
Comput Econ (2018) 52:55–77
https://doi.org/10.1007/s10614-017-9661-0

Time Series Simulation with Randomized Quasi-Monte
Carlo Methods: An Application to Value at Risk and
Expected Shortfall

Yu-Ying Tzeng1 · Paul M. Beaumont2 ·
Giray Ökten1

Accepted: 20 January 2017 / Published online: 4 February 2017
© Springer Science+Business Media New York 2017

Abstract Quasi-Monte Carlo methods are designed to produce efficient estimates of
simulated values but the error statistics of these estimates are difficult to compute.
Randomized quasi-Monte Carlo methods have been developed to address this short-
coming. In this paper we compare quasi-Monte Carlo and randomized quasi-Monte
Carlo techniques for simulating time series. We use randomized quasi-Monte Carlo
to compute value-at-risk and expected shortfall measures for a stock portfolio whose
returns follow a highly nonlinear Markov switching stochastic volatility model which
does not admit analytical solutions for the returns distribution. Quasi-Monte Carlo
methods are more accurate but do not allow the computation of reliable confidence
intervals about risk measures. We find that randomized quasi-Monte Carlo methods
maintainmany of the advantages of quasi-Monte Carlo while also providing the ability
to produce reliable confidence intervals of the simulated risk measures. However, the
advantages in speed of convergence of randomized quasi-Monte Carlo diminish as the
forecast horizon increases.
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1 Introduction

Monte Carlo (MC) simulation is a popular and flexible numerical tool used in many
applications, from physical sciences and engineering to social sciences, including
finance and economics. A typical application involves simulating an assumed under-
lying probability model and then estimating the probabilities of events that are of
interest as a result of the simulation. MC is flexible and easy to adapt to many prob-
lems, but its convergence is relatively slow.

Quasi-Monte Carlo (QMC), often called the deterministic version of Monte Carlo,
is a close variant of Monte Carlo that emerged to deal with the slow convergence
issues. The main difference between the two methods is in the way they simulate the
underlyingmodel. ClassicalMC uses pseudorandom numbers, whereas QMC uses the
so-called low-discrepancy or uniformly distributedmod 1 sequences in the simulation.
Low-discrepancy sequences are sequences designed to have high “uniformity”, or
“evenness”, in their domain, whereas pseudorandom sequences are designed to imitate
the true behavior of random numbers.

QMC has enjoyed increasing popularity among researchers in finance and eco-
nomics, for example, in pricing financial derivatives (Paskov and Traub 1995;
Papageorgiou and Traub 1996; Ninomiya and Tezuka 1996; Joy et al. 1996; Boyle
et al. 1997; Caflisch et al. 1997; Owen and Tavella 1997; Fishman et al. 1997; Galanti
and Jung 1997; Ökten et al. 2006; Zhang et al. 2013) and in econometric models
(Göggelmann et al. 2000; Li and Winker 2003). In addition, various financial and
mathematical software such as R, GAUSS, Mathematica, and Matlab, now include
implementations of quasi-Monte Carlo methods.

One reason for the increasing interest in QMC is that its estimates are, in general,
more accurate than the estimates produced with the same computational effort by
Monte Carlo. The low discrepancy sequences used in QMC yield convergence rates of
the estimates to the true solution with O(N−1(log N )s) (where s is the “dimension” of
the problem and N is the number of samples) whereas the MC convergence rate using
pseudorandom sequences is O(N−1/2). However, in many applications, researchers
have observed rates close to O(N−1) for QMC. We will not discuss the reasons for
this better than theoretical rate of convergence in some problems, which involve con-
cepts like effective dimension and decreasing importance of variables ( Caflisch et al.
1997; Sloan and Woźniakowski 1998). For an in-depth discussion of low discrepancy
sequences and quasi-Monte Carlo methods, we refer the reader to Niederreiter (1992).

A disadvantage of QMC is that the deterministic nature in the way that the low dis-
crepancy sequences are constructed makes it impossible to estimate reliable error
bonds for estimated statistics. In the past decade randomized quasi-Monte Carlo
(RQMC) methods have been developed to address this issue. Essentially, the low-
discrepancy sequences from QMC are randomized so that many independent sets of
QMC’s may be run from which error statistics may then be computed. See Li and
Winker (2003) for a survey of QMC methods with applications in time series simula-
tion, Ökten and Eastman (2004) for a survey of RQMC methods with applications in
pricing financial derivatives, and Sak and Başoğlu (2015) for a recent RQMC appli-
cation in risk management. See Lemieux (2009) for a general treatment of QMC and
RQMC with financial applications.
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To illustrate the use of RQMC to compute error statistics for time series simulation
estimates we use a realistic example from financial time series. We use the Markov
switching stochastic volatility model of So et al. (1998) to model portfolio returns and
to estimate the precision of simulated estimates of expected returns, value-at-risk and
expected shortfall of the portfolio over various forecast horizons. The model has a
highly nonlinear stochastic process and it provides a realistic test of the relative power
of RQMC methods in time series simulations.

2 Quasi-Monte Carlo and Randomized Quasi-Monte Carlo Methods

It is convenient to describe the quasi-Monte Carlo (QMC) and randomized quasi-
Monte Carlo (RQMC) methods in the setting of numerical integration. Consider the
problem of estimating the integral

I =
∫

[0,1)s
f (x)dx .

Monte Carlo (MC) and QMC methods both estimate this integral using sums of the
form

1

N

N∑
n=1

f (q(n))

where q(n) is an s-dimensional pseudorandom vector from the uniform distribution
on (0, 1)s in the case of the MC method, and the nth term of an s-dimensional
low-discrepancy sequence for the QMC method. In the former method, the conver-
gence of the estimates to the correct answer I is probabilistic with a convergence
rate of O(N−1/2) and in the latter, the convergence is deterministic with a rate of
O(N−1(log N )s).

The error of the QMC estimate is known to satisfy the Koksma-Hlawka (or, many
of its variants) inequality

∣∣∣∣∣
1

N

N∑
n=1

f (q(n)) − I

∣∣∣∣∣ ≤ VH K ( f )D∗
N (q(n)).

VH K is the variation of f , in the sense of Hardy and Krause, and D∗
N is the star-

discrepancy of the vectors q(1), . . . , q(N ), defined as

D∗
N (q(n)) = sup

β∈[0,1)s

∣∣∣∣ AN ([0, β))

N
− β1 × · · · × βs

∣∣∣∣

where β = (β1, . . . , βs) is a vector on [0, 1)s , and AN ([0, β)) is the number of vectors
q(1), . . . , q(N ) that belong to the interval [0, β) = [0, β1) × · · · × [0, βs). Intuitively,
the discrepancy of a sequence measures its deviation from the “ideal” distribution it is
supposed to follow. The Koksma-Hlawka inequality suggests smaller estimation error
can be obtained if the star-discrepancy of the underlying sequence is smaller.
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The Koksma-Hlawka inequality, however, does not help in assessing the error
because the right-hand side of the inequality, which in principle can be used as a
measure for error, cannot, in general, be computed analytically. Numerical estima-
tion is also not feasible because computing the star-discrepancy, for example, is an
NP-hard problem which is likely more computationally burdensome than the original
estimation problem (Gnewuch et al. 2009).

QMC is a simulation method with a fast rate of convergence but leaves us with no
practical way to compute the precision of our estimates. The randomized quasi-Monte
Carlo method (RQMC) was developed to deal precisely with this issue.

The RQMCmethod uses a randomization approach that enables constructing inde-
pendent copies of a given QMC sequence q(n). Denote a random copy of the sequence
q(n) by q(n)

u where u is a random parameter. The RQMC method approximates the
integral I = ∫

[0,1)s f (x)dx, by

Q(qu) = 1

N

N∑
n=1

f (q(n)
u ) (1)

where Q(qu) is a random variable, derived from the random parameter u.
There are three important properties common to most RQMC methods:

1. E[Q(qu)] = I ; i.e., the estimate (1) indexed by the random parameter u is unbi-
ased;

2. V ar(Q(qu)) = O
(
N−2(log N )2s

)
, or better for certain integrands and RQMC

methods;
3. |Q(qu) − I | ≤ VH K ( f )D∗

N (q(n)
u ); i.e., each RQMC estimate, obtained from a

realization of the random parameter u, satisfies the Koksma-Hlawka inequality.

In practice, the random parameter u usually has the uniform distribution and
E[Q(qu)] = I is estimated by the sample mean

Q(qu1) + · · · + Q(quM )

M
(2)

where u1, . . . , uM are independent samples from u.
The RQMC methods currently used in the literature are:

Scrambled (t, m, s)-Nets and (t, s)-Sequences
(t, m, s)-nets and (t, s)-sequences are special constructions of QMC point sets
and sequences; their theory is discussed in Niederreiter (1992). Owen (1994),
introduced a way of randomizing these nets and sequences by scrambling and
additional results were obtained inHickernell (1998), Hickernell andHong (1999),
Loh (1996), and Owen (1997a, b). Alternative scrambling methods for (t, m, s)-
nets and (t, s)-sequences were introduced by Matoušek (1998). These methods
are computationally efficient, although they limit the extent to which the random-
ization is done in the original scrambling method.

Random Shifting
This method can be applied to any QMC sequence. An independent randomization
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of the sequence q(n) is obtained by first generating a random vector u from the
uniformdistribution on (0, 1)s and then adding u to q(n) (for all n) component-wise
and taking the fractional part of the sum. Properties and applications of random
shifting are considered in Cranley and Patterson (1976), Joe (1990), Morohosi and
Fushimi (2002), Morohosi et al. (2000) and Tuffin (1996).

