denoted by , and we partition
it as , where , , is an m-vector. Being a stationary probability
distribution,  satisfies  and , where  is a zero matrix and  is a column of
all 1.

An MC is said to be positive recurrent if the mean time to return to each state for the first
time after leaving it is finite. In infinite QBD MCs, this requires that the drift to higher level
states be smaller than the drift to lower level states. To preserve the stability of the system,
i.e., the existence of the steady state probability distribution, the MC is assumed aperiodic
as well.
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Theorem 1

([10]). If the LDQBD process with a transition rate matrix given by (1) is irreducible,
aperiodic, and positive recurrent, then there exist matrices  such that

where the sequence  is the minimal nonnegative solution of the set of equations
given by

(2)

The proof may be found in [10].

Let  denote a matrix norm by

where  is an  matrix with its element  at the ith row and the jth column. With
an extension of Theorem 1, we claim the following fact.

Corollary 1

If  is irreducible then for any , there exists a number K such that for all  we

have  if and only if .

To extend the result from a stable queueing system, we have the following lemma in
general.

Lemma 1

If  and  for  are irreducible, where , then  is

positive recurrent if and only if , where  satisfies  and 
, for all .

The proof could be done with a similar homogeneous case and can be found in [11].
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then  exists. We write  as a power

series in . This gives

Note  is rank-1 since . Define

Moreover,  can be written as

where .

Lemma 2

Given  is invertible, we have , such that  for 
.

Proof

Under the stability in (2), we assume that

and there exists  such that

Consider the following characteristic polynomial

Since , finding a zero of the characteristic polynomial is
equivalent to finding a zero in the following equation,

Lemma 3
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. In addition, one may check that , and 
. Second, claim  in the following arguments. By Lemma 1 with 
 for , we have

, implying that

. Multiplying  from right on both sides, it gives

.

Thus, it produces . Hence, we have that . It is
now clear that there is a unique solution of  between 0 and 1 when .    

Hence, x can be found when  in the following equation,

(3)

Corollary 2

Suppose  is rank-1. A fixed point of (3) is an eigenvalue of  and  is the
corresponding left eigenvector.

The proof is straightforward.

Theorem 2

If  is rank-1 and  is nonsingular, then for any  there exists a K such that 
 for  and solve a fixed point for .

The proof is easily obtained by the arguments provided in Lemma 2. For further discuss
explicitly, denote that the fixed point is  such that .
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Because  is a function of x and , we may decide  by 
with assigning a x, .

Consider  again but we are going to use it with  for .

Theorem 3

If the Markov chain is positive recurrent, we have  and , for 
.

Proof

From (4) we know

and

Thus we have .    

Then it is shown in Theorem 3 that under certain irreducibility conditions, the value of the
h(x) in lies (0,1), which may efficiently be solved and will be expressed by .

4 Deficient Matrix Approaches

In this section, we will focus on an efficient approach by taking into account  at the
boundary state when it solves the stationary probability . We rewrite the system state
balance equations as

4.1 Boundary Equations and Eigenvector Approaches

Let  and . We
consider a general structure of  in the following lemma.
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Proof

Let . Without losing of generality, we may assume  are
linearly independent. Since rank , there exist some constants  which
are not all zero such that

(5)
To prove  are uniquely determined. Suppose there are other numbers 

 such that  which is also an
expression of . By subtracting one from another, we obtain 

. According to our assumption
of linear independence of , we have , . Hence, 

 for  and the expression is determined uniquely.

From (5), we have  which implies

Similarly, suppose  are linearly independent and there exist some
constants  which are not all zero such that 

. It implies that

Based on two cases described,  may be written as

where c is an arbitrary real number. This means  is uniquely determined up to a constant.
It concludes that .    
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such that .

Suppose the first S columns or rows of  are linear independent. It produces for  that
 is full rank and  exists. Suppose

where  satisfies  and  denotes a matrix for the remainders with
respect to .

Lemma 5

Let , where  and , then 
.

Proof

Since , we may choose a proper r such that . Consider

On the other hand, we have a similar derivation in the following,

From the two expressions above, it gives that

For  is of the full rank, we can similarly acquire .    

Lemma 6

Let  be an  matrix with rank , has no zero row or column, and  be a row
vector satisfies that  is full rank, then 
for all .
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Similarly, we have

If , then we are done. Otherwise, it means  for some constant
 by Lemma 4, then it produces

Since , we have , implying .    

From Lemma 12, , it provides a way to obtain 

, because  plays the role of  in the equation. So we can set

(6)

for any , and any row vector  such that rank

In our case, we set  in (6).

4.2 LU Decomposition Approaches

In order to reduce the time complexity of matrix multiplication and inversion, we will
adapt LU decomposition for computing an  matrix, namely

(7)
with its all diagonal elements are nonzero. Denote by  the element at the (i+1)th row
and the (j+1)th column of matrix .

Let  and  be component matrices of LU decomposition of , where  is a lower
triangular matrix and  is an unit upper triangular matrix, then  and  can be expressed
as

(8)
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(9)
From (8), (9), and , we can write the following equations.

which induces the Algorithm 1 with time complexity .

