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MIXING PROPERTIES OF TREE-SHIFTS

JUNG-CHAO BAN AND CHIH-HUNG CHANG*

Abstract. The uncertainty of multidimensional shift spaces draws at-
tracted attention of researchers. For example, the emptiness problem
is undecidable; there exist aperiodic shifts of finite type; there is a
nonempty shift of finite type exhibiting nonextensible local patterns.
This paper investigates symbolic dynamics on Cayley trees and gives
affirmative answers to the above questions in tree-shifts. Beyond that,
with introducing block gluing tree-shift, a sufficient condition of exhibit-
ing positive topological entropy is revealed.

1. Introduction

There have been many researches about chaotic systems, such as the

strange attractor in the Lorenz system, period doubling in quadratic maps,

and Julia sets in complex-valued functions, over the past few decades. For

most systems, the theoretical analysis of the chaotic behavior is difficult;

one of the most frequently used techniques is transferring the original sys-

tem to a conjugate or semiconjugate symbolic dynamical system and then

investigating the chaotic behavior in symbolic dynamics (see [14] and the

references therein).

A shift space is a set consisting of right-infinite or bi-infinite words which

avoid those finite words in a so-called forbidden set F . Such a shift space

is denoted by XF . A shift space XF is called a shift of finite type (SFT)

whenever F is finite. Shifts of finite type are fundamental and play an

important role in symbolic dynamical systems. Roughly speaking, a shift

of finite type is a set of right-infinite or bi-infinite paths in a finite directed

graph. Moreover, investigating the graph representation of a shift of finite

type reveals some important properties such as irreducibility, mixing, and

spatial chaos (see [22, 24]).
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Suppose that a forbidden set F is given. It comes immediately to mind

plenty questions. The following are some frequently asked ones.

(a) Does there exist an algorithm to determine if XF is empty?

(b) Does every nonempty shift space contain a periodic point? Under what

condition are periodic points dense?

(c) Is every local pattern extensible?

The answers to the above questions are affirmative, whenever we focus on

SFTs. A SFT is nonempty if its associative graph representation is es-

sential. Every nonempty SFT contains periodic points and an irreducible

SFT has dense periodic points. Furthermore, every local pattern can ex-

tend globally. Nevertheless, these questions receive opposite results when

investigating multidimensional shift spaces.

For two-dimensional SFTs, the emptiness problem is undecidable; that is,

there is no algorithm for determining if XF is empty for a given forbidden

set. There is an aperiodic SFT which has positive topological entropy, and

there is a nonempty SFT which exhibits nonextensible local patterns. These

results reveal the uncertainty of multidimensional shift spaces and attracted

attention of researchers (cf. [8, 12, 15, 21, 32, 33]). Sharma and Kumar [35]

have demonstrated the necessary and sufficient condition for determining

if a multidimensional SFT is empty; furthermore, they address a sufficient

condition for multidimensional SFTs exhibiting periodic points.

While every one-dimensional mixing SFT or sofic shift of positive topo-

logical entropy contains a tremendous collection of pairwise disjoint subsys-

tems, Desai [13] has shown that a general multidimensional sofic shift X of

positive entropy h(X) still contains subshifts achieving all entropies in the

interval [0, h(X)]. In [9], Boyle et al. demonstrate that these subshifts may

be poorly separated; the same phenomenon is also observed in multidimen-

sional SFTs. They also introduce a mixing condition known as block gluing

and distinguish several different mixing conditions such as uniform filling

and strongly irreducible. In addition, they show that every two-dimensional

block gluing SFT has dense periodic points; however, the denseness of peri-

odic points in general multidimensional SFTs remains to be open. For more

details about the recent works in multidimensional shift spaces, the reader

is referred to [6, 7, 9, 10, 19, 23, 26, 27, 28, 30, 34, 37] and the references

therein.

Topological entropy, which represents the spatial growth rate of number

of points (patterns), is one of the most important quantities which reflects
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the complexity of a dynamical system. The collection of the topological

entropies of one-dimensional SFTs is known as the set of Perron numbers

(together with a logarithmic function). Hochman and Meyerovitch [18] have

indicated that the topological entropy of a multidimensional SFT is right

recursively enumerable; roughly speaking, it is the infimum of a monotonic

recursive sequence of rational numbers. Hochman extends the result to the

multidimensional effective dynamical systems [17]. Pavlov and Schraudner

[31] show that, for every d ≥ 3 and every Z
d full shift, there is a block gluing

Z
d SFT which shares identical topological entropy. Although there exist

multidimensional SFTs with arbitrary high topological entropy, which do

not factor onto any full shift, a block gluing shift space factors onto every

shift space of strictly lower entropy under some conditions; furthermore,

every nontrivial block gluing shift space is of positive entropy (cf. [9, 10, 28]).

One of the reasons which causes these differences between one- and multi-

dimensional shift spaces is the spatial structure; one-dimensional lattice Z is

a free group with one generator while multidimensional lattice Z
d, d ≥ 2, is

an abelian group with d generators and has loops itself. This motivates the

investigation of symbolic dynamics on Cayley trees. In [2, 3], the authors

introduce the notion of shifts defined on Cayley trees, which are called tree-

shifts. Tree-shifts have a natural structure of one-sided symbolic dynamical

systems equipped with multiple shift maps. The ith shift map applies to

a tree that gives the subtree rooted at the ith children of the tree. Sets of

finite patterns of tree-shifts of finite type are strictly testable tree languages.

Such testable tree languages are also called k-testable tree languages. Prob-

abilistic k-testable models are used for pattern classification and stochastic

learning (cf. [36]). It is remarkable that Müller and Spandl demonstrate

the existence of embedding maps from a topological dynamical system on

metric Cantor space to a cellular automaton defined on Cayley graph, which

preserves topological entropy [29].