Random-Start Halton Sequences
The van der Corput and Halton sequences are popular examples of low discrep-
ancy sequences. One way to describe the van der Corput sequence is by using
the von Neuman-Kakutani transformation, Tb, which is a well-known example
of an ergodic mapping on (0, 1). The van der Corput sequence in base b is sim-
ply the orbit of 0 under Tb. The Halton sequence in bases b1, . . . , bs is defined
as the orbit of 0 under the s-dimensional von Neuman-Kakutani transformation
Tb(x) = (

Tb1(x1), . . . , Tbs (xs)
)
. An independent realization of a random-start

Halton sequence involves generating a random vector u from the uniform distribu-
tion on (0, 1)s , and then constructing the orbit of Tb(u). For a given u, the orbit of
Tb(u) is known to be a low-discrepancy sequence. Properties of these sequences
and the random-start approach are studied in Lambert (1985), Struckmeier (1995),
Wang and Hickernell (2000) and Ökten (2009). The random-start approach can
also be applied to randomly permuted Halton sequences; details are discussed in
Ökten (2009) and Ökten et al. (2012). These sequences are called RASRAP, and
their implementation and applications to problems from computational finance are
discussed in Xu and Ökten (2015).

3 AR(1) Model

QMC methods were employed in the forecasting of time series models in Li and
Winker (2003). One of the time series models used in Li and Winker (2003) was a
simple linear AR(1) model. In this section, we use the same model with the same
parameters, to establish the following: (i) recreate the QMC results of Li and Winker
(2003), and (ii) illustrate how error analysis of Li and Winker (2003) can be improved
by switching to RQMC sequences.

The AR(1) model is

xt = α0 + α1xt−1 + εt , εt ∼ iid N (0, σ 2
ε ), |α1| < 1 (3)

and the question is to estimate the expected value of the 10-step forecast. Letting x0
denote the last observed value and x10 the 10-step ahead forecast value, the analytical
solutions for the mean and variance of the forecast are:

E[x10] = α0

(
1 − α10

1

1 − α1

)
+ α10

1 x0 (4)

V ar [x10] = σ 2
ε

(
1 − α20

1

1 − α2
1

)
. (5)

Following Li and Winker (2003) we set x0 = 1, σ 2
ε = 0.04, α0 = 0.1, and

α1 = {−0.99,−0.5, 0.5, 0.99} and use MC and QMC methods to estimate E[x10]
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and then compare the estimate to the exact solution. Specifically, we generate N
sample paths, {x (n)

1 , x (n)
2 , . . . , x (n)

10 }N
n=1, from (3), and compute x̂10 = 1

N

∑N
n=1 x (n)

10
as our estimate of E[x10].

The difference between MC and QMC is in the way the samples from the process
εt are generated. In MC, a transformation method, such as the inverse transformation
method or Box-Muller, is used to transform a pseudorandom sequence from the uni-
form distribution on (0, 1) to random samples from the standard normal distribution. In
QMC, similar transformation methods are applied to the elements of a 10-dimensional
low-discrepancy sequence. For example, if q(n) = (q(n)

1 , . . . , q(n)
10 ) is the nth element

of a 10-dimensional low-discrepancy sequence, and T denotes the transformation that
maps a number from the uniform distribution on (0, 1) to a standard normal, then x (n)

10

is obtained using the recursion (3) where ε
(n)
j = 0.2 T (q(n)

j ), for j = 1, . . . , 10, where
the “0.2” term is the standard deviation of the shock. For the MC simulations we use
Mersenne twister (Matsumoto and Nishimura 1998) as the pseudorandom sequence
and for theQMCsimulationswe use a realization of a random-start randomly permuted
Halton sequence (RASRAP) (Xu and Ökten 2015).

Figure 1 plots the absolute error |x̂10 − E[x10]| against the sample size N for each
of the four values α1 = {−0.99,−0.5, 0.5, 0.99}. To make comparisons easier the
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Fig. 1 Absolute error of E[x10] in the AR(1) model with α1 = {−0.99,−0.5, 0.5, 0.99} simulated with
MC and QMC with sample sizes N from 1000 to 100,000 by 1K steps
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scales of all four plots are the same but some upper values for the MC absolute errors
are truncated to prevent extremely large values from distorting the plots. The plots
show sample sizes only at 1K steps to avoid too noisy an image. The QMC error
converges quickly and is significantly smaller and more stable than the MC error as
the simulation sample size grows.

Table 1 reports the average of the absolute of errors of MC, QMC and their ratios
over sets of 20 K sample sizes. For instance, for α1 = 0.5, the average of the absolute
errors over sample sizes 1 to 20,000 for the MC method is 1.87e−03 and over sample
sizes 20,001 to 40,000 is 5.27e−04. The error ratio MC/QMC reported in columns 4
and 7 are the average of the 20 K ratios in each set and not the ratio of the averages for
each method. For example, for α1 = 0.5, the average absolute error over the sample
sizes 1 to 20 K is 1.87e−03 for the MC method and 8.30e−04 for the QMC method.
To compute the error ratio MC/QMC of 38, we do not divide 1.87e−03 by 8.30e−04,
the ratio of the averages, instead we average the ratios of all 20 K sample sizes.

Together, Fig. 1; Table 1 illustrate that QMC provides much faster convergence
with less variation in simulation estimates than MC.

