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Abstract * 

This study attempts to find the analytic formulae for valuing guaranteed minimum 
withdrawal benefits (GMWB) in a multi-asset framework. With the assumption that each 
equity process follows a geometric Brownian motion, we obtain the analytic formulae for 
GMWB by approximating the sum of the correlated lognormal variables using the averaging 
concept of reciprocal gamma and lognormal distributions. Numerical experiments show that 
analytic formulae of the averaging concept are accuracy, even for long-duration policies. Thus, 
the analytic formulae provide the significant advantage and efficiency in valuing GMWB. 
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I. Introduction 

Variable annuities (VA) are an insurance product sold in the retirement 

market. The policyholder makes a single or periodic payment into a fund and the 

fund value accumulates in accordance with the underlying investment portfolio. 

Offering an investment guarantee is an innovative design for the VA. If the 
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market performs badly, the policyholders can still receive a certain guaranteed 

fund value. Guaranteed minimum death benefits (GMDB), guaranteed minimum 

maturity benefits (GMMB), guaranteed minimum income benefits (GMIB), and 

guaranteed minimum withdrawal benefits (GMWB) are the common types of 

investment guarantees. The investment guarantee feature of VA has received 

great attention in the retirement market. According to LIMRA’s Election 

Tracking Survey, the combinations of these investment guarantees comprise 61% 

of the VA sales in 2015 (LIMRA Secure Retirement Institute (2016)). 

Granting investment guarantees means that VA products are embedded 

financial options. The pricing issues of these embedded options for insurance 

contracts have been discussed for a long time (Brennan and Schwartz (1976, 

1979), Milevsky and Posner (2001), Boyle and Hardy (2003), Ballotta and 

Haberman (2003, 2006), and Bauer, Kling, and Russ (2008)). The above 

literature focuses more on the GMDB, GMMB, and GMIB guarantees. GMWB is 

the latest type of investment guarantee. Under a GMWB contract, the 

policyholder is entitled to make a withdrawal periodically for a contractually 

specified amount for the duration of the contract, regardless of the performance 

of the underlying investment portfolio. Thus, the payoff of the GMWB is quite 

complex and hard to value, because the embedded options contain the feature of 

arithmetic Asian options, whose payoffs depend on the average price of the 

underlying asset. The challenge in pricing arithmetic Asian options arises 

because the arithmetic average is not lognormally distributed when the 

underlying asset price follows a standard lognormal process, especially in 

long-duration contracts (Liu (2008)). The analytic closed-form solution is 

especially difficult to obtain for pricing GMWB and we attempt to find the 

closed-form solution for valuing GMWB in this research. 

Prior financial literature proposes several approximation techniques to solve 

this problem, which consist of three main categories: (1) Monte Carlo 

simulation, (2) lattice or finite difference methods, and (3) analytical 

approximations. The first method offers a high level of accuracy for pricing 

Asian options, but in terms of the computing time required, it is not efficient, 

because the standard simulation provides convergence rates of (number of 

paths)-1/2. As a technique to improve this performance, the variance-reduction 

technique uses geometric Asian options as control variates (Kemna and Vorst 

(1990)). Bacinello, Millossovich, and Montealegre (2016) provide a dynamic 

programming algorithm for pricing GMWBs under a general Lévy processes 

framework by simulation. The second approach provides a very flexible and 

efficient means for pricing Asian options; this method even remains viable when 

early exercise is allowed. For example, Hull and White (1993) propose an 

extended binomial method that can efficiently value American-style Asian 

options, and Dewynne and Wilmott (1993) develop a finite difference method to 
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value Asian options. The third approach, which approximates the density 

function of the arithmetic average with a lognormal random density (Turnbull 

and Wakeman (1991), Levy (1992), and Bouaziz, Briys, and Crouhy (1994)) or 

reciprocal gamma density (Milevsky and Posner (1998b)), is generally more 

preferred in practice if the approximate analytical solutions can be performed 

quickly and accurately. Boyle and Potapchik (2008) provide additional details in 

their survey of methods for pricing Asian options. 

To date, the partial differential equation (PDE) approach has remained the 

primary technique for dealing with GMWB (Milevsky and Salisbury (2006), 

Chen, Vetzal, and Forsyth (2008), and Donnelly, Jaimungal, and Rubisov 

(2014)). Milevsky and Salisbury (2006) treat embedded options of GMWBs as 

Quanto Asian puts and use the PDE approach to find a fair charge. Chen, Vetzal, 

and Forsyth (2008) also consider an optimal withdrawal strategy and the jump 

effect of the underlying risky asset to value the no-arbitrage fee for GMWBs 

using the PDE approach. Donnelly, Jaimungal, and Rubisov (2014) develop an 

efficient method to value GMWBs by PDE method under stochastic volatility and 

stochastic interest rates environment. In addition, Yang and Dai (2013) and 

Moenig and Bauer (2016) use a tree method to consider surrender options and 

tax structure for GMWBs, respectively. To achieve our objective of finding 

analytic formulae to value GMWBs, we utilize the reciprocal gamma distribution 

to approximate the probability density function of the sum of the correlated 

lognormal random variables. It is different from the idea provided by Peng, 

Leung, and Kwok (2012) and Huang and Kwok (2014). Peng, Leung, and Kwok 

(2012) derive both the lower and upper bounds on the price functions of 

GMWBs. Huang and Kwok (2014) derive the integral equations for the 

determination of a pair of optimal withdrawal boundaries for GMWBs. But we 

use the reciprocal gamma distribution introduced first by Milevsky and Posner 

(1998a, 1998b) to deal with arithmetic Asian options. Due to the similar features 

of arithmetic Asian options with GMWBs, it encourages us to try this 

approximation for GMWB contracts. To derive the parameters underlying the 

approximate reciprocal gamma distribution for the GMWB contract, we use the 

moment matching technique and derive corresponding first and second 

moments. For comparison, we also derive the analytic formula using a lognormal 

distribution approximation and examine the comparative accuracy of these 

formulae, based on reciprocal gamma, lognormal distribution and the average 

concept of them, with Monte Carlo simulations. 

Unlike Milevsky and Posner (1998a, 1998b), we extend the valuation 

framework to deal with insurance contracts. Our assessment captures the 

realistic features of a VA product, including management fees, charges, and 

withdrawals; we also derive the valuation formulae on the basis of a multi-asset 

framework. In practice, VA products are usually linked to an investment 
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portfolio with both risky and riskless assets. Therefore, a fair charge for GMWB 

contracts depends on the underlying investment portfolio, because the 

corresponding risk profile for the VA product differs. Our valuation formulae can 

benefit insurers to determine the fair charges for different investment portfolios, 

an issue that has not been addressed in valuation frameworks that appear in 

previous works pertaining to GMWB (e.g., Milevsky and Salisbury (2006), 

Bauer, Kling, and Russ (2008), Dai, Kwok, and Zong (2008), Liu (2008), Peng, 

Leung, and Kwok (2012), Yang and Dai (2013), Donnelly, Jaimungal, and 

Rubisov (2014), Huang and Kwok (2014), Bacinello, Millossovich, and 

Montealegre (2016), and Moenig and Bauer (2016)). In addition, the existing 

approximation formulae for arithmetic Asian options normally have been derived 

to value financial contracts (Lo, Palmer, and Yu (2014)). The accuracy and 

efficiency of the valuation approach sometimes are limited for short-duration 

contracts (Liu (2008)). In our numerical analysis, we demonstrate that the 

proposed analytic formulae, based on the average value of lognormal and 

reciprocal gamma distribution, perform well for not only short- but also 

long-duration contracts, such as 30-year GMWB contracts. 

In Section II, we describe the valuation framework for GMWB embedded in a 

VA product and present the underlying financial model. In Section III, we derive 

analytic solutions for GMWB using reciprocal gamma and lognormal density 

functions, respectively. We continue in Section IV with the numerical results and 

sensitivity analysis for fair charges for GMWB in different investment portfolios. 

Section V provides our conclusions. 

II. Valuation Framework for GMWB 

We assume a single-premium variable annuity product associated with 

GMWB with maturity date T. The policyholder is guaranteed to withdraw a 

certain amount each year during the deferred period, and the guaranteed 

withdrawal amounts are a fixed percentage of the premium. The account value of 

the VA product depends on the performance of the underlying investment 
portfolio. We consider an investment portfolio with n risky assets ( 1 ,..., nS S ) and 

one risk-free asset (B). The dynamics of the market prices for the risky assets 
under the risk-neutral probability measure Q are 

,   Q
it i t i i t tdS rS dt S dZ  , , , 1 ...i n                   (1) 

where Q
tZ  denotes a n-dimensional standard Brownian motion; the parameter 

r	 is the constant risk-free rate; and i  represents a n-dimensional volatility 

function of the i th risky asset return. As a result, the volatility of the i th risky 
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asset is equal to i i  , where | |  denotes the Euclidean norm in nR . The 

covariance between the i th risky asset and the j th risky asset equals ij i j    , 

where ij  is their correlation coefficient. The dynamic of the riskless asset is 

.t tdB rB dt                             (2) 