The conjugacy of multidimensional shifts of finite type (also known as

textile systems or tiling systems) is undecidable (see [11, 20, 25] and the ref-

erences therein). Namely, there is no algorithm for determining whether two

tiling systems are conjugate. Nevertheless, Williams indicates that the con-

jugacy of one-sided shifts of finite type is decidable [38]. Aubrun and Béal

extend Williams’ result to tree-shifts; more precisely, they show that the

conjugacy of irreducible tree-shifts of finite type are decidable [2]. Further-

more, Aubrun and Béal accomplish other celebrated results in tree-shifts,
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such as realizing tree-shifts of finite type and sofic tree-shifts via tree au-

tomata, developing an algorithm for determining whether a sofic tree-shift

is a tree-shift of finite type, and the existence of irreducible sofic tree-shifts

that are not the factors of tree-shifts of finite type (TSFTs). The reader is

referred to [2, 3] for more details.

In [5], we show that every irreducible tree-shift of finite type and every

mixing tree-shift has dense periodic points, which is an extension of the re-

sults in one-sided and multidimensional shift spaces. Such a phenomenon

also reveals that the tree-shifts constitute an intermediate class in classical

symbolic dynamics. In addition, we show that every TSFT is conjugate to

a vertex tree-shift (defined later), which is a TSFT represented by finitely

many 0-1 matrices. After illustrating that computing the topological en-

tropy of a TSFT is equivalent to the investigation of a system of nonlinear

recurrence equations [4], Akiyama et al. indicate that the collection of topo-

logical entropies of TSFTs, like one-dimensional SFTs, is the set of Perron

numbers [1].

In this paper, we investigate the following fundamental problems in tree-

shifts. Suppose that a forbidden set F is given.

(a) Does there exist an algorithm to determine if the tree-shift XF is empty?

(b) Does every nonempty shift space contain a periodic point?

(c) Is every local pattern extensible?

(d) Under what condition is a tree-shift of positive topological entropy?

To illustrate the above questions, we develop several mixing conditions for

tree-shifts, based on the conditions discussed in [9], such as topological mix-

ing (TM), blocking gluing (BG), and strongly irreducible (SI) (defined later).

The main results of this paper are as follows.

(a) Every essential vertex tree-shift is nonempty, and vice versa. Roughly

speaking, an essential vertex tree-shift is a TSFT represented by essen-

tial matrices.

(b) Every essential vertex tree-shift contains periodic points.

(c) Every local pattern of an essential vertex tree-shift is extensible.

(d) Every nontrivial block gluing TSFT is of positive topological entropy.
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In addition, two extra mixing conditions called uniformly block gluing (UBG)

and uniformly strongly irreducible (USI) are introduced. The relations be-

tween these mixing conditions are revealed as follows.

USI ⇒ SI

⇓ ⇎ ⇓
UBG ⇒ BG ⇒ TM

Nevertheless, the diagram reduces to

UBG(= USI) ⇒ BG(= SI) ⇒ TM

whenever we restrict the discussion to TSFTs. More specifically, a TSFT is

strongly irreducible (respectively uniformly strongly irreducible) if and only

if it is block gluing (respectively uniformly block gluing). This is another

difference between tree-shifts and multidimensional shift spaces.

The materials of this work are organized as follows. The upcoming section

addresses the background of the tree-shifts; an equivalent property of tree-

shift is elucidated therein. The main results are discussed in Section 3 while

Section 4 gives the conclusion and summary of the present work. Some

further questions of interest are also indicated.

2. Definitions and Previous Results

This section recalls some basic definitions of symbolic dynamics on Cayley

trees. More explicitly, the nodes of infinite trees considered in this paper

have a fixed number of children and are labeled in a finite alphabet. To

clarify the discussion, we focus on binary trees, but all results extend to the

case of trees with d children for a fixed positive integer d. In other words,

the class of classical one-sided shift spaces is a special case in the present

study.

2.1. Basic definitions. Let Σ = {0,1} and let Σ∗ = ⋃n≥0Σ
n be the set of

words over Σ, where Σn = {x1x2⋯xn ∶ xi ∈ Σ for 1 ≤ i ≤ n} is the set of words
of length n for n ∈ N and Σ0 = {ǫ} consists of the empty word ǫ. An infinite

tree t over a finite alphabet A is a function from Σ∗ to A; a node of an

infinite tree is a word of Σ∗, and the empty word relates to the root of the

tree. Suppose x is a node of a tree. Each node xi, i ∈ Σ, is known as a child

of x while x is the parent of xi. A sequence of words (wk)1≤k≤n is called

a path if, for all k ≤ n − 1, wk+1 = wkik for some ik ∈ Σ and w1 ∈ Σ
∗. For

the rest of this investigation, a tree is referred to as an infinite tree unless

otherwise stated.
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Let t be a tree and let x be a node, we refer tx to t(x) for simplicity. A

subtree of a tree t rooted at a node x is the tree t′ satisfying t′y = txy for

all y ∈ Σ∗ such that xy is a node of t, where xy = x1⋯xmy1⋯yn means the

concatenation of x = x1⋯xm and y1⋯yn. Given two words x = x1x2 . . . xi

and y = y1y2 . . . yj, we say that x is a prefix of y if and only if i ≤ j and

xk = yk for 1 ≤ k ≤ i. A subset of words L ⊂ Σ∗ is called prefix-closed if

each prefix of L belongs to L. A function u defined on a finite prefix-closed

subset L with codomain A is called a pattern, and L is called the support

of the pattern; a pattern is called a block of height n (or an n-block) if its

support L = xΣn−1 for some x ∈ Σ∗, where Σi = ⋃
0≤k≤i

Σk.

Suppose that u is a pattern and t is a tree. Let S(u) denote the support

of u. We say that u is accepted by t if there exists x ∈ Σ∗ such that uy = txy

for every node y ∈ S(u). In this case, we say that u is a pattern of t rooted

at the node x. A tree t is said to avoid u if u is not accepted by t; otherwise,

u is called an allowed pattern of t.

We denote by T (or AΣ∗) the set of all infinite trees on A. For i ∈ Σ, the
shift transformations σi from T to itself are defined as follows. For every

tree t ∈ T , σi(t) is the tree rooted at the ith child of t, that is, (σi(t))x = tix
for all x ∈ Σ∗. For the purpose of simplification of the notation, we omit

the parentheses and denote σi(t) by σit. The set T equipped with the

shift transformations σi is called the full tree-shift of infinite trees over A.
Suppose w = w1⋯wn ∈ Σ

∗. Define σw = σwn
○ σwn−1

○ ⋯ ○ σw1
; it follows

immediately that (σwt)x = twx for all x ∈ Σ∗.

Given a collection of patterns F , let XF denote the set of trees avoiding

any element of F . A subset X ⊆ T is called a tree-shift if X = XF for some

F . We say that F is a set of forbidden patterns (or a forbidden set) of

X. A straightforward examination suggests that a tree-shift is closed and

σw-invariant for all w ∈ Σ∗. For each given set of forbidden patterns, the

emptiness problem immediately follows.

Problem 1 (Emptiness Problem). Given a set of finite patterns F ⊂ AΣ∗ ,

determine whether XF = ∅.

Denote the set of all blocks of height n of X by Bn(X), and denote the

set of all blocks of X by B(X). Suppose u ∈ Bn(X) for some n ≥ 2. Let σiu

be the block of height n − 1 such that (σiu)x = uix for x ∈ Σn−2. The block

u is written as u = (uǫ, σ0u,σ1u).
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A set of patterns L is called factorial if u ∈ L and v is a sub-pattern of

u implies v ∈ L. We say that v is a sub-pattern of u if v is a subtree of u

rooted at some node x of u. The set L is called extensible if for any pattern

u ∈ L with support S(u), there exists a pattern v ∈ L with support S(v)
such that S(u) ⊂ S(v), v coincides with u on S(u), and for any x ∈ S(u), we
have xi ∈ S(v) for all i ∈ Σ. Notably, given a set of patterns F , a pattern u is

extensible if and only if u is an allowed pattern of some tree t ∈ XF . Suppose

that XF ≠ ∅. It is of interest that if every local pattern u ∉ F extends to a

global pattern, namely, a tree t ∈ XF .

Problem 2 (Extensibility Problem). Let F ⊂ AΣ∗ be a set of finite patterns

and let u ∉ F be a finite pattern. Does there exist t ∈ XF such that u is

accepted by t?

For any two trees t and t′, define

(1) d(t, t′) = { 2−n, n =min{∣x∣ ∶ tx ≠ t′x} < ∞;
0, otherwise;

herein, ∣x∣ means the length of x. Then d is a metric on T . Suppose L is a

factorial and extensible set of patterns. Let X(L) be the collection of trees

whose patterns belong to L. Then X(L) is a tree-shift and B(X(L)) = L.
Conversely, if X is a tree-shift, then X = X(B(X)). This result is similar to

the one known for the classical shift spaces. The reader is referred to [3, 24]

for more details.

Theorem 2.1. Let X ⊆ AΣ∗ be a collection of infinite trees. The following

are equivalent.

(a) X is closed and shift invariant; that is, σwt ∈X for all w ∈ Σ∗ and t ∈ X.

(b) There exists a set of finite patterns F such that X = XF .

Proof. Suppose that X is closed and shift invariant. Set L = ⋃
n≥1

Bn(X); the
shift-invariance of X infers that L is factorial. The definition of L indicates

that L is extensible and X = X(L). Therefore, X is a tree-shift and X = XF

for some F .
Conversely, let F be a set of finite patterns and let X = XF . It remains

to show that X is closed. Suppose that there exists {tn}n≥1 ⊆ X such that

tn → t as n → ∞ and t ∉ X. Then there is an allowed pattern u of t such

that u ∈ F . Without loss of generality, we may assume that S(u) = Σk for

some k ∈ N. Since lim
n→∞

tn = t, there exists m ∈ N such that tm∣Σk
= t∣Σk

,

which leads to a contradiction. This completes the proof. �
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Let T and T ′ be the full tree-shifts over finite alphabets A and A′, respec-
tively, and let X be a tree-subshift of T . (That is, X is itself a tree-shift and

X ⊆ T .) A function φ ∶ X → T ′ is called a sliding block code if there exists

a positive integer m and a map Φ ∶ Bm(X) → A′ such that φ(t)x = Φ(u),
the image of m-block of t rooted at x with respect to Φ, for all x ∈ Σ∗. In

this case, we denote φ = Φ∞. The local map Φ herein is called an m-block

map, and a block map is a map which is an m-block map for some positive

integer m.

In the theory of symbolic dynamics, the Curtis-Lyndon-Hedlund Theorem

(see [16]) indicates that, for two shift spaces X and Y , a map φ ∶ X → Y is

a sliding block code if and only if φ is continuous and φ ○ σx = σY ○ φ. A

similar discussion extends to tree-shifts; in other words, φ is a sliding block

code (between tree-shifts) if and only if φ is continuous and commutes with

all tree-shift maps σi for i ∈ Σ.

