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Abstract In this paper we provide an up-to-date survey on the

studyof the complexity of themosaic solutions onneural network

equations. Three types of equations, namely, cellular neural net-

works (CNNs), multi-layer CNN (MCNNs) and inhomogeneous

CNNs (ICNNs) arediscussherein.Such topic strong related to the

learning algorithm and training process on neural network equa-

tions. Each neural network produces different mosaic solution

space, and each mosaic solution space induces an different sym-

bolicdynamics.Tounderstand thecomplexity (spatial entropy)of

themosaic solution space for a givenneural network equation,we

need to identify which the underlying symbolic space is, then

using the established knowledge of symbolic dynamical systems

to compute its spatial entropy.Recently there has been substantial

progress in this field. This paper is a comprehensive survey of

this field. It provides a summary of the interesting results in this

field. It is our hope that the paperwill provide a good overview of

major results and techniques, and a friendly entry point for any-

one who is interested in studying problems in this field.

Keywords Cellular neural networks � Multi-layer CNN �
Inhomogeneous CNN � Separation property � Topological
entropy

1 Introduction

The present survey paper is devoted to the recent progress

made in the mathematical foundations of the complexity of

mosaic solutions of CNNs. We focus on the recent results

on CNNs, MCNNs and ICNNs (or MPCNNs).

In the past few decades, CNNs, introduced by Chua and

Yang [25, 26] have been one of the most investigated para-

digms for neural information and image processing [22]. The

one-dimensional CNN is realized in the following form.

dxi

dt
¼ �xi þ

X

jkj � d

akyiþk þ z; i 2 Z; ð1Þ

where

y ¼ f ðxÞ ¼ 1

2
ðjxþ 1j � jx� 1jÞ ð2Þ

is the output function;A ¼ ða�d; . . .; a0; . . .; adÞ is called the
feedback template, and z is the threshold. T ¼ ½A; z� is the
template of (1). In awide range of applications, the CNNs are

required to be completely stable [27, 55, 61, 62, 65, 72], i.e.,

each trajectory should converge toward stationary states.

Learning algorithms (also called Machine learning), a

branch of artificial intelligence (AI), is about the con-

struction and study of systems that can learn from the given

data or the parameter space. For example, a machine

learning system could be trained on visual systems to learn

to distinguish between dogs and cats. The learning algo-

rithm in CNNs is most essential due to its powerful and

substantial applications in image processing and pattern

recognitions. Formally speaking, the purpose of the learn-

ing algorithm in neural networks is to study the relationship

between the output solution and parameter spaces. More

abundant output patterns make the learning algorithm more

efficient. In homogeneous (template is space-invariant)1-d

CNNs, the general method to identify all solutions on Z is

to identify all local patterns [17, 47, 48, 50, 56] on local

lattices. By using the space-invariant property one can

build up the global patterns according to the local patterns.
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However, the well-known separation property [10, 47]

reveals that ‘‘ not all’’ sets of local patterns will appear as local

patterns for some parameters. Thus, the global output solution of

1-d CNNs has some constraints. One important method to

overcomethisproblemis themulti-layercellularneuralnetworks

and the other one is inhomogeneous cellular neural networks.

A one-dimensional MCNN [24] is realized in the fol-

lowing form.

dx
ðnