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We use a tensor network strong-disorder renormalization group (tSDRG) method to study spin-1
random Heisenberg antiferromagnetic chains. The ground state of the clean spin-1 Heisenberg chain
with uniform nearest-neighbor couplings is a gapped phase known as the Haldane phase. Here we
consider disordered chains with random couplings, in which the Haldane gap closes in the strong
disorder regime. As the randomness strength is increased further and exceeds a certain threshold, the
random chain undergoes a phase transition to a critical random-singlet phase. The strong-disorder
renormalization group method formulated in terms of a tree tensor network provides an efficient
tool for exploring ground-state properties of disordered quantum many-body systems. Using this
method we detect the quantum critical point between the gapless Haldane phase and the random-
singlet phase via the disorder-averaged string order parameter. We determine the critical exponents
related to the average string order parameter, the average end-to-end correlation function and the
average bulk spin-spin correlation function, both at the critical point and in the random-singlet
phase. Furthermore, we study energy-length scaling properties through the distribution of energy
gaps for a finite chain. Our results are in closer agreement with the theoretical predictions than what
was found in previous numerical studies. As a benchmark, a comparison between tSDRG results
for the average spin correlations of the spin-1/2 random Heisenberg chain with those obtained by
using unbiased zero-temperature QMC method is also provided.

I. INTRODUCTION

Impurities of different kinds are often naturally con-
tained in real materials or are introduced by doping. The
effects of disorder and inhomogeneity present in materials
can alter the low-temperature properties dramatically,
especially near quantum critical points; these effects in-
clude destruction of quantum criticality, divergence of
dynamic critical exponent, and quantum Griffiths singu-
larities. Furthermore, there are a number of novel phases
emerging from the interplay between disorder, interac-
tions and quantum fluctuations; prominent examples for
such phases are the many-body localized phase [1] and
certain types of quantum spin-liquids [2–5].
Numerical studies of disorder systems are notoriously

difficult, mainly because (i) disorder is often accompanied
by a long relaxation time and rough energy landscape,
which leads some standard algorithms having a tendency
to get stuck in local minima; (ii) there is a lack of trans-
lational symmetry, which makes the infinite version of
tensor-network based approaches impractical. On the
other hand, the strong disorder renormalization group
(SDRG) designed specifically for disordered systems pro-
vides an analytical tool to capture asymptotically exact
ground-state properties for a number of one-dimensional
(1D) systems [6–10] and can also be implemented numer-
ically on more complex systems, including systems with
geometrical frustration, as long as the disorder is suffi-
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ciently strong [11–16].
The SDRG method was first introduced for solv-

ing the random spin 1/2 Heisenberg antiferromagnetic
chain [6, 7]. The iterative SDRG procedure consists of
locking the strongest coupled pair of spins into a sin-
glet (a valence bond) and renormalizing the coupling be-
tween the neighboring spins by perturbation theory. Re-
peating these steps ultimately leads to an approximate
ground state—the random-singlet (RS) state [7], in which
each spin is paired into a singlet with another spin which
may be arbitrarily far away. Those long-ranged singlets
formed by widely separated spins are rare; however, they
dominate the average spin-spin correlations that decay
asymptotically with distance L as an inverse-square form
L−2. By contrast, a typical pair of spins is not in the
same singlet and has only weak correlations that fall off
exponentially with the square root of their distance. The
energy-length scaling can be obtained by considering the
energy scale (i.e. the strength of the renormalized cou-
pling) of a singlet with length L, yielding

− ln ǫ ∼ Lψ . (1)

with ψ = 1/2. This type of scaling, which is very differ-
ent from the standard scaling ǫ ∼ L−z, implies that the
dynamical exponent diverges: z = ∞. With the diverg-
ing dynamical exponent the RS fixed point is a so-called
infinite-randomness fixed point and it is a stable fixed
point for the spin-1/2 chain with arbitrarily weak ran-
domness.
Unlike the application for the spin-1/2 chain, the con-

ventional SDRG scheme breaks down for Heisenberg
chains with higher spins S > 1/2 in the regime of weak
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FIG. 1. (a) Possible ground states of the spin-1 random
Heisenberg chain. The spin-1 on each site (represented by a
gray shaded sphere) is composed of the symmetric combina-
tion of two S = 1/2 spins (solid circles). Without disorder
or at very low disorder, the ground state is a gapped valence-
bond solid (VBS), in which each site forms a singlet-1/2 to
its right and to its left. With sufficiently strong disorder, the
gap is destroyed due to defects in the VBS structure. This
gapless Haldane phase (GHP) is a Griffiths phase with topo-
logical order. At strong disorder, the ground state undergoes
a phase transition at δc and becomes a critical random sin-
glet (RS) phase, where each S = 1 spin forms a singlet pair
with another S = 1 spin, which may span arbitrarily long
distances. (b) Phase diagram depending on the randomness
strength δ.

