
Au
to

m
at

ica
lly

ge
ne

ra
te

d
ro

ug
h

PD
Fb

yP
ro

of
Ch

ec
kf

ro
m

Ri
ve

rV
al

le
yT

ec
hn

ol
og

ie
sL

td
DE GRUYTER Studies in Nonlinear Dynamics & Econometrics. 2019; 20180075

Shih-Hsun Hsu1

Disentangling the source of non-stationarity in a
panel of seasonal data
1 Department of Economics, National Chengchi University, Taipei 11605, Taiwan, Tel.: +886-2-2939-3091 ext: 51667, Fax: +886-2-
2939-0344, E-mail: shhsu@nccu.edu.tw. https://orcid.org/0000-0002-8564-4846.

Abstract:
In dealing with a panel of seasonal data with cross-section dependence, this paper establishes a common factor
model to investigate whether the seasonal and non-seasonal non-stationarity in a series is pervasive, or spe-
cific, or both. Without knowing a priori whether the data are seasonal stationary or not, we propose a procedure
for consistently estimating the model; thus, the seasonal non-stationarity of common factors and idiosyncratic
errors can be separately detected accordingly. We evaluate the methodology in a series of Monte Carlo sim-
ulations and apply it to test for non-stationarity and to disentangle their sources in panels of worldwide real
exchange rates and of consumer price indexes for 37 advanced economies.
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1 Introduction

Whether or not a series is stationary is important for statistical inference, and it is currently quite standard for
an empirical study to employ the unit root tests such as the (augmented) Dickey-Fuller test (Dickey and Fuller
1979; 1981) or the Phillips-Perron test (Phillips and Perron, 1988) to detect possible non-stationarity for the series
of interest. Besides, in order to improve the testing power, many panel unit root tests have also been proposed
by pooling information over cross-section units; they are constructed under the assumption of independence
across cross-section units (e.g. Levin and Lin, 1993; Levin, Lin and Chu, 2002; , Im, Pesaran and Shin, 2003,
henceforth IPS) or established by allowing for cross-section dependence (e.g. Bai and Ng, 2004; Chang, 2004;
Moon and Perron, 2004; Breitung and Das, 2005; Pesaran, 2007); for more reviews on (non-seasonal) panel unit
root tests, see Hlouskova and Wagner (2006) or Breitung and Pesaran (2008), among others.

Besides the conventional unit root +1 at long-run (or zero) frequency, unit roots at different seasonal fre-
quencies may also induce non-stationarity;1 these seasonal unit roots are especially important when the sea-
sonal data are of interest. To detect various kinds of non-stationarity induced by seasonal unit roots for an
univariate seasonal series, the test of Dickey, Hasza, and Fuller (1984), the HEGY approach of Hylleberg et al.
(1990), Kunst’s (2009) nonparametric test, the test of Osborn et al. (1988), etc., are thus proposed. While taking
advantages of the progress of non-seasonal panel unit root tests, there have been few non-stationary unit root
tests for seasonal panels in the last decade. With a cross-section independence assumption, Dreger and Reimers
(2005), Otero, Smith, and Giulietti (2005), and Ucar and Guler (2010) extended the IPS test to pooling individual
HEGY test statistics associated with cross-section units (HEGY-IPS test hereafter); while taking possible cross-
section dependence into account, Otero, Smith and Giulietti (2007, 2008) and Kunst and Franses (2011) further
extended the HEGY-IPS test by integrating Pesaran’s (2007) method, whereas Ho (2008), Lee and Shin (2006),
and Shin and Oh (2009) proposed tests based on instrument variable (IV) methods.

This paper also focuses on stochastic non-stationarity in a panel of seasonal data with cross-section depen-
dence. However, unlike the existing works, we go beyond them to propose a framework to disentangle the
source of seasonal non-stationarity induced by seasonal unit roots. We establish a factor model for the seasonal
panel by extending PANIC (Panel Analysis of Nonstationarity in Idiosyncratic and Common components) ap-
proach of Bai and Ng (2004) to the case where possible seasonal non-stationarity is permitted. None of the
stationarity assumptions on components in the model is necessary, and the cross-section dependence among
units is delicately captured by common factors in this model. Based on the proposed approach, we can discover
whether the seasonal non-stationarity induced by seasonal unit roots in a series is pervasive, unit-specific, or
both, and detect the number of common trends in the panel, at the seasonal frequency of interest. To increase
the testing power, we also introduce a pooled test by using the summation of minus two times the logarithm
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of the p-values (resulting from the individual HEGY tests) across individuals. Moreover, when there are multi-
ple common factors, we also propose a procedure which involves successive tests to determine the number of
(seasonal) non-stationary factors. The simulations show that the proposed estimation and testing procedures
perform very well in most configurations considered. To the best of our knowledge, for a panel data with pos-
sible seasonal unit roots, no such analysis exists thus far in the literature.

For empirical applications, we applied the proposed framework to investigate the possible non-stationarity
in the panel of worldwide real exchange rates and in the panel of consumer price indexes (CPIs) for 37 advanced
economies. Since the existence of non-stationary real exchange rates may be viewed as a violation of purchas-
ing power parity (PPP hereafter),2 and seasonal patterns (and non-stationarity) are expected to be observed
frequently in CPI because of its construction, the sources of of non-stationarity in each panel thus are of our
particular interest. Two balanced panels of quarterly data were constructed from the International Financial
Statistics (IFS hereafter) dataset of the International Monetary Fund (IMF hereafter). Based on the proposed
factor model associated with the estimation and testing procedures, we tested for the existence of seasonal and
non-seasonal non-stationarity, and then disentangled the source of non-stationarity in these two panels.

The rest of this paper is organized as follows. We present the definition of seasonal unit roots and the consid-
ered factor model in Section 2, the proposed estimation and test procedures in Section 3, the main asymptotic
properties of the proposed approach in Section 4, and results for some simulation designs in Section 5. An
empirical application is illustrated in Section 6 and we conclude this paper in Section 7.

2 Seasonal unit roots and factor model

Before proceeding to specify the proposed approach, for a seasonal process wt, it is worth briefly introduc-
ing non-stationary seasonality. First, wt is seasonally integrated of order d, SI(d) say, if (1 − 𝐿𝑆)𝑑𝑤𝑡 ≡ Δ𝑑

𝑆𝑤𝑡
is a stationary process, where L is the lag operator. When d = 1, Δ𝑆 ≡ Δ1

𝑆 is known as the first order annual
differencing operator or the seasonal differencing filter. For the quarterly data (S = 4), wt is SI(1) implies that
(1 − 𝐿4)𝑤𝑡 = Δ4𝑤𝑡 is stationary. Since (1 − 𝐿4) = (1 − 𝐿)(1 + 𝐿)(1 + 𝐿2), the spectral density of wt has infinite
spectral power at the zero frequency (corresponding to the conventional unit root of +1) and at the seasonal
frequencies of π and π/2 (corresponding to the semi-annual unit root of −1 and annual unit roots of ±i, respec-
tively).3 Besides, we claim that some seasonal variables are seasonally cointegrated at some seasonal frequency,
if each of them has a unit root but their combination is stationary at this seasonal frequency; see Hylleberg et al.
(1990), Wells (1997), and Ghysels and Osborn (2001), among others.

2.1 Model specification

Let {𝑦𝑖𝑡} denote the quarterly panel data which satisfies the common factor structure as:

𝑦𝑖𝑡 = 𝒟𝑖𝑡 + 𝜆𝜆𝜆′
𝑖𝐹𝐹𝐹𝑡 + 𝜖𝑖𝑡, 𝑖 = 1, … , 𝑁, 𝑡 = −3, … , 0, … , 𝑇, (1)

where 𝒟𝑖𝑡 is the deterministic component of unit i at time t, 𝐹𝐹𝐹𝑡 = [𝐹1𝑡, 𝐹2𝑡, ⋯ , 𝐹𝑞∗𝑡]′ is a 𝑞∗ × 1 vector of common
factors where 𝑞∗ ≪ 𝑁, 𝝀i is a corresponding 𝑞∗ × 1 vector of factor loadings, and ϵit is an idiosyncratic error
for unit i. In order to clearly discern between the stationary factor(s) and non-stationary one(s), if necessary, we
may further denote 𝐹𝐹𝐹∗

𝑡 = ΓΓΓ′𝐹𝐹𝐹𝑡 as a transformation of Ft with a 𝑞∗ × 𝑞∗ rotation matrix ΓΓΓ = [𝛾𝛾𝛾1 𝛾𝛾𝛾2 … 𝛾𝛾𝛾𝑞∗ ] such
that the first q1 factors are non-stationary while the remaining (𝑞∗ − 𝑞1) factors are stationary.

Given this specification, the cross-section dependence among units is allowed and directly captured by
the common factors Ft. Besides, if a series yit is seasonal stationary or not depends on the combinations of
common factors Ft and idiosyncratic error ϵit. If one or more of the common factors are seasonal non-stationary,
it indicates that for all units i with non-zero loadings, yit is seasonal non-stationary, no matter how ϵit is, since the
idiosyncratic errors are independent of common factors by definition. On the other hand, if all common factors
are seasonal stationary, then yit is (resp. not) seasonal stationary only when its idiosyncratic error ϵit is (resp.
not). Moreover, at some seasonal frequency, if one of the common factors (and thus yit) has the corresponding
seasonal unit root but all ϵit do not, the linear relationships among yit and Ft in the model specification (1) can
be treated as a kind of seasonal cointegration at this seasonal frequency. Last but not least, after employing the
typical seasonal unit root tests on these components in model (1), we can tell whether the non-stationarity at
some seasonal frequency in the seasonal series is pervasive (due to common factors), or unit-specific (due to
idiosyncratic error), or both.
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3 Proposed estimation and testing procedures

According to model specification (1) and the aims of this paper, it is easy to see that the common factor structure
plays a crucial role. However, the factors and the loadings are unobserved. Besides, because yit in model (1) may
be (seasonal) non-stationary, it is thus impossible to estimate Ft and 𝝀i as well as q* (the number of common
factors) directly based on yit. As a consequence, this paper proposes an estimation procedure by extending the
approach of Bai and Ng (2004) to take (possible) seasonal unit roots into account. Based on the estimates, we
then introduce the augmented HEGY test of Hylleberg et al. (1990), its pooled version for the panel data, and
propose a new procedure which involves successive tests for determining the number of common stochastic
trends.

3.1 Estimation procedure

To estimate the model (1), we first compute the principal components (PC) for the annual-differenced series
Δ4𝑦𝑖𝑡. By using these principal components, we then estimate the number of common factors, and the associated
estimates of loadings and Ft.

To be precise, it is instructive to start by considering the case where 𝒟𝑖𝑡 contains an intercept or seasonal
dummies. In this case we have Δ4𝒟𝑖𝑡 = 0 and from (1), for t = 1, …, T, i = 1, …, N,

Δ4𝑦𝑖𝑡 = 𝜆𝜆𝜆′
𝑖Δ4𝐹𝐹𝐹𝑡 + Δ4𝜖𝑖𝑡,

∶= 𝜆𝜆𝜆′
𝑖𝑓𝑓𝑓 𝑆

𝑡 + 𝜀𝑆
𝑖𝑡,

(2)

where 𝑓𝑓𝑓 𝑆
𝑡 = Δ4𝐹𝐹𝐹𝑡 and 𝜀𝑆

𝑖𝑡 = Δ4𝜖𝑖𝑡 are annual-differenced variables of Ft and ϵit, respectively. Note that, because
Δ4𝑦𝑖𝑡 in (2) is stationary for all i no matter what the nature of the original series yit is, the space spanned either by
𝑓𝑓𝑓 𝑆

𝑡 or by 𝝀i can be consistently estimated now by applying the conventional method of principal components to
Δ4𝑦 when N and T are large enough.4 On the other hand, if 𝒟𝑖𝑡 contains a linear trend, then Δ4𝒟𝑖𝑡 is a non-zero
constant and would be present on the right-hand side of model (2). As suggested in Bai and Ng (2004), if we
replace Δ4𝑦𝑖𝑡 with its demeaned version in model (2), the loadings 𝝀i and the factors 𝑓𝑓𝑓 𝑆

𝑡 can still be consistently
estimated under the assumption that 𝔼[𝑓𝑓𝑓 𝑆

𝑡 ] = 0.
Let Δ4𝑌𝑌𝑌 denote the N × T matrix in which the (𝑖, 𝑡)-th element is Δ4𝑦𝑖𝑡, 𝑖 = 1, … , 𝑁, 𝑡 = 1, … 𝑇, and

ΛΛΛ(𝑞) = [𝜆𝜆𝜆1(𝑞) 𝜆𝜆𝜆2(𝑞) … 𝜆𝜆𝜆𝑖(𝑞) … 𝜆𝜆𝜆𝑁(𝑞)]′ the corresponding N × q matrix of loadings, and 𝐹𝐹𝐹𝑆(𝑞) =
[𝑓𝑓𝑓 𝑆

1 (𝑞) 𝑓𝑓𝑓 𝑆
2 (𝑞) … 𝑓𝑓𝑓 𝑆

𝑡 (𝑞) … 𝑓𝑓𝑓 𝑆
𝑇(𝑞)]′ the T × q matrix of factors, when there are q common factors. Under the nor-

malization thatΛΛΛ(𝑞)′ΛΛΛ(𝑞)/𝑁 = 𝐼𝑞, a q-dimension identity matrix, and 𝐹𝐹𝐹𝑆(𝑞)′𝐹𝐹𝐹𝑆(𝑞) being diagonal, the resulting
PC estimate of 𝚲(q), Λ̂ΛΛ(𝑞) say, is √𝑁 times the eigenvectors corresponding to the q largest eigenvalues of the N
× N matrix Δ4𝑌𝑌𝑌Δ4𝑌𝑌𝑌′, and ̂𝐹𝐹𝐹𝑆(𝑞) = Δ4𝑌𝑌𝑌′Λ̂ΛΛ(𝑞)/𝑁 is the associated PC estimate of 𝐹𝐹𝐹𝑆(𝑞).

Since the true number of common factors q* is unknown in most cases, we can further estimate it by using
the information criteria summarized in Bai and Ng (2008). The estimate for the number of factors is defined as:

̂𝑞 = arg min
0≤𝑞≤ ̄𝑞

ln(𝑆(𝑞)) + 𝑞 ⋅ Γ(𝑁, 𝑇), (3)

where ̄𝑞 is a pre-specified value;

𝑆(𝑞) = (𝑁𝑇)−1
𝑁

∑
𝑖=1

𝑇
∑
𝑡=1

[Δ4𝑦𝑖𝑡 − ̂𝜆𝜆𝜆′
𝑖(𝑞) ̂𝑓𝑓𝑓

𝑆
𝑡 (𝑞)]

2

is the sum of squared residuals when ̂𝑓𝑓𝑓
𝑆
𝑡 (𝑞) and ̂𝜆𝜆𝜆𝑖(𝑞), respectively, are the estimates of q factors and load-

ings based on the method of PC, and Γ(𝑁, 𝑇) is a penalty weight which satisfies the regularity condition that
Γ(𝑁, 𝑇) → 0 and 𝐶2

𝑁𝑇 ⋅ Γ(𝑁, 𝑇) → ∞ as 𝑁, 𝑇 → ∞ with 𝐶𝑁𝑇 = min(√𝑁, √𝑇). Three valid functions suggested in
Bai and Ng (2008) will be considered for the simulations and two empirical applications below; they are:
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Γ1(𝑁, 𝑇) = 𝑁 + 𝑇
𝑁𝑇 ln ( 𝑁𝑇

𝑁 + 𝑇 ) ,

Γ2(𝑁, 𝑇) = 𝑁 + 𝑇
𝑁𝑇 ln(𝐶2

𝑁𝑇),

Γ3(𝑁, 𝑇) =
ln(𝐶2

𝑁𝑇)
𝐶2

𝑁𝑇
.

Besides, we also follow Bai and Ng’s (2008) suggestion to consider an additional penalty weight as:

Γ4(𝑁, 𝑇) = 𝑁 + 𝑇 − 𝑞
𝑁𝑇 ln(𝑁𝑇).

Γ4(𝑁, 𝑇) has good properties when the errors are cross correlated even though it may fail the condition
Γ(𝑁, 𝑇) → 0 under the some particular configurations of N and T. More details about the properties of the
estimation of factor models by using PC can be found in Stock and Watson (2002b) and Bai and Ng (2008),
among others.

Let ̂𝑓𝑓𝑓
𝑆
𝑡 ∶= ̂𝑓𝑓𝑓

𝑆
𝑡 ( ̂𝑞) and ̂𝜆𝜆𝜆𝑖 ∶= ̂𝜆𝜆𝜆𝑖( ̂𝑞) denote the corresponding estimates when ̂𝑞 is determined by (3); the consis-

tent estimate of 𝜀𝑆
𝑖𝑡 is then obtained by ̂𝜀𝑆

𝑖𝑡 = Δ4𝑦𝑖𝑡 − ̂𝜆𝜆𝜆′
𝑖 ̂𝑓𝑓𝑓

𝑆
𝑡 . As a consequence, the estimates of Ft and ϵit, t = 1, …,

T, i = 1, …, N, are, respectively,

̂𝐹𝐹𝐹𝑡 =
⌊𝑡/4⌋
∑
𝑘=0

̂𝑓𝑓𝑓
𝑆
𝑡−4𝑘 and ̂𝜖𝑖𝑡 =

⌊𝑡/4⌋
∑
𝑘=0

𝜀𝑆
𝑖𝑡−4𝑘, (4)

where ⌊𝑚⌋ denotes the largest integer not greater than m. ̂𝐹𝐹𝐹𝑡 and ̂𝜖it are simply the sample counterparts of Ft
and ϵit, respectively, since:

𝐹𝐹𝐹𝑡 = (1 − 𝐿4)−1𝑓𝑓𝑓 𝑆
𝑡 = (1 + 𝐿4 + 𝐿8 + ⋯)𝑓𝑓𝑓 𝑆

𝑡 ,
𝜖𝑖𝑡 = (1 − 𝐿4)−1𝜀𝑆

𝑖𝑡 = (1 + 𝐿4 + 𝐿8 + ⋯)𝜀𝑆
𝑖𝑡.

Note that these estimates in (4) differ from what was proposed in Bai and Ng (2004) which deals with the panel
data with possible non-seasonal non-stationarity.

When there is only one common factor, we can directly infer its (seasonal) non-stationary dynamics from
its corresponding estimate. However, when there are multiple factors, individually testing each of them for the
possible seasonal unit roots at different frequencies would overstate the (seasonal) non-stationary dynamics in
general since we can only estimate the space spanned by those factors instead of the factors themselves; any
linear combinations of the factor(s) with seasonal unit root(s) and other stationary one(s) would yield another
non-stationary factor. As a consequence, we further construct the transformed estimates ̂𝐹𝐹𝐹∗

𝑡 by estimating the
̂𝑞 × ̂𝑞 rotation matrix ̂ΓΓΓ such that:

̂𝐹𝐹𝐹∗
𝑡 ∶= [ ̂𝐹∗

1𝑡, ̂𝐹∗
2𝑡, … , ̂𝐹∗

̂𝑞𝑡]′ = ̂ΓΓΓ′ ̂𝐹𝐹𝐹𝑡, (5)

where ̂ΓΓΓ = [ ̂𝛾𝛾𝛾1 ̂𝛾𝛾𝛾2 … ̂𝛾𝛾𝛾 ̂𝑞] is the matrix of the eigenvectors associated with the descending eigenvalues of
𝑇−2 ∑𝑇

𝑡=1
̂𝐹𝐹𝐹𝑡 ̂𝐹𝐹𝐹′

𝑡. Since the stationary factor has bounded variance while the variance of the non-stationary factor is
explosive, if we suspect that the data of interest is driven by some stationary and some (seasonal) non-stationary
factors, the transformed factor ̂𝐹∗

̂𝑞𝑡 = ̂𝛾𝛾𝛾′
̂𝑞

̂𝐹𝐹𝐹𝑡 is the most likely estimate for the stationary one, whereas ̂𝐹∗
1𝑡 = ̂𝛾𝛾𝛾′

1
̂𝐹𝐹𝐹𝑡

could be non-stationary with the highest probability. Similar arguments on distinguishing the stationary com-
ponent(s) from the non-stationary one(s) can also be found in the literature on identifying cointegration rela-
tionships among variables (Stock and Watson, 1988; Harris, 1997) or detecting the rank of non-stationary space
of common factors (Bai and Ng, 2004).

3.2 Testing procedure

Given the estimates of q*, Ft and ϵit, we are now in a position to test their seasonal unit roots by introducing the
so-called “augmented HEGY test” of Hylleberg et al. (1990) for a univariate quarterly series and their extensions
to seasonal panel data.

4
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3.2.1 Augmented HEGY test for univariate series

To test seasonal unit root(s) at different seasonal frequencies and seasonal integration of idiosyncratic error for
a cross-section unit i, or of the common factors, the augmented HEGY test is employed as follows. Let wit be an
univariate quarterly series at time t;5 the augmented HEGY test then considers a regression:

Δ4𝑤𝑖𝑡 = 𝜋1𝑤(1)
𝑖𝑡−1 − 𝜋2𝑤(2)

𝑖𝑡−1 − 𝜋3𝑤(3)
𝑖𝑡−2 − 𝜋4𝑤(3)

𝑖𝑡−1 +
𝑙𝑖

∑
𝑙=1

𝜌𝑙Δ4𝑤𝑖𝑡−𝑙 + 𝜂𝑖𝑡, (6)

where 𝑤(1)
𝑖𝑡−1 = (1 + 𝐿)(1 + 𝐿2)𝑤𝑖𝑡, 𝑤(2)

𝑖𝑡−1 = (1 − 𝐿)(1 + 𝐿2)𝑤𝑖𝑡, 𝑤(3)
𝑖𝑡−1 = (1 − 𝐿)(1 + 𝐿)𝑤𝑖𝑡, and li, the lag length

of Δ4𝑤𝑖𝑡, is chosen such that ηit is uncorrelated white noise across t. Given the model (6) and OLS estimates for
the corresponding parameters, we may detect:

(a) wit has a conventional unit root +1 by testing the null 𝐻(0)
𝑜 ∶ 𝜋1 = 0;

(b) wit has a semi-annual unit root −1 by testing the null 𝐻(𝜋)
𝑜 ∶ 𝜋2 = 0;

(c) wit has annual unit roots ±𝑖 by testing the null 𝐻(𝜋/2)
𝑜 ∶ 𝜋3 = 𝜋4 = 0;

(d) wit has all seasonal unit roots by testing the null 𝐻(𝑆)
𝑜 ∶ 𝜋2 = 𝜋3 = 𝜋4 = 0;

(e) wit is SI(1) by testing the null 𝐻(𝑆𝐼)
𝑜 ∶ 𝜋1 = 𝜋2 = 𝜋3 = 𝜋4 = 0.

According to the estimation results for the regression model (6), the first two (one-sided to the left) tests are
easily implemented by using the resulting t-statistics, and the last three (one-sided to the right) are done by em-
ploying the corresponding F-statistics. Besides, the joint tests for multiple seasonal unit roots, by considering
any two of 𝐻(0)

𝑜 , 𝐻(𝜋)
𝑜 and 𝐻(𝜋/2)

𝑜 , are also available by constructing the associated F-statistics. In the following
analysis, for different sample periods, the critical values and the p-values associated with these test statistics
for seasonal unit roots are obtained from the simulated distributions constructed by 50,000 Monte Carlo repli-
cations; the data-generating process is Δ4𝑤𝑖𝑡 ∼ 𝑖.𝑖.𝑑.𝑁(0, 1), and no augmented lags (li = 0) are considered in
the regression model (6).

3.2.2 Pooled augmented HEGY tests for panels

Based on the introduced augmented HEGY test for univariate series wit, we are now going to extend them to
detect the seasonal non-stationarity (at different seasonal frequencies) for the panel of wit, 𝑖 = 1, … , 𝑁, 𝑡 =
1, … , 𝑇.

Given OLS estimates of the model (6) for variable wi (i = 1, …, N), let 𝑝(𝜅)
𝑖 denote the p-value associated

with HEGY test statistic for the null 𝐻(𝜅)
𝑜 , where 𝜅 = 0, 𝜋, 𝜋/2, 𝑆, 𝑆𝐼, respectively, indicate the different types

of (seasonal) unit roots; the proposed pooled test statistic for testing the null hypothesis that all variables in a
panel have this 𝜅−type (seasonal) unit root is expressed as:

Υ(𝜅)
𝑝𝑜𝑜𝑙 = −2

𝑁
∑
𝑖=1

ln 𝑝(𝜅)
𝑖 . (7)

If these p-values are uniformly distributed on the interval [0, 1] and independent across i, the distribution for the
summation of these logarithm of p-values over i as proposed in (7) will be χ2 random variable with 2𝑁 degrees
of freedom, 𝜒2(2𝑁) say, since we have −2 ln 𝑝(𝜅)

𝑖 ∼ 𝜒2(2). This type of test statistic was originally suggested by
Fisher (1932) for meta analysis and was introduced to panel unit root tests by Maddala and Wu (1999). Note
that the independence across series wi, i = 1, …, N, is necessary for the test (7) to be valid. It immediately follows
that the panel HEGY test for wit = yit might be inappropriate since for all 𝑖 ≠ 𝑗, when yit and yjt driven by
the same set of common factors Ft in model (1) are dependent.6 However, as argued by Bai and Ng (2004),
this independence requirement across series seems plausible for 𝑤𝑖𝑡 = 𝜖𝑖𝑡 (and its estimate) because most of
the cross-section dependence should be captured by common factors instead of idiosyncratic errors. For more
discussions on this type of test statistics, refer to Maddala and Wu (1999), Choi (2001), and Bai and Ng (2004).
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3.2.3 Determining the number of stochastic common trends

When there are multiple factors (𝑞∗ > 1), we propose the following successive procedure to determine the
number of (seasonal) non-stationary factors (and thus the number of stationary ones) by using the transformed
estimates of factors ̂𝐹𝐹𝐹∗

𝑡 ∶= [ ̂𝐹∗
1𝑡, ̂𝐹∗

2𝑡, … , ̂𝐹∗
̂𝑞𝑡]′ which are constructed by (5). In what follows, let 𝑞(𝜅)

1 and ̂𝑞(𝜅)
1

denote the true and the estimated number of 𝜅−type (seasonal) non-stationary factors, respectively, where
𝜅 = 0, 𝜋, 𝜋/2, 𝑆, 𝑆𝐼, refers to the cases where the factor has a conventional unit root (+1), semi-annual unit root
(−1), annual unit roots (±𝑖), all seasonal unit roots, and the factor is SI(1), respectively.

Given the 𝑚−th (𝑚 = 1, 2, … , ̂𝑞) transformed estimates of factor ̂𝐹∗
𝑚𝑡, and its p-value associated with HEGY

test statistic for the null 𝐻(𝜅)
𝑜 (𝜅 = 0, 𝜋, 𝜋/2, 𝑆, 𝑆𝐼), 𝑝(𝜅)

𝑚 say, the proposed procedure involves sequentially testing
𝐻𝑜 ∶ 𝑞(𝜅)

1 = 𝑛 versus 𝐻1 ∶ 𝑞(𝜅)
1 ≤ 𝑛−1, for 𝑛 = ̂𝑞, ̂𝑞−1, … , 1, at the significance level α. Under the null 𝐻𝑜 ∶ 𝑞(𝜅)

1 = 𝑛,
the proposed test statistic is directly based on the p-value 𝑝(𝜅)

𝑛 ; we compare 𝑝(𝜅)
𝑛 with α and this null is rejected

only if 𝑝(𝜅)
𝑛 ≤ 𝛼. The testing sequence terminates when the null is not rejected for the first time. As a consequence,

the estimated number of 𝜅−type (seasonal) non-stationary factors, ̂𝑞(𝜅)
1 = 𝑛∗ say, is thus determined by:

{𝑝(𝜅)
̂𝑞 ≤ 𝛼, 𝑝(𝜅)

̂𝑞−1 ≤ 𝛼, ⋯ , 𝑝(𝜅)
𝑛∗+1 ≤ 𝛼, 𝑝(𝜅)

𝑛∗ > 𝛼} . (8)

It should be noted that the involved successive tests are not independent to each other because they are applied
to the same estimates of factors ̂𝐹𝐹𝐹∗

𝑡 . Therefore, it is supposed they share the same asymptotic properties with the
conventional rank tests such as MQf and MQc tests of Bai and Ng (2004) for testing the rank of non-stationary
space of factors, or the trace or eigenvalue tests of Johansen (1995) for determining the number of cointegrating
vectors; given the significance level α in each step, the probability of choosing the true number 𝑞(𝜅)

1 by using
the above successive tests would approach 1 − α; thus, the overall asymptotic type I error is α. Whether this
proposed procedure holds this property will be investigated carefully by simulations in Section 5.2.

4 Assumptions and asymptotic properties

Given the model specification for yit in (1), we now clearly specify the dynamic structures of the common factor
Ft and idiosyncratic errors ϵit, They are:

(𝐼 − 𝐿4)𝐹𝐹𝐹𝑡 = Δ4𝐹𝐹𝐹𝑡 = 𝐵𝐵𝐵𝐹(𝐿)𝑢𝑢𝑢𝑡, (9)
𝑑𝑜𝑙𝑙𝑎𝑟

(9)

(1 − 𝐿4)𝜖𝑖𝑡 = Δ4𝜖𝑖𝑡 = 𝐵𝜖𝑖(𝐿)𝑣𝑖𝑡, (10)

where 𝐵𝐵𝐵𝐹(𝐿) = ∑∞
𝑗=0 𝐵𝐵𝐵𝐹𝑗𝐿𝑗 and 𝐵𝜖𝑖(𝐿) = ∑∞

𝑗=0 𝐵𝜖𝑖𝑗𝐿𝑗. Note that theses specifications for Ft and ϵit extend from
the PANIC model of Bai and Ng (2004) in which seasonal unit roots were not involved. Let rs (= +1, −1, +𝑖 and
−i) denote a root of L for the polynomial (1 − 𝐿4) = 0; if ϵit in model (10) has a (seasonal) unit root rs, then
𝐵𝜖𝑖(𝑟𝑠) ≠ 0; otherwise, 𝐵𝜖𝑖(𝑟𝑠) = 0. Similarly, for the 𝑞∗ × 1 vector Ft, 𝐵𝐵𝐵𝐹(𝑟𝑠) has rank 𝛿𝑠 (0 ≤ 𝛿𝑠 ≤ 𝑞∗) once there
are δs factors with this unit root. These (rank) conditions associated with seasonal unit roots come from the
Wald representation for the process; for more details please refer to the Appendix.

Denote ‖𝐴𝐴𝐴‖ = trace(𝐴𝐴𝐴′𝐴𝐴𝐴)1/2; then following Bai and Ng (2004), the regularity conditions for the proposed
estimation and testing procedures to be valid are:

A.1 The loadings 𝝀i, the errors ut and vit are three mutually independent groups.

A.2 𝔼[‖𝜆𝜆𝜆𝑖‖4] < ∞, and (1/𝑁) ∑𝑁
𝑖=1 𝜆𝜆𝜆𝑖𝜆𝜆𝜆′

𝑖
𝑃⟶ ΣΛ as N → ∞, where ΣΛ is a 𝑞∗ × 𝑞∗ positive definite matrix.

A.3 (i) 𝑢𝑢𝑢𝑡 ∼ 𝑖𝑖𝑑(0,Σ𝑢), 𝔼[‖𝑢𝑢𝑢𝑡‖4] < ∞; (ii) ∑∞
𝑗=0 𝑗‖𝐵𝐵𝐵𝐹𝑗‖ < ∞, var(Δ4𝐹𝐹𝐹𝑡) = ∑∞

𝑗=0 𝐵𝐵𝐵𝐹𝑗Σ𝑢𝐵𝐵𝐵′
𝐹𝑗 > 0; (iii) 𝐵𝐵𝐵𝐹(𝑟𝑠) has rank

𝛿𝑠, 0 ≤ 𝛿𝑠 ≤ 𝑞∗, s = 1, …, 4.

A.4 (i) For each i, 𝑣𝑖𝑡 ∼ 𝑖𝑖𝑑(0, 𝜎2
𝑣𝑖

), 𝔼[|𝑣𝑖𝑡|8] < ∞; (ii)∑∞
𝑗=0 𝑗|𝐵𝜖𝑖𝑗| < ∞, var(Δ4𝜖𝑖𝑡) = ∑∞

𝑗=0 𝐵2
𝜖𝑖𝑗𝜎2

𝑣𝑖
> 0; (iii) vit are

independent over i;
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A.5 For 𝜏 = −3, −2, −1, 0, 𝔼[‖𝐹𝜏‖] < ∞, and for every i = 1, …, N, 𝔼[|𝜖𝑖𝜏 |] < ∞.

As compared with Bai and Ng’s (2004) assumptions for the validity of the PANIC approach, we further intro-
duce A.3(iii) and A.5 to deal with the panel data with possible seasonal unit roots at different frequencies, and
directly impose the independence assumption for vit in A.4(iii) for the validity of the proposed panel test (7) by
pooling the associated p-values computed from the HEGY tests for the idiosyncratic errors and their estimates.7

Given these assumptions, what immediately follows is below:

Theorem 4.1
Suppose the data driven by 𝑞∗ common factors are generated by (1), (9) and (10), and Assumptions A.1 to A.5 hold.

As 𝑁, 𝑇 → ∞ and 𝑇/𝑁 → 0, we have:

a. ̂𝑞 𝑃⟶ 𝑞∗where ̂𝑞is determined by (3 ).

b. The space spanned by ̂𝐹𝐹𝐹𝑡is a consistent estimate for the space spanned byFtup to a location shift.

c. ̂𝜖𝑖𝑡
𝑃⟶ 𝜖𝑖𝑡for all i.

Theorem 4.1(a) directly follows Result C in Bai and Ng (2008) or Corollary 1 in Bai and Ng (2002) because
the chosen penalty weights Γ1(𝑁, 𝑇) to Γ3(𝑁, 𝑇) in (3) are valid; Theorem 4.1(b) and (c) are the straightforward
implications of Lemma 1 and Lemma 2 in Bai and Ng (2004), since we just generalize the PANIC model of Bai
and Ng (2004) to seasonal panel unit root models.

Given the consistency of the estimates of the model, for ϵit and ̂𝜖it, i = 1, …, N, to test the null 𝐻(𝜅)
𝑜 (𝜅 =

0, 𝜋, 𝜋/2, 𝑆, 𝑆𝐼), assumption A.4(iii) ensures that the associated p-values, 𝑝(𝜅)
𝑖 , i = 1, …, N, computed from the

associated HEGY tests, are independent uniform random variables over the interval [0, 1]; thus, the logarithm of
the p-value times minus two is a χ2 random variable with two degrees of freedom. Summarizing these logarithm
of p-values over i for fixed N, we have Υ(𝜅)

𝑝𝑜𝑜𝑙 proposed in (7) which follows a χ2 distribution with 2𝑁 degrees of
freedom. Let N → ∞; we have the following result by the Central Limit Theory.

Theorem 4.2
Suppose the assumptions of Theorem 4.1 hold, for i = 1, …, N, given ϵit (or ̂𝜖it) in the panel, let 𝑝(𝜅)

𝑖 denote its p-value
associated with HEGY test statistic for the 𝜅−type null hypothesis 𝐻(𝜅)

𝑜 , where 𝜅 = 0, 𝜋, 𝜋/2, 𝑆, 𝑆𝐼, then for the pooled
test statistic Υ(𝜅)

𝑝𝑜𝑜𝑙 = −2∑𝑁
𝑖=1 ln 𝑝(𝜅)

𝑖 , we have:

Υ(𝜅)
𝑝𝑜𝑜𝑙 − 2𝑁

√4𝑁
𝑑⟶ 𝑁(0, 1),

the standardized pooled test statistic, under the given null hypothesis that all variables in the panel have this 𝜅−type
(seasonal) unit root, converges in distribution to a standard normal distribution.

5 Simulations

In the section we evaluate the small-sample properties of the proposed estimation and testing procedures. For
i = 1, …, N and t = 1, …, T, the data generating process (DGP) is:

𝑦𝑖𝑡 = 𝜆𝜆𝜆′
𝑖𝐹𝐹𝐹𝑡 + 𝜖𝑖𝑡, 𝜆𝜆𝜆𝑖 ∼ 𝑀𝑁(000, 𝐼𝑞∗ ),

𝐹𝐹𝐹𝑡 = 𝛼𝛼𝛼𝐹𝐹𝐹𝑡−4 + 𝑢𝑢𝑢𝑡, 𝑢𝑢𝑢𝑡 ∼ 𝑀𝑁(000, 𝜎2
𝐹𝐼𝑞∗ ),

𝜖𝑖𝑡 = 𝜌𝜖𝑖𝑡−4 + 𝑣𝑖𝑡, 𝑣𝑖𝑡 ∼ 𝑁(0, 1),
(11)

where Ft is an 𝑞∗ × 1 vector of common factors, 𝝀i is a corresponding 𝑞∗ × 1 vector of factor loadings, 𝜶 (which
drives the dynamic patterns of Ft) is a 𝑞∗×𝑞∗ diagonal matrix of coefficients with diagonal elements 𝛼1, 𝛼2, … , 𝛼𝑞∗ .
We assume that both 𝝀i and ut follow zero-mean multivariate normal (MN) distributions, and vit is a standard
normal random variable. Note that this DGP is quite similar to what was proposed in the simulations of Bai
and Ng (2004) except that the current common factor Ft and idiosyncratic errors ϵit (i = 1, …, N) are directly
affected, respectively, by Ft−4 and ϵit−4 (instead of Ft−1 and ϵit−1 in the PANIC framework).

While applying the HEGY test and/or its pooled version to the variables of interest, five null hypotheses
considered are 𝐻(𝜅)

𝑜 , 𝜅 = 0, 𝜋, 𝜋/2, 𝑆, 𝑆𝐼, which refer to the null that the variable has a conventional unit root (+1),
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semi-annual unit root (−1), annual unit roots (±𝑖), all seasonal unit roots, and the variable is SI(1), respectively;
cf., Section 3.2.1. Besides, for simplicity, no lags will be introduced while estimating the corresponding auxiliary
regression (6). In all cases of simulations, three different sizes of panel data with (𝑁 = 40, 𝑇 = 100), (𝑁 =
100, 𝑇 = 100) and (𝑁 = 200, 𝑇 = 100) are generated; the nominal size is 5%, and the number of Monte Carlo
replications is 5000.

5.1 Univariate common factor: 𝑞∗ = 1

When 𝑞∗ = 1, there is only one common factor in the model. In DGP (11), Ft (resp. ϵit) is seasonally integrated
of order one, SI(1), by setting α1 = 1 (resp. ρ = 1); otherwise, it is stationary. Besides, we consider 𝜎2

𝐹 = 1 which
is equal to the variance of idiosyncratic errors. The variables being tested are yit, ̂𝐹t, ̂𝜖it and ϵit, where ̂𝐹t and ̂𝜖it
are estimated based on the proposed method in Section 3.1. The univariate HEGY test is conducted for testing

̂𝐹t while pooled HEGY tests are employed for all the other variables in all the cases; for details, refer to Sections
3.2.1 and 3.2.2. Moreover, in order to investigate the validity of the proposed pooled test via statistic (7), the
performance of the testing panel of ϵit is also revealed. Three classes of settings for α1 and ρ are considered;
only the idiosyncratic errors are SI(1), only the common factor is SI(1), and both Ft and ϵit are either SI(1) or
stationary. The corresponding rejection rates for the tests are reported in Table 1.

8

http://rivervalleytechnologies.com/products/


Au
to

m
at

ica
lly

ge
ne

ra
te

d
ro

ug
h

PD
Fb

yP
ro

of
Ch

ec
kf

ro
m

Ri
ve

rV
al

le
yT

ec
hn

ol
og

ie
sL

td
DE GRUYTER Hsu

Ta
bl

e
1:

Re
je

ct
io

n
ra

te
sf

or
on

e
co

m
m

on
fa

ct
or

ca
se

s.

N
=

40
,T

=
10

0
N

=
10

0,
T

=
10

0
N

=
20

0,
T

=
10

0

ρ
α 1

w
it

κ
=

0
π

π
/2

S
SI

κ
=

0
π

π
/2

S
SI

κ
=

0
π

π
/2

S
SI

(A
)ϵ

it
ar

e
SI

(1
)

1.
00

0.
00

y i
t

0.
83

4
0.

83
0

0.
39

9
0.

65
6

0.
80

4
0.

98
5

0.
98

7
0.

60
8

0.
89

3
0.

96
6

0.
99

9
1.

00
0

0.
77

5
0.

97
3

0.
99

5
𝐹 t

0.
92

4
0.

91
3

0.
96

8
0.

99
2

0.
99

9
0.

99
2

0.
99

1
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
̂𝜖 i
t

0.
05

6
0.

05
6

0.
05

5
0.

06
3

0.
06

3
0.

05
2

0.
05

1
0.

05
9

0.
06

2
0.

06
0

0.
05

7
0.

04
8

0.
06

6
0.

06
7

0.
06

0
ϵ it

0.
05

1
0.

05
5

0.
05

1
0.

05
6

0.
05

5
0.

05
7

0.
05

4
0.

05
1

0.
05

5
0.

05
0

0.
06

5
0.

05
9

0.
05

5
0.

05
7

0.
05

1
1.

00
0.

50
y i

t
0.

55
1

0.
53

4
0.

12
6

0.
24

2
0.

34
7

0.
84

1
0.

82
4

0.
18

2
0.

40
8

0.
56

8
0.

96
6

0.
95

5
0.

25
2

0.
56

3
0.

75
2

𝐹 t
0.

69
1

0.
68

6
0.

77
8

0.
89

9
0.

95
0

0.
84

9
0.

84
4

0.
94

9
0.

98
7

0.
99

7
0.

91
9

0.
91

4
0.

98
8

0.
99

8
0.

99
9

̂𝜖 i
t

0.
05

2
0.

04
6

0.
05

0
0.

05
1

0.
05

1
0.

05
7

0.
05

2
0.

05
2

0.
06

0
0.

06
0

0.
06

0
0.

04
9

0.
06

5
0.

06
7

0.
06

2
ϵ it

0.
05

1
0.

04
7

0.
04

9
0.

05
0

0.
05

2
0.

05
9

0.
05

5
0.

04
7

0.
05

4
0.

05
3

0.
06

2
0.

05
2

0.
05

6
0.

05
7

0.
05

3
(B

)F
t
is

SI
(1

)
0.

00
1.

00
y i

t
0.

96
0

0.
96

2
0.

99
1

0.
99

7
0.

99
8

0.
99

2
0.

99
1

1.
00

0
1.

00
0

1.
00

0
0.

99
9

0.
99

8
1.

00
0

1.
00

0
1.

00
0

𝐹 t
0.

05
4

0.
05

8
0.

04
5

0.
04

7
0.

04
7

0.
05

3
0.

05
1

0.
04

6
0.

04
6

0.
05

0
0.

04
5

0.
05

2
0.

05
0

0.
04

9
0.

04
8

̂𝜖 i
t

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
ϵ it

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
0.

50
1.

00
y i

t
0.

80
5

0.
80

1
0.

85
9

0.
95

6
0.

97
2

0.
85

6
0.

84
3

0.
94

6
0.

99
4

0.
99

5
0.

88
3

0.
88

0
0.

98
4

0.
99

9
1.

00
0

𝐹 t
0.

05
5

0.
05

1
0.

04
8

0.
04

5
0.

04
7

0.
05

1
0.

05
7

0.
04

5
0.

05
0

0.
05

0
0.

05
0

0.
05

0
0.

04
9

0.
04

6
0.

05
0

̂𝜖 i
t

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
ϵ it

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
(C

)O
th

er
s

1.
00

1.
00

y i
t

0.
16

0
0.

14
8

0.
13

4
0.

13
0

0.
13

1
0.

23
6

0.
21

8
0.

18
8

0.
19

4
0.

18
5

0.
30

3
0.

29
6

0.
23

7
0.

24
0

0.
23

3
𝐹 t

0.
05

3
0.

05
0

0.
05

3
0.

04
7

0.
04

7
0.

04
8

0.
04

1
0.

05
2

0.
04

7
0.

04
8

0.
05

0
0.

04
7

0.
05

1
0.

05
3

0.
05

3
̂𝜖 i
t

0.
05

3
0.

04
8

0.
04

6
0.

04
8

0.
05

0
0.

06
2

0.
05

6
0.

05
4

0.
05

9
0.

05
5

0.
06

3
0.

05
3

0.
05

3
0.

05
9

0.
05

4
ϵ it

0.
05

1
0.

05
3

0.
04

4
0.

05
2

0.
05

0
0.

06
2

0.
05

4
0.

05
1

0.
05

4
0.

05
3

0.
06

3
0.

05
4

0.
05

1
0.

05
7

0.
05

2
0.

50
0.

50
y i

t
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

𝐹 t
0.

97
3

0.
97

6
1.

00
0

1.
00

0
1.

00
0

0.
97

3
0.

97
6

0.
99

9
1.

00
0

1.
00

0
0.

97
9

0.
97

5
0.

99
9

1.
00

0
1.

00
0

̂𝜖 i
t

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
ϵ it

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0

1.
Th

e
da

ta
ar

e
ge

ne
ra

te
d

as
𝜖 𝑖

𝑡
=

𝜌𝜖
𝑖𝑡

−
4

+
𝑣 𝑖

𝑡,
𝐹 𝑡

=
𝛼 1

𝐹 𝑡
−
4

+
𝑢 𝑡

,a
nd

𝑦 𝑖
𝑡

=
𝜆 𝑖

𝐹 𝑡
+

𝜖 𝑖
𝑡.

2.
𝜅

=
0,

𝜋
,𝜋

/2
,𝑆

,𝑆
𝐼,

re
fe

rs
to

th
e

nu
ll

th
at

th
e

fa
ct

or
ha

sa
co

nv
en

tio
na

lu
ni

tr
oo

t(
+1

),
se

m
i-a

nn
ua

lu
ni

tr
oo

t(
−

1)
,a

nn
ua

lu
ni

tr
oo

ts
(±

𝑖),
al

ls
ea

so
na

lu
ni

tr
oo

ts
,a

nd
th

e
fa

ct
or

is
SI

(1
),

re
sp

ec
tiv

el
y.

3.
Ro

w
sf

ol
lo

w
y i

t,
̂𝜖 i
t,

an
d

𝜖 𝑖
𝑡,

ar
e

re
je

ct
io

n
ra

te
so

fc
or

re
sp

on
di

ng
po

ol
ed

H
EG

Y
te

st
sf

or
di

ffe
re

nt
se

as
on

al
un

it
ro

ot
te

st
s;

th
e

fin
ite

sa
m

pl
e

di
st

rib
ut

io
n

of
Υ(𝜅

)
𝑝𝑜

𝑜𝑙
co

ns
id

er
ed

he
re

is
𝜒2

(2
𝑁

).
Ro

w
sf

ol
lo

w
𝐹 t

ar
e

th
e

re
je

ct
io

n
ra

te
sf

or
its

co
rr

es
po

nd
in

g
un

iv
ar

ia
te

H
EG

Y
te

st
s.

Th
e

no
m

in
al

si
ze

is
5%

.

9

http://rivervalleytechnologies.com/products/


Au
to

m
at

ica
lly

ge
ne

ra
te

d
ro

ug
h

PD
Fb

yP
ro

of
Ch

ec
kf

ro
m

Ri
ve

rV
al

le
yT

ec
hn

ol
og

ie
sL

td
Hsu DE GRUYTER

When only the idiosyncratic errors are SI(1), panel (A) in Table 1 reports the average rejection rates for the
univariate/pooled HEGY tests over 5000 replications. First, the results for ϵit indicate that, without estimation
bias, the performance of the proposed panel tests for these five hypotheses is quite good since all the rejection
rates are around the nominal size 5%. Besides, the similar results for testing the estimates ̂𝜖it implies that the
proposed estimation method works very well, and that these results are not sensitive to the parameter α1 which
regulates the dynamics of Ft. While testing the estimate of common factor Ft, we observe that the powers of
most tests are greater than 0.9, and they increase when N increases from 40 to 100 (or to 200); e.g. as in case
that ρ = 1 and α1 = 0.5, the average rejection rates for κ = S null is 0.899, 0.987, and 0.998, when 𝑁 = 40, 100 and
200, respectively. On the other hand, every yit in fact is SI(1) since it is the combination of a stationary Ft (with
random loading 𝝀i) and an SI(1) ϵit. However, the panel tests for yit do not successfully reveal this feature; the
rejection rates for all panel tests are much larger than the nominal size. This phenomenon is expected since yit
following the common factor structure is correlated across N units; the cross-sectional correlations may lead
the pooled HEGY test to over-reject the null hypothesis; see e.g. O’Connell (1998) and Bai and Ng (2004).

On the other hand, when only the common factor is SI(1), the rejection rates in panel (B) show that the
performance of testing ϵit and ̂𝜖it are the same (powers are equal to one in all cases), the average rejection rates
of univariate HEGY tests for Ft are around 5%, and the panel tests tend to over-reject all the null hypotheses
for yit. When both Ft and ϵit are SI(1) (𝜌 = 𝛼1 = 1), panel (C) shows that over-rejections for testing yit are still
observed but less serious. When both Ft and ϵit are stationary, all the rejection rates for yit, ϵit and ̂𝜖it are equal
to one while the rejection rates for Ft are above 0.97 for all tests; these results can be expected since all the tests
for variables of interest, except Ft, are pooled tests which aim at increasing the testing power.

In brief, when 𝑞∗ = 1, these simulation results show that the performances of testing the estimated common
factor and idiosyncratic errors in general are good, without knowing a priori whether or not the series are
seasonal stationary. These results are encouraging; as the direct panel tests on the data with common factor
structure may be misleading, our proposed approach successfully indicates the sources of the seasonal non-
stationarity via testing the consistent estimates of the common factor and idiosyncratic errors instead. The
proposed procedure is an extension of the PANIC framework of Bai and Ng (2004) to the seasonal panel, and
works very well when there is one common stochastic trend.

5.2 Multiple common factors: 𝑞∗ > 1

When there are q* common factors, we generate 𝑞(𝑆𝐼)
1 SI(1) factors by setting αj = 1, 𝑗 = 1, … , 𝑞(𝑆𝐼)

1 , and 𝑞∗ − 𝑞(𝑆𝐼)
1

stationary factors with coefficient αj = 0.5 for 𝑗 = 𝑞(𝑆𝐼)
1 + 1, … , 𝑞∗, in DGP (11). In the simulations, we set the

total number of common factors 𝑞∗ = 3 and consider the cases in which 𝑞(𝑆𝐼)
1 varies from 0 to 3. Besides, the

idiosyncratic errors are allowed to be SI(1) or stationary by setting ρ = 1 or 0.5, and the variation of factors
could be equal to, or larger than, those of the idiosyncratic errors by letting 𝜎2

𝐹 = 1 or 10; there are four classes
of simulations associated with different combinations of ρ and 𝜎2

𝐹. These simulation settings mimic what was
introduced in Bai and Ng (2004), whereas we consider seasonal integrated common trends and errors in the
seasonal panel.