Let wo  denote the initial single premium and Wt  denote the account value at 

time t with Wo =wo . The account value of GMWB changes according to the 

return on the underlying investment portfolio, less the withdrawal and payments 

of the guaranteed charges. In the realistic framework we consider, the 

accumulation of account value depends on an investment portfolio with a 

proportion of i  invested in the i th risky asset and the rest, or 
1

1
n

i
i

 


  , in 

the risk-free asset. Thus, the corresponding stochastic differential equation 

(SDE) of Wt  can be expressed as 

1

n
t t

t i it t t t
i it t

W W
dW dS dB G dt cW dt ,

S S
 



                 (3) 

where c is the proportional charge, based on the account value, and Gt  
represents the guaranteed minimum withdrawal benefit at time t . Regardless of 

the performance of the underlying risky investment, we assume the GMWB 

promises policyholders could receive at least the entire original investment. 

Thus, the guaranteed minimum withdrawal benefit is a fixed amount denoted G 

for each withdrawal. According to the financial settings of the asset dynamics in 

Equations (1) and (2), we also can express the SDE of Wt  in Equation (3) as 

ሺሺ ሻ ሻ ,Q
t t λ t tdW r c W G dt W dZ    σ                  (4) 

where 
1

n

i i
i

  


 ; therefore, the variance of Wt  is 
22

1 1

n n

i j i j i j
i j

       
 

    . 

For a VA product with GMWB, the account value might eventually fall to zero as 

a result of poor investment performance, but the policyholder is still guaranteed 

a certain amount to withdraw. To calculate the future dynamics of account value 

Wt , we must consider a situation in which account value declines all the way to 

zero. For this purpose, following the similar idea of Peng, Leung, and Kwok 

(2012), we define a pseudo-asset U as follows: 

ሺ ሻ ,Q
t t t tdU r c U dt U dZ     with 0 1.U                (5) 

In turn, we can solve Equation (4) and obtain the expression for the account 
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value Wt  at time t [0,T ], which is 

1
0

0
,0 .

t

t t sW Max U G U ds       w                   (6) 

See Appendix A for the derivation of Equation (6). 

The total benefits that the policyholder receives from the VA product with 

GMWB include two parts: the terminal account value (WT ) and total withdrawal 

benefits. For a fixed guaranteed withdrawal benefit (G ), the total benefits at the 

end of the deferred period (time T ) are 

ሺ ሻ

0
,

T
r T u

TW e Gdu                            (7) 

where ሺ ሻ

0

T
r T ue Gdu  denotes the total withdrawal benefits accumulating by 

maturity time T. 

Then let  o ,V W T  denote the no-arbitrage value at inception for the GMWB 

with maturity date T. On the basis of the risk-neutral valuation, the no-arbitrage 

value of  o ,V W T  can be expressed as 

   ሺ ሻ
0

0
,

T
rT r T u

Q TV W T e E W e Gdu     

 T
1

0
0

,0 1 ,rT Q rT
T s

G
e E Max U w G U ds e

r
                        (8) 

where QE  is the expectation according to the risk-neutral measure Q . The first 

term on the right-hand side of Equation (8) represents a reciprocal Asian option, 

denoted by  o ,J W T . For this research, we derive an analytic valuation formula 

for valuing the embedded GMWB option using the reciprocal gamma 

distribution approximation. For comparison purposes, we also derive the 

valuation formulae using lognormal approximation. 

III. Derivation of Analytic Formula 

According to the dynamics of tU  in Equation (5), the no-arbitrage value of 

the option term (  o ,J W T ) at inception can be rewritten a 

  1
0 0 0
, ,0

T
rT Q

T sJ W T e E U Max w G U         ds  

  2 1
0 0

exp 2 ,0
T

rT Q Q
T se E r c T Z Max w G U ds               .    (9) 
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The expectation calculation procedure in Equation (9) can be simplified 

using a new probability measure Q with the Radon-Nikodym derivative 

 2exp 2Q
T T

dQ
Z T

dQ       


 .                     (10) 