In the simple linear AR(1) model considered here we are able to compute exact
errors becausewe can analytically compute the true value that we are trying to estimate
by simulation. In more complicated time series models where there are no analytical
formulae to compute the expectations, even though we may know the rate of conver-
gence, it is more difficult to assess the accuracy of the simulation. In the case of MC
simulation we can use the sample standard deviation, or other descriptive statistics,
obtained from a number of independent estimates for the unknown quantity. However,
in the QMC setting, assessing error in this way is not appropriate. Therefore, we now
consider three RQMC sequences: random start Halton sequences (RAS); random-start
randomly permutedHalton sequences (RASRAP); and scrambled SOBOL′ (using ran-
dom linear scrambling ofMatoušek (1998)) sequences. Using theseRQMCsequences,
we can compute independent estimates for E[x10]. In Table 2, we present the mean
absolute percent error (MAPE) using 100 independent estimates for E[x10], for two
sample sizes N = 1 K and N = 10 K and for several values of the persistence
parameter α1.

The first column of Table 2 reports the value of α1 and column two is the associated
true value of E[x10] from (4). Columns 3–6 report theMAPE over the 100 replications
and columns 7–9 report the ratios of the MC (the MC method uses the Mersenne
twister generator) to the three RQMC methods used. The top panel reports the results
for sample sizes of 1K and the bottom panel reports the results for sample sizes of 10
K.

The RQMC methods are generally 5 to 10 times more precise than MC when
N = 1 K and 20 to 40 times more precise for N = 10 K. The RQMC method based
on the SOBOL′ sequences appears to bemore accurate than theHalton-based sequence
methods. These results are largely consistent with those presented in Table IV of Li
and Winker (2003) using a single replication of QMC.

To get a better sense of the spread of the simulation estimations for the 100 repli-
cations, Fig. 2 shows box plots of the estimates of E[x10] from the four methods for
the case α1 = 0.9 and Table 3 shows the ratios of the 25th through 75th percentile
interquartile ranges (IQR) of the MC method over the three RQMC methods. For the
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Table 2 MAPE statistics using 100 replications of MC and RQMC methods with sample sizes of N = 1
K (top panel) and N = 10 K (bottom panel) for various values of α1 for the AR(1) model

α1 True MAPE Ratio of MC over

E[x10] MC RAS RASRAP SOBOL′ RAS RASRAP SOBOL′

N = 1 K

−0.99 0.91 1.64 0.33 0.31 0.13 4.98 5.25 12.53

−0.90 0.38 2.95 0.59 0.67 0.28 5.01 4.39 10.49

−0.50 0.07 8.46 2.41 2.60 0.83 3.51 3.25 10.26

0.00 0.10 5.59 1.61 1.45 0.27 3.47 3.84 20.36

0.50 0.20 2.83 0.75 0.81 0.32 3.76 3.49 8.93

0.90 1.00 1.10 0.26 0.24 0.12 4.23 4.66 9.37

0.99 1.86 0.75 0.15 0.15 0.07 4.87 4.90 10.21

N = 10 K

−0.99 0.91 0.52 0.03 0.03 0.02 19.07 20.65 29.20

−0.90 0.38 1.04 0.04 0.05 0.03 24.97 22.31 30.78

−0.50 0.07 2.59 0.15 0.14 0.10 17.00 18.79 27.17

0.00 0.10 1.54 0.09 0.08 0.04 18.03 18.17 36.03

0.50 0.20 0.85 0.05 0.05 0.03 18.32 17.99 25.60

0.90 1.00 0.35 0.02 0.02 0.01 18.45 18.31 32.51

0.99 1.86 0.26 0.01 0.01 0.01 19.04 22.46 29.67

For the value of α1 in column 1, the truemean forecast is reported in column 2, theMAPEs for the 4methods
are in columns 3–6 and the ratios of theMC toRQMCmethods are in columns 7–9. TheRQMCmethods are:
RAS—random start Halton; RASRAP—random start–random permutation Halton; and SOBOL′—Sobol′
seqences

small sample sizes of N = 1 K, MC produces IQRs that are 5 to 10 times wider than
the RQMC methods. When the sample size increases to N = 10 K the IQRs for MC
are 15 to 30 times wider than those for RQMC.

To further investigate the convergence rate of RQMC relative to MC, we compute
the root mean square error over 40 replications of MC using Mersenne twister pseu-
dorandom numbers, and RQMC using RASRAP for simulation sample sizes from
N = 1 to N = 10 K. In the AR(1) model (3), we use the following values for
α = {−0.99,−0.5, 0.5, 0.99}.

