
2402 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 15, 2020

Hardware-Assisted MMU Redirection for In-Guest
Monitoring and API Profiling

Shun-Wen Hsiao , Yeali S. Sun, and Meng Chang Chen

Abstract— With the advance of hardware, network, and vir-
tualization technologies, cloud computing has prevailed and
become the target of security threats such as the cross virtual
machine (VM) side channel attack, with which malicious users
exploit vulnerabilities to gain information or access to other guest
virtual machines. Among the many virtualization technologies,
the hypervisor manages the shared resource pool to ensure that
the guest VMs can be properly served and isolated from each
other. However, while managing the shared hardware resources,
due to the presence of the virtualization layer and different CPU
modes (root and non-root mode), when a CPU is switched to
non-root mode and is occupied by a guest machine, a hypervisor
cannot intervene with a guest at runtime. Thus, the execution
status of a guest is like a black box to a hypervisor, and
the hypervisor cannot mediate possible malicious behavior at
runtime. To rectify this, we propose a hardware-assisted VMI
(virtual machine introspection) based in-guest process monitoring
mechanism which supports monitoring and management appli-
cations such as process profiling. The mechanism allows hooks
placed within a target process (which the security expert selects
to monitor and profile) of a guest virtual machine and handles
hook invocations via the hypervisor. In order to facilitate the
needed monitoring and/or management operations in the guest
machine, the mechanism redirects access to in-guest memory
space to a controlled, self-defined memory within the hypervisor
by modifying the extended page table (EPT) to minimize guest
and host machine switches. The advantages of the proposed
mechanism include transparency, high performance, and compre-
hensive semantics. To demonstrate the capability of the proposed
mechanism, we develop an API profiling system (APIf) to record
the API invocations of the target process. The experimental
results show an average performance degradation of about
2.32%, far better than existing similar systems.

Index Terms— API hooking, malware, MMU, profiling, virtual
machine introspection.

I. INTRODUCTION

W ITH the development of hardware and virtualization
technologies, cloud computing provides elastic and

Manuscript received May 30, 2019; revised September 23, 2019 and
January 3, 2020; accepted January 16, 2020. Date of publication January 27,
2020; date of current version February 6, 2020. This work was supported
in part by the Ministry of Science and Technology, Taiwan, under Grant
MOST-107-2221-E-004-003-MY2 and in part by the Taiwan Information
Security Center (TWISC) of NTU and AS. The associate editor coordi-
nating the review of this manuscript and approving it for publication was
Prof. Debdeep Mukhopadhyay. (Corresponding author: Shun-Wen Hsiao.)

Shun-Wen Hsiao is with the Department of Management Information
Systems, National Chengchi University, Taipei 11605, Taiwan (e-mail:
hsiaom@nccu.edu.tw).

Yeali S. Sun is with the Department of Information Management, National
Taiwan University, Taipei 10617, Taiwan (e-mail: sunny@ntu.edu.tw).

Meng Chang Chen is with the Institute of Information Science and Research
Center for Information Technology Innovation, Academia Sinica, Taipei
11529, Taiwan (e-mail: mcc@iis.sinica.edu.tw).

Digital Object Identifier 10.1109/TIFS.2020.2969514

cost-effective services and has become the de facto platform
of business applications. A cloud computing system is com-
posed of a collection of tightly networked physical computers,
each of which is a host machine on which can be installed
several guest virtual machines (VMs). A virtual machine
has its own operating system (called the guest operating
system) and running applications/processes (called in-guest
applications/processes). The hypervisor, generally residing in
the host machine, manages the shared resource pool and
ensures that the virtual machines are properly served and
isolated from each other. In a virtualized environment, a guest
machine behaves as an independent machine; the hypervisor
normally does not intervene in in-guest activities. As a result,
the hypervisor may miss the opportunity to prevent or mediate
malicious activities that occur within the guest machine.

For example, malware such as viruses, Internet worms,
trojans, and botnets [1], are developed to disrupt network
systems, steal sensitive information, or take control of a guest
machine. They typically leverage libraries or Windows API
calls [2] to perform privileged tasks, e.g., network com-
munication and system management. Since these tasks are
performed in the virtual machine, a hypervisor cannot easily
monitor such malicious activities at runtime from the outside
the VM. To facilitate such monitoring, we develop a profiling
system in the hypervisor that monitors and records func-
tion call invocations made by malicious in-guest processes.
Whether it is a virus or a worm, as long as malware calls
a function, the proposed profiling system hooks and records
such invocations, making our system a threat-agnostic forensic
tool.

Virtual machine introspection (VMI) techniques have been
proposed to inspect VM processes for purposes such as intru-
sion detection [3]. From a cloud management perspective, such
a VMI mechanism must meet several requirements, including
high performance, high transparency (i.e., hiding the existence
of the VMI monitor from the process being inspected), and
high semantics (i.e., the result is human-comprehensible).
In this study, we develop a hardware-assisted in-guest moni-
toring mechanism that meets the above requirements, and to
demonstrate its capabilities and strengths, we also develop
APIf, an in-guest target process API invocation profiling
system.

KVM (kernel-based virtual machine) [13] is a
hardware-assisted virtualization solution for Linux on
x86 hardware that exploits Intel virtualization extensions
(Intel VT-x) [27]. It runs privileged instructions to allow
an in-guest process to run directly on a CPU to boost

1556-6013 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: National Cheng Chi University. Downloaded on April 10,2020 at 05:09:32 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-0780-8144

HSIAO et al.: HARDWARE-ASSISTED MMU REDIRECTION FOR IN-GUEST MONITORING AND API PROFILING 2403

VM performance. Such a technique replaces the conventional
software-based CPU emulator. Cloud services including
Amazon Web Services (AWS) [4] are built on top of KVM
or modifications thereof, including the proposed monitoring
mechanism to utilize KVM advantages. In a nutshell, the idea
of our approach is to redirect in-guest memory access to a
controlled, self-defined memory space in the hypervisor using
Intel VT-x extensions. A proper instrumentation step and
time point are carefully designed and selected to modify the
extended page table (EPT) managed by KVM to support the
proposed memory redirection mechanism. We modify KVM’s
memory management mechanism and make it available for the
profiling mechanism to replace the in-guest memory. When
a hooked in-guest memory address is executed, the replaced
memory contains additional instructions that are executed
to collect process execution information. The proposed
mechanism allows the hooked functions to be executed in
the guest machine at native speed, preventing detection by
the target process by inspecting execution time differences.
This security mechanism within the hypervisor supports
time-critical, concealed applications, such as VMI-based
profiling [5], intrusion detection [3] for monitoring in-guest
activities, and hot-patching for dynamic software updates
without restarting the guest operating system. Note that it
is possible for malignant cloud providers to execute their
own functions to undertake malicious activities such as
information theft without being detected.

To develop an efficient and effective VMI monitoring sys-
tem, several objectives must be achieved.

A. Enhanced Transparency

The proposed VMI monitoring mechanism is located at
the hypervisor layer, rather than in the guest OS; hence,
the existence of the introspection mechanism is not detectable
by the target process in the guest machine. Furthermore,
we also introduce several methods to hide the existence of the
redirected memory space for storing hooking functions and
data to maintain transparency.

B. Improved Performance

As the mechanism is implemented with a hardware
virtualization extension (Intel VT-x), it is faster than conven-
tional emulation-based systems [6]. Furthermore, unlike con-
ventional hardware-assistance based profiling systems (which
must switch between different VM execution modes), with the
proposed mechanism, the interception of in-guest execution
does not require guest-host switches, reducing overhead and
improving performance [7].

C. High Semantics

Generally, naive introspection records only raw bytes in
the memory and/or instructions executed by the CPU, which
are incomprehensible by human beings. The proposed VMI
monitoring mechanism follows work on hardware-assisted
VMI [8], [9] that monitors system call invocation; however,
we target an even higher level of semantic information in that
we collect the API invocations of a target process. We further

traverse associated tables in memory to obtain the symbolic
representation and parameters of the API to provide high-level
semantics and readability.

The main contributions of this paper are summarized below.

• We develop a novel hardware-assisted MMU (memory
management unit) redirection mechanism on in-guest
memory access to self-defined, controlled space in the
hypervisor by leveraging the Intel VT-x extensions to
manipulate the address translations to provide high per-
formance and transparency. Due to the complexity of
memory virtualization, memory redirection on MMU and
in the hypervisor has not been realized before. However,
the need for high-speed in-guest hooking still exists.
To the best of our knowledge, we are the first to pro-
pose a hardware-assisted MMU redirection system on a
KVM hypervisor for userspace function hooking. Thus,
a security expert can put any code in the redirected
KVM-owned memories for use in introspection.

• The proposed introspection mechanism can be used
on cloud platforms to monitor in-guest activities and
facilitate security and service-oriented applications with
high performance, high transparency, and high semantics.
It can be used to prevent malignant users from malicious
behavior and from disrupting cloud services, and can
be used for novel applications such as time-critical hot-
patching. However, the mechanism may be used by
cloud providers for malicious acts of their own such as
information theft or data modification.