By the Girsanov Theorem, Q
tZ  refers to Q -Brownian motion in which Q

tZ  

and Q
tZ  are related by Q Q

t tdZ dZ dt  .  By changing the measure from Q to 

Q, Equation (9) becomes 

  1
0 0 0
, ,0

T
cT Q

T sJ W T e E Max w G U         ds  

1
0 0

,0 ,
T

cT Q
se E Max w G U ds        

                (11) 

where sU ,  according to the probability measure Q,  is of the form 

  2exp 2 Q
sU r c s Z      
 .s                  (12) 

The problem involved in dealing with the valuation framework in Equation 

(11) is the integral 1

0

T

sU ds ,  the average reciprocal price of pseudo-asset U. We 

approximate this term using the first and second moments of the integral to 

match those of two distributions—namely, a reciprocal gamma distribution and a 

lognormal distribution—to derive the analytic solutions. As a crucial element for 

deriving the approximation solutions, we provide the first and second moments 

of the integral in the following proposition. 

PROPOSITION 1  Under the probability measure Q,  the first and second 

moments of the integral 1

0

T

sU ds ,  where sU  satisfies Equation (12), are as 

follows: 

 

 1

1
,

,

r c Te
r c

M r c
r c

T

  


 




if   
  

if   
            

                      (13) 

and 
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 

  

   
 

 

  
  

   
 

 
 

22 2

2 2

2 2

2

22

2 2
2

1 1

2 2

2 1

1 1
2

2

r c T

r c T

r c T

r c T r c T

e
r c r c

e
r c r c r c

e T
M r c r c

T
e e

r cr c r c



 

 





 

 





  

 

 

   

 
 
    
 
  
   
        

  
 
     

 
  

   



 

 





2 2

 

                                  =

 

2

2

2

2

2

2

2

4

0,		 0

2 2 0

0,	 0

2 2 0

0,	 0

1T

r c r c

r c

r c r c

r c

r c r c

e T
































    


  





     
   





    





   
 
   
















if   

    and 

if    

    and 

if    

                                         

2

2

2

2 2 0

0,	 0

2 2 0

r c

r c r c

r c













  

    

  







    and 

if    

    and   (14) 

The calculations of the first two moments appear in Appendix B. 

Approximating the integral 1

0

T

sU ds  by moment matching the reciprocal 

gamma distribution, we can apply seminal work by Milevsky (1997), which 

demonstrates that the inverse of the present value of a stochastic perpetuity is 

gamma distributed under Wiener returns. Specifically, we define the integral 

  
0
exp

T

T tI t Z dt                         (15) 

as the present value of a stochastic perpetuity of $1, exposed to an instantaneous 

force of mean   and volatility parameter   that is driven by a Brownian 

motion. The reciprocal of I  obeys a gamma distribution, namely, 

                
2

1
2

2
,

2
I g x

 





 
 
 

~ ,                         (16) 

and the gamma distribution with parameter ( ,  ) is defined by the following 

probability density function: 

   
1

0, 0, 0.

x

x e
g x x

     



 

    


| , ,                (17) 
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By virtue of Equations (12) and (15), substituting 2 2r c       and     

yields 

 
1

1

0
, ,s U UU ds g  


 

 
  ~ |x                       (18) 

where 
 

2

2
1U

r c







 


, and 2 2U    . . Thus, Equation (18) implies that the 

sum of correlated lognormal variables 1
T

sU ds0  converges to the reciprocal 

gamma distribution when T   (Milevsky and Posner (1998b)). Because we 

deal with VA products with long times to maturity, their duration, often more 

than 30 years, is much longer than that of financial options. Therefore, 

approximating 1

0

T

sU ds  with a reciprocal gamma distribution is applicable to 

insurance contracts, and by matching the first and second moments of 
1

T

sU ds0  to the reciprocal gamma distribution, we can derive the analytical 

solution of account value, as we summarize in the following proposition. 

PROPOSITION 2  Using Proposition 1, in an investment portfolio with a 

proportion of j  invested in the jth risky asset, if 1
T

sU ds0  is approximated by 

a reciprocal gamma distribution, the analytical solution of the reciprocal Asian 
option embedded in a GMWB takes the form: 

  1
0 0

1 1
1 1 1 ,cT

RG J J J J

M
J W T w e G G

T T T
                        

 , | , | ,    (19) 

where 

2
2 1

2
2 1

2
,J

M M
M M







  and  
2

2 1

2 1

.J

M M
M M




                (20) 

and  ,J JG x   |  is the cumulative gamma density function with the 

parameters J  and J .  

The derivation of Proposition 2 appears in Appendix C. 