Table 2: Probability of selecting the correct number of common factors.

N = 40, T = 100 N = 100, T = 100 N = 200, T = 100

q* 𝑞(𝑆𝐼)
1 Γ1 Γ2 Γ3 Γ4 Γ1 Γ2 Γ3 Γ4 Γ1 Γ2 Γ3 Γ4

(A) 𝜎2
𝐹 = 1, ρ = 1

3 0 1.000 1.000 1.000 1.000 1.000 1.000 0.996 1.000 1.000 1.000 1.000 1.000
3 1 1.000 1.000 1.000 1.000 1.000 1.000 0.997 1.000 1.000 1.000 1.000 1.000
3 2 1.000 1.000 1.000 1.000 1.000 1.000 0.998 1.000 1.000 1.000 1.000 1.000
3 3 1.000 1.000 1.000 0.999 1.000 1.000 0.998 1.000 1.000 1.000 1.000 1.000

(B) 𝜎2
𝐹 = 1, ρ = 0.5
3 0 1.000 1.000 1.000 0.999 1.000 1.000 0.698 1.000 1.000 1.000 1.000 1.000
3 1 1.000 1.000 1.000 0.997 1.000 1.000 0.700 1.000 1.000 1.000 1.000 1.000
3 2 1.000 1.000 1.000 0.995 1.000 1.000 0.722 1.000 1.000 1.000 1.000 1.000
3 3 1.000 1.000 0.999 0.992 1.000 1.000 0.719 1.000 1.000 1.000 1.000 1.000

(C) 𝜎2
𝐹 = 10, ρ = 1
3 0 1.000 1.000 1.000 1.000 1.000 1.000 0.998 1.000 1.000 1.000 1.000 1.000
3 1 1.000 1.000 1.000 1.000 1.000 1.000 0.997 1.000 1.000 1.000 1.000 1.000
3 2 1.000 1.000 1.000 1.000 1.000 1.000 0.996 1.000 1.000 1.000 1.000 1.000
3 3 1.000 1.000 1.000 1.000 1.000 1.000 0.996 1.000 1.000 1.000 1.000 1.000
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(D) 𝜎2
𝐹 = 10, ρ = 0.5

3 0 1.000 1.000 1.000 1.000 1.000 1.000 0.694 1.000 1.000 1.000 1.000 1.000
3 1 1.000 1.000 1.000 1.000 1.000 1.000 0.706 1.000 1.000 1.000 1.000 1.000
3 2 1.000 1.000 1.000 1.000 1.000 1.000 0.710 1.000 1.000 1.000 1.000 1.000
3 3 1.000 1.000 1.000 1.000 1.000 1.000 0.729 1.000 1.000 1.000 1.000 1.000

1. The data are generated as 𝜖𝑖𝑡 = 𝜌𝜖𝑖𝑡−4 + 𝑣𝑖𝑡, 𝐹𝐹𝐹𝑡 = 𝛼𝛼𝛼𝐹𝐹𝐹𝑡−4 + 𝑢𝑡, and 𝑦𝑖𝑡 = 𝜆𝜆𝜆′
𝑖𝐹𝐹𝐹𝑡 + 𝜖𝑖𝑡.

2. q* and 𝑞(𝑆𝐼)
1 refer to the total number of common factors and SI factors, respectively. Γ1 to Γ4 refer to the criteria from Γ1(𝑁, 𝑇) to

Γ4(𝑁, 𝑇) introduced in Section 3.1.
3. The entries are the probabilities of selecting the correct number of common factors based on the information criterion (3).

First, we evaluate the performance of estimating the total number of common factors (q*) by using criterion
(3) for the annual-differenced series Δ4𝑦𝑖𝑡. Given ̄𝑞 = 6 (the maximum number of factors) in (3) and four intro-
duced penalty functions from Γ1(𝑁, 𝑇) to Γ4(𝑁, 𝑇), the probability of selecting the correct number of common
factors via 5000 replications are summarized in Table 2. Except for some cases with Γ3(𝑁, 𝑇) as the penalty func-
tion, all the results imply that the introduced selection criterion which generates the case of PANIC model of
Bai and Ng (2004) to the proposed quarterly factor model works very well; the true number of common factors,
𝑞∗ = 3, can be precisely estimated by using the annual-differenced data, even without knowing whether the
original data is stationary or SI(1).8

Table 3: Average trace-R2 for multiple common factors cases.

N = 40, T = 100 N = 100, T = 100 N = 200, T = 100

q* 𝑞(𝑆𝐼)
1 ̃𝑞 = 2 3 4 ̃𝑞 = 2 3 4 ̃𝑞 = 2 3 4

(A) 𝜎2
𝐹 = 1, ρ = 1

3 0 0.523 0.719 0.761 0.613 0.849 0.875 0.661 0.915 0.930
3 1 0.824 0.958 0.966 0.819 0.980 0.984 0.811 0.989 0.991
3 2 0.850 0.982 0.986 0.845 0.992 0.994 0.844 0.996 0.997
3 3 0.843 0.990 0.992 0.853 0.996 0.997 0.852 0.998 0.998

(B) 𝜎2
𝐹 = 1, ρ = 0.5

3 0 0.691 0.974 0.975 0.707 0.990 0.990 0.715 0.995 0.995
3 1 0.862 0.996 0.996 0.839 0.999 0.999 0.821 0.999 0.999
3 2 0.869 0.998 0.998 0.854 0.999 0.999 0.844 1.000 1.000
3 3 0.848 0.999 0.999 0.854 1.000 1.000 0.855 1.000 1.000

(C) 𝜎2
𝐹 = 10, ρ = 1

3 0 0.676 0.950 0.960 0.700 0.980 0.984 0.710 0.990 0.992
3 1 0.861 0.994 0.995 0.838 0.998 0.998 0.820 0.999 0.999
3 2 0.866 0.998 0.998 0.858 0.999 0.999 0.848 1.000 1.000
3 3 0.849 0.999 0.999 0.852 1.000 1.000 0.854 1.000 1.000

(D) 𝜎2
𝐹 = 10, ρ = 0.5

3 0 0.703 0.997 0.997 0.712 0.999 0.999 0.718 1.000 1.000
3 1 0.863 1.000 1.000 0.839 1.000 1.000 0.821 1.000 1.000
3 2 0.870 1.000 1.000 0.853 1.000 1.000 0.848 1.000 1.000
3 3 0.850 1.000 1.000 0.852 1.000 1.000 0.856 1.000 1.000

1. The data are generated as 𝜖𝑖𝑡 = 𝜌𝜖𝑖𝑡−4 + 𝑣𝑖𝑡, 𝐹𝐹𝐹𝑡 = 𝛼𝛼𝛼𝐹𝐹𝐹𝑡−4 + 𝑢𝑡, and 𝑦𝑖𝑡 = 𝜆𝜆𝜆′
𝑖𝐹𝐹𝐹𝑡 + 𝜖𝑖𝑡.

2. q* and 𝑞(𝑆𝐼)
1 refer to the total number of common factors and SI factors, respectively.

3. Given the number of estimated factors ̃𝑞, the trace R2 is computed as

trace-𝑅2( ̃𝑞) =
Trace (𝐹𝐹𝐹′𝑍𝑍𝑍( ̃𝑞) (𝑍𝑍𝑍( ̃𝑞)′𝑍𝑍𝑍( ̃𝑞))−1 𝑍𝑍𝑍( ̃𝑞)′𝐹𝐹𝐹)

Trace (𝐹𝐹𝐹′𝐹𝐹𝐹) ,

where 𝐹𝐹𝐹 = [𝐹𝐹𝐹1,𝐹𝐹𝐹2, … ,𝐹𝐹𝐹𝑇]′ is a 𝑇 × 𝑞∗ matrix of true factors, 𝑍𝑍𝑍( ̃𝑞) = [111𝑇 ,𝐹𝐹𝐹( ̃𝑞)] is the 𝑇 × ( ̃𝑞 + 1) matrix with 111T , a T × 1 vector of ones,
and 𝐹𝐹𝐹( ̃𝑞) = [𝐹𝐹𝐹1( ̃𝑞),𝐹𝐹𝐹2( ̃𝑞), … ,𝐹𝐹𝐹𝑇( ̃𝑞)]′, a 𝑇 × ̃𝑞 matrix of ̃𝑞 estimated factors.

Since the total number of common factors can be precisely estimated, as verified, the consistency result
claimed in Theorem 4.1(b) where the space spanned by ̂𝐹𝐹𝐹𝑡 is a consistent estimate for the space spanned by the
true factor Ft up to a location shift, is then verified as follows. When the considered number of factors is ̃𝑞, we
compute the trace-R2 as:

trace-𝑅2( ̃𝑞) =
Trace (𝐹𝐹𝐹′𝑍𝑍𝑍( ̃𝑞) (𝑍𝑍𝑍( ̃𝑞)′𝑍𝑍𝑍( ̃𝑞))−1 𝑍𝑍𝑍( ̃𝑞)′𝐹𝐹𝐹)

Trace (𝐹𝐹𝐹′𝐹𝐹𝐹) , (12)
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where 𝐹𝐹𝐹 = [𝐹𝐹𝐹1, 𝐹𝐹𝐹2, … ,𝐹𝐹𝐹𝑇]′ is a 𝑇 × 𝑞∗ matrix of true factors, 𝑍𝑍𝑍( ̃𝑞) = [111𝑇 , ̂𝐹𝐹𝐹( ̃𝑞)] is the 𝑇 × ( ̃𝑞 + 1) matrix with
111T, a T × 1 vector of ones, and ̂𝐹𝐹𝐹( ̃𝑞) = [ ̂𝐹𝐹𝐹1( ̃𝑞), ̂𝐹𝐹𝐹2( ̃𝑞), … , ̂𝐹𝐹𝐹𝑇( ̃𝑞)]′ is a 𝑇 × ̃𝑞 matrix of estimated factors. The
trace-R2 is a multivariate version of the typical R2 of the regression of the true factors on a constant and the
estimated factors, and the number close to one indicates a good approximation of the true common factors; for
e.g. see Stock and Watson (2002a). For each simulation setting, Table 3 presents the average trace-R2 over 5000
replications when the number of factors is under-estimated ( ̃𝑞 = 2), exact-estimated ( ̃𝑞 = 3), and over-estimated
( ̃𝑞 = 4). As expected, increasing N or 𝜎2

𝐹 cannot help to improve the fitting performance once the number of
factors is under-estimated as ̃𝑞 = 2, all the average trace-R2 are lower than 0.88. By contrast, when ̃𝑞 = 3, almost
all the average trace-R2 are greater than 0.95 and they get close to 1 as N or 𝜎2

𝐹 increases. Besides, except for the
cases in panel (A), introducing an additional estimated factor could not improve the fitting performance; the
average trace-R2 of ̃𝑞 = 4 is quite similar to that of ̃𝑞 = 3 for all the configurations.
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After evaluating the space spanned by the estimated factors, Table 4 further reports the probabilities of cor-
rectly selecting the number of 𝜅−type common stochastic trends over 5000 replications by using the successive
testing procedure proposed in Section 3.2.3 under different settings of ρ and 𝜎2

𝐹.9 Panel A reports the results
when the idiosyncratic errors are SI(1) and the variance of the common factor equals that of the errors. When
N = 40, the accuracy rates of selecting the true number of factors with conventional (κ = 0), semi-annual (κ = π)
and annual (𝜅 = 𝜋/2) unit roots are not high (below 0.6) when 𝑞(𝑆𝐼)

1 = 0 or 1. However, this situation improves
if N increases from 40 to 100 (even to 200), and/or 𝜎2

𝐹 increases from 1 to 10 (in panel C), and/or the errors
are stationary (in panel B). Including more cross-sectional units or a larger variation of common trends relative
to that of errors would help us to estimate the number of the common trends with different stochastic types
indicated by κ. In general, except for the few cases in panel (A), the proposed easy-to-implement successive
testing procedure works well in the configurations considered; it correctly selects their right number with a
probability over 0.8, and in most cases, the accuracy rates are even over 0.9, as shown in Table 4.

6 Empirical applications

In this section, we first investigate the possible non-stationarity in the panel of worldwide real exchange rates
by employing the proposed approach, since the existence of non-stationarity implies that PPP may not provide
a good long-run approximation for determining the dynamics of real exchange rates. In addition, for 37 ad-
vanced economies identified by IMF, we also analyze the panel of their consumer price indexes (CPIs) where
the seasonal unit roots are expected to be observed more frequently. Two balanced panels of data were con-
structed from the IFS dataset of IMF: one is 94 real effective exchange rates (based on CPI) from 2005 Q1 to 2016
Q4, and the other is 37 CPIs of advanced economies from 2003 Q1 to 2017 Q4.10

The process of investigating the possible non-stationarity for these two panels of data is as follows. All the
data are first standardized to have mean zero and unit variance; we then perform the augmented HEGY sea-
sonal unit root tests for these standardized data. If most of the data in the given panel are non-stationary (at
some specified seasonal frequency), we further disentangle the source of non-stationarity for them based on the
proposed framework. More precisely, we estimate their corresponding factor model (1) by using the procedure
proposed in Section 3.1, where the number of common factors is determined by using the penalty Γ4(𝑁, 𝑇) in
(3).11 In consequence, the source of non-stationarity (at each specified seasonal frequency) can be disentangled
by performing augmented HEGY seasonal unit root tests on the transformed factors and the estimated idiosyn-
cratic errors induced from the factor model; the non-stationarity is pervasive if transformed common factors
are the only source of non-stationarity; otherwise, it is both pervasive and economy-specific.

Throughout these two empirical studies, the optimal lag length in the augmented HEGY seasonal unit root
tests is determined by Bayesian Information Criteria (BIC) with maximum lags equal to eight,12 and the signif-
icant level is fixed at 5%.

6.1 Real exchange rates

Table 5: Detected 𝜅− type unit roots in real exchange rates by augmented HEGY tests.

Economies 𝜅−type unit roots Economies 𝜅−type unit roots Economies 𝜅−type
unit roots

Algeria 0 Finland 0 Pakistan 0
Antigua
and
Barbuda

0 France 0 Papua New
Guinea

0

Armenia Gabon 0 Paraguay 0
Australia 0 Gambia 0 Philippines 0
Austria 0 Georgia 0 Poland 0
Bahamas 0 Germany 0 Portugal 0
Bahrain 0 Ghana 0 Romania
Belgium 0† Greece 0 Russian

Federation
0

Belize 0 Grenada 0 Samoa 0
Bolivia 0 Guyana 0† Saudi

Arabia
0
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Brazil 0 Hungary 0† Sierra
Leone

0

Bulgaria π Iceland 0 π Singapore 0
Burundi 0 Iran 0 Slovak
Cameroon 0 Ireland 0 Solomon

Islands
0

Canada 0 Israel 0† South
Africa

0

Central
African
Republic

0 Italy 0 Spain 0

Chile 0 Japan 0 St. Kitts and
Nevis

China 0 Latvia 0 St. Lucia 0
Colombia 0 Lesotho 0 St. Vincent

and the
Grenadines

0

Congo Luxembourg 0 Sweden 0
Costa Rica 0 Macedonia 0 Switzerland 0
Cote d
Ivoire

0 Malawi 0 Togo 0†

Croatia 0 Malaysia 0 Trinidad
and Tobago

0

Cyprus 0 Malta 0† Tunisia 0
Czech
Republic

0 Mexico 0 Uganda 0

Denmark 0 Moldova 0 Ukraine 0
Dominica 0 Morocco 0 UK 0
Dominican
Republic

0 Netherlands 0† US 0

Ecuador 0 New
Zealand

0 Uruguay 0

Equatorial
Guinea

0 Nicaragua 0 Zambia

Euro Area 0 Nigeria 0
Fiji 0 Norway 0
Transformed
Factor

𝜅−type unit roots Transformed
Factor

𝜅−type unit roots Transformed
Factor

𝜅−type unit
roots

𝐹∗
1 0 𝐹∗

2

1. The real effective exchange rates (based on consumer price index) of 94 economics are from IFS dataset of IMF. The sample period is
from 2005 Q1 to 2016 Q4.
2. 𝜅 = 0, 𝜋, 𝜋/2, refers to the null that the series of interest has a conventional unit root (+1), semi-annual unit root (−1), annual unit roots
(±𝑖), respectively.
3. † indicates that the detected type of non-stationarity is solely due to the estimated common factor.

Table 5 first summarizes the results of the augmented HEGY test for the panel of real exchange rates and for
the transformed common factors. First, for these 94 series of real exchange rates, only 6 of them are stationary
(the rates of Armenia, the Congo, Romania, Slovak, St. Kitts and Nevis, and Zambia) while the others are non-
stationary. Second, for those non-stationary exchange rates, 86 of them include conventional unit roots at zero
frequency only, one of them (the rate of Bulgaria) has a pure seasonal unit root −1, and Iceland is the only
country whose exchange rate involves both a conventional (+1) and a seasonal unit root (−1). It is obviously
that the seasonal non-stationarity at frequency π could not be pervasive in the panel of these real exchange
rates. In addition, the pooled tests (7) reject all the 𝜅−type null hypotheses except the null that every series has
a conventional unit root.

Given the panel of these 94 standardized real effective exchange rates, we then estimate their corresponding
factor model (1) with two common factors. These two factors are further transformed by (5), ̂𝐹∗

1 and ̂𝐹∗
2 say,

and their corresponding results of augmented HEGY tests are summarized in the last row of Table 5; the first
common transformed factor has a unit root at zero frequency, while the second one is stationary. Besides, for
those 87 real exchange rates with unit root +1, 80 of their estimated idiosyncratic errors induced from the factor
model still have a conventional unit root; it means that the most observed non-stationarity of real exchange
rates at zero frequency are due to both the common factor and the idiosyncratic errors; they are neither purely
pervasive nor purely economy-specific. In sum, for the considered panel of exchange rates, all the above results
indicate that there is no substantial evidence on the validity of PPP in the long run; many conventional unit
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roots and a few seasonal unit roots were detected in the data, and part of the violation of PPP without mean-
reversion is pervasive.

6.2 Consumer price indexes

Table 6: Detected 𝜅− type unit roots in cpis by augmented HEGY tests.

Economies 𝜅−type unit roots Economies 𝜅−type
unit roots

Economies 𝜅−type unit roots

Australia 0 Greece 0 Norway 0
Austria 0 Iceland 0 Portugal 0 π
Belgium 0 Ireland 0 San

Marino
0 π

Canada Israel 0 Singapore 0
China,
P.R.:Hong
Kong

0 π π / 2 Italy 0 Slovak
Republic

0

China,
P.R.:Macao

0† Japan 0 Slovenia 0 π

Cyprus 0 Korea 0 Spain 0
Czech
Republic

0 Latvia 0 Sweden 0

Denmark 0 Lithuania 0 Switzerland 0 π
Estonia 0† Luxembourg 0 UK 0
Finland 0 Malta 0 US 0
France 0 Netherlands 0
Germany 0 New

Zealand
0

Transformed
Factor

𝜅−type unit roots Transformed
Factor

𝜅−type
unit roots

Transformed
Factor

𝜅−type unit roots

𝐹∗
1 0 𝐹∗

2 0 𝐹∗
3 0

𝐹∗
4

1. The consumer price indexes (base year is 2010) of 37 advanced economics are from IFS dataset of IMF. The sample period is from
2003Q1 Q1 to 2017 Q4.
2. 𝜅 = 0, 𝜋, 𝜋/2, refers to the null that the series of interest has a conventional unit root (+1), semi-annual unit root (−1), annual unit roots
(±𝑖), respectively.
3. † indicates that the detected type of non-stationarity is solely due to the estimated common factor.

For the panel of CPIs of the advanced economies, Table 6 presents the following results of the augmented
HEGY Tests. First, for these 37 series of CPI, only CPI of Canada is stationary while all the others are not. Sec-
ond, for those 36 non-stationary exchange rates, all of them have a conventional unit root at zero frequency, 5 of
them have an additional seasonal unit root with frequency π, and Hong Kong is the only economy whose CPI
involves unit roots +1, −1 and ±𝑖. Third, the ratio of detected seasonal non-stationary CPIs at frequency π to
the panel is 5/37, which is more than twice the significance level (5%) of the HEGY tests; we observe seasonal
non-stationarity more frequently as expected. Fourth, four common factors of the factor model (1) are estimated
for this panel of CPIs, and the non-stationarity of every transformed factor is investigated by augmented HEGY
tests. The last two rows in Table 6 present the corresponding results; the first three transformed common factor
has a unit root at zero frequency, while the last one is stationary. It immediately implies that the detected sea-
sonal non-stationarity at frequency π in this panel of CPIs are economy-specific; they are not pervasive. More-
over, for those 36 CPIs with unit root +1, HEGY tests for their estimated idiosyncratic errors, which resulted
from the factor model, show that 34 of those errors still have a conventional unit root; it means that the most
observed non-stationarity of CPIs at zero frequency are neither purely pervasive nor purely economy-specific.

7 Conclusion

By extending the PANIC framework of Bai and Ng (2004) to a seasonal panel with factor structure, this paper
proposes an estimation procedure to consistently estimate the number of common factors, the space spanned
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by factors, factor loadings, and idiosyncratic errors, without knowing a priori whether or not the series are
seasonal stationary. By employing the common factor structure, certain types of seasonal non-stationarity of
common factors and of the idiosyncratic errors can thus be tested separately. This feature is quite different
from the existing literature on seasonal non-stationarity in panels; e.g. Otero, Smith, and Giulietti (2005, 2007,
and 2008), Dreger and Reimers (2005) and Ucar and Guler (2010).

Within this proposed framework, we constructed the pooled tests for seasonal panels by using the p-values
of the test statistic of individual tests associated with each cross-section unit, and provided a procedure in-
volving successive tests to determine the number of independent stochastic trends (at each seasonal frequency)
when there are multiple common trends. When there is one common factor, our simulations show that the direct
(seasonal) panel unit root tests on the observed data tend to over-reject the null of (seasonal) unit root(s); when
the panel data are driven by a common factor structure, the proposed works very well instead. When there are
multiple factors, the finite-sample performance of the proposed successive testing procedure is good in most
configurations considered here. Since there is no procedure yet in the literature to show how to determine the
number of common stochastic trends with certain non-stationary types in a panel of seasonal data with possible
factor structures, the proposed successive testing procedure can serve as a candidate for resolving this issue.
For the empirical applications, we applied the proposed framework to investigate the possible non-stationarity
in the panel of worldwide real exchange rates and in the panel of CPIs for 37 advanced economies. For the
worldwide exchange rates, the seasonal non-stationarity is seldom observed, and one stationary common fac-
tor and one non-stationary factor (with unit root +1) are identified for the panel. Most of the non-stationary
exchange rates with unit root +1 are further found to be driven by both the non-stationary factor and the non-
stationary idiosyncratic errors. On the other hand, three non-stationary common factors with unit root +1 and
one stationary factor are identified as the common driving forces of the CPIs of advanced economies; seasonal
non-stationarity (at frequency π) is still not common enough to be pervasive even when it is detected more often
than the exchange rates. Besides, most of the CPIs with unit root at zero frequency are observed to be neither
purely pervasive nor purely economy-specific.
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Appendix: wald representation and rank condition for seasonal unit roots

Given the dynamics model (9) of factors, we are going to show why the rank of 𝐵𝐵𝐵𝐹𝐹𝐹(𝑟𝑠) equals the number of
factors with root rs in this appendix. To illustrate, we first consider an univariate quarterly series wt, which
potentially has unit roots at zero and all seasonal frequencies; (1 − 𝐿4)𝑤𝑡 is thus a stationary process, but may
have a zero on the unit circle. Hylleberg et al. (1990) showed that its Wald representation is:

(1 − 𝐿4)𝑤𝑡 = 𝐵𝑤(𝐿)𝜂𝑡, (13)

where Bw(L) is the polynomial for the lag operator L and ηt is a white noise process with zero mean and finite
variance 𝜎2

𝜂. Let rs (= +1, −1, +𝑖 and −i) denote a root of z for the polynomial (1−𝑧4) = 0; then for each s, we must
have 𝐵𝑤(𝑟𝑠) ≠ 0, provided that wt has the seasonal unit root rs. To illustrate this point more clearly, let Re(𝑧)
and Im(𝑧),respectively, denote the real part and imaginary part of a complex number z; then in representation
(13):

𝐵𝑤(𝐿) = Ψ1[1 + 𝐿 + 𝐿2 + 𝐿3] + Ψ2[1 − 𝐿 + 𝐿2 − 𝐿3] + (Ψ3 + Ψ4𝐿)[1 − 𝐿2]
+ 𝐵∗∗

𝑤 (𝐿)(1 − 𝐿4),
where Ψ1 = 𝐵𝑤(1)/4, Ψ2 = 𝐵𝑤(−1)/4, Ψ3 = Re(𝐵𝑤(𝑖))/2, Ψ4 = Im(𝐵𝑤(𝑖))/2 and 𝐵∗∗

𝑤 (𝐿) is the lag polynomial
such that 𝐵∗∗

𝑤 (1) ≠ 0, 𝐵∗∗
𝑤 (−1) ≠ 0, 𝐵∗∗

𝑤 (𝑖) ≠ 0 and 𝐵∗∗
𝑤 (−𝑖) ≠ 0. Based on this representation, if 𝐵𝑤(1) = 0,

it implies that Ψ1 = 𝐵𝑤(1)/4 = 0, and wt does not have this unit root since the representation (13) can be
rearranged as (1+ 𝐿 + 𝐿2 + 𝐿3)𝑤𝑡 = [Ψ2(1+ 𝐿2) + (Ψ3 +Ψ4𝐿)(1+ 𝐿) + 𝐵∗∗

𝑤 (𝐿)(1+ 𝐿 + 𝐿2 + 𝐿3)]𝜂𝑡 after canceling
the factor (1 − 𝐿) in all terms of both sides of (13). Therefore, if wt has the unit root +1, it necessitates that
𝐵𝑤(1) ≠ 0. Generating this result to the multivariate case such as Ft in model (9), the rank of 𝐵𝐵𝐵𝐹(1) is merely
the number of the factors with unit root +1. Similar arguments about the existence of other seasonal unit roots
can apply, too. For more details, refer to Hylleberg et al. (1990).
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Notes
1 As is well-known, seasonal non-stationarity may come from stochastic components (such as seasonal unit roots), deterministic com-
ponents (such as seasonal dummies) and structural changes, etc. This paper only focuses on investigating the stochastic non-stationarity
induced by seasonal unit roots in a seasonal panel.
2 In the literature, many studies have tried to search for stationarity among them via controlling the seasonality or the cross-section de-
pendence in order to support PPP; see for e.g. Papell (1997), Wu and Wu (2001), and Ho (2008).
3 In this paper, we focus on the quarterly data to introduce the proposed framework, but generalizing the proposed to other seasonal data
is straightforward. In general, if wt is SI(1), it means that wt has a conventional unit root at the zero frequency, and S − 1 seasonal unit roots
at different seasonal frequencies.
4 As is well known in factor models, the loadings 𝝀i and the factors 𝑓𝑓𝑓 𝑆

𝑡 (or Ft) are not directly identifiable, since 𝜆𝜆𝜆∗
𝑖 = 𝐻𝐻𝐻−1𝜆𝜆𝜆𝑖 and 𝑓𝑓𝑓 𝑆∗

𝑡 =
𝐻𝐻𝐻𝑓𝑓𝑓 𝑆

𝑡 (or 𝐹𝐹𝐹∗
𝑡 = 𝐻𝐻𝐻𝐹𝐹𝐹𝑡 ) can induce the equivalent factor models when introducing an arbitrary invertible matrix H. Therefore, we can only

consistently estimate the space spanned by the factors and the space spanned by the loadings.
5 wit is a generic variable that could be the factor in Ft, ϵit, or their estimated counterparts.
6 The invalidity of the panel HEGY test for yit will be shown by simulations in Section 5.
7 The independence assumption for vit in A.4(iii) is stronger than the commonly required one as only the consistency of the estimators of
the factor model is of interest. The weak cross-correlation in the errors is usually allowed in the framework of factor models; see for e.g.
Chamberlian and Rothschild (1983) and Bai and Ng (2008).
8 Other than the results reported in Table 2, we also considered the cases with 𝑁 = 10, 20, 40, and 𝑇 = 100, 200, 300, 400. In general, the
simulation results showed that, except few cases for Γ4, the data with N ≥ 20 actually gives us enough information about the factors
(disentangling from the noise) and helps us to estimate them more precisely, all the resulting probabilities of correctly select the true
number of common factors are greater than 0.99. To conserve space, we do not report those results here; they are available on request.
9 For cases considered in Table 4, the corresponding simulation results show that pooled HEGY tests on yit generally over-reject the null
hypotheses for all cases when the idiosyncratic error and/or some factor(s) are SI(1). This is similar to the phenomenon observed in cases
of single common factor. Instead, the pooled HEGY tests on ̂𝜖it still perform well; most of the rejection rates are around the nominal size
5% (a few cases are little over-sized) and all the powers are 1 when ρ = 0.5 in all cases no matter what 𝑞(𝑆𝐼)

1 is. To conserve space, we do not
report the results for pooled HEGY tests for yit, ̂𝜖it here; they are available on request.
10 All the quarterly data are recorded as the average of their monthly observed values by IMF. For the real effective exchange rates, there
are 96 series globally available in the IFS dataset; we dropped two (the rates of Netherlands Antilles and of Venezuela) of them to keep the
panel balanced. For the CPIs, we consider all 37 advanced economies identified by IMF; the panel of CPIs starts from 2003 Q1 to keep the
panel balanced. For more details, please refer to the web site: http://data.imf.org/?sk=4C514D48-B6BA-49ED-8AB9-52B0C1A0179B.
11 For these two cases of applications, when the maximum number of factors ̄𝑞 is pre-specified from 4 to 8, the criterion Γ4(𝑁, 𝑇) always
yields the same results ( ̂𝑞 = 2 for real exchange rates and 4 for CPIs). However, the other three criteria: Γ1(𝑁, 𝑇), Γ2(𝑁, 𝑇) and Γ3(𝑁, 𝑇)
are not robust to ̄𝑞; all three criteria always select ̂𝑞 = ̄𝑞 for different specified values of ̄𝑞.
12 For the series of interest, the augmented HEGY test is performed by first estimating the largest linear regression model with intercept,
trend and seasonal dummies as deterministic regressors; the trend or/and seasonal dummies in the model are then dropped to yield
a degenerated model if the corresponding estimated coefficients are insignificant. Accordingly, the results of the tests are based on the
estimates of the considered model. The package used is the HEGY add-ins in Eviews written by Nicolas Ronderos in 2015.
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