• To demonstrate the capabilities and strengths of the
proposed mechanism, we develop APIf, an efficient and
secure VMI-based profiling system that records Windows
API invocations of an in-guest target. The experiments
show APIf incurs a 2.32% degradation in average perfor-
mance.

The remainder of this paper is organized as follows.
Section II provides a background on virtualization technology.
Section III surveys related work. Section IV discusses the
design rationale. Section V presents the implementation of
our system in detail. Section VI shows performance evalu-
ations. Section VII discusses our system design, the threat
model, and possible applications of the proposed mecha-
nism. Section VIII concludes the paper and discusses future
work.

II. BACKGROUND

A. Hardware Assisted Virtualization

Generally, in the x86 architecture, the protection ring is
designed to manage program execution in the correct privilege
state [11]. With four privilege rings (rings 0, 1, 2, and 3),
a system can effectively prevent high-privilege instructions
from being executed in a low-privilege state. However, because
the guest OS is considered by the host OS to be a general
application, the execution of privileged instructions in the
guest is denied by the protection ring mechanism. Before
the emergence of hardware-assisted virtualization such as
Intel VT-x [12]), binary translation (e.g., QEMU — Quick
EMUlator [6]) was used to solve this problem. Due to the

Authorized licensed use limited to: National Cheng Chi University. Downloaded on April 10,2020 at 05:09:32 UTC from IEEE Xplore. Restrictions apply.

2404 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 15, 2020

Fig. 1. Root and non-root modes in Intel x86 VT-x.

overhead of traditional binary translation, Intel announced
Intel VT-x, a set of new processor extensions for the x86 archi-
tecture. Intel VT-x represents hardware-assisted virtualization
technology designed to address the issue of ring compression
by introducing new execution modes: VMX (virtual machine
extension) root mode and VMX non-root mode, as shown
in Fig. 1. The host operating system runs in root mode,
while the guest operating systems run in non-root mode.
Both execution modes support execution in four privilege
rings, solving the issue of privileged instruction execution
in guest mode. A hypervisor can switch the CPU between
root and non-root modes by executing specific instructions to
enter a VM (i.e., VM_entry) or exit a VM (i.e., VM_exit).
Figure 1 shows the root and non-root modes in VT-x assisted
virtualization and their relation to the protection ring.

Specifically, Intel VT-x [27] provides new instructions
for switching between root mode and non-root mode. The
VMRUN and VM entry instructions (VMLAUNCH and
VMRESUME) switch control from root to non-root mode.
Control is switched from non-root to root mode with a
VMEXIT instruction. A critical data structure for interaction
between the root (host) and non-root (guest) modes is the
virtual machine control structure (VMCS), which stores both
root mode (host) and non-root mode (guest) states. Upon
VM entry, the state of the guest mode is loaded from the
VMCS after storing the state of the root mode. Likewise, upon
VMEXIT, the state of the root mode is loaded from the VMCS
after storing the guest mode state.

B. Extended Page Table

Intel VT-x introduced a new hardware-assisted MMU using
EPT (extended page table) to replace the traditional shadow
page table [27]. Unlike soft-managed shadow page tables,
EPT is implemented using hardware features so that the
host machine only needs to maintain one EPT to perform
second-level address translation (SLAT), which translates
GPAs (guest physical addresses) to HPAs (host physical
addresses), for all guest machines on the host. Compared to the
shadow page table, EPT simplifies the process of second-level
address translation and improves performance [28].

According to Intel’s SLAT design [27], for each process
in the guest virtual machine, its corresponding EPT base
pointer points to the base address of the EPT. In a one-round

Fig. 2. Schematic structure of EPT address translation.

translation, the page table in the guest OS translates its GVA
(guest virtual address) to a GPA and sends the GPA to KVM.
Then, KVM translates the GPA to the corresponding HPA via
EPT. Note that such translation is only valid in non-root mode,
and it allows the userspace process in the guest machine to
directly access the physical memory in the host through the
MMU and EPT. Upon receiving the GPA from the guest,
EPT walks through the multilayered page table to find the
corresponding HPA and returns the result to the guest page
table. In a 64-bit guest OS, address translation involves a
four-layer guest page table. Thus, every time a GPA is to be
translated to an HPA, EPT must perform a four-layer page
walk. Figure 2 depicts memory address translation with EPT.
A guest virtual address (GVA) is partitioned into five parts—
the PML4 (page map level 4), the PDPT (page directory
pointer table), the PDE (page directory entry), the PTE (page
table entry), and an offset; the first fourth part is sent to the
MMU to look up the base address of the next stage (see the
top half of the figure). Each lookup goes through another
4-layer table lookup in the EPT (bottom half of the figure).
After 5 iterations, the associated host physical address (HPA)
is found.

C. Kernel-Based Virtual Machine (KVM) and QEMU

KVM [13] has now been widely adopted as the basic
infrastructure of many cloud service providers. As KVM runs
as a kernel module, it can manage hardware usage, for instance
memory; however, as a kernel model, KVM cannot recognize
file system access in the guest OS. Therefore, QEMU [6]
was introduced as a user mode agent for in-guest file access,
and as I/O event handlers or in-guest I/O interrupts. Below
we describe the interaction between QEMU and KVM (see
Fig. 3).

First, KVM creates a “/dev/kvm” device node as the
communication channel between KVM and QEMU. QEMU
creates the corresponding data structures and communicates
through a set of ioctl() system calls to KVM, and KVM cre-
ates the corresponding data structure and allocates resources
to initiate a VM. The KVM execution loop [13] then continues
as below.

Authorized licensed use limited to: National Cheng Chi University. Downloaded on April 10,2020 at 05:09:32 UTC from IEEE Xplore. Restrictions apply.

HSIAO et al.: HARDWARE-ASSISTED MMU REDIRECTION FOR IN-GUEST MONITORING AND API PROFILING 2405

Fig. 3. KVM execution loop.

• User mode (QEMU): Once QEMU finishes the I/O tasks,
it informs KVM to execute the code in guest mode and
KVM takes over the CPU. QEMU resumes later when
there is an external event that must be handled by QEMU,
such as the arrival of network packets or timeout events.

• Kernel mode (KVM): KVM stores the host state to the
VMCS and restores the guest state to perform VM entry
to enter the guest mode (non-root mode). The guest code
is executed natively on the physical CPU. Once the CPU
exits guest mode due to an event such as an interrupt or
a page fault, the CPU switches back to host mode (root
mode) and KVM performs the necessary handling before
resuming guest execution. If the exit is because of an I/O
instruction or a signal queued to the process, then KVM
exits to QEMU in user mode.

KVM is a built-in module in the Linux kernel that brings
the following advantages.

• KVM utilizes built-in Linux subsystems to manage VM,
including memory management, process management,
and so on. Inspired by this design, the proposed VMI
monitoring system is also implemented in KVM so that
it can make use of existing features.

• Since KVM works as a kernel module, the proposed
mechanism can access the privileged layer (ring 0); for
instance, it can modify the EPT.

III. RELATED WORK

Research has focused on VMI techniques such as page table
manipulation based approaches, sandbox approaches, dual-VM
approaches, emulator-based VMI, and hardware-assisted
system-call VMI approaches.

A. MMU Manipulation of Normal Page Table

Lee et al. [14] introduce the page table manipulation attack
(PTMA), a kernel exploitation technique to modify memory
attributes through page table modification. This attack enables
an attacker to rewrite memory attributes of protected memory

(e.g., modify the highest 63rd bit to make the protected
memory executable). PTMA is an effective technique because
it targets the principle of the memory management mechanism.
Lee et al. manage to find the targeted page table entry (PTE)
in the master kernel page table and modify its attributes to
evade PTE restrictions.

M. Seaborn reveals a working privilege escalation
exploit [15] which uses row-hammer-induced bit flips [16] to
gain kernel privileges on x86-64 Linux when running as an
unprivileged userspace process. When running on a machine
vulnerable to the row-hammer problem, the process is able to
induce bit flips in page table entries (PTEs) to gain read/write
access to its own page table, and hence gain read-write access
to all of the physical memory. Furthermore, by filling the PTEs
with different physical memory, attackers can manipulate the
mapping between virtual memory and physical memory to
make the corresponding virtual address point to a specific
physical memory space. Thus, if the corresponding virtual
address points to a physical page with read/write access,
an attacker can read and write the physical page. As a result,
an attacker can arbitrarily access physical memory spaces that
should not be accessed.

The proposed mechanism also targets the memory man-
agement mechanism and modifies the access control of the
protected physical memory region. However, instead of mod-
ifying the normal page table, we target EPT entries managed
by the hypervisor. Moreover, we not only modify existing
EPT entries, but our mechanism also creates new memory
space in KVM and new entries in the EPT to store additional
monitoring code which is accessible by both host and guest.

B. Sandbox

Conventionally, a sandbox creates an execution environment
for a target program and monitors its execution. Willems
et al. present a tool called CWSandbox [18] that executes
the sample in either native mode or in a virtual Windows
environment. CWSandbox performs API-level monitoring by
API function hooking. Cuckoo [19] is an advanced, extremely
modular, and open-source automated malware analysis sys-
tem for malware analysis. Cuckoo Sandbox leverages virtual
machine technology to be able to run on different operating
systems (e.g., Windows and Linux), and provides high-level
semantic execution information (e.g., API invocation tracing
and general behavior of the accessed files) by the installed
agent in the guest. However, in some scenarios, the presence
of the in-guest agent may be detected by malware to evade
such monitoring.

Both Cuckoo and CWSandbox provide good performance
and high semantic information. However, they must install an
additional in-guest agent and cannot be transparent to the tar-
get program. As a result, they are suitable more for monitoring
tasks in the lab than for online or real-time monitoring.

C. Dual-VM-Based Approach

A VMI system with a dual-VM-based approach consists of a
guest VM (GVM) and a secure VM (SVM), both installed with
the same OS. The GVM is the virtual machine on which the

Authorized licensed use limited to: National Cheng Chi University. Downloaded on April 10,2020 at 05:09:32 UTC from IEEE Xplore. Restrictions apply.

2406 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 15, 2020

monitored applications run, and the SVM is a highly secure
machine on which security applications run to avoid being
compromised. Security applications in the SVM intercept and
monitor execution of the programs in the GVM, for instance
collecting information on system calls or API invocations.
Lares [20] and Exterior [23] adopt such a dual-VM design.
Lares requires that the GVM and SVM install the same version
of the operating system. In addition, the kernel of the GVM
must be modified so that when system calls are invoked on
it, the system call handler in the GVM redirects these calls to
the SVM and VMI programs installed in the SVM record the
system calls for further security research. Similarly, Exterior,
introduced by Fu and Lin, is also implemented using a dual-
VM-based approach. The MMU of the GVM is modified
so that the physical memory of the GVM is mapped to an
additional memory space created by the SVM. Hence, VMI
programs installed on the SVM can monitor the memory in
the GVM.

CFWatch [21] also leverages a dual VM, but it monitors file
operations access in the GVM from the SVM by monitoring
critical file objects in the GVM’s memory. Once the memory
has changed, an interrupt is issued so that it can monitor file
changes.

In sum, the benefit of the dual-VM design is that VMI
programs hidden in the SVM are not easily detected and
compromised by the monitored programs in the GVM. As the
OSes of the GVM and SVM are the same, the semantic
gap [22] between the GVM and SVM is narrowed. However,
a dual-VM based VMI system requires at least two virtual
machines and modification of the GVM, it incurs overhead due
to VM communications and switches, and the modification of
the GVM may increase the risk of being detected by monitored
programs.

D. Emulation-Based Approach

An emulation-based (or emulator-based) VMI system is
implemented in the software emulator, such as QEMU,
to intercept the process of binary translation, and is able to
record the execution of the guest virtual machine, instruc-
tion by instruction. Such a design allows for fine-grained
tracking of the guest, but the instruction-level information
thus obtained lacks high-level semantics and is thus difficult
for analysts to understand. In addition, binary translation
incurs high overhead, severely degrading the performance of
emulator-based VMI systems. One noted emulator-based sys-
tem is TEMU [25], which was introduced by Dong Song et al.
in 2008. In TEMU, which was implemented on QEMU-0.9,
the researchers extend binary translation by installing an
additional plug-in to perform API hooking and taint analysis.

In sum, the strength of a software-based approach is that
it can be more flexible than other approaches. However,
the performance of such software-based systems is poor and
the information collected is usually raw data, necessitating
additional effort to bridge the semantic gap.

E. Hardware-Assisted VMI Systems

Due to the overhead of binary translation and soft-managed
MMU (the shadow page table), the performance of

emulation-based VMI system is called into question. In 2006,
Intel introduced VT-x, a new x86 virtualization extension,
the emergence of which inspired the birth of hardware-assisted
VMI systems such as PMC, Ether [8], Nitro [9],
CXPInspector [26], SIM [7], MvArmor [17], and Cuckoo [19]
Sandbox. The difference between these systems is in their
monitoring mechanisms and monitored targets. For example,
Ether triggers its monitoring activities by page faults, Nitro
is triggered by the interrupt descriptor table (IDT), and MVX
intercepts the system call path to perform monitoring.

Ether [8] was the first VMI system to use a
hardware-assisted approach. Ether is implemented on
the Xen hypervisor [10], and monitoring programs are
located in the hypervisor layer to keep the system invisible
to programs in the guest. To record in-guest information,
Ether intercepts in-guest execution by using page faults that
trigger VMEXIT and change the CPU mode to the root
mode. As a result, the hypervisor takes over execution and
enables the monitoring programs to record in-guest system
call execution. With hardware-assisted virtualization, Ether
is more efficient than software-based VMI system. However,
frequent VMEXITs incur heavy overhead.

Another VMI system with the hardware-assisted approach
is Nitro [9]. Compared to Ether, Nitro is implemented on
top of the QEMU/KVM architecture. Instead of using page
faults to trigger VMEXIT, the authors modify the IDT to
trigger a VMEXIT when an in-guest system call is invoked
to enable monitoring components to be executed within the
hypervisor (KVM). The researchers claim that Nitro performs
20% better than Ether and supports most x86-based oper-
ating systems (Windows and Linux). However, the perfor-
mance of Nitro still suffers from the overhead for switching
between the guest machine (non-root mode) and the hypervisor
(root mode).

CXPInspector [26] was implemented by modifying EPT.
At first, CXPInspector creates a cloned EPT and synchronizes
the original and cloned EPTs. Next, the system applies the
eXecutable pages (CXP) mechanism. The basic idea of CXP
is to dynamically partition the main memory of the virtual
machine into an executable part and a non-executable part.
As the instruction pointer points to non-executable memory,
a VMEXIT is triggered by a page fault interrupt and the
hypervisor takes over execution from the guest OS to per-
form inspection. Meanwhile, in-guest API invocation can be
intercepted by monitoring programs in the hypervisor and
record corresponding API information such as arguments and
return values. However, to intercept in-guest API invocation,
CXPinspector still incurs the overhead associated with the
switch between a guest machine and the hypervisor.

To avoid the overhead associated with frequent switches
(VMEXIT), Sharif et al. introduce SIM, the secure in-VM
monitoring framework [7]. Compared to prior VMI systems,
SIM monitoring programs are installed on the guest vir-
tual machine rather than on the hypervisor. SIM effectively
reduces the frequency of switches and thus overhead. How-
ever, although SIM addresses the issue of switch overhead,
monitoring programs installed in the guest OS still may raise
the risk of being detected.

Authorized licensed use limited to: National Cheng Chi University. Downloaded on April 10,2020 at 05:09:32 UTC from IEEE Xplore. Restrictions apply.

HSIAO et al.: HARDWARE-ASSISTED MMU REDIRECTION FOR IN-GUEST MONITORING AND API PROFILING 2407

TABLE I

COMPARISON OF VMI SYSTEMS OF DIFFERENT DESIGNS. (HW-A = HARDWARE-ASSISTED)

There are also monitoring systems that take advantage of
Intel hardware to monitor process behavior; however, these
rely on hardware performance counters (PMCs) rather than
virtualization technology. For example, PMC [24] traps hard-
ware performance events to the hypervisor in order to intercept
processes in the virtual machine.

Mishra et al. [38] categorized these systems into five types
based on the introspection approach used: 1) guest OS hook
based (e.g., SIM [7] and Lares [20]), 2) VM state access
based (e.g., VMI-IDS [3], LibVMI [39] and Maitland [40]),
3) hypercall authentication based (e.g., Collabra [41]), 4) ker-
nel debugging based (e.g., DRAKVUF [42] and SPEMS [43])
and 5) interrupt based (e.g., Nitro [9]). However, the proposed
APIf does not belong to any of the category. Although
APIf leverages guest OS hooking technique, APIf requires
no modification of guest OS. In addition, comparing to the
approaches in other categories, APIf requires no additional
privilege domain (i.e., Domain 0 [40]), hypercall, debug berk
point, syscall and interrupt.

In summary, compared to an emulation-based system,
hardware-assisted techniques generally provide better per-
formance. As for the dual-VM based approach, although
it is helpful to bridge the semantic gap and provides
good performance, it consumes more system resources than
other approaches and requires additional modifications in
the guest virtual machine. Considering transparency and
cost-effectiveness, the dual-VM system is not a preferred
approach. From the above survey, it is reasonable to adopt
a hardware-assisted approach given its high performance and
transparency. Inspired by SIM, we run a monitoring program
in guest mode to avoid frequent switches between the guest
machine and the hypervisor. Instead of installing the monitor-
ing program in the guest kernel as with SIM or in the guest
as with Cuckoo, our approach maps space in KVM to the
target process via EPT to avoid switch overheads and maintain
transparency. Table I contains a comparison of different VMI
systems.

IV. SYSTEM DESIGN

With the proposed VMI mechanism, we seek to ensure
transparency, performance, and semantics.

Transparency: Transparency implies no additional installa-
tion of monitoring programs or modification on the guest OS
to reduce the risk of being detected.