Figure 3 plots the log10 of the root mean square errors against the log10 of the
sample sizes. The light gray lines show all 10 K points and the dashed lines show the
linear trend through these points. The slope of the dashed line is reported for each
method and approximates the rate of convergence of the method. As predicted, the
convergence rate of MC is approximately of order N 1/2, and the convergence rate of
RQMC is approximately of order N−1; a rate better than the theoretical convergence
rate of QMC. The convergence rates are robust across all values of α1. Neither method
is particularly accurate for sample sizes smaller than 102. The apparent volatility of
the RMSE for larger sample sizes is illusory since this movement is primarily in the
4th decimal place.
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Fig. 2 Box plot of the estimated values of E[x10] for 100 replications of sample sizes of 1 and 10 K. Given
α0 = 0.1, x0 = 1, and α = 0.9, the true expected value for the 10-step ahead forecast is E[x10] = 1. The
solid lines are the medians, the notches in each box represent the approximate 95% confidence interval for
the differences in the medians in each panel, the boxes range from the 25th to the 75th percentile and the
whiskers extend 1.5 times the box length with outliers reported as circles (only visible for SOBOL′ with
N = 10 K)

Table 3 Ratios of interquartile ranges (IQR) from100 replications ofMCandRQMCmethods for estimates
of E[x10] from the AR(1) model with α1 = 0.9

Sample size (K) IQR ratio

MC/RAS (K) MC/RASRAP MC/SOBOL′

1 4.2 4.9 10.5

10 16.2 16.7 33.2

The IQR is the length of the boxes from the 25th to the 75th percentile in the box plots in Fig. 2. The ratios
are for the MC IQR divided by the RQMC IQR

Table 4 reports the averages of RMSE values for each method and their ratios over
2K ranges of the simulation sample sizes. The ratios are computed as the average of
the 2 K points in each range and not as the ratio of the averages for each method. As
an example, for α1 = −0.99 and simulation sizes N = 8001 through N =10,000,
the average RMSE for the MC method is 6.29e−03 and for the RQMC method is
4.47e−04 with the average of the 2000 ratios being approximately 15.
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Fig. 3 Root mean square error of 40 MC and RQMC estimates for E[x10] in the AR(1) model for sample
sizes N = 1, . . . , 10 K and for α1 = {−0.99,−0.5, 0.5, 0.99}. The plots show the log10(rmse) versus
log10(N ). The light gray lines are for each N and the dashed lines are the linear fit through the data with
the slopes approximating the convergence rates of the methods. Approximately, MC converges at the rate
N−1/2 and RQMC at the rate N−1

In general, the precision of the RQMC estimates is an order of magnitude better
than those for MC and, as can be seen from columns 4 and 7 of Table 4 and the slopes
of the lines in Fig. 3, the relative precision increases with the sample size N . The
RQMC method allows us to compute error statistics for our simulated estimates and
maintains the fast convergence rate of QMC.

4 An Application of RQMC: Estimating Value-at-Risk and Expected
Shortfall

The AR(1) model example in the previous sections demonstrates the relatively fast
convergence rate of QMC over MC and the use of RQMC for computing the precision
of simulation estimates. Because the simple linear model that we used admits an
analytical solution, we were able to compute the RMSE and MAPE statistics using
the true expected forecast values. Of course, if we know the true values there is little
need for simulation methods.
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Li and Winker (2003) consider several nonlinear time series models for which
true forecast values are difficult to compute and they demonstrate that QMC main-
tains a relatively fast convergence rate. Less clear, since they are using QMC rather
than RQMC, is how Li and Winker (2003) compute the statistical accuracy of their
QMC simulations. In this section we demonstrate the speed and precision of RQMC
for realistic financial applications of time series models. We use a nonlinear regime
switching, stochastic volatility process to model portfolio returns and estimate the
expected portfolio return and two measures of tail risk.

Our specification for portfolio returns is theMarkov Switching Stochastic Volatility
(MSSV) model introduced by So et al. (1998). As in stochastic volatility models, the
mean and variance processes have independent shocks but in addition the variance
process is generalized to allow for regime-switching between high-, medium- and
low-volatility states where the transitions between states are modeled using a Markov
transition matrix. The MSSV model is better able to simulate the extreme tail events
necessary to accuratelymeasure tail risk of the portfolio. The nonlinearity of theMSSV
model makes analytical solutions for risk measures intractable so that simulation
methods are necessary.

We compute two measures of tail risk for the portfolio: Value at Risk (VaR) and
Expected Shortfall (ES). VaR(p) measures the minimum expected return that the port-
folio will earn p% of the time. If VaR(5)= −6%, the portfolio would lose at least
six percent of its value 5% of the time. ES(p) measures the expected return of the
portfolio in the worst p% of the possible outcomes. Because ES(p) measures the area
in the returns left tail, it is less sensitive to the tail shape of the returns density than
is VaR(p) which only measures the pth-quantile point. If VaR(5)= −6%, the ES(5)
might be more like −8%. ES(p) is intended to provide a better measure of how large
expected losses may be if markets do crash.