COROLLARY 1  Using Proposition 2, with a 100% investment in a single risky 
asset (i.e., , 0,i j j i   100% where ), the initial market value of the option 

term embedded with a GMWB is virtually the same as that in Equation (19), 
except that i   .  

To approximate the term 1
T

sU ds0  with a lognormal distribution, we make 

the first two moments of the lognormal distribution equal to 1M  and 2M , 
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which provides the closed-form solutions of reciprocal Asian options in 
Proposition 3. 

PROPOSITION 3  Using Proposition 1, in an investment portfolio with a 

proportion of j  invested in the j th risky asset, if 1
T

sU ds0  is approximated 

by a lognormal distribution, the analytical solution of the reciprocal Asian option 

embedded in a GMWB takes the form: 

     21
0 0, ln , ln , ,

LN

cT
LN LN LN LN LN

M
J W T w e N T N T

T
         

 
 (21) 

where  ,LN LNN x    is the cumulative normal density function with mean 

LN  and volatility LN ; and the parameters of LN  and LN  are calculated 

using the first two moments matching, namely, 1 22ln 0.5lnLN M M    and 

2 1ln 2lnLN M M   .  

The derivation of Proposition 3 is in Appendix D. 

COROLLARY 2  Using Proposition 3, with 100% investment in one risky asset 
(i.e., 100% 0i j j i   , , where ), the initial market value of the option term 

embedded with GMWBs is virtually the same as that in Equation (21), except 
that i   .  

With Propositions 1-3, we find the analytic closed-form solutions for the 

option term in valuing GMWB according to both reciprocal gamma distribution 

and lognormal distribution approximations. According to Milevsky and Posner 

(1998a), they say the traditional lognormal method overprices the options and 

the reciprocal gamma method underprices them. So we also consider the average 

value of  0 ,RGJ W T  and  0 ,LNJ W T  as  0 ,J W T .  In practice, the insurer 

charges the policyholder a guarantee fee to reflect the value of embedded option, 
and to obtain a fair value of this charge, the insurer might set the initial 

premium equal to the expected present value of the total benefits from the VA 

product with GMWB, that is 

 0 0 , 1 .rTG
w J W T e

r
  ( )                    (22) 

IV. Numerical Analysis 

We investigate fair charges for GMWB in this section. Assume the 

policyholder invests a single premium of 100, which also is the guaranteed 

withdrawal amount for the policy duration of the contract. For illustration 

purpose, we demonstrate the results based on a three-asset investment portfolio 
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that contains two risky assets and one riskless asset. In the base illustration case, 

we consider an investment portfolio with 60% invested in higher risky asset, 

20% in less risky asset, and 20% in riskless asset. The volatility of the more and 

less risky assets are 0.3 and 0.1, respectively. The correlation (ρ12) of these two 

risky assets are assumed to be 0.5 or -0.5. The interest rate is 0.02. For a 

robustness check, we also conduct sensitivity analyses in which we study the 

effect of parameter changes and investment proportion on the value of fair 

charge for GMWB. 

We first study the accuracy of our derived formulae by comparing the 

simulation results for the value of the embedded option with the analytical 

results derived in Equations (19) and (21) and the average value of them, which 

include the outcomes of both the approximate lognormal and reciprocal gamma 

distributions. The Monte Carlo simulation is based on 100,000 paths with 252 

time partitions per year. In Table I and Table II, we list the option value and the 

relative error for different policy durations, according to the analytical solutions 

and simulation results when asset correlations are 0.5 or -0.5 separately. The 

relative errors between the simulated values and closed-form solutions are 

small, especially in the average value of the approximate lognormal and 

reciprocal gamma distributions. In Table I for the policy duration less than one 

year, the relative errors are less than 0.15% using lognormal distribution 

approximation, -0.06% using reciprocal gamma distribution approximation, and 

0.05% using the average value of lognormal and reciprocal gamma distribution 

approximation; for a long-duration policy such as 30 years, the relative errors 

for both approximations are less than 1.98% using lognormal distribution 

approximation, -1.81% using reciprocal gamma distribution approximation, and 

0.09% using the average value of lognormal and reciprocal gamma distribution 

approximation. The estimated method of averaging lognormal and reciprocal 

gamma distribution approximation has also well performance in Table II. 

Therefore, the average value of both formulae provides a precise and an efficient 

way to value the embedded option with GMWB contracts, even for a 

long-duration policy. 