Performance: Even with the hardware-assistance mecha-
nisms, frequent VM entries and exits incur high overhead.
To take this into account, the proposed in-guest monitoring
activities are executed in guest mode rather than in host mode
to reduce the frequency of switches.

Semantics: To facilitate automatic API hooking,
a command-line interface allows the user to specify the
names of APIs to be hooked.

Below, we continue to present the system design rationale,
including the manipulation of MMU address translation and
the system architecture. The proposed VMI monitoring system
rationale is also presented.

A. MMU Redirection

Figure 2 shows the workflow of address translation between
guest virtual addresses (GVAs) and host physical addresses
(HPAs). First, when an in-guest process is about to access
an address in guest memory, its GVA is translated to a guest
physical address (GPA) via the page table in the guest. Then,
the GPA is translated to a host physical address (HPA) via
EPT. Through EPT translation, instructions or data stored in
the GVA are fetched by CPU by using HPAs with the help of
the MMU. Note that such access is possible only in non-root
mode. Our monitoring mechanism intervenes and reverses the
translation to allocate a new shadow leaf page (HPA) allocated
by KVM that can be accessed by a target process using the
GVA.

Figure 4 depicts the workflow of the proposed VMI mon-
itoring system using shadow leaf pages. The rationale of
the design is to use one-time instrumentation to trade for
upcoming mode switches. When a task (i.e., process) in the
guest is about to execute an instruction (GVA), the GVA is
translated by PD and PT. At the instrumentation, the PT entries
are modified to map to the shadow leaf pages to replace the
original page. When the hooked address (GVA) is accessed by
the CPU in guest mode, the MMU/EPT redirects the execution
of the in-guest process and the CPU accesses the instruc-
tion/data on the shadow leaf page without additional guest/host
switches. To ensure system performance and transparency,
the cost is restricted to a one-time modification.

B. System Architecture

Figure 5 shows the system diagram of the proposed VMI
monitoring system, in particular the three additional compo-

Authorized licensed use limited to: National Cheng Chi University. Downloaded on April 10,2020 at 05:09:32 UTC from IEEE Xplore. Restrictions apply.

2408 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 15, 2020

Fig. 4. Rationale of proposed VMI monitoring system using shadow leaf
pages.

Fig. 5. VMI-based monitoring system diagram.

nents built on top of the QEMU/KVM architecture: the VMI
Process Handler, the VMI MMU Modifier, and the VMI Log
Handler. After the VMI Process Handler in QEMU receives
the target process name from the command-line interface,
it monitors the activation of the target process. As soon as
the target process is active, the VMI Process Handler sends
an ioctl signal to enable the VMI MMU Modifier and
VMI Log Handler. The MMU Modifier creates the customized
shadow leaf page and modifies the address translation so that
the execution of the hooked address of the target process is
redirected to the customized shadow leaf page. The VMI Log
Handler manages the operation of the log buffer used for stor-
ing data from the guest (such as API invocation information
in a profiling application). Henceforth, we describe the major
components in detail by using a profiling application as an
example.

1) VMI Process Handler: There are three major tasks for
the VMI Process Handler. The first task is to know the target
process. After accepting the target process name from the
command-line interface (step 1 in Fig. 5), the Process Handler
visits the guest kernel to access the current process list (details
in Section V) to obtain the CR3 register value of the target
process. If the current process list does not contain the target
process, the Process Handler module is suspended until the
next step. The second task is to design an instrument in the
KVM Exit Handler (step 2). When a new process is spawned
in the guest, the context switch of the process sets the control
register (CR3_Change) [27] and the CPU exits to KVM by
VMEXIT. This is a good time point for the Process Handler
to inspect the activation of the target process and locate the
addresses of the target APIs. The third task is to locate the
GVA of the target API, and send the addresses to the MMU
Modifier.

Currently, as address space layout randomization (ASLR) is
widely adopted, the target GVA is randomized by the operating
system. As a result, the second task is to locate the address
that the target GVA must execute when the guest machine
is rebooted. For profiling applications, we locate the base
address of the DLL file of the target APIs (e.g., the address of
LoadLibraryA) and combine the base address and offset to
obtain the GVA of the target APIs.

2) VMI MMU Modifier: The VMI MMU modifier is respon-
sible for allocating the necessary memory space in the host and
modifying the EPT. After the Process Handler identifies the
target process (step 3 in Fig. 5), the MMU Modifier allocates
the needed memory space (step 4) by using the built-in
kernel function kzalloc() for the use of shadow leaf pages
(to store clone pages with inline hooking), the log buffer (used
to store guest information), and the profile buffer (to store
hook handling code), and then maps these in-host memory
spaces (HPA) to the in-guest memory spaces (GVA). For EPT
modification, the MMU Modifier first locates the address of
the PT entry by using the target process CR3 value and the
target GVA. By modifying this PT entry, the MMU Modifier
redirects the GVA to the shadow leaf page. On these pages,
we deploy the API hooks (P-Code) using the inline hooking
approach to intercept the API execution in APIf, the proposed
VMI profiling system. We describe the implementation in
detail in the next section.

3) VMI Log Handler: The VMI Log Handler manages the
operation of the log buffer, which provides an efficient channel
between guest and host machines. The P-code in the profile
buffer reads or writes data in the log buffer. The log handler
handles the data and dumps it to a trace file in a ring buffer
fashion [29] when KVM performs a regular VMEXIT so that
buffer management does not incur any extra mode switches.

C. In-Guest Profiling Design

To demonstrate the capability and further explicate the
instrumentation and utilization of the proposed VMI monitor-
ing system, we implemented a profiling system that tracks API
invocations of the target process in the guest. Previous works
such as Ether and Nitro plant their profiling code in the hyper-
visor, necessitating a VM switch to execute profiling code.

Authorized licensed use limited to: National Cheng Chi University. Downloaded on April 10,2020 at 05:09:32 UTC from IEEE Xplore. Restrictions apply.

HSIAO et al.: HARDWARE-ASSISTED MMU REDIRECTION FOR IN-GUEST MONITORING AND API PROFILING 2409

Fig. 6. EPT modification scenario.

To achieve transparency and avoid unnecessary VM switch
overhead, the proposed in-guest profiling application executes
in-host profiling code in guest mode. This calls for three steps
of instrumentation.

1) Enable in-host profiling code to be accessed in guest
mode. To enable in-host profiling code to be accessed
in guest mode, the profiling system first creates an
executable page in the host kernel for the target process.
Then, it performs a reverse MMU address translation to
map the host physical address to an unused guest virtual
address.

2) Redirect GVA to customized shadow leaf pages. Figure 6
shows a simplified example of address redirection by
modifying the EPT. Assume a 4KB page (in GVA
#P321) which contains the original target API opcodes
(instructions A to Z). After translation by the MMU,
the address of this page is translated to an HPA frame
(#F123) with control register CR3. After the VMI MMU
Modifier intervenes, the original memory mapping (from
#P321 to #F123) is changed by modifying the value of
the PT entry to the redirected mapping (from #P321 to
shadow leaf page #F456).

3) Set up API hook handling on shadow leaf page. How-
ever, replacing a page may not be enough. Sometimes
we must execute extra code for different monitoring
purposes. Figure 5 shows a template of the memory

layout arrangement used by our system after modifica-
tion. Originally, a function (instructions A to Z, Z is
usually a RET instruction) is in #P321. Our design
provides two instrumentation points—one before A and
one before Z, so we can run a P-code (α1 to αm) before
calling a function and another P-code (β1 to βn) before
returning the function. First, shadow leaf page #F456 is a
clone of #F123. Then, we rearrange the instructions (A–
Z) and two P-codes (α1 to αm and β1 to βn) with three
additional JMP instructions and one additional profile
buffer (#F999). Thus the execution sequence becomes
α1 to αm , A to Z, β1 to βn . Based on the template,
Figure 7(a) shows the opcodes of LoadLibraryA
in kernel32.dll. The instructions with the gray
background are overwritten to delegate control to the P-
codes. Figure 7(b) shows that the code after hook setup
and the execution sequence of instructions should be the
same as Fig. 7(a). In this example, the profiling code (not
shown in the figure) records the API name, arguments,
and return value. Moreover, in order to not affect the
original execution sequence, we use the system stack
(via PUSH/POP instructions) to save the original register
values before entering the profiling code and restore the
values after finishing profiling.

V. IMPLEMENTATION

We implemented the proposed VMI monitoring mechanism
and profiling system on a computer with an Intel i5 dual-
core CPU clocked at 2.5 GHz and 8 GB of RAM, with
Ubuntu 14.04 and a Linux 3.16.0 kernel as the host OS.
The virtual machine hypervisor was QEMU 2.3.0 and Linux
KVM. The virtual machine was configured as a single-core
virtual CPU with 2GB of RAM and Windows 7 64-bit SP1 as
the guest OS. In the following subsections, we will describe
the implementation of the proposed system, the obstacles we
encountered, and the solutions provided.

A. Target Process State Retrieval

It is not trivial for the VMI Process Handler, which
resides within the hypervisor, to retrieve the state of
in-guest target processes. Retrieval starts by scanning
the guest kernel debugger block (KDBG), and accesses
PsActiveProcessHead [30], which serves as the
head of a doubly, circularly linked list of Executive
Process (EPROCESS) data structures. The EPROCESS struc-
ture is a process descriptor which contains critical information
on the process such as the CR3 value, PID, and process name.
By traversing the EPROCESS list, we retrieve the process state
information. The user only needs to specify the target process
name for the monitoring system to obtain this information
(e.g., CR3) automatically. Figure 8 illustrates the procedure of
target process state retrieval.

B. Enabling In-Host Code Access in the Guest Mode

To ensure the proposed VMI monitoring system is transpar-
ent to in-guest processes, we enable in-host code accessible in
guest mode. Obviously, the host memory cannot be accessed
in guest mode. Thus we set up an address mapping between an

Authorized licensed use limited to: National Cheng Chi University. Downloaded on April 10,2020 at 05:09:32 UTC from IEEE Xplore. Restrictions apply.

2410 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 15, 2020

Fig. 7. Real-world example of in-line code overwriting for API hooking of
LoadLibraryA.

allocated in-host memory space (HPA) and in-guest memory
space (GVA) so that in-host code can be executed by an
in-guest process using GVA. An executable page in the host
kernel is created for the target process which is accessible via
reverse MMU address translation [35]. First, we locate the
PT table via the traversal sequence of PML4/PDPT/PD. Then,
we find an unused memory address in the target process and
create an executable page table entry on the PT for the address.
A two-stage address mapping, from GPA to HPA (in the host)
and from GVA to GPA (in the guest), is generated to facilitate
the access.

Fig. 8. Target process state retrieval in Windows kernel.

Fig. 9. Reverse address translation on EPT (GPA to HPA).

Figure 9(a) shows EPT traversal mapping a GPA to
a given HPA in the host kernel memory. We start from
the EPT pointer (EPTP) that locates the base address of
the PML4 table. The EPTP is known when the target
process is activated. Then, we begin a traversal on the
PML4/PDPT/PD/PT tables by the following rules.

• In-use: During traversal, one in-use table entry is selected
in PML4/PDPT/PD, respectively. As every table entry
has several control bits to specify the state of this entry,
we can easily select an in-user entry (at least one bit in
control bits 0–2 is non-zero).

• In-memory: During traversal, we not only select an in-use
entry but also select an in-memory entry. This indicates
that the corresponding page is not paged out.

• 4KB page (7th control bit = 1, indicating a large page):
We only select a 4k-page in the traversal.

Once a traversal path is found from PML4 to PD, then we
find an unused entry in PT and occupy it. We fill the HPA in
the unused PT entry and set its 63rd bit as executable. The path
now forms a GPA, as shown in Fig. 9(b). Concatenating offsets
(I1–I4) of each table together with 12 zero bits (i.e., a 4k-page)
forms a GPA. Once we occupy the PT entry, we have a GPA
that can be mapped to an HPA by EPT.

The second stage is to set the address translation from a
given GPA to a GVA. First, we locate the base address of
the PML4 table using the CR3 value of the target process

Authorized licensed use limited to: National Cheng Chi University. Downloaded on April 10,2020 at 05:09:32 UTC from IEEE Xplore. Restrictions apply.

HSIAO et al.: HARDWARE-ASSISTED MMU REDIRECTION FOR IN-GUEST MONITORING AND API PROFILING 2411

Fig. 10. Reverse address translation on page table in guest (GVA to GPA).

and start a similar traversal. Figure 10(a) shows EPT tra-
versal mapping a GPA to a GVA. Similarly, once a path
is found from PML4 to PT, the GPA from the previous
stage and control bits (set as executable) are stored into an
unused PT entry. Offsets (I1’–I4’) of each table together with
12 bits of zeros form the GVA, as shown in Fig. 10(b).
Now, the second stage of mapping GVA to GPA is
complete.

Through this two-stage operation, we successfully construct
the mapping between in-host allocated space and in-guest
space. As a result, the in-host allocated spaces (e.g., shadow
leaf page, profiling buffer, and log buffer) can be accessed by
in-guest processes.

C. API Hook Handlings

To hook a target API, we must obtain its guest virtual
address (GVA) and store the hook handler in a shadow leaf
page. In the previous subsection we explained the mapping
between a GVA of the target API and an HPA of a shadow leaf
page. As mentioned, modern operating systems use address
space layout randomization (ASLR), which randomly arranges
the address space of sensitive data areas (e.g., stack, heap) of a
process, to hinder some types of attacks. As a result, we must
locate the address of the target API dynamically to hook target
APIs correctly.

A virtual address is composed of a virtual base address and
a relative address. The base address is dynamically allocated
whenever the system is rebooted. The relative address is fixed
and works as a relative offset. In our system, the base address
is identified by scanning the DLL export table of a system
default process to find the corresponding DLL base address,
and then combining the relative address (a fixed offset) to
dynamically locate the address of the target API. For example,
we can locate the address of LoadLibraryA() by combining
the base address of kernel32.dll from a system process
(e.g., winlogon.exe) and a fixed offset. After locating the
address of the target API, a shadow leaf page (which is mapped
to the GVA of the target API) is created to store the API hook
handler.

D. MMU Redirection Instrumentation Point

Although all the mechanisms for target API redirection
are ready, we still require a right instrumentation time point

TABLE II

ADDED INSTRUCTIONS FOR EACH TARGET API

before the first invocation of the target API in the target
process, so that every hooked API invocation can be recorded.
Generally, Windows systems adopt load-time dynamic linking,
in which the DLL is initially mapped into the virtual address
space of the process but is loaded into physical memory
only when needed. Hence, the first API invocation in the
target process incurs page faults and triggers a VM exit, EPT
VIOLATION, in order to establish the address translation for
the API. Figure 2 depicts the translation procedure via EPT:
the bottom half of the figure shows that for address translation
on the guest page table (GVA to HPA), five EPT VIOLATIONs
are triggered, including one CR3 translation and four HPA
translations.

Our system takes the fifth EPT violation as the instrumenta-
tion time point to modify the EPT for redirection. Furthermore,
since API address translation on the EPT for a process is
unique and exclusive, EPT modification on one process does
not affect that of other processes in the virtual environment.
This feature also allows us to perform targeted monitoring and
to avoid interfering with other processes.

E. Implementation of Windows API Profiling System

We record the behavior of an in-guest process via API
execution traces that capture high-level behavior semantics.
We selected several APIs (see Table II) from Microsoft MSDN
in four operation categories: file I/O, process management,
library invocation, and registry access.

• File I/O. We chose I/O-related APIs such as those for
creating, reading, writing, copying, and deleting files.

• Process Management. To monitor malware activities at
the process level, we chose APIs for process creation,
launch, and execution.

• Library Invocation. We chose LoadLibrary() as one
of the target APIs, as malicious programs often load
self-provided libraries through dynamic linking.

• Registry Access. We chose APIs for registry search, open-
ing, creation, closing, and deletion to monitor changes to
system configuration by malware.

We hooked 22 Windows APIs using APIf, our profiling
system. In order to provide high semantics, the profiling

Authorized licensed use limited to: National Cheng Chi University. Downloaded on April 10,2020 at 05:09:32 UTC from IEEE Xplore. Restrictions apply.

2412 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 15, 2020

Fig. 11. An API invocation log.

system places extra code in the profiling buffer to further
obtain API invocation parameters and return values from the
target process stack. In addition, as some parameters are
pointers (such as string objects and file handles), our profiling
code supports further resolving them to the actual values
to make the generated profile more readable and useful for
analyzing malware.

The profiling code logs the API name, parameters (in the
stack), and return values (in the RAX register) of the invoked
API to the log buffer. The profiling code is implemented
in x64 assembly. The logged data is stored in hex format.
Figure 11 (in formatted ASCII representation) is an example
of an API invocation trace in the log buffer.

F. Transparency

Transparency is another significant issue for VMI monitor-
ing systems. We thus take several measures to ensure that our
monitoring system is transparent to the target process in the
guest machine. In general, transparency does not imply hiding
the presence of a virtualized environment from the target
process but hiding the presence of the monitoring mechanism.

1) Hiding Hooking Functions: In general, inline hooking
is implemented by modifying the program. Comparing the
program file itself (e.g., exe, dll) is a simple but useful
method to detect if it has been modified. However, we deploy
API hooks by modifying the EPT instead of modifying the
program file directly. Therefore, such a straight comparison is
ineffective.

API hooks can also be detected by memory integrity
checking. Generally, hooking the WriteprocessMemory
and ReadProcessMemory APIs and forging their para-
meters and return values could prevent against detection.
For example, if the malware attempts to read the spec-
ified memory section to check the memory integrity by
using ReadProcessMemory, we can hook the function and
replace the contents of the reading buffer using the original
program to avoid being detected.