4.1 Markov Switching Stochastic Volatility Model of Portfolio Returns

The So et al. (1998) model for returns rt of an asset portfolio is

rt = μt + √
ht ut . (6)

The time-varying conditional variance is given by

log ht+1 = αst+1 + φ log ht + ηt , (7)

where ut ∼ iid N (0, 1), ηt ∼ iid N (0, σ 2
η ) and st denotes the state, or the regime, of

the economy denoted by integers {1, 2, . . . , K }. Following So et al. (1998), our model
will use K = 3 volatility states. The economy makes transitions between regimes,
according to a Markov process with transition probability matrix

P =
⎛
⎝p11 p12 p13

p21 p22 p23
p31 p32 p33

⎞
⎠ , (8)
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i.e., pi j =Pr(st = j |st−1 = i) with
∑3

j=1 pi j = 1 for i = 1, 2, 3.
Given the state variable st , the parameter αst is given by

αst = γ1 +
3∑

j=2

γ j I j t (9)

where

I j t =
{
1, if st ≥ j

0, otherwise
(10)

is an indicator function that is equal to 1 when st is greater than or equal to j . We
constrain parameters γ j ≤ 0, j = 2, 3 so that state 1 has the interpretation of the
high-volatility state and states 2 and 3 represent the medium and low volatility states.

Estimation of Markov switching stochastic volatility models is computationally
complex because both the volatilities and the regime states are unobserved. Themethod
usedbySoet al. (1998) is a forward-filter–backward sampling algorithmwith aKalman
filter smoother. A sequential algorithm using the particle filter method was shown
by Carvalho and Lopes (2007) and Rios and Lopes (2013) to produce more stable
estimates. To our knowledge, no one has implemented a QMC algorithm to estimate
this type of model and, since the main focus of the present paper is on time series
simulation issues, we will defer this complex estimation problem to a subsequent
paper. For our simulations we will use the estimation results of the MSSV(3) model
by So et al. (1998) using the S&P 500 Index weekly returns from the first week of
1961 to the last week of 1987. Complete estimation results are reported in Tables 2
and 4 of So et al. (1998) but, for convenience, we summarize them here:1 the estimated
mean in (6) is μ̂ = 0.00103; the estimated persistence in the conditional variance (7)
is φ̂ = 0.472; the estimated regime parameters are γ̂1 = −3.536, γ̂2 = −0.764, and
γ̂3 = −0.541; the estimated variance of the volatility shock is σ̂ 2

η = 0.074; and the
estimated Markov transition probability matrix is

P̂ =
⎛
⎝.859 .130 .011

.029 .967 .004

.009 .017 .974

⎞
⎠ . (11)

A full interpretation of the model and estimation results are provided by So et al.
(1998). We note that the mean time before switching out of the high-volatility state is
about 7 weeks, and 30 and 38weeks for the medium- and low volatility states. Regime
switching is a major source of variance in volatility as can be seen by the estimated
persistence of a volatility shock, φ, which is much lower than would typically be
estimated in a model without regime switching.

1 So et al. (1998) filter their returns data to eliminate a small negative persistence term in the mean equation
(6) induced by the market crash at the end of the estimation period. For the purposes of our simulations,
we treat the conditional mean returns as constant.
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Fig. 4 Box plot of the estimated values of E[1 + r1] for 100 replications of sample sizes of 1, 10, and
100 K

4.2 Simulating Expected Returns

The MSSV model of portfolio returns is highly nonlinear and it provides a good test
of the relative performance of MC and RQMC methods. To examine the effect of
increasing dimension on the simulation accuracy of the (R)QMCmethod we consider
two cases: (i) 1-step ahead (1 week simulation horizon) portfolio returns from the
MSSV model, and (ii) 4-step ahead (a 4 week or about 1 month simulation horizon)
portfolio returns.

For each simulation we start with a return and variance equal to the unconditional
values, r0 = μ̂ = 0.00103 and h0 = 0.02172, with the market currently in the
medium-volatility state regime, state s0 = 2. In case (i) we need to draw the mean
equation shocku1, the variance equation shockη1, and the state of the system, s1,which
requires a 3-dimensional vector of pseudorandom, or low-discrepancy sequence, for
each simulation. Since the simulation horizon in case (ii) is 4 periods, we must draw
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Table 5 Interquartile range ratios (IQR) from 100 replications of MC and RQMC methods for estimates
of gross returns from the MSSV model

Sample size (K) IQR ratio

MC/RAS MC/RASRAP MC/SOBOL′

Case (i): 1-step ahead simulations

1 13.4 17.3 16.3

10 62.0 62.6 54.6

100 115.9 134.2 185.8

Case (ii): 4-step ahead simulations

1 6.6 5.9 7.3

10 12.8 7.8 17.7

100 9.9 12.0 14.7

The IQR is the length of the boxes from the 25th to the 75th percentile in the box plots. The ratios are for
the MC IQR divided by the RQMC IQR for sample sizes N = 1 K, 10 K and 100 K. The upper panel are
the IQRs for the 1-step ahead estimates of E[1 + r1], and and the lower panel are the IQRs for the 4-step
ahead estimates of E[1 + r4]
a 12-dimensional vector of pseudorandom, or low-discrepancy sequence, for each
simulation.