If a sliding block code φ ∶ X → Y , herein X and Y are tree-shifts, is onto,

then φ is called a factor code from X to Y . A tree-shift Y is a factor of X

if there is a factor code from X onto Y . If φ is one-to-one, then φ is called

an embedding of X into Y .

A sliding block code ψ ∶ Y → X is called an inverse of φ if ψ(φ(x)) = x
for all x ∈ X and φ(ψ(y)) = y for all y ∈ Y . In this case, we say that φ is

invertible and write ψ = φ−1.

Definition 2.2. A sliding block code φ ∶ X → Y is a conjugacy from X to

Y if it is invertible. Two tree-shifts X and Y are called conjugate, denoted

by X ≅ Y , if there is a conjugacy from X to Y .

A tree-shift X = XF is called a tree-shift of finite type (TSFT) if the

forbidden set F is finite; we say that X is a sofic tree-shift if X is a factor

of some TSFT. Given two 0-1 matrices A0,A1 which are indexed by A, the
vertex tree-shift XA0,A1

(corresponding to A0 and A1) is defined as

(2) XA0,A1
= {t ∈ AΣ∗

∶ A0(tx, tx0) = 1 and A1(tx, tx1) = 1 for all x ∈ Σ∗}.
It follows immediately from the definition that each vertex tree-shift is a

TSFT. Our previous work demonstrates that every TSFT can be treated as

a vertex tree-shift after recoding, which extends a classical result in symbolic

dynamical systems.

Proposition 2.3 (See [5]). Every tree-shift of finite type is conjugate to a

vertex tree-shift.
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Proposition 2.3 asserts that the discussion of tree-shifts of finite type are

equivalent to investigating vertex tree-shifts. For the rest of this paper, a

tree-shift of finite type is referred to as a vertex tree-shift unless otherwise

stated.

2.2. Existence and denseness of periodic points. One of the most

interested problems in the investigation of shift spaces is the existence of

periodic points. While, for the one-dimensional case, every shift of finite

type contains periodic points and the set of periodic points is dense in an

irreducible shift of finite type, there is a two-dimensional shift of finite type

which contains no periodic points. Before addressing the periodic points of

the tree-shifts, we recall some definitions and results first.

Definition 2.4. Let P ⊂ Σ∗ be a subset of words. P is called a prefix set if

no word in P is a prefix of another one. The length of P , denoted by ∣P ∣, is
the longest word in P . More specifically,

∣P ∣ = { max{∣x∣ ∶ x ∈ P}, P is a finite set;
∞, otherwise.

A finite prefix set P is called a complete prefix code (CPC) if any x ∈ Σ∗,

such that ∣x∣ ≥ ∣P ∣, has a prefix in P .

Definition 2.5 (See [3]). A tree-shift X is irreducible if for each pair of

blocks u, v with u, v ∈ Bn(X), there is a tree t ∈ X and a complete prefix

code P ⊂ ⋃k≥nΣ
k such that u is a subtree of t rooted at ǫ and v is a subtree

of t rooted at x for all x ∈ P .

An intuitional explanation of an irreducible tree-shift is that arbitrary

two patterns can connect with one another, and a CPC is a bridge which

connects the designated patterns. Aubrun and Béal [3] demonstrate that,

for any two conjugate tree-shifts X and Y , X is irreducible if and only if Y is

irreducible. The definition of irreducible tree-shifts seems strong. However,

it is seen that such a definition is natural in the way that it extends the

theory of shift spaces to tree-shifts.

Theorem 2.6 (See [5]). Suppose X is a tree-shift. The following are equiv-

alent.

(i) X is irreducible.

(ii) For each pair of blocks u ∈ Bn(X), v ∈ Bm(X), where n,m ∈ N, there
exists {Pw}w∈Σn−1 with Pw being a complete prefix code for any w ∈
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Σn−1 and t ∈ X such that

t∣S(u) = u and t∣wxS(v) = v for all w ∈ Σn−1, x ∈ Pw.

(iii) For each pair of blocks u ∈ Bn(X), v ∈ Bm(X), where n,m ∈ N, there
exists {Pk}1≤k≤l for some l with Pk being a complete prefix code for

1 ≤ k ≤ l and t ∈ X such that t∣S(u) = u and, for each w ∈ Σn−1,

t∣wxS(v) = v for all x ∈ Pk for some k.

Theorem 2.6 reveals that Definition 2.5 is natural for tree-shifts and can

extend to the definition of mixing tree-shifts as one-dimensional symbolic

dynamics do. More specifically, the main difference between irreducible and

mixing tree-shifts is whether the CPC depends on the given patterns we

want to connect together. For more details, the reader is referred to [3, 5].

Similar to the definition of irreducibility, a periodic point in a tree-shift

is defined as follows.

Definition 2.7. Let X be a tree-shift. An infinite tree t ∈ X is periodic

if there is a complete prefix code P such that σxt = t for all x ∈ P , where

σx = σxk
○ σxk−1

○ . . . ○ σx1
for x = x1 . . . xk.

Theorem 2.8 (See [5]). Suppose that X is a tree-shift. Then the periodic

points of X are dense in X if X is an irreducible tree-shift of finite type or

X is a mixing tree-shift.

Theorem 2.8 reveals that the periodic points are dense in a tree-shift pro-

vided it is either an irreducible TSFT or a mixing tree-shift. Such a result

illustrates that tree-shifts are different from one-dimensional and multidi-

mensional shift spaces due to the sufficient condition for the denseness of

periodic points. Remarkably, every one-dimensional SFT contains periodic

points while there exists an aperiodic two-dimensional SFT (cf. [9]). It is of

interest that if there exists an aperiodic TSFT.