The corresponding fair charges of the GMWB contract are calculated in Table 

III. For simplicity, we only show the results using the analytic formula based on 

averaging lognormal and reciprocal gamma distribution approximation. When 

the correlation coefficient is 0.5, the guaranteed charge is 0.0274 per annum for 

a 10-year policy and decreases to 0.0070 per annum for a 30-year policy. 

Similarly, when the correlation coefficient is -0.5, the guaranteed charge is 

0.0229 for a 10-year policy and decreases to 0.0056 per annum for a 30-year 

policy. It decreases as the policy duration gets longer because the guaranteed 

withdrawal amount is assumed to be the same for different duration policy. 
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Table III 
Fair Charges for Different Investment Portfolios 

T ρ12=0.5 ρ12=-0.5 

1 0.213085 0.183092 

3 0.087637 0.074535 

6 0.046326 0.039046 

10 0.027395 0.022886 

20 0.012095 0.009928 

30 0.006961 0.005627 

In the following figures and tables, we also provide the findings from the 

sensitivity analyses conducted for the key parameters. To highlight the effects of 

these key parameters, we only illustrate the results based on averaging 

lognormal and reciprocal gamma distribution approximation. The effects of 

investment portfolio on the fair charges are investigated first. We illustrate the 

result of the investment portfolios with proportions of the higher risky assets 

ranging from 20% to 100%. The patterns of fair charges for the various policy 

durations are shown in Figure 1. Intuitively, the more risky the investment 

portfolio, the higher the fair charge, even the weights in low risky and riskless 

assets are not equal. In particular, this effect is more significant for 

short-duration policies. For example, in the based illustration case, the fair 

charge is around 0.046 per annum for a 6-year policy, but it falls to 0.007 per 

annum for a 30-year policy; in the most risky case, i.e. 100% invested in high 

risky asset, the fair charge is 0.087 per annum for a 6-year policy, but it falls to 

less than 0.014 per annum for a 30-year policy. 

The effects of the volatility of risky assets on the fair charges, as we present in 

Table IV, reflect the comparison of different volatilities underlying the 

investment portfolio, including  =0.1, 0.2, and 0.3. The fair charge increases 

with the volatility of the investment portfolio, though again, the pattern is more 

significant for shorter-duration policies. For example, for an investment 

portfolio in which volatility increases from 0.2 to 0.3, the fair charge increases 

from 0.050 to 0.087 per annum for a policy with a 6-year duration; it increases 

from 0.008 to 0.014 per annum for a policy with a 30-year duration. Therefore, 

the value of the fair charge is very sensitive to volatility. 

We assume a constant interest rate to derive the analytic formulae, but we 

also investigate the effects of the interest rate on the fair charge in Table V. All 

fair charge values clearly are decreasing functions of the interest rate. The fair 

charges are related to the probabilities which account value declines to 0. The 

higher the probabilities which account value declines to 0, the higher the fair 

charge.  
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Figure 1. Fair Charge for Different Investment Strategies (ρ12=0.5) 

Table IV 

Fair Charge for Different Volatility Levels in an Investment 
Portfolio (ρ12=0.5) 

T  =0.1   =0.2  =0.3 

1 0.083364 0.227161 0.385120 

3 0.031336 0.093784 0.162191 

6 0.015230 0.049739 0.087362 

10 0.008271 0.029509 0.052591 

20 0.003078 0.013111 0.024060 

30 0.001525 0.007589 0.014308 

Table V 

Fair Charge for Different Interest Rate: (  =0.2; ρ12=0.5) 

T  r=2% r=4% r=6% 

1 0.227161 0.159184 0.120335 

3 0.093784 0.057264 0.037998 

6 0.049739 0.026546 0.015370 

10 0.029509 0.013715 0.006845 

20 0.013111 0.004640 0.001688 

30 0.007589 0.002137 0.000585 

100% Hight Risky Asset, 0% Low Risky Asset, 0% Riskless Asset 

80% Hight Risky Asset, 10% Low Risky Asset, 10% Riskless Asset 

60% Hight Risky Asset, 20% Low Risky Asset, 20% Riskless Asset 

40% Hight Risky Asset, 30% Low Risky Asset, 30% Riskless Asset 

20% Hight Risky Asset, 40% Low Risky Asset, 40% Riskless Asset 
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V. Conclusions 

In recent years, variable annuities have emerged as key components of the 

retirement income system. To transfer part of the investment risk inherent in 

VA products, guarantees commonly are embedded in them, which means that 

the way the guarantee is valued is critical for the insurer. We tackle a GMWB 

contract that contains features similar to an arithmetic Asian option and derive 

appropriate analytic formulae. We extend the lognormal distribution 

approximation, reciprocal gamma distribution approximation and average 

value of them to GMWB contracts and derive the analytic formulae in a 

multi-asset valuation framework. Closed-form solutions for valuing GMWB 

guarantees offer several benefits, including succinctness and decreased 

computing time. Because the duration for VA products is usually longer than 

that of financial options, a simulation framework requires far more time to 

value the guarantees than would the closed-form solution. 