In Fig. 4 we show box plots of 100 independent simulations of the 1-step ahead
estimates of the expected portfolio gross return, E[1+ r1], using the MC and RQMC
methods with the same sequences considered in Section 2 with the AR(1) model. The
rapid convergence of the RQMC methods relative to MC is evident.

We compare the relative precision of theMC to the RQMCmethods using the ratios
of the interquartile ranges (IQR) from the box plots of the 100 simulations used to
estimate the expected portfolio returns. The upper panel of Table 5 reports the IQRs for
case (i) from the box plots in Fig. 4. The width of the RQMC boxes are approximately
15 times smaller than the MC boxes for sample sizes of N = 1 K, 50 to 60 times
smaller for sample sizes of N = 10 K, and over 2 orders of magnitude smaller for
sample sizes of N = 100 K.

The lower panel of Table 5 reports the IQRs for case (ii), whose box plots we do not
show. Although the precision of the estimates for the RQMC methods is still approx-
imately an order of magnitude better than for MC, the convergence rate for RQMC is
much slower for the 4-step ahead simulations that use 12-dimensional sequences than
for the 1-step ahead simulations of case (i) that use 3-dimensional sequences in the
simulations. The precision of the RQMC estimates is still quite good, with estimated
standard deviations across the 100 replications for N = 100 K on the order of 10−6,
but the two order of magnitude increase precision of RQMC over MC is lost in the
higher dimensional case. This reduced advantage of RQMC over MC with higher
dimensional sequences is consistent with the findings of Ökten et al. (2006).

4.3 Simulating the Measures of Tail Risk

To compute VaR(p) and ES(p) we simulate the h-step ahead forecast of portfolio
returns. It is conventional to report returns in terms of h-step ahead losses. Let Fh(	)
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Fig. 5 Portfolio value for the 1-step ahead estimates of VaR(5) from 100 replications of MC and three
RQMC methods for simulation sample sizes N = 1 K, 10 K, 100 K

denote the distribution function of h-step ahead losses 	. Then theVaR(p) of a portfolio
is defined as

p = Pr[L(h) ≥ VaR(p)] = 1 − Pr[L(h) < VaR(p)] (12)

or

VaR(p) = inf {	 | Fh(	) ≥ p} (13)

so the probability of a loss of VaR(p) or greater over the h-period horizon is p. The
expected shortfall is defined as

ES(p) = E [	 | 	 ≥ VaR(p)] = 1

p

∫ ∞

VaR(p)

	 d Fh(	). (14)
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Table 6 Interquartile range ratios (IQR) from 100 replications of MC and RQMC methods for estimates
of VaR(5) from the MSSV model

Sample size (K) IQR ratio

MC/RAS MC/RASRAP MC/SOBOL′

Case (i): 1-step ahead simulations

1 3.5 3.2 3.1

10 4.6 4.5 4.5

100 7.3 9.4 8.4

Case (ii): 4-step ahead simulations

1 1.3 1.2 1.4

10 1.4 1.3 1.4

100 1.1 1.1 1.4

The IQR is the length of the boxes from the 25th to the 75th percentile in the box plots. The ratios are for
the MC IQR divided by the RQMC IQR for sample sizes N = 1 K, 10 K, 100 K. The upper panel are the
IQRs for the 1-step ahead estimates of VaR(5), and and the lower panel are the IQRs for the 4-step ahead
estimates of VaR(5)

Beginning with an initial portfolio value of V0 = $1, the portfolio value at step
t = 1, . . . , T is given by

Vt = Vt−1 × ert , t = 1, . . . , T (15)

where rt is the simulated return process from theMSSVmodel, and T = 1 for case (i),
and T = 4 for case (ii). In our simulations we use p = 5%. To measure the precision
of the VaR(5) and ES(5) estimates we use the same M = 100 simulations of sample
sizes N = 1 K, 10 K, 100 K using the MC method and the three RQMC methods
(RAS, RASRAP and SOBOL′) described earlier.

Figure 5 displays box plots of the 100 independent replications of the 1-step ahead
simulation estimates of VaR(5) for the MC and each of the RQMC methods, for
simulation sample sizes of N = 1 K, 10 K, 100 K. The estimates predict there is a 5%
chance that this portfolio will lose at least 3.04% of its value during the next 1 week
horizon. The standard deviation of these estimates in the N = 10 K case is about 4
basis points for the MC method and less than 1 basis point for the RQMC methods.

The top panel of Table 6 shows the interquartile ranges for the box plots in Fig. 5.
The MC method IQRs are 3 to 9 times wider than those for the RQMC methods
depending upon the sample size. The standard deviation of the estimates by sample
size N = 1 K, 10 K, 100 K are 12, 4 and 1 basis points for the MC method, and 4, 0.8
and 0.2 basis points for the RQMC methods.