Problem 3 (Existence of Periodic Point). Does there exist an aperiodic

tree-shift of finite type?

One of the indicators which reflects the complexity of a dynamical system

is topological entropy. The topological entropy of a multidimensional shift

space is defined as the growth rate of the number of possible patterns with

respect to the lattices. For a tree-shift X, we define its topological entropy

as follows.
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Definition 2.9. Suppose that X is a tree-shift. The topological entropy

h(X) of X is defined as

(3) h(X) = lim
n→∞

ln2 ∣Bn(X)∣
n

,

where ln2 = ln ○ ln and ∣Bn(X)∣ is the cardinality of Bn(X).
The existence of the limit in (3) is demonstrated in [1, 4]. An immediate

question then follows.

Problem 4 (Postiivity of Topological Entropy). When is a tree-shift of

positive topological entropy?

3. Main Results

This section is devoted to the main results of this paper. After mak-

ing inquiries about the emptiness and extensibility problems, the relations

between different types of mixing properties are examined. The following

elucidation focuses on binary tree-shifts (i.e., ∣Σ∣ = 2) to simplify the discus-

sion, and can extend to general d-ary tree-shifts without difficulty.

We start with the emptiness problem for tree-shifts of finite type. Propo-

sition 2.3 demonstrates that every tree-shift of finite type over A is a ver-

tex tree-shift XA0,A1
for some binary matrices A0,A1 after recoding. Let

Gi = (Vi,Ei) be the graph representation of Ai for i = 0,1. Without loss of

generality, we may assume that A0 and A1 are of the same dimension; it

follows from the definition of vertex tree-shifts that V0 = V1 = A.
A matrix is called essential if it contains no zero rows. We say that A0

and A1 contain essential submatrices simultaneously if and only if there exist

a permutation matrix P and a natural number k such that the first k × k

blocks of P−1A0P and P−1A1P are both essential. More precisely, B0 and

B1 are both essential matrices, where

Bi(p, q) = (P−1AiP )(p, q) for 1 ≤ p, q ≤ k, i = 0,1.

Let G = (V,E) be a graph. A vertex v ∈ V is called stranded if it is a sink;

that is, a stranded vertex is a vertex which is not an initial state of any

edge e ∈ E. A graph G is called essential if it has no stranded vertices.

A straightforward examination asserts that the graph representation of an

essential matrix is essential, and vice versa. Given V ′ ⊂ V , a subgraph

G′ = (V ′,E′) of G reduced by V ′ is defined as e ∈ E′ if and only if e ∈ E

and the initial and terminal states of e are both in V ′. We denote such a

subgraph by G′ = G∣V ′ .
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Theorem 3.1 gives the emptiness problem (Problem 1) an affirmative an-

swer.

Theorem 3.1. The following statements are equivalent.

(i) XA0,A1
≠ ∅.

(ii) A0 and A1 contain essential k×k submatrices simultaneously for some

k ∈ N.

(iii) There exists V ⊆ V0 = V1 such that G0∣V and G1∣V are essential graphs.

Proof. Without loss of generality, we may assume that the adjacency matri-

ces A0 and A1 are both indexed by the same order and V0 = V1 consists of

m vertices.

(i)⇒ (ii) Let t ∈ XA0,A1
. SinceA is finite, there exists a positive integer j ≤m

such that, for each x ∈ Σj, there exists y ∈ Σi with i < j such that tx = ty.

Let A′ = {tx ∶ x ∈ Σj}, and let A0;k and A1;k be the matrices obtained from

restricting A0 and A1 on A′, respectively, where k is the cardinality of A′. It
is seen that A0;k(tx, tx0) = A0(tx, tx0) = 1 and A1;k(tx, tx1) = A1(tx, tx1) = 1
for each x ∈ Σj−1; more explicitly, for each a ∈ A′, there exist a0, a1 ∈ A′
such that A0;k(a, a0) = 1 and A1;k(a, a1) = 1. This derives that A0 and A1

contain k × k submatrices which have no zero rows.

(ii) ⇒ (i) Without loss of generality, we may assume that k =m. It follows

from A0 and A1 containing no zero rows that, for each a ∈ A, there exist

a0, a1 ∈ A such that A0(a, a0) = 1 and A1(a, a1) = 1. Namely, for each

a ∈ A, u(2) ∶= (a, a0, a1) ∈ B2(XA0,A1
) for some a0, a1 ∈ A. Similarly, there

exist a00, a01, a10, a11 ∈ A such that u(3) ∈ B3(XA0,A1
). Repeating the same

process we can construct u(n) ∈ Bn(XA0,A1
) for any integer n ≥ 2. Thus,

XA0,A1
≠ ∅.

Note that the demonstration of (ii) ⇔ (iii) can be done straightforward.

This completes the proof. �

Theorem 3.1 indicates that the essential graphs are fundamental for the

non-emptiness of tree-shifts of finite type. A vertex tree-shift XA0,A1
is called

essential if both A0 and A1 are essential. Following Theorem 3.1, Theorem

3.2 addresses that the extensibility problem (Problem 2) is determined by

essential vertex tree-shifts.

Theorem 3.2. Every local pattern of an essential vertex tree-shift is exten-

sible.
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Proof. The desired result follows immediately from the definition of essential

vertex tree-shift and analogous discussion to the proof of Theorem 3.1, thus

it is omitted. �

Theorems 3.1 and 3.2 reveal that, similar to the well-known results in one-

dimensional shift spaces, essential graphs (matrices) declaim the nonempti-

ness and extensibility of TSFTs. In [5], it is seen that each irreducible TSFT

has dense periodic points; such a result also holds for one-dimensional SFT.

It comes to our mind whether every TSFT contains a periodic point since

every one-dimensional SFT has at least one periodic point while there exists

an aperiodic two-dimensional SFT (cf. [12, 21]). Theorem 3.3 infers that

there exists an aperiodic TSFT like multidimensional SFTs do.

Theorem 3.3. There is an aperiodic tree-shift of finite type.

Proof. Let A = Σ = {0,1}. Define

A0 = (0 1
1 0
) and A1 = (1 0

0 1
) .

It is seen that X = XA0,A1
is an aperiodic tree-shift of finite type. Indeed, if

t ∈ X is periodic, then there exists a CPC P such that σxt = t for all x ∈ P .

The construction of X asserts that tw0 ≠ tw1 for every w ∈ Σ∗, which derives

a contradiction since P is a CPC infers that there exists w ∈ Σ∗ such that

w0,w1 ∈ P . �

The existence of aperiodic TSFTs illustrates that the tree-shifts exhibit

different dynamics from one-dimensional shift spaces. One of the main differ-

ences between one-dimensional and multidimensional shift spaces is mixing

condition. While there is only one mixing condition for one-dimensional

shift spaces, there are several mixing conditions for multidimensional cases;

for example, block gluing and strongly irreducible, and etc. The following

definition addresses some mixing conditions for the tree-shifts. We remark

that a block gluing tree-shift is called a mixing tree-shift in [5] with a lit-

tle modification, which is demonstrated as the sufficient condition for the

denseness of periodic points. The reader is referred to [5, 9] for more details.

Let u and v be two patterns and let P be a complete prefix code. We

say that u and v are connected through P (or P connects u and v) if there

exists t ∈ X such that t∣S(u) = u and t∣wxS(v) = v for every leaf w of u and

x ∈ P ; herein, w ∈ Σ∗ is called a leaf of u if u ∈ S(u) and ui ∉ S(u) for each
i ∈ Σ. We denote the collection of leaves of a finite pattern u by L(u).
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Definition 3.4. A tree-shift is called

(a) topological mixing (TM) if for any two finite prefix-closed sets L1,L2

there exists a complete prefix code P such that for any t(1), t(2) ∈ X

there is a t ∈ X satisfies t∣L1
= t(1)∣L1

and (σL1xt)∣L2
= t(2)∣L2

for each

x ∈ P ;

(b) block gluing (BG) if there exists a complete prefix code P that connects

any two n-blocks;

(c) uniformly block gluing (UBG) if there exists a complete prefix code

P = Σk that connects any two n-blocks;

(d) strongly irreducible (SI) if there exists a complete prefix code P that

connects any two patterns;

(e) uniformly strongly irreducible (USI) if there exists a complete prefix

code P = Σk that connects any two patterns.

Example 3.5. Let A = Σ = {0,1}. Let F ⊂ B2(AΣ∗) consist of two-blocks u
satisfying u0 ≠ u1 or uǫ = u0 = u1 = 1. The TSFT X = XF is called simplified

golden-mean tree-shift ; that is, X is generated by

{(0,0,0), (0, 1, 1), (1, 0, 0)}.
The even tree-shift Y ⊂ AΣ∗ is defined as follows.

(1) There are even number of 1’s between two consecutive 0’s on any path.

(2) Any two paths starting at a same node and ending at nodes labeled by

0 have the same number of 1’s modulus 2.

It is easily seen that Y is not a TSFT. Define Φ ∶ B2(X)→ A as

Φ(u) = ⎧⎪⎪⎨⎪⎪⎩
0, u = (0,0,0);
1, otherwise.

A careful examination demonstrates that Y = φ(X), where φ = Φ∞; this

derives that Y is a sofic tree-shift. Furthermore, it can be verified that X

is USI with the complete prefix code Σ2 and Y is USI with the complete

prefix code Σ4. The examination of X being USI is straightforward, thus it

is omitted.

Given two patterns u and v which are accepted by Y , for each ℓ ∈ L(u),
we divide the discussion into several cases.

Case 1. uℓ = 0 and vǫ = 0. In this case, uℓ and vǫ can be connected through

the four-block α satisfying αw = 0 for w ∈ Σ4. More precisely, the pattern
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µ satisfying S(µ) = S(u)⋃ ℓΣ4⋃ ℓΣ
4S(v) and µ∣S(u) = u,µ∣ℓΣ4

= w, and

µ∣ℓΣ4S(v) = v is accepted by Y .1

Case 2. uℓ = 0, vǫ = 1. There are two subcases.

Subcase 2-1. min{∣w∣ ∶ vw = 0} is even; in other words, there are even

number of 1’s before the first node in S(v) labeled 0. Let α ∈ B4(Y ) be the

same as discussed in Case 1. It follows that uℓ and v are connected through

α.

Subcase 2-2. min{∣w∣ ∶ vw = 0} is odd. Pick a four-block α which satisfies

αw = 1 if and only if ∣w∣ = 3. Then uℓ and v are connected through α.

Case 3. uℓ = 1, vǫ = 0. Case 3 is divided into two subcases.

Subcase 3-1. ℓ −max{∣w∣ ∶ w ≺ ℓ, uw = 0} is even; in other words, there are

even number of 1’s labeled in a path terminated at ℓ. The selection of α is

the same as the one constructed in Case 1.

Subcase 3-2. uℓ = 1, vǫ = 0, and ℓ −max{∣w∣ ∶ w ≺ ℓ, uw = 0} is odd. Let α

be the four-block satisfying αw = 1 for each w ∈ {ǫ,0,1}. Then α connects

uℓ and v.

Case 4. uℓ = 1, vǫ = 1. Similar to the discussion above, there are four

subcases in Case 4.

Subcase 4-1. Both min{∣w∣ ∶ vw = 0} and ℓ −max{∣w∣ ∶ w ≺ ℓ, uw = 0} are

even. The four-block α is the same as considered in Case 1 except αǫ = 1.

Subcase 4-2. min{∣w∣ ∶ vw = 0} is even and ℓ −max{∣w∣ ∶ w ≺ ℓ, uw = 0} is
odd. The four-block α is the same as considered in Case 3-2.

Subcase 4-3. min{∣w∣ ∶ vw = 0} is odd and ℓ −max{∣w∣ ∶ w ≺ ℓ, uw = 0} is

even. The four-block α is the same as considered in Case 2-2 except αǫ = 1.

Subcase 4-4. Both min{∣w∣ ∶ vw = 0} and ℓ −max{∣w∣ ∶ w ≺ ℓ, uw = 0} are

odd. Pick a four-block α which satisfies αw = 0 if and only if ∣w∣ = 2. Then

uℓ and v are connected through α.

The investigation above asserts that Y is USI with complete prefix code

P = Σ4.

Proposition 3.6. The following diagram holds for any tree-shift.

USI Ô⇒ SI

⇓ ⇓
UBG Ô⇒ BG Ô⇒ TM

Proposition 3.6 follows immediately from the definitions of the above five

types of mixing properties. It is of interest that if any of the implications

1We remark that, for the simplicity of discussion and notation, αǫ coincides with uℓ

while αw is concatenated with v for each w ∈ Σ4.
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can be reversed. Furthermore, it is of more interest that if any inference

of the back-diagonal parts exists. Theorem 3.7 reveals that X being BG

(respectively UBG) is equivalent to X being SI (respectively USI) whenever

X is a TSFT.

Theorem 3.7. Suppose X is a tree-shift of finite type. Then X is uniformly

strongly irreducible if and only if X is uniformly block gluing, and X is

strongly irreducible if and only if X is block gluing.

Proof. It suffices to show that X being UBG infers that X is USI; the

inference of BG implying SI can be obtained similarly. Without loss of

generality, we may assume that X is a one-step TSFT.

Suppose that X is UBG. Let k be a natural number such that, for any

two blocks u ∈ Bp(X) and v ∈ Bq(X), there exists t ∈ X with t∣S(u) = u and

t∣wS(v) = v for each w ∈ Σk+p−1. For any two patterns ω and ω′ which are

accepted by X, we extend ω′ to a block and still refer the block to ω′ for the

simplicity. For each ℓ ∈ L(ω), X being UBG infers that there exists a block

α(ℓ) accepted by X satisfying α
(ℓ)
ǫ = ωℓ and α

(ℓ)
w = ω

′ for each w ∈ Σk. Since

X is a one-step TSFT, there exists a pattern ̟ accepted by X satisfying

that ̟S(ω) = ω and ̟ℓwS(ω′) = ω
′ for each ℓ ∈ L(ω),w ∈ Σk. Namely, X is

USI. The proof is complete. �

It is known that each irreducible one-dimensional SFT exhibits posi-

tive topological entropy. For multidimensional shift spaces, Boyle et al. [9]

demonstrates that each block gluing SFT has positive topological entropy.

Theorem 3.8 reveals that the block gluing condition is sufficient for a TSFT

being of positive topological entropy.

Theorem 3.8. Suppose that a tree-shift of finite type is block gluing. Then

it exhibits positive topological entropy.

Proof. Suppose that X is a block gluing TSFT over A with ∣A∣ = κ. Let

P be a CPC which connects any two blocks with ∣P ∣ = k for some k ∈ N;

recall that ∣P ∣ =max{∣x∣ ∶ x ∈ P}. It is seen that ∣Bk+1(X)∣ ≥ κ2. Indeed, for
u, v ∈ A, there exists t ∈ X such that tǫ = u and tx = v for every x ∈ P . Since

X is shift invariant and is a TSFT, it follows that

∣B2k+1(X)∣ ≥ κ2 ⋅ κ4 = κ6;
inductively, we derive that

Bℓk+1(X)∣ ≥ κ2 ⋅ κ22 ⋅ ⋯ ⋅ κ2ℓ = κ2(2ℓ−1).
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Therefore,

h(X) ≥ lim
ℓ→∞

ln2 κ2(2
ℓ−1)

ℓk + 1
= ln 2 > 0.

This completes the proof. �

Remark 3.9. In the proof of Theorem 3.8, it is seen that block gluing

TSFTs not only exhibit positive but full topological entropy. Such a phe-

nomenon indicates that a softer condition might be sufficient for yielding

positive topological entropy. On the other hand, irreducibility is not suffi-

cient for attending positive topological entropy. For example, let

A0 = A1 = (0 1
1 0
) .

It comes immediately that XA0,A1
is an irreducible TSFT and h(XA0,A1

) = 0.
Proposition 3.10. A strongly irreducible tree-shift X may not be uniformly

block gluing even when X is a tree-shift of finite type. On the other hand, a

uniformly block gluing tree-shift may not be strongly irreducible in general.

Example 3.11 illustrates a TSFT which is strongly irreducible but not

uniformly block gluing. Combining with Theorem 3.7 provides an exam-

ple, which distinguishes block gluing from uniformly block gluing. On the

other hand, Example 3.12 yields a tree-shift which is uniformly block gluing

but not strongly irreducible. Such a novel phenomenon is not observed in

multidimensional shift spaces.

Example 3.11 (SI does not imply UBG). Let A = Σ = {0,1} and let

F consist of those two blocks u with uǫ = u0 = u1; more explicitly, F =
{(0,0,0), (1,1, 1)}. It is seen that the tree-shift of finite type XF is strongly

irreducible with complete prefix code P = {0,10,11}. To see that XF is not

uniformly block gluing, we consider the two-block u = (0,1,0) ∈ B2(XF).
Suppose that XF is uniformly block bluing with a complete prefix set Σk for

some k ∈ N. Then there is a block v ∈ B(XF) satisfies v∣Σ1
= u and v∣wΣ1

= u

for each w ∈ Σk+1. In other words, vw = 0 for each w ∈ Σk+1; this makes

vw = 1 for each w ∈ Σk. Repeating the process infers that

vw =

⎧⎪⎪⎨⎪⎪⎩
0, ∣w∣ = k + 1 − 2i, i ≥ 0;
1, ∣w∣ = k − 2i, i ≥ 0.

Namely, vw = vw′ if ∣w∣ = ∣w′∣ ≤ k+1, which contradicts to the fact that v0 = 1

and v1 = 0. Hence XF is not uniformly block gluing.
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Example 3.12 (UBG does not imply SI). To construct a tree-shift X which

is uniformly block gluing but not strongly irreducible, Theorem 3.7 asserts

that X can not be a TSFT. Let A = Σ = {0,1} and let

Fn = {u ∶ S(u) = Σn, ux ≠ uy for some x ≠ y ∈ Σn}
for n ≥ 0, and let F = ⋃

n≥0
Fn. For each t ∈ XF , it comes that tx = ty if ∣x∣ = ∣y∣.

It can be verified without difficulty that XF is uniformly block gluing with

complete prefix code {0,1}. However, XF is not strongly irreducible. Indeed,

suppose that XF is strongly irreducible with a complete prefix code P . Let

w ∈ P . Consider a pattern u whose support is the collection of all subwords

of w, where a = 1 − a for a ∈ A, and ux = 0 for each x ∈ S(u). Pick v = 1;

then there is a (k + 1)-block µ ∈ XF satisfies µw = 1 and µw = 0, which is

forbidden for XF . Therefore, XF is not strongly irreducible.

An immediate inference of Propositions 3.6 and 3.10 is that, generically,

a BG (respectively UBG) tree-shift may not be SI (respectively USI); this

is illustrated in Corollary 3.13.

Corollary 3.13. A block gluing (respectively uniformly block gluing) tree-

shift may not be strongly irreducible (respectively uniformly strongly irre-

ducible) in general.

4. Conclusions

This paper investigates some fundamental properties of tree-shifts such as

the emptiness problem, the extensibility problem, the existence of periodic

points, and the sufficient condition of exhibiting positive topological entropy.

It turns out the tree-shifts stand alone from one-dimensional and multidi-

mensional shift spaces; this makes the tree-shifts an appropriate approach

for elucidating multidimensional shift spaces. Table 1 summarizes the com-

parison of tree-shifts of finite type, one-dimensional and multidimensional

shifts of finite type.

Remarkably, the denseness problem of periodic points remains to be open

for k-dimensional SFTs when k ≥ 3 even for strongly irreducible SFTs; mean-

while, periodic points are dense in block gluing tree-shifts and irreducible

TSFTs (cf. [9, 5]). Furthermore, the topological entropy of each TSFT is a

Perron number ([1]), and the topological entropy of a multidimensional SFT

is known as right recursively enumerable ([18]).

Except for the above, this paper also investigates several conditions of

mixing, say, topological mixing, block gluing, uniformly block gluing, strongly
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1-d SFT TSFT k-d SFT

(1) Decidable Decidable Undecidable

(2) True True False

(3) True False False

(4) Irreducible Irreducible Block gluing

(5) Perron number Perron number Right-recursively-enumerable

(6) Irreducible Block gluing Block gluing

Table 1. Comparison of TSFTs, one-dimensional and mul-
tidimensional SFTs.
(1) Emptiness problem: For a given forbidden set F , does
there exist an algorithm determining XF ≠ ∅?
(2) Extensibility problem: Does every local pattern extend
to a global pattern?
(3) Existence of periodic points: Does XF contain periodic
points provided XF ≠ ∅?
(4) Denseness of periodic points: Under what condition are
the periodic points dense?
(5) Topological entropy: What kind of algebraic properties
does the topological entropy satisfy?
(6) Positive topological entropy: Under what condition does
XF exhibit positive topological entropy?

irreducible, and uniformly strongly irreducible. It comes that a TSFT is

strongly irreducible (respectively uniformly strongly irreducible) if and only

if it is block gluing (respectively uniformly block gluing). This is another

difference between tree-shifts and multidimensional shift spaces. Generally,

neither uniformly block gluing nor strongly irreducible tree-shifts imply one

another. To sum up, the relations between these mixing conditions are

revealed as follows.

USI ⇒ SI

⇓ ⇎ ⇓
UBG ⇒ BG ⇒ TM

Nevertheless, the diagram reduces to

UBG(= USI)⇒ BG(= SI)⇒ TM

whenever we restrict the discussion to TSFTs.

One of the main results of this paper is proving that, for a TSFT, the block

gluing condition is the sufficient condition for exhibiting positive topological

entropy. Such a condition coincides with the one required in multidimen-

sional SFTs; in the mean time, uniform filling property, instead of block
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gluing condition, asserts the entropy minimality (cf. [9]). It is of interest

that, for TSFTs, if blocking gluing condition implies entropy minimality.

The related work is under preparation.
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