In our numerical analysis, we demonstrate the accuracy of our closed-form 

solutions in comparison with the simulated results. The result based on the 

average value of lognormal and reciprocal gamma distribution performs well, 

even for long-duration policies. In addition, the analytic closed-form solutions 

based on average value of lognormal and reciprocal gamma are more accurate 

than those approximated by lognormal and reciprocal gamma distribution. The 

numerical analysis offers great insight into ways to determine fair charges for 

different investment portfolios. The multi-asset valuation formulae not only 

benefit the insurer in its efforts to price GMWB more efficiently but also allow 

for a more realistic valuation. 

According to our analysis in this paper, we point out some fields for further 

research. First, we do not investigate the issue of stochastic interest rates. 

Second, we ignore mortality in the valuation framework. Third, the hedging 

strategy that an insurer uses to deal with the guarantee risk is critical. Fourth, 

the fair charge under a dynamics investment strategy is also interesting for 

further investigation. These four areas are worthy of additional research to 

explore. 
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Appendix A 

Proof of Equation (6) 

The following technique, presented by Klebaner (2012), provides the solution 

of tW . Consider the general linear stochastic differential equation (SDE): 

( ) ( )ሺ ሻ ሺ ሻ ሺ ሻ ሺ ሻ ,Q
tdW t t W dt t t W dZ      t t t ⋅             (A1) 

where functions     , and   are continuous functions of t. Therefore, tW  

takes the form: 

0 0 0
,Q

t t u
u u

t tu u u u
W X W dZ

X X
   

  
( ) ( ) ( ) ( )

du
é ù⋅ê ú⋅ê ú
ë û

ò ò       (A2) 

where tX  is given by 

( ) ( ) Q
t t t tdX t X dt t X dZ   .⋅                  (A3) 

Comparing Equation (4) with Equation (A1), we obtain Equation (A2) by setting 

ሺ ሻt G   ,  t r c   ,( )  0t  ,( )  and   .( )t  As a result, the dynamic of 

tX  is the same as that of tU , and tW  can be expressed as follows: 

1
0 00 0

1
t t t u

u

t t
W X W G du U w G U du

X
    -

æ ö æ ö÷ç ÷ç÷ç ÷÷ ç ÷çç è ø÷çè øò ò         (A4) 

Using Ito’s lemma, we obtain 

  2exp 2 .Q
t tU r c t Z                       (A5) 

In view of Equation (A5), tU  is definitely positive, and 1
0 0 u

t
w G U du -ò  is a 

nonincreasing function of time t. Let 0 inf 0tt W  :  be a stopping time at 

which the account value reaches zero. If the account value reaches zero at time 

0  during the deferred period, 1
0 0 u

t
w G U du -ò  will be less than zero for 

0t  , which leads to a negative value of tW  for 0t  . To ensure the 

nonnegative account value, tW  is assumed to be 0 after time 0 . Equivalently, 

tW  can attain a maximum value of zero and 1
0 0t u

t
U w G U du .-æ ö÷ç ÷ç ÷çè øò  This 

completes the proof of Equation (6). 
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Appendix B 

Proof of Proposition 1 

To compute the first moment of the integral 1

0

T

sU ds ,  using Equation (12), 

we use 

     
  
 1 1

1
0 0

T T
Q Q

s sM E U ds E U ds  

     2

0
exp 2 exp

T
Q Q

sr c s E Z ds       
   

    2 2

0
exp 2 exp 2

T
r c s s ds         

 

 
1 r c Te

r c
r c

T r c .

  



 

if   
=

if   

            (B1) 

To compute the second moment of the integral, we recognize 

            
 

2
1 1 1

2
0 0 0

T T T
Q Q

s u sM E U ds E U U duds  

              
   = ( ) ( )2

0 0
exp 2 exp

T T
Q Q Q

u sr c u s E Z Z duds  

               
  = ( ) ( )2

0 0
exp 2 exp 2

T s
Q Q
u s ur c u s E Z Z duds  

                
  ( ) ( )2

0
exp 2 exp 2

T T
Q Q
s u ss

r c u s E Z Z duds  

 2 2 .A BM M                                                (B2) 

To compute 2AM , because Q
uZ

 and Q

s uZ 


 are independent, we consider 

                      
  ( ) s2

2 0 0
exp 2 exp 2 exp

T s Q Q
A u s uM r c u s E Z E Z dud  

                   = ( ) ( )2 2 2

0 0
exp 2 exp 2 exp 2

T s
r c u s u s u duds  

          = ( ) ( )2
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Following a similar procedure, we can obtain M2B as follows: 

             22
0

exp exp .
T T

B s
M r c u r c s duds          (B4) 

when 0r c  , 2 0r c    , and 22 2 0r c    , we have 

2 2 2A BM M M   
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               (B5) 

Following an analogous procedure, we can obtain the second moment of the 
integral. This completes the proof of Proposition 1. 
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Appendix C 

Proof of Proposition 2 

Let X follow a gamma distribution with parameters   and  .  If the 

random variable 1Y X ,  Y is the reciprocal gamma distribution, whose 

moments are 

      
1 1

, 1,..., .
X 1 2

i
i iE Y E i n

i   
         

             (C1) 

The cumulative density function of Y, denoted by  RG y  | , , is of the form 

    1 1 1
, Pr Pr 1 , ,RG y Y y G

Y y y
   

   
        

   
| |         (C2) 

where  G y   | ,  is a cumulative gamma density distribution with parameters 
  and  .  Therefore, the probability density function of Y satisfies 

  2

1 1
, , , 0.Rg y y

yy
    

   
 

| |      g               (C3) 

Thus, we approximate 1

0

T

sY ds  U  to the reciprocal gamma distribution with 

parameters J  and J , choosing the parameters to make the first and second 

moments of the reciprocal gamma distribution equal to 1M  and 2M  of 

Appendix B, which are  

    1

1
,

1J J

E Y M
 

 


     
2

22
.

2J J J

E Y M
  

 
 

1

1
      (C4) 

Solving Equation (C4) yields 







2
2 1

2
2 1

2M
,J

M
M M

 and 


 .
2

2 1

2 1
J

M M
M M

               (C5) 

Thus, the valuation of the reciprocal Asian option can be calculated as 

  1
0 0

0
, ,0

T
cT Q
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
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     


= |  (C6) 
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where  ,R J Jg y  |  is the probability density function of Y. Using Equation 

(C3), we obtain 

 0 0 20

1 1
, 1 ,

T
cT

RG J J
y

J W T w e dy
T yy

        
    |g  

 10

1
1 ,cT

J J
T

w e g x dx
xT

 


    
  |  

   1 10

1
, ,cT

J J J J
T T

w e g x dx g x dx
T x

   
 

  
  

 
 

1
| |  

     
1

10
0

1 1
1 , 1,

1
cT T

J J J J
T J J

w e g x dx g x dx
T

   
 




  
         

 | |  

 0

1 1 1
1 , 1 1,

1
cT

J J J J
J J

w e G G
T TT

   
 


                    

 | |  

1
0

1 1
1 , 1 1, ,cT

J J J J

M
w e G G

T T T
                        

 | |   (C7) 

where we use      , 1, .
1

x
g x g x   

 
 


| |  This completes the proof of 

Proposition 2. 
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Appendix D 

Proof of Proposition 3 

Let LNY  follow a lognormal distribution with parameters LN  and LN . 

Therefore, we approximate 1

0

T

LN sY U ds   to the lognormal distribution with 

parameters LN  and LN , choosing parameters to make the first and second 

moments of the lognormal distribution equal to 1M  and 2M  of Appendix B, 
that is,  

       2 2 2
1 2exp 0.5 , exp 2 2 .LG LN LN LG LN LNE Y M E Y M             (D1) 

Solving Equation (D1) yields 

1 2 2 12ln 0.5ln , ln 2ln .LN LNM M M M                  (D2) 

Thus, the valuation of the reciprocal Asian option can be calculated as 
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This completes the proof of Proposition 3. 
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摘 要 

本文試圖找到於多資產架構下保證最低提領給付（GMWB）之解析解公式。假設每個資產

過程皆依據幾何布朗運動，藉運用反咖瑪與對數常態分配之平均值概念近似有相關性的對數常

態隨機變數之和，我們得到 GMWB 之解析解公式。其數值顯示平均值概念之解析解公式表現

精確，用於長期保單時亦然。評價 GMWB 時，此解析解公式具有顯著優勢與效率。 
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