The lower panel of Table 6 reports the IQRs for the 4-step ahead simulated estimates
of VaR(5). The estimates predict there is a 5% chance that this portfolio will lose at
least 5.6% of its value during the next 1 month horizon. For this higher dimensional
problem, the RQMC methods have almost completely lost their advantage over the
MC method. It is worth noting that the VaR(5) estimate is the 95% percentile of the
distribution of losses and for each simulation that point estimate is computed from
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Fig. 6 Portfolio value for the 1-step ahead estimates of ES(5) from 100 replications of MC and three
RQMC methods for simulation sample sizes N = 1 K, 10K, 100 K

the order statistics of the returns. Even when the simulation sizes are large there are
relatively few points in the upper tail of losses so the number of regime switches in the
simulations can play an important role in the computation of the VaR. This, of course,
is precisely why the VaR is difficult to estimate with precision and this fact remains
true for RQMC methods.

Box plots of the the 1-step ahead simulation estimates of the 5% expected shortfall,
ES(5), are shown in Fig. 6, and the IQRs for the 1-step and 4-step ahead simulations
are shown in Table 7. The estimates of ES(5) are around 3.85% which, as expected,
are larger than the estimates of VaR. RQMCmethods are somewhat more precise than
MC at estimating ES(5) than VaR(5), particularly for the 1-step ahead simulations
where the IQRs are 20 to 30 times smaller for RQMC than MC in the largest sample
size simulations. For the 1-step ahead simulations, the standard deviations of the ES(5)
estimates are generally about an order of magnitude smaller for RQMC than for MC.
The standard deviation of the estimates based on RQMC methods for the case (i)
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Table 7 Interquartile range ratios (IQR) from 100 replications of MC and RQMC methods for estimates
of ES(5) from the MSSV model

Sample size (K) IQR ratio

MC/RAS MC/RASRAP MC/SOBOL′

Case (i): 1-step ahead simulations

1 4.5 4.6 5.6

10 9.6 8.9 8.4

100 22.4 24.4 29.1

Case (ii): 4-step ahead simulations

1 1.1 1.1 1.2

10 1.7 2.0 1.3

100 1.2 2.0 1.6

The IQR is the length of the boxes from the 25th to the 75th percentile in the box plots. The ratios are for the
MC IQR divided by the RQMC IQR for sample sizes N = 1 K, 10 K, 100 K. The upper panel are the IQRs
for the 1-step ahead estimates of ES(5), and the lower panel are the IQRs for the 4-step ahead estimates of
ES(5)

simulations with N = 100 K are about one-tenth of one basis point and for the case
(ii) simulations are about 6 basis points. Our estimates of expected shortfall ES(5) are
more precise than those for the associated VaR(5), confirming the recommendation of
the Basel Committee that risk measures should switch from VaR to ES.

We note that the estimation of VaR is a notoriously difficult problem and has been
approached in many ways including IGARCH (Longerstaey andMore 1995), extreme
value theory (Longin 1999; Tsay 1999), cluster analysis (Chang et al. 2007), and neural
networks (Chen and Hsieh 2010). Estimates of VaR can be improved using variance
reduction methods, or smoothing methods such as the Fourier transform approach
introduced by Jin and Zhang (2006) that smooths the expectation estimation of the
indicator function in the VaR estimation. Numerical results of Jin and Zhang (2006)
suggest that QMC, when used in conjunction with the Fourier transform approach,
gives more accurate results than plain MC and QMC implementations. The RQMC
results we have reported for the estimation of VaR can be improved using these tech-
niques, but since the main purpose of this paper is not to estimate VaR, we do not
pursue these techniques here.

5 Conclusion

In this article we have demonstrated the use of randomized quasi-Monte Carlo meth-
ods (RQMC) in time series simulations. Quasi-Monte Carlo (QMC) methods use
low-discrepancy sequences to improve the spatial coverage of simulated processes
over classical Monte Carlo methods. QMCmethods have theoretical convergence rate
of O(N−1(log N )s), although in many applications, researchers have observed rates
close to O(N−1), compared to the MC convergence rate of O(N−1/2). One drawback
of the QMC method is that its estimates are not amenable to practical error analy-
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sis. RQMC methods overcome this problem by introducing a randomization step into
the selection of the low-discrepancy sequences. Descriptive statistics can be used to
analyze the error of estimates obtained by RQMC.

We consider a simpler time series application estimating the expected value of an
h-step forecast of a linear time series model, and a realistic time series application of
estimating the values and precision of expected returns, value-at-risk, and expected
shortfall of a portfolio, whose returns follow a highly nonlinear Markov switching
stochastic volatility model. We demonstrate how RQMC can be used to analyze esti-
mation error statistically, and compare errors obtained by several RQMC methods
with Monte Carlo. Our numerical results show that RQMC can offer substantial error
reduction, up to two orders of magnitude, in estimating the expected returns of the
Markov switching model. We also observe that the factor of improvements offered by
RQMCdiminish as the the dimension of the underlying sequences increase, especially
in the case of VaR estimation, where 4-step ahead simulations via RQMC offer little
improvement over MC. Techniques such as variance reduction or smoothing can be
used to improve RQMC, however, the detrimental effect of increasing dimension can-
not be completely avoided; seeÖkten et al. (2006) for a discussion of high dimensional
simulation.
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