randomness. This is because renormalized couplings for
S > 1/2 may become stronger than the decimated cou-
plings during RG, which makes perturbation theory in-
valid [17]. Nevertheless, the SDRG method is applicable
to S > 1/2 chains in the limit of strong disorder, where
the systems are in the RS phase too. More generally, a
higher-S random chain can be mapped to an effective
S = 1/2 chain and can then be treated by extended
SDRG approaches even for weaker randomness. In pre-
vious SDRG studies on effective S = 1/2 models [18–22],
second order phase transitions from weak randomness
phases to the spin-S RS phase were found; the critical
points are infinite randomness fixed points that are not
in the same RS universality class [20–22].

In this paper we will use a tree tensor network algo-
rithm in combination with the idea of the SDRG to ex-
amine the ground state properties of the S = 1 random
Heisenberg antiferromagnetic chain. The ground state of
the S = 1 chain in the absence of randomness is in the
so-called Haldane phase [23], which is a gapped phase
and possesses string topological order [24]. The Haldane
phase and its topological order are stable against weak
randomness [18]. Here we will focus on the ground-state
phases where the energy gap is destroyed by randomness;
they are gapless Haldane phase with hidden topological
order, the spin-1 RS phase and the critical point between
these two phases.

II. THE MODEL

We study the spin-1 random antiferromagnetic Heisen-
berg chain, described by the Hamiltonian:

H =
∑

i

Ji~Si · ~Si+1, (2)

where ~Si is the spin-1 operator at site i and Ji > 0 is a
random antiferromagnetic coupling. We use the following
distribution of the random couplings:

πδ(J) =
1

δ
J−1+ 1

δ for 0 < J ≤ 1, (3)

where δ, being the standard deviation of ln(J), param-
eterizes the strength of disorder. This power-law distri-
bution corresponds to a uniform distribution when δ = 1
while it becomes highly singular at the origin for δ ≫ 1.
The Haldane ground state in the absence of random-

ness (i.e. δ = 0) is well described by the valence-bond
solid (VBS) state [25], in which each spin-1 is considered
to be a symmetric combination of two spins-1/2 and a
singlet (a valence bond) is formed between two spin-1/2
objects on neighboring sites (see Figure 1(a)). Such a
VBS state has a long-range topological order character-
ized by hidden staggered Sz = +1, −1 configuration after
removing all sites with Sz = 0. This hidden topological
order can be probed by the string order parameter [24]

Ozj,k = −
〈
Szj exp(iπ

k−1∑

l=j+1

Szl )S
z
k

〉
, (4)

where Szj is the z component of the spin operator at site
j.
In the presence of randomness, the spin-1 chain ex-

hibits various ground-state phases, depending on the
strength of randomness. A schematic phase diagram,
based on previous studies [18–20], is shown in Fig. 1(b).
With sufficiently strong randomness (for any δ > 0 us-
ing the power-law distribution in Eq. (3) [26] ), the gap
vanishes due to defects occurring in the VBS structure
(see Figure 1(a)) but the topological order can survive
up to a critical value δc. This gapless Haldane phase
is a Griffiths phase with short-range spatial correlations
and a power-law density of states for low-energy excita-
tions [20]: ρ(ǫ) ∼ ǫ−1+1/z. The dynamical exponent z,
which appears in ρ(ǫ), varies continuously in the Grif-
fiths phase with the distance from the location of δc.
The power-law density of states ρ(ǫ) results in power-
law singularities in some thermodynamical quantities,
such as the local susceptibility χlocal which behaves as
χlocal ∼ T−1+1/z at low temperature and diverges at
T = 0 if z > 1.
For δ > δc, the system enters a critical spin-1 RS phase,

where singlets connect spins-1 over arbitrarily long dis-
tances and the string topological order vanishes. This
spin-1 RS phase is analogous to the spin-1/2 RS phase.
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Some results obtained for the spin-1/2 RS phase are valid
for the spin-1 case too. For example, here the length-
energy scaling obeys the form of Eq. (1) with ψ = 1/2.
The spin correlation function, defined as

C(r) = (−1)r〈~Si · ~Si+r〉 , (5)

typically behaves as

− lnC(r) ∼ rψ , (6)

while the average spin correlations decay asymptotically
with distance r:

C(r) ∼ 1

r2
, (7)

where the overline denotes averaging over the random-
ness. Also the average end-to-end correlation function in
an open chain of length L decays algebraically as [27]

C1(L) ∼
1

L
, (8)

although typical end-to-end correlations are exponen-
tially weak and broadly distributed. The distinction be-
tween average and typical values is in fact one of the main
features of an infinite-randomness fixed point.
The critical point at δ = δc, separating the gapless

Haldane phase and the RS phase, has turned out to be
an infinite-randomness fixed point, too. It has a simi-
lar energy-length scaling relation in the form of Eq. (1);
however, the associated exponent here is ψ = ψc = 1/3.
This critical point is a multicritical point at which three
topologically distinct phases meet; these phases are clas-
sified by the numbers of valence bonds formed across the
even and odd links of the lattice [20, 21].
As the disorder strength approaches the critical point

from the gapless Haldane phase, the average string order
parameter, given by

Oz(r = |j − k|) = O
z

j,k , (9)

decays to zero as

Oz ∼ (δc − δ)2β , (10)

with a universal exponent β given by [19]

β =
2(3−

√
5)√

13− 1
≈ 0.5864 . (11)

At the same time, the average correlation length grows
continuously from a finite value to infinite when ap-
proaching criticality:

ξ ∼ (δc − δ)−ν , (12)

with [18]

ν =
6√

13− 1
≈ 2.3028 . (13)

Therefore, at the critical point Oz decays algebraically
with the length (the distance) as

Oz(r) ∼ r−ηst , (14)

where the critical exponent ηst is related to β via

ηst = 2β/ν ≈ 0.5093 . (15)

Since the critical point is not in the random-singlet uni-
versality class, the critical exponents η, η1 for the power-
law decaying average spin correlations (C(r) ∼ 1/rη) and
average end-to-end correlations (C1 ∼ 1/rη1) are not ex-
pected to be the same with those at the RS fixed point.
There have been so far no theoretical conjectures about
the exponents η and η1 at this critical point.
Considerable numerical efforts using the density ma-

trix renormalization [26, 28, 29] and quantum Monte
Carlo simulations [30] have been devoted to examine the
theoretical predictions and gain more insights into uni-
versal features of the spin-1 random chain. However,
there remain discrepancies between some numerical re-
sults. In this paper we use a tree tensor-network algo-
rithm in combination with the SDRG scheme to re-study
the spin-1 random chain. In the following section we de-
scribe the scheme of this tensor network strong-disorder
renormalization group (tSDRG) method [31–33].

III. TENSOR NETWORK STRONG-DISORDER

RENORMALIZATION GROUP

The tSDRG method is, in essence, a renormalization
of the Hamiltonian written as Matrix Product Operators
(MPOs) [32, 33]. In the computation of quantum many-
body systems, matrix product representation is a pow-
erful tool to reduce execution time and memory usage
via the decomposition of a big tensor, which represents a
state or an operator, into a set of small local tensors [34–
37].
For a spin chain of length L with open boundary con-

ditions (OBC), the Hamiltonian can be decomposed into
a matrix product form written as

H =W [1]W [2] · · ·W [L] , (16)

with

W [i] =
∑

σi,σ′

i

W σi,σ
′

i |σi〉〈σ′
i| , (17)

where σi labels the spin state at site i. To construct the
MPO we rewrite the Hamiltonian of the Heisenberg chain
in terms of the ladder operator S± = Sx ± iSy:

H =
∑

i

Ji[
1

2
(S+
i S

−
i+1 + S−

i S
+
i+1) + Szi S

z
i+1] . (18)

This Hamiltonian has the following W [i]-tensors for sites
in the bulk,
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W [i] =




1 0 0 0 0
S+
i 0 0 0 0
S−
i 0 0 0 0
Szi 0 0 0 0
0 (Ji/2)S

−
i (Ji/2)S

+
i JiS

z
i 1




, (19)

and for the edge sites,

W [1] =
(
0 (J1/2)S

−
1 (J1/2)S

+
1 J1S

z
1 1

)
, (20)

W [L] =




1

S+
L

S−
L
SzL
0


 . (21)

For a chain with periodic boundary conditions (PBC),
the MPO tensors for i = 1 · · ·L are all bulk tensors as
given in Eq. (19), where the coupling JL links between
two end sites L and 1.
The tSDRG procedure consists of iteratively locating a

local Hamiltonian with the largest energy gap, and trun-
cating its Hilbert space to the subspace spanned by the
eigenvectors corresponding to the eigenvalues below the
gap. A local Hamiltonian in the original Hamiltonian
takes the form of a two-site Hamiltonian:

h(i,i+1) = Ji~Si · ~Si+1 , (22)

and is encoded in the matrix element of W [i]W [i+1] as
follows:

W [i]W [i+1] =




1 0 0 0 0
S+
i 0 0 0 0
S−
i 0 0 0 0
Szi 0 0 0 0

h(i,i+1) Ji+1

2 S−
i+1

Ji+1

2 S+
i+1 Ji+1S

z
i+1 1



.