Lemma 7

If  is of the special form as described in (7) and  are the component matrices of LU
decomposition of , then the last row of  is the same as the last row of , i.e. 

.

Proof

It is easy to check that  is modified to an upper triangular matrix with all diagonal
elements of one by Gaussian elimination.

This implies that the last row of  is 
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Since , by multiply  on both sides, we obtain

Hence, we have the result.   

Now, define . Since , we obtain the
following equation, i.e.,

which induces the Algorithm 2 with time complexity .

Thus, replacing  by  or , the time complexity of
solving  can be reduced from  to .

In summary, we present a general computing procedure for obtaining  in the following.

The expected number of customers in the retrial orbit  can be determined by

Define the effective retrial rate and the effective service rate as  and , respectively.
The performance measures are expressed by
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5 Numerical Experiments

By our model, the computational effort of the suggested approach in Algorithm 3 is
significantly reduced while the numerical stability associated with the computational
procedure is controlled under a preset precision level. We will conduct numerical
experiments on PC with Intel(R) Core(TM) i5-5200U CPU @ 2.20GHz for the proposed
method with the test problems appeared in [6]. With the help of stationary distribution 

 of M/M/S with impatient customers, we can compute the expected
number of customers in the retrial queue and the expected number of customers at each
level by treating  and S as the decision variables, e.g., . In experiments, we
first use the test problems in [6] and comparing the results by computing  which is
denoted by  in our model, the blocking probability , the delayed service probability 

, and the nonservice probability , i.e.,

Referring to [6], the default value of number of examples are set as S = 50, 100, 200, 500,
and 1000,  = 1/180,  = 0.01, p = 0,2, , respectively. We confirm the computing
procedure and robustness of Algorithm 3. The performance measures are presented in
particular for S = 500,  = 1,  = 1/180,  = 0.01 in Fig. 1.

The main purpose of this paper is the development of an eigenpair approach that results in
an efficient method to effectively solve retrial systems with customer impatience. This
novel method is a continuing effort inspired in the previous research papers. The proposed
algorithm depends on a series of eigenvalues and eigenvectors for nonhomogeneous QBD.
The computational complexity is much lower because it only needs to solve an eigenvalue
once and the remaining probabilities are attained by substitution. According to our
experiments over 100 test problems including , we found the computational
complexity depends on  which confirms the observation in [6]. In specific, our test
problems illustrate the relationship K which is denoted by N in [6] among other system
parameters in Fig. 1. Therefore, we choose K by the following rule in our case rather than
using Corollary 1 which only provides a rough upper bound in general.

Observation: There exists a  such that  is proportional to  where 
may be written as

Although this method is one of the generalized truncated methods, we believe our method

can be used in many cases in engineering problems where the matrix  has only one
non-zero row of which examples are found in [4, 14, 15]. We expect that this method will
outperform the previous proposals in terms of accuracy for the most common performance
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parameters used in retrial systems and under a wide range of scenarios in applications
(Tables 1 and 2).

Table 1.

Computational Time for 

K Time (s) K Time (s) K Time (s) K Time (s) K Time (s)

0.4

10 0.001 10 0.001 10 0.004 10 0.010 10 0.021

20 0.001 20 0.001 20 0.006 20 0.016 20 0.016

30 0.001 30 0.003 30 0.006 30 0.014 30 0.020

40 0.001 40 0.005 40 0.008 40 0.014 40 0.030

0.8

30 0.002 30 0.003 30 0.005 30 0.016 30 0.033

40 0.002 40 0.003 40 0.007 40 0.026 40 0.033

50 0.004 50 0.004 50 0.008 50 0.026 50 0.047

60 0.003 60 0.005 60 0.009 60 0.03 60 0.047

1.0

50 0.009 80 0.008 120 0.033 200 0.097 350 0.288

75 0.011 100 0.009 160 0.033 250 0.102 400 0.339

100 0.01 120 0.009 200 0.039 300 0.124 450 0.352

125 0.014 140 0.012 240 0.05 350 0.157 500 0.396

1.4

100 0.009 200 0.015 300 0.05 800 0.279 1000 0.937

150 0.013 250 0.02 400 0.061 900 0.332 1500 1.368

200 0.014 300 0.018 500 0.07 1000 0.35 2000 1.648

250 0.01 350 0.029 600 0.084 1100 0.378 2500 2.146

λ = ρ(μS),μ = 1/180,γ = 0.01,p = 0.2

ρ

S = 50 S = 100 S = 200 S = 500 S = 1000



Table 2.

Computational Time for 

K Time (s) K Time (s) K Time (s) K Time (s) K Time (s)

0.8 60 0.003 50 0.01 50 0.021 40 0.027 40 0.060

0.9 170 0.01 150 0.031 100 0.009 90 0.07 80 0.124

0.95 320 0.02 350 0.055 320 0.11 270 0.19 190 0.287

1.0 560 0.043 810 0.15 1510 0.507 2390 1.853 3760 6.119

λ = ρ(μS),μ = 10,γ = 1.6,p = 0.15

ρ

S = 100 S = 200 S = 500 S = 1000 S = 2000
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