2) Hiding EPT Modification: Because the EPT is out of
reach of the guest machine, the target process can neither
access the EPT nor is aware of any modifications to the EPT.
Our system only makes use of the regular EPT_VIOLATION
to perform one-time instrumentation; since no additional
VM exit occurs, the target process cannot identify such instru-
mentation.

3) Time Handler: Malware can read a timer and calculate
the execution time. If the time exceeds a certain threshold,
malware may conclude that a monitoring system is present.
Malware can use the RDTSC instruction to determine whether
the execution time exceeds the threshold. The RDTSC instruc-
tion reads the TSC register and writes the value to the
EAX and EDX registers. Generally, our system can intercept

RDTSC instructions and forge the value of EAX and EDX to
mislead malware.

VI. EVALUATION

The profiling system was built on a PC with an Intel i5 dual-
core CPU at 2.5 GHz and 8 GB of RAM, a host operating
system of Ubuntu 14.04, and a Linux 3.16.0 kernel. The virtual
machine was configured with one single-core virtual CPU with
2GB of RAM running Windows 7 64-bit SP1.

A. Code Size

We used the register-indirect jump technique to intercept
process execution. We stored the address of the profiling code
into the RAX register and then caused the process to jump to
the address of the profiling code. This jump operation occupied
two instructions. These are the assembly instructions used to
implement the register-indirect jump operation:
mov rax, (addr. of˜function)
; 48 b8 (8 bytes addr.)
jmp rax ; ff e0

The profiling code for collecting parameters and logging
data used 49 to 73 additional instructions depending on the
complexity of the corresponding hooked API and the number
of parameters collected. Table II shows the occupied instruc-
tions of the profiling code for each API.

In addition to the profiling codes, three jump operations
were needed to connect code in the shadow leaf page and
profile buffer; thus the entire overhead of a hooked target API
was between 55 to 79 instructions.

B. Macro-Benchmarking

In macro-benchmarking, we leveraged PerformanceTest
8.0 from PassMark [37], a commercial benchmarking product,
to perform CPU, memory, and disk benchmark tests. Each test
was performed on the guest OS with and without profiling
tools. As the benchmark comparison we used Cuckoo [19],
one of the most commonly-used open source profiling tools.
The performance degradation is a straightforward indicator of
the overhead incurred by the proposed profiling system (APIf)
and Cuckoo. Table III shows the results. In all of the bench-
mark tests, our system incurs low overhead (between 0.0%
and 7.38%). Disk Sequential Write and Disk Random R/W,
the benchmark tests with the highest overhead, only show
performance hits of around 7.38%. The overhead for memory
operations is between 0.92% and 3.84%; the overhead of CPU
operations is between 0.0% and 4.52%. These results show that
the proposed system incurs little overhead on both CPU- and
I/O-bound operations, whereas we support high transparency
and high-semantic VMI profiling. It is interesting to note
that these results are similar to the Nitro results [9]. The
benchmarks with high overhead are both I/O-intensive tests,
as the test program may invoke many Windows I/O-related
APIs, incurring higher overhead.

C. Latency of Invoking Hooked APIs

We evaluated the execution latency incurred by the profiling
system for each hooked API. The Windows system clock was

Authorized licensed use limited to: National Cheng Chi University. Downloaded on April 10,2020 at 05:09:32 UTC from IEEE Xplore. Restrictions apply.

HSIAO et al.: HARDWARE-ASSISTED MMU REDIRECTION FOR IN-GUEST MONITORING AND API PROFILING 2413

TABLE III

BENCHMARK TEST RESULTS. BASELINE IS PERFORMANCE RESULTS
WITHOUT INSTALLING ANY PROFILING TOOLS, AND THE LAST TWO

COLUMNS ARE THE PERFORMANCE OVERHEAD CAUSED BY THE

PROPOSED PROFILING SYSTEM AND CUCKOO

used to measure the elapsed time to invoke each hooked API
with the profiling system. Table IV shows the mean of the
original elapsed time and the latency of 1000 runs of hooked
API invocations. The time latency ranges from 30 to 100 μs.
The time latency incurred by LoadLibrary API invocations
is less than 1μs and is not shown in the table. The APIs for
file operations take the most time on average (76.59 μs). Some
registry APIs take significant performance hits.

We believe that the latency incurred by the profiling code
(P-code) is very low because P-code consists only of around
70 instructions on average. As a result, we anticipate that
continuously accessing the Windows registry may incur heavy
system I/O and thus many log buffer accesses in our system,
degrading performance. However, this can be improved by
optimizing the buffering mechanism. This likely explains the
unexpected overhead.

D. A Real-World Example

In Windows, when a user attempts to logon,
the LogonUser() function is called. The user inputs
the username and a plaintext password. If the function
succeeds, the user receives an access token that specifies the
credentials of the specified user account or, in most cases,
creates a process that runs in the context of the specified
user. In this experiment, we hook this function to record
the username and password input of users. We implement
a logon program with LogonUser() as shown in Fig. 12.
When the user inputs the username and password (test/test),
the logon information is recorded correctly in the log buffer
by our profiling code.

TABLE IV

AVERAGE EXECUTION TIMES AND MEASURED LATENCY
FOR INVOKING HOOKED APIS

Fig. 12. Hooking LogonUser().

VII. DISCUSSION

A. System Portability

The proposed VMI monitoring mechanism is
hypervisor-portable due to the fact that all implementation
requirements are KVM-independent. Users can migrate the
monitoring mechanism from KVM to different hypervisors
which meet the following requirements:

• Modify page table entry to change address translation.
The page table structure and the principle of address
translation are defined by Intel VT-x. As a result, any
hypervisor which is compatible with the Intel VT-x
extension can use the proposed mechanism.

• Create shadow leaf page. All hypervisors can allocate
memory space with write/executable access. Hence, cre-
ating shadow leaf pages is not a problem for other
hypervisors.

• Knowing guest OS kernel structure. In Windows, we use
the guest kernel structure, EPROCESS, to construct an
active process list. If the related structure in different
OSes (e.g., the struct_t structure in Linux) is known,
our monitoring mechanism can be applied on different
guest OSes.

Authorized licensed use limited to: National Cheng Chi University. Downloaded on April 10,2020 at 05:09:32 UTC from IEEE Xplore. Restrictions apply.

2414 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 15, 2020

In sum, all of the requirements above can be achieved if
the hypervisors are compatible with x86/64 hardware-assisted
virtualization. Hence, the proposed monitoring mechanism is
largely portable.

B. System Scalability

In this subsection, we discuss system scalability from sev-
eral different aspects: multiple-process (or -thread) monitoring,
multiple-VM monitoring, and shadow leaf page usage.

• Multiple-process (or -thread) monitoring. Since the guest
process CR3 (gCR3) is unique to a process in a VM,
we can determine which process invokes the hooked API.
By doing so, our system can monitor multiple processes
at the same time. Furthermore, if the target process
forks new processes, our system can keep tracking its
child processes (because we hook the process creation
APIs, i.e., CreateProcessA, CreateProcessW,
and WinExec, to obtain the process forking informa-
tion). Our system generates separate profiles for different
target processes. For multi-thread monitoring, when a
process creates a new child thread to run malicious code,
our system records the call invocations of the main thread
and the child thread at the same time using the thread ID.

• Multiple-VM monitoring. To monitor multiple VMs,
we can use the extended page table pointer (EPTP), which
is stored in the VMCS and is unique to a VM, and can
differentiate multiple VMs for simultaneous multiple-VM
monitoring.

• Shadow leaf page usage. Generally, to hook one API,
our system must allocate one shadow leaf page and one
profiling buffer. However, in some cases, we can reduce
the number of allocated pages by using a shared shadow
leaf page and profiling buffer. For example, if the differ-
ence between the address of two APIs is less than 4096
(e.g., RegSetValueExA and RegSetValueExW),
they can be put into the same shadow leaf page (4 KB
page). Currently, our profiling system hooks 22 APIs and
uses only 17 shadow leaf pages.

C. Threat Model

Since the proposed method hooks the memory of a guest
machine dynamically, the system can inspect a) shared
libraries stored in the userspace memory (such as the Windows
API library and the C library) of a guest, b) system calls
invoked by a guest process, and c) guest kernel functions.
These function calls, used by malware, are also used by
research [1], [2], [36] to analyze or classify malware. When
malware uses these libraries to perform malicious tasks,
the proposed method hooks them and records the usage of
the functions for further analysis. Thus, we view our design
as threat-agnostic, as the purposed system inspects any type of
malware. The fundamental assumption is that the underlying
hardware (including RAM, MMU, ETP, etc.) and hypervisor
(i.e., KVM) are trusted.

However, if sophisticated malware performs malicious tasks
without invoking any dynamic libraries or system calls
(i.e., it includes all basic libraries statically and also refrains

from invoking system calls), it can evade inspection of
the proposed design. However, such a program is unlikely
to be desired, because a) the program would be huge,
b) the malicious tasks performed by such malware would
be limited, and c) the memory used by the malware would
be exorbitant. Such an implementation strategy would be
unusual and would also raise additional suspicions about the
program.