(23)
In each RG iteration, we compute the energy spectrum
of each local Hamiltonian and identify the energy gap
∆ǫ(i,i+1), which is measured as the difference between
the highest energy of the χ-lowest energy states that
would be kept and the higher multiplets that would be
discarded. We then choose the local Hamiltonian with
the largest energy gap and coarse-grain the tensors on
the two sites into a new single-site MPO tensor using the
χ-lowest energy states. The process is iterated until the
whole system is coarse-grained into a single site. The full
RG process is summarized as follows [32]:

(i): Decompose the Hamiltonian into MPO blocks; each
block contains one site.

(ii): Find the largest energy gap of the local Hamiltonian
h(i,i+1) for each pair of nearest-neighbor blocks;
here the gap is ∆ǫ(i,i+1) = 2Ji for each h(i,i+1) in
the original Hamiltonian with S = 1.

FIG. 2. (a) The tSDRG algorithm can be seen as a binary
tree tensor network with an inhomogeneous structure. The
system is partitioned into blocks using MPO formalism; the
yellow boxes represent the W-tensors, the vertical lines are
physical indices, and the horizontal lines represent the bond
indices. The triangles denote isometric tensors and the cir-
cles represent the ground-state eigenvector of the final block
resulting from the RG procedure. The RG iteration proceeds
upwards in the vertical dimension. The part below the W-
tensors is the conjugate of the upper part; (b) Part of the
tensor network in (a) used to calculate the ground-state ex-

pectation value of ÂB̂; since V †V = 1 only those isometric
tensors linking to the operators Â and B̂ are considered.

(iii): Find the the pair of blocks with the largest gap
∆ǫ(m,m+1) and contract the MPO tensorsW [m] and
W [m+1] for these blocks.

(iv): Identify χ′(≤ χ) lowest energy states |Ψ1〉, |Ψ2〉,
· · · , |Ψχ′〉 that will be kept; here the bond dimen-

sion χ is an input parameter setting the upper
bound of the number of states to be kept, and the
actual number χ′ is adjusted such that the kept
states form full SU(2) multiplets.

(v): Build a three-leg isometric tensor V using the χ′

lowest energy eigenstates:

V =
(
|Ψ1〉 |Ψ2〉 · · · |Ψχ′〉

)
, (24)

which satisfies that V †V = 1 6= V V †.

(vi): Renormalize the pair of blocks with the largest gap
by contracting the two-block tensors with V and
V †:

W̃ [m] = V †W [m]W [m+1]V . (25)

(vii): Repeat steps (iii) to (vi) until there remains one
single MPO tensor. In the final MPO there is only
one matrix element which represents the final local
Hamiltonian hf .

The full tSDRG algorithm can be seen as an inhomo-
geneous binary tree tensor network, composed of isomet-
ric tensors that each merges two blocks into an effective
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FIG. 3. (a) tSDRG and QMC results for the average spin
correlations of the spin-1/2 random chain at the largest dis-
tance. The QMC results are taken from Ref. [15]. The blue
dashed line indicates the inverse-square function 1/L2. (b)
The correlation functions in (a) multiplied by L2. The re-
sult shows the presence of a multiplicative logarithmic (log)
correction to the 1/L2 scaling for the QMC results, which
increases with distance; the correction in the SDRG results
increases for small L but converges to a constant at large L.

block, and one top tensor representing the final remain-
ing block ((see Fig. 2(a)). The ground-state expectation
value of some observable can be obtained by contracting
the operator with isometric tensors and their conjugates
until the top tensor (see Fig. 2(b)).
Before presenting our results obtained by tSDRG for

the spin-1 random chain in the next section, here, as a
test, we first compare the tSDRG result for the average
spin correlations of the spin-1/2 random chain with the
nonperturbative QMC result [15]. For this comparison,
the random couplings were chosen to be uniformly dis-
tributed within the range (0, 1], corresponding to δ = 1
in Eq. (3) and the disorder-averaged spin correlations at
r = L/2 in chains with PBC are considered. In Fig. 3, the
data of the tSDRG with χ = 30 (which has achieved con-
vergence, see A) are in good agreement with the QMC
data and follow the expected L−2 decay for a spin-1/2
RS phase. For large L, a clear deviation from L−2 can
been seen in the QMC results, which indicates a mul-
tiplicative logarithmic correction as shown in Fig. 3(b)
and discussed in Ref. [15]. The tSDRG method, like the
conventional SDRG, does not capture the log correction
seen in the QMC calculation. Nevertheless, the tSDRG
data largely agree with the QMC results and the tSDRG
technique seems to be a promising calculational route to
rich ground-state phases of more complex random spin
models, such as higher-S random chains.

IV. NUMERICAL RESULTS

We have used the Uni10 library [38] to perform tS-
DRG calculations. In this section we present our tSDRG
results for some ground-state observables of the random
Heisenberg S = 1 chain. These observables include the

100
L

10
-2

10
-1

O
z (L

/2
)

δ = 0.80
δ = 0.90
δ = 0.96 (L -0.416 )

δ = 0.98 (L -0.499 )

δ = 1.00 (L -0.523 )
δ = 1.04
δ = 1.10
δ = 1.20

FIG. 4. Average string order parameter Oz at the longest
distance L/2 for several different chain lengths L with dif-
ferent disorder parameters δ. Black solid lines on the data
for δ = 0.96, 0.98 and 1.00 correspond to a fitting form
Oz = AL−ηst .

string order parameter, distributions of energy gaps, spin
correlations. In the following, we discuss the results for
these observables, separately.

A. String order parameter

The string order parameter can be used to identify the
critical point between the gapless Haldane phase where
hidden topological order presents and the RS phase where
the hidden order is completely destroyed by strong dis-
order. In our numerical work we calculated the aver-
age string order parameter Oz(r), defined in Eq. (4) and
Eq. (10), at the largest distance r = L/2 in a closed chain
with PBC, for system sizes up to L = 256 and for various
values of δ; in each case at least 1000 samples (disorder
realizations) were considered and, in addition, L/2 differ-
ent reference locations in the closed chain were sampled
for the disorder average. The largest bond dimension was
χ = 30.
First, in Fig. 4 we show the average string order pa-

rameters as functions of L for various disorder param-
eters δ near the transition point. From the decay be-
havior of the curves in the log-log plot and a compari-
son of the exponent ηst with the theoretical conjecture
(ηst ≈ 0.5093), it seems reasonable to fix δc = 1 for our
results, which is also consistent with previous numerical
results obtained by the density matrix renormalization
group (DMRG) [26, 29]. At δc = 1 we obtain ηst ≈ 0.52,
slightly larger than the theoretical value.
In order to obtain the string order parameter in the

thermodynamic limit we extrapolate the data in the
range δ ≤ 1 for finite sizes to L → ∞ using the fitting
function

Oz(r = L/2) = Oz(∞) +ALL
−ηst , (26)

with the theoretical value ηst = 0.5093, as shown in
Fig. 5. We have also determined the exponent β, de-
fined in Eq. (10), from Oz(∞) as a function of (δc − δ)
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FIG. 5. Extrapolations to the thermodynamic limit of
the string order parameters for disorder strength δ =
0.1, 0.2, · · · , 0.9, 1.0 using the fitting function in Eq. (26)
with ηst = 0.5093. The extrapolated value Oz(∞) for the
curve with δ = 1.0 approaches zero, indicating that the criti-
cal point is located at δc = 1.

10
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10
0

δc-δ
10

-2

10
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O
z (L

→
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)

0 0.2
δc-δ

0

0.1

0.2

O
z (L

 →
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)

FIG. 6. The limiting values Oz(∞), obtained in Fig. 5 using
Eq. (26), versus (δc−δ) with δc = 1 in a log-log plot. The red
dashed line is the best fit using Eq. (10) and has an exponent
of 2β = 1.18. The inset shows the data and the fitting func-
tion in a linear-linear plot, including two points at δc − δ = 0
and δc − δ = 0.02 which are not shown in the log-log plot;
the fit deviates from the data noticeably only in the region
δc − δ & 0.38.

for δ ≤ δc (= 1) in a log-log plot shown in Fig. 6 and
obtain 2β ≈ 1.18, i.e. β ≈ 0.59.
Finally, we obtain the correlation length exponent

ν ≈ 2.27 via Eq. (15) with our estimated 2β = 1.18
and ηst = 0.52. Our tSDRG results alongside the results
from previous DMRG studies in Ref. [26] and Ref. [29]
are listed in Table I.

B. Energy gaps

In this subsection we focus on the distribution of en-
ergy gaps. From the scaling behavior of the distribu-
tion we can distinguish between a Griffiths phase and
an infinite-randomness phase. In a Griffiths phase the

-3 -2 -1
x=ln(∆ε)L -1/3

10
-1

10
0

P
(x

)

L = 64
L = 128
L = 256
L = 512

-20 -10
x = ln(∆ε)

10
-3

10
-2

10
-1

P(
x)

FIG. 7. Scaling plot of the distribution of energy gaps at the
critical point (δ = 1), assuming − ln(∆ǫ) ∼ Lψ with ψ =
1/3. The inset shows the unscaled distribution of ln(∆ǫ),
obtained from the lowest-lying energy gap of the renormalized
Hamiltonian in the top tensor for 10000 samples for each size.

-3 -2 -1
x=ln(∆ε)L -1/2

10
-1

10
0

P
(x

)
L = 32
L = 64
L = 128
L = 256

-20 -10
x = ln(∆ε)

10
-3

10
-2

10
-1

P(
x)

FIG. 8. Scaling plot of the distribution of energy gaps in
the RS phase (δ = 1.5), assuming − ln(∆ǫ) ∼ Lψ with ψ =
1/2. The inset shows the unscaled distribution of ln(∆ǫ),
obtained from the lowest-lying energy gap of the renormalized
Hamiltonian in the top tensor for 10000 samples for each size.

low-lying gaps follow a power-law distribution with an
exponent that is determined by a nonuniversal dynam-
ical exponent, which is randomness dependent. In an
infinite-randomness phase, the dynamical exponent di-
verges z → ∞ and the energy gaps are characterized by
an extremely broad distribution which becomes broader
with increasing size, even on a logarithmic scale.
We have determined the energy gap, ∆ǫ, of a sam-

ple from the lowest-lying excitation of the renormalized
Hamiltonian in the top tensor. First we examine the dis-
tribution of the energy gaps at the critical point, δc = 1.0,
and show a scaling plot of the distribution in Fig. 7. The
distribution which is broadened with increasing L, as
shown in the inset of the figure, clearly signals an infinite
randomness critical point; the data collapse is achieved
by using the scaled variable

x = − ln∆ǫ/Lψ (27)

with ψ = 1/3, in agreement with the theoretical predic-
tion [21]. We have also calculated energy gaps for δ > δc.
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TABLE I. Critical exponents for the critical point (CP) and the random-singlet (RS) phase. The exponents obtained by the
simple SDRG are analytical results based on (effective) S = 1/2 models [7, 18, 19, 27].

CP (δ = δc) RS (δ > δc)

ηst β ν η1 η η1 η

Simple SDRG 0.5093 0.5864 2.3028 - - 1 2

tSDRG (this work) 0.52(3) 0.59(2) 2.3(1) 0.70(2) 1.62(5) 1.1(2) 2.03(8)

DMRG(2005) [26] 0.39(3) - - 0.69(5) - 0.86(6) -

DMRG(2018) [29] 0.21(4) 0.24(5) 2.3(4) - - - -
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ε)

-10 -8 -6 -4 -2

ln ∆ε

-6 -4 -2 0 2 4

x = ln( ∆εL z ) 
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(a) (b)

(d)(c)
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FIG. 9. The distribution of energy gaps in the gapless Hal-
dane phase at δ = 0.6 (a) and δ = 0.5, collected from 10000
samples for each size. (c) and (d) are scaling plots of the data
in (a) and (b), respectively. Here the dynamical exponent z
is finite. The fit has z = 1.2 for δ = 0.6 and z = 0.87 for
δ = 0.5.

An example for δ = 1.5 is shown in Fig. 8; here the
broad distributions of the logarithmic energy gaps can
be rescaled using the same form in Eq. (27), but with
ψ = 1/2, to achieve the data collapse. Here we comment
on the poor data collapse of the distributions around
the maximum for the largest system sizes. These nu-
merical errors are caused by the extremely small energy
gaps for large L with large δ which make the eigensolver
fail to converge; similar problems were observed in pre-
vious numerical works [33, 39–41] dealing with infinite-
randomness fixed points. A possible route to circumvent-
ing this numerical instability is to use multiple-precision
arithmetic, as discussed in Ref. [41, 42].

With weaker disorder δ < 1, the width of the gap dis-
tribution becomes saturated for L → ∞. Fig. 9(a) and
Fig. 9(b) show results for δ = 0.6 and δ = 0.5, respec-
tively; here the tails of the small gaps for large L tend to a
power-law form consistent with the presence of a Griffiths
phase. The power of the low-energy tail of P (ln(∆ǫ)) is
given by 1/z [43, 44]. From the slope of the power-law
tails in Fig. 9, we obtain z = 1.2 and z = 0.87 for δ = 0.6
and δ = 0.5, respectively. Scaling plots using the scaling
variable ∆ǫLz, are shown in Fig. 9(c),(d). The dynamical
exponent z < 1 for δ = 0.5 does not lead to divergence of
the local susceptibility (see Sec. 2). Therefore, the region

0 2 4

c = -ln(C
1
(L)) / L

ψ

10
-3

10
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10
-1

10
0

P
(c

)

L = 32;  δ = 1.5
L = 48;  δ = 1.5
L = 64;  δ = 1.5
L = 112; δ = 1.5
L = 128; δ = 1.5
L = 32;  δ = 1.0
L = 48;  δ = 1.0
L = 64;  δ = 1.0
L = 112; δ = 1.0
L = 128; δ = 1.0 

(a)

0 1 2 3 4

c = -ln(C
1
(L)) / L

1/2

0

0.2

0.4

0.6

P
(c

)

L = 48
L = 64
L = 112
L = 128

0 1 2 3 4

c = -ln(C
1
(L)) / L

1/3

0

0.2

0.4

0.6

L = 48
L = 64
L = 112
L = 128

δ = 1.5 δ = 1.0

(b) (c)

FIG. 10. Scaling plots of the distribution of the end-to-end
correlation function at the critical point (blue data) and in the
RS phase (red data). The correlation functions are rescaled
as − lnC1/L

ψ with ψ = 1/3 for the critical point and with
1/2 for the RS phase to achieve data collapse. The solid lines
in the linear-linear plots in (b) and (c) are attempts to fit the
data-collapsed distributions to the form in Eq. (28).

where z < 1, such as δ . 0.5, corresponds to the nonsin-
gular region in the gapless Haldane phase, as discussed
in Ref. [26].

C. Spin correlations

We now turn to spin correlations and focus on their be-
havior in infinite-randomness phases, namely in the RS
phase and at the Haldane-RS critical point, where the
correlations between a typical pair of spins decay expo-
nentially with the distance while the average correlations
fall off algebraically.

First we examine the distribution of end-to-end cor-
relations, which consider correlations between two end
spins in an open chain with free boundary conditions.
We rescale the extremely broad distributions at the crit-
ical point δc = 1 and in the RS phase δ > 1 accord-
ing to − lnC1(L) ∼ Lψ, i.e. using the scaled vari-
able c = − lnC1(L)/L

ψ with SDRG theoretical values
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100
L

0.1

C 1
(L

)

δ = 1.0
δ = 1.4
δ = 1.5
 1 / L

0.7

1 / L1.1

FIG. 11. The average of the end-to-end correlation functions
at the critical point (δ = 1) and in the RS phase (δ > 1).
The red line is a fit to the data at δ = 1.0. The black solid
line on the data for δ = 1.5 is the best fit to the data points
from L = 32 to L = 112, which is of the form a/L1.12; the
black dashed line on the data for δ = 1.4 has the same form
∝ 1/L1.12 but with a different amplitude, which fits well to
the data points in the regime of large L (L ≥ 48).

ψ = ψc = 1/3 and ψ = 1/2, respectively. The scaling
plot in Fig. 10 shows that a good data collapse for both
δ = 1.5 and δ = 1 are achieved; furthermore, the data-
collapsed distributions for these two different universality
classes are in a pretty similar shape.
There are no known analytical functions for the data-

collapsed distributions of the end-to-end correlations in
the RS phase and at the critical point that we consider
here. In Fig. 10(b) and (c) we fit the collapsed distribu-
tions to the form

P (c) = Ac exp(−Bc2 −Dc) , (28)

where A,B and D are fitting parameters. This form with
A = 1/2, B = 1/4 and D = 0 corresponds to the analyt-
ical result predicted for the infinite-randomness critical
point of the random transverse-field Ising spin chain [27].
Here we include a finite linear term −Dc in the exponen-
tial function to achieve good fittings.
In an infinite-randomness phase, the average correla-

tions C1(L) are dominated by the rare event of the two
end spins being strongly correlated. Our data for the av-
erage end-to-end correlations at the critical point δc = 1
and in the deep RS phase (with δ = 1.4 and δ = 1.5)
are shown in Fig. 11 as a log-log plot. For the criti-
cal point, we obtain η1 ≈ 0.7, close to previous numer-
ical result: η1 = 0.69 found in Ref. [26]. The slope for
δ = 1.5 and for δ = 1.4 in the regime of large L is about
η1 = 1.1, close to the analytical result C1(L) ∼ 1/L
predicted for the infinite-randomness critical point of
the random transverse-field Ising spin chain [27]. We
note that the linear dependence of P (c) in Eq. (28) for
small c = − lnC1(L)/L

ψ (i.e. P (c) → Ac for c → 0)
is crucial for obtaining the average end-to-end correla-
tions C1(L) ∼ 1/L for the Ising case with ψ = 1/2, as
discussed in Ref. [27]. However, we cannot ensure that

100
L

10
-3

10
-2

10
-1

C
(L

/2
)

δ = 1.0
δ = 1.4
δ = 1.5

FIG. 12. Average spin correlations C(r) at the longest dis-
tance r = L/2 at the critical point with δ = 1.0 and in the RS
phase with with δ = 1.5 for several different chain lengths L.
The solid lines are the best fits for data points from L = 64
to L = 256, corresponding to C ∝ 1/Lη with η = 2.03 for
δ = 1.5 and η = 1.62 for δ = 1. The dashed line corresponds
to C ∝ 1/L2 and fits well to the data for δ = 1.4 in the regime
of large L, too.

Eq. (28) is a correct function for the cases that we con-
sider here.
Finally, we consider the bulk spin correlations. In or-

der to eliminate boundary effects and reduce finite-size
effects, we here consider spin correlations at the largest
distance r = L/2 in closed chains with PBC. In addi-
tion, different reference locations in the closed chain were
sampled for the disorder average. In Fig. 12, our tSDRG
results for the average bulk correlation in the RS phase
(δ = 1.4 and δ = 1.5) graphed versus the chain length L
show a good agreement with the theoretical prediction:
C(L) ∼ 1/L2. The average spin correlation function at
δc = 1 in Fig. 12 shows an algebraic decay with η ≈ 1.62,
which differs from the inverse-square law in the RS phase.
The critical exponents for spin correlations found by

our calculations are also summarized in Table I.

V. SUMMARY AND DISCUSSION

Using the tSDRG algorithm we have reproduced the
zero-temperature phase diagram of the spin-1 random
Heisenberg chain depending on the randomness strength.
We were able to obtain critical exponents in good agree-
ment with the theoretical values, both at the critical
point and in the RS phase. In comparison to previ-
ous DMRG results [26, 29], our tSDRG results show
an overall better agreement with the theoretical pre-
dictions. The advantage of the tSDRG approach lies
in the straightforward implementation for systems with
periodic boundary conditions, which reduces finite size
errors in bulk quantities. Furthermore, by comparing
the tSDRG results for the mean spin correlations of the
spin-1/2 random chain with the data obtained by non-
approximate QMC calculations [15], we have found that
the tSDRG algorithm can not only provide correct scaling
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forms but also achieve accurate numerical results. How-
ever, previous QMC simulations have uncovered logarith-
mic corrections to the asymptotic r−2 decay of the mean
spin correlation in the spin-1/2 RS phase, which are not
captured by the tSDRG method (and is also not present
in the SDRG analytical solution). There have been at-
tempts to further improve the accuracy of the tSDRG ap-
proach. In Ref. [45] selections of blocks for the renormal-
ization were adjusted to the specific models under con-
sideration; in Ref. [46] optimization using variational en-
ergy minimization after coarse-graining was introduced,
as an extension of tSDRG and the multiscale entangle-
ment renormalization ansatz (MERA) [47, 48]. An inter-
esting question is whether these improved tSDRG meth-
ods can obtain the logarithmic corrections found in QMC
calculations.
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Appendix A: Convergence test

TABLE II. Average spin correlations C(L/2) with L = 64 for
S = 1/2 and S = 1 spin chains versus χ.

χ S = 1/2 S = 1

5 0.00148(4) 0.01229(14)

10 0.00282(5) 0.02995(23)

20 0.00304(4) 0.04859(24)

30 0.00299(4) 0.04860(24)

40 0.00305(4) 0.04864(24)

Here in Table II we list the average spin correlations
C(r) for spin S = 1/2 and spin S = 1 at r = L/2 in
a closed chain of length L = 64 with PBC and δ = 1,
against different values of bond dimensions χ. At least
2000 disorder realizations and different reference loca-
tions in the closed chain were sampled to get the average.
The data converge already at χ = 20, both for S = 1/2
and S = 1.
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B 68, 024424 (2003).
[13] Y.-C. Lin, H. Rieger, N. Laflorencie and F. Iglói, Phys.
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