For anti-profiling mechanisms, we anticipate that two major
approaches could be used by the attacker: time latency and
memory integrity checking. First, stealthy malware might be
able to detect the presence of our system by measuring the
time latency incurred by the system (although it is very
low). Thereafter, it would evade our monitoring by performing
no malicious tasks. A possible solution to counter such a
technique would be to hook and manipulate the time-related
functions. However, we anticipate that it is difficult for a guest
process to measure time latency in a virtual machine [31]
due to the complexity of hypervisors (compared with that of a
host machine). The incurred time latency can be viewed as the
overhead of a normal hypervisor. Hence, as long as the latency
is low or negligible, a guest process cannot differentiate if a
function is hooked or not.

Second, since the original code is replaced by the shadow
leaf page and the profiling code (see Fig. 6), the checksum
of the code changes as well. One way to solve this problem
is to swap the original frame back to the memory when a
guest process performs memory integrity checking. However,
detecting such checking at the runtime while profiling requires
a sophisticated method. Thus, another possible solution is
to adopt a two-phase monitoring mechanism. In the first
phase, we record every function invoked by the guest process,
including the integrity checking function. We deliberately
trigger the memory integrity checking function and record
the return value. In the second phase, we then manipulate
the return value of the hooked memory integrity checking
function to evade such checking. However, these two solutions
are beyond the scope of this paper and necessitate an automatic
code analysis tool to detect the presence of a memory integrity
checking mechanism and manipulate the result of such a
function dynamically.

Another possible attack is the attacker perturbing the mem-
ory of the target process after our system deploys the P-code.
To deal with this attack, we can further make a code integrity
check module in KVM to check the integrity of the deployed
P-code when KVM is activated to make sure the profiling
mechanism works correctly.

D. Potential Applications

The major application of in-guest monitoring and API
profiling is to generate profiles for malware analysis, detection,
and classification [1]–[3], [5], [8]. The API call invocation
sequence collected by the proposed system can be viewed
as the DNA of a process. Therefore, an analyst can develop
algorithms to detect the API call sequence of malicious
software [2] for misuse detection or to detect abnormal call
sequences for anomaly detection [32]. Moreover, the API
usage can be used to classify malware into different malware

Authorized licensed use limited to: National Cheng Chi University. Downloaded on April 10,2020 at 05:09:32 UTC from IEEE Xplore. Restrictions apply.

HSIAO et al.: HARDWARE-ASSISTED MMU REDIRECTION FOR IN-GUEST MONITORING AND API PROFILING 2415

families [5], [33]. Nevertheless, the proposed MMU redirec-
tion mechanism is not limited to process profiling.

In addition to building a process profiling system, the pro-
posed MMU redirection mechanism can be applied in applica-
tions such as service hot-patching, keylogging, debugging, and
password crackers (as shown in the experiments). By replacing
the code section of the service that is about to be updated,
system managers can update the services without restarting
the system. However, such a mechanism could also be used
by malicious cloud service providers to develop malware like
the password cracker by hooking the authentication function,
leading to information theft or loss. We expect the proposed
mechanism to not only inspire cloud service providers to
develop related management applications to confront emerg-
ing threats on cloud computing, but also to alert security
researchers to look out for mechanisms that can be used to
compromise the guest VM.

VIII. CONCLUSION

Virtualization is the core component of cloud computing
that provides isolation between the different hardware and
software services of customers. While the current design of
the hypervisor focuses on resource sharing and management
between virtual machines, it lacks a proper mechanism for
security assurance, as more businesses embrace virtualized
environments. New threats emerge every day, and one of the
latest is the virtual machine cache side-channel attack [34].
In this paper, we design and develop an MMU redirection
mechanism which intercepts the execution of API invocation
in a guest virtual machine to support runtime security moni-
toring and profiling. Based on the proposed MMU redirection,
we implement a profiling system prototype on QEMU/KVM
with three important properties: minimum VM transition over-
head (in-guest profiling), transparency to guest VM (no mod-
ification in guest OS), and high-level semantic data logging
(high-level Windows API invocation monitoring and profiling).
The experimental results show that our profiling system incurs
no more than 7.38% system overhead and that the latency of
executing individual APIs does not exceed 100 μs. The proven
performance of our implementation allows for Windows API
invocation monitoring and profiling in real-time. Furthermore,
without guest OS modifications we keep the transparency of
the guest virtual machine. High-level Windows API invocation
profiling traces provide high-level information which can be
easily understood by analysts.

REFERENCES

[1] M. Egele et al., “A survey on automated dynamic malware analysis
techniques and tools,” ACM Comput. Surv., vol. 44, no. 2, Feb. 2012,
Art. no. 6, doi: 10.1145/2089125.2089126.

[2] S. Gupta, H. Sharma, and S. Kaur, “Malware characterization using
windows API call sequences,” J. Cyber Secur. Mobility, vol. 7, no. 4,
pp. 363–378, Oct. 2018, doi: 10.13052/jcsm2245-1439.741.

[3] T. Garfinkel and M. Rosenblum, “A virtual machine introspection based
architecture for intrusion detection,” in Proc. Symp. Netw. Distrib. Syst.
Secur., 2003, pp. 191–206.

[4] S. Sharwood. (Nov. 7, 2017). AWS Adopts Home-Brewed KVM
as New Hypervisor. [Online]. Available: https://www.theregister.
co.uk/2017/11/07/aws_writes_new_kvm_based_hypervisor_to_make_
its_cloud_go_faster/

[5] S.-W. Hsiao et al., “A cooperative botnet profiling and detection in
virtualized environment,” in Proc. IEEE Conf. Commun. Netw. Secur.,
National Harbor, MD, USA, Oct. 2013, pp. 154–162.

[6] F. Bellard, “QEMU, a fast and portable dynamic translator,” in Proc.
USENIX Annu. Tech. Conf., Anaheim, CA, USA, 2005, pp. 41–46.

[7] M. I. Sharif, W. Lee, W. Cui, and A. Lanzi, “Secure in-VM monitoring
using hardware virtualization,” in Proc. ACM Conf. Comput. Commun.
Secur., Chicago, IL, USA, 2009, pp. 477–487.

[8] A. Dinaburg, P. Royal, M. Sharif, and W. Lee, “Ether: Malware analysis
via hardware virtualization extensions,” in Proc. ACM Conf. Comput.
Commun. Secur., 2008, pp. 51–62.

[9] J. Pfoh, C. Schneider, and C. Eckert, “Nitro: Hardware-based system
call tracing for virtual machines,” in Advances in Information and
Computer Security (Lecture Notes in Computer Science), vol. 7038.
Berlin, Germany: Springer, 2011, pp. 96–112, doi: 10.1007/978-3-642-
25141-2_7.

[10] P. Barham et al., “Xen and the art of virtualization,” ACM SIGOPS Oper.
Syst. Rev., vol. 37, no. 5, pp. 154–177, Oct. 2003.

[11] R. Uhlig et al., “Intel virtualization technology,” Computer, vol. 38,
no. 5, pp. 48–56, May 2005, doi: 10.1109/mc.2005.163.

[12] G. Neiger et al., “Intel virtualization technology: Hardware support
for efficient processor virtualization,” Int. Technol. J., vol. 10, no. 3,
pp. 167–177, 2006.

[13] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, “KVM:
The Linux virtual machine monitor,” in Proc. Ottawa Linux Symp.
(OLS), Ottawa, ON, Canada, Jun. 2007, pp. 225–230.

[14] J. S. Lee, H. M. Ham, I. H. Kim, and J. S. Song, “POSTER: Page
table manipulation attack,” in Proc. ACM Conf. Comput. Commun. Secur.
(CCS), New York, NY, USA, 2015, pp. 1644–1646.

[15] M. Seaborn and T. Dullien, “Exploiting the DRAM rowhammer bug
to gain kernel privileges,” presented at the Black Hat, Las Vegas, VA,
USA, Aug. 2015.

[16] Y. Kim et al., “Flipping bits in memory without accessing them:
An experimental study of DRAM disturbance errors,” ACM SIGARCH
Comput. Archit. News, vol. 42, no. 3, pp. 361–372, Jun. 2014,
doi: 10.1145/2678373.2665726.

[17] K. Koning, H. Bos, and C. Giuffrida, “Secure and efficient multi-variant
execution using hardware-assisted process virtualization,” in Proc. Annu.
IEEE/IFIP Int. Conf. Dependable Syst. Netw. (DSN), Toulouse, France,
Jun./Jul. 2016, pp. 431–442.

[18] C. Willems, T. Holz, and F. Freiling, “Toward automated dynamic
malware analysis using CWSandbox,” IEEE Secur. Privacy, vol. 5, no. 2,
pp. 32–39, Mar./Apr. 2007, doi: 10.1109/MSP.2007.45.

[19] Cuckoo Sandbox. Accessed: Sep. 20, 2019. [Online]. Available:
http://www.cuckoosandbox.org

[20] B. D. Payne, M. Carbone, M. Sharif, and W. Lee, “Lares: An architecture
for secure active monitoring using virtualization,” in Proc. IEEE Symp.
Secur. Privacy (S&P), Oakland, CA, USA, May 2008, pp. 233–247.

[21] D. Zhan, L. Ye, B. Fang, X. Du, and Z. Xu, “CFWatcher: A novel target-
based real-time approach to monitor critical files using VMI,” in Proc.
IEEE Int. Conf. Commun. (ICC), Kuala Lumpur, Malaysia, May 2016,
pp. 1–6.

[22] A. More and S. Tapaswi, “Virtual machine introspection: Towards
bridging the semantic gap,” J. Cloud Comput., vol. 3, no. 1, pp. 1–14,
Dec. 2014, doi: 10.1186/s13677-014-0016-2.

[23] Y. Fu and Z. Lin, “Exterior: Using a dual-VM based external shell
for guest-OS introspection, configuration, and recovery,” ACM SIG-
PLAN Notices, vol. 48, no. 7, pp. 97–110, Mar. 2013, doi: 10.1145/
2451512.2451534.

[24] S. Vogl and C. Eckert, “Using hardware performance events for
instruction-level monitoring on the X86 architecture,” in Proc. Eur.
Workshop Syst. Secur. (EuroSec), Bern, Switzerland, 2012, pp. 1–6.

[25] D. Song et al., “BitBlaze: A new approach to computer security
via binary analysis,” in Information Systems Security (Lecture Notes
in Computer Science), vol. 5352. Berlin, Germany: Springer, 2008,
pp. 1–25, doi: 10.1007/978-3-540-89862-7_1.

[26] C. Willems, R. Hund, and T. Holz, “CXPInspector: Hypervisor-based,
hardware-assisted system monitoring,” Ruhr-Univ. Bochum, Bochum,
Germany, Tech. Rep. TR-HGI-2012-002, Nov. 26, 2012.

[27] Intel 64 and IA-32 Architectures Software Developer’s Manual, Intel,
Santa Clara, CA, USA, Oct. 2016.

[28] VMware Inc. (2009). Performance Evaluation of Intel EPT
Hardware Assist. [Online]. Available: https://www.vmware.com/pdf/
Perf_ESX_Intel-EPT-eval.pdf

Authorized licensed use limited to: National Cheng Chi University. Downloaded on April 10,2020 at 05:09:32 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1145/2089125.2089126
http://dx.doi.org/10.13052/jcsm2245-1439.741
http://dx.doi.org/10.1007/978-3-642-25141-2_7
http://dx.doi.org/10.1007/978-3-642-25141-2_7
http://dx.doi.org/10.1109/mc.2005.163
http://dx.doi.org/10.1145/2678373.2665726
http://dx.doi.org/10.1109/MSP.2007.45
http://dx.doi.org/10.1186/s13677-014-0016-2
http://dx.doi.org/10.1007/978-3-540-89862-7_1
http://dx.doi.org/10.1145/2451512.2451534
http://dx.doi.org/10.1145/2451512.2451534

2416 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 15, 2020

[29] P. Hosek and C. Cadar, “VARAN the unbelievable: An efficient
N-version execution framework,” ACM SIGARCH Comput. Archit. News,
vol. 43, no. 1, pp. 339–353, May 2015, doi: 10.1145/2786763.2694390.

[30] F. Zhang, K. Leach, A. Stavrou, H. Wang, and K. Sun, “Using hardware
features for increased debugging transparency,” in Proc. IEEE Symp.
Secur. Privacy (S&P), Oakland, CA, USA, May 2015, pp. 55–69.

[31] B. Adamczyk and A. Chydzinski, “Achieving high resolution timer
events in virtualized environment,” PLoS ONE, vol. 10, no. 7, Jul. 2015,
Art. no. e0130887, doi: 10.1371/journal.pone.0130887.

[32] S. Forrest et al., “A sense of self for unix processes,” in Proc.
IEEE Symp. Secur. Privacy (S&P), Oakland, CA, USA, May 1996,
pp. 120–128.

[33] S.-W. Hsiao, Y. S. Sun, and M. C. Chen, “Virtual machine introspection
based malware behavior profiling and family grouping,” May 2017,
arXiv:1705.01697. [Online]. Available: https://arxiv.org/abs/1705.01697

[34] A. Shahzad and A. Litchfield, “Virtualization technology: Cross-VM
cache side channel attacks make it vulnerable,” in Proc. Australas. Conf.
Inf. Syst. (ACIS), Adelaide, South Australia, 2015, pp. 1–14.

[35] S. Schaik, K. Razav, B. Gras, H. Bos, and C. Giuffrida, “Reverse
engineering hardware page table caches using side-channel attacks on
the MMU,” Vrije Univ. Amsterdam, Amsterdam, The Netherlands, Tech.
Rep. IR-CS-51, 2017.

[36] E. Gandotra, D. Bansal, and S. Sofat, “Malware analysis and clas-
sification: A survey,” J. Inf. Secur., vol. 5, pp. 56–64, Mar. 2014,
doi: 10.4236/jis.2014.52006.

[37] PassMark Software. Accessed: May 1, 2018. [Online]. Available:
https://www.passmark.com/products/performancetest/

[38] P. Mishra, E. S. Pilli, V. Varadharajan, and U. Tupakula, “Intrusion
detection techniques in cloud environment: A survey,” J. Netw. Comput.
Appl., vol. 77, pp. 18–47, Jan. 2017, doi: 10.1016/j.jnca.2016.10.015.

[39] B. D. Payne, “Simplifying virtual machine introspection using LibVMI,”
Sandia Nat. Lab., Albuquerque, NM, USA, Tech. Rep. SAND2012-7818,
Sep. 2012.

[40] C. Benninger et al., “Maitland: Lighter-weight VM introspection to
support cyber-security in the cloud,” in Proc. IEEE Int. Conf. Cloud
Comput.), Honolulu, HI, USA, Jun. 2012, pp. 471–478.

[41] S. Bharadwaja et al., “Collabra: A xen hypervisor based collaborative
intrusion detection system,” in Proc. Int. Conf. Inf. Technol., New
Generat. (ITNG), Las Vegas, NV, USA, Apr. 2011, pp. 695–700.

[42] T. K. Lengyel et al., “Scalability, fidelity and stealth in the DRAKVUF
dynamic malware analysis system,” in Proc. Annu. Comput. Secur. Appl.
Conf. (ACSAC), New York, NY, USA, Dec. 2014, pp. 386–395.

[43] J. Shi et al., “SPEMS: A stealthy and practical execution monitoring
system based on VMI,” in Cloud Computing and Security (Lecture Notes
in Computer Science), vol. 9483. Cham, Switzerland: Springer, 2015,
pp. 380–389, doi: 10.1007/978-3-319-27051-7_32.

Shun-Wen Hsiao received the B.S. and Ph.D.
degree from the Department of Information Manage-
ment, National Taiwan University, in 2004 and 2012,
respectively. From 2006 to 2008, he participated
in the iCAST Collaborate Research Project with
the CyLab, Carnegie Mellon University. In 2012,
he joined the Institute of Information Science, Acad-
emia Sinica, Taiwan, where he held a Post-Doctoral
Research Fellowship. Since 2017, he has been with
the Department of Management Information Sys-
tems, National Chengchi University, where he is

currently an Assistant Professor. His research interests are in the area
of cybersecurity, malware behavior analysis, virtualization technology, and
FinTech.

Yeali S. Sun received the B.S. degree in com-
puter science from National Taiwan University, and
the M.S. and Ph.D. degrees in computer science
from the University of California at Los Angeles
in 1984 and 1988, respectively. From 1988 to 1993,
she was with Bell Communications Research Inc.
(Bellcore), where she was involved in the area
of planning and architecture design of information
networking, broadband networks, and network and
system management. In 1993, she joined the Depart-
ment of Information Management, National Taiwan

University, where she is currently a Professor. She served as the Department
Head for National Taiwan University, from 2006 to 2008, where she was the
Director of the Computer and Information Networking Center, from 2009 to
2014. Her research interests are in the areas of system and network security,
quality of service, wireless mesh networks, multimedia content delivery,
Internet pricing and network management, and performance modeling and
evaluation.

Meng Chang Chen received the B.S. and M.S.
degrees in computer science from National Chiao
Tung University, Taiwan, and the Ph.D. degree in
computer science from the University of California
at Los Angeles, in 1989. He then joined AT&T Bell
Labs, as a member of Technical Staff and worked
as the technical leader of several projects in the area
of data quality of distributed databases for mission
critical systems. After that, he has been with Institute
of Information Science, Academia Sinica, Taiwan,
and assumed the responsibility of Deputy Director

for 5 years, where he is currently a Research Fellow. His current research
interests include wireless networks, network and system security, machine
learning, and data and knowledge engineering.

Authorized licensed use limited to: National Cheng Chi University. Downloaded on April 10,2020 at 05:09:32 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1145/2786763.2694390
http://dx.doi.org/10.1371/journal.pone.0130887
http://dx.doi.org/10.4236/jis.2014.52006
http://dx.doi.org/10.1016/j.jnca.2016.10.015
http://dx.doi.org/10.1007/978-3-319-27051-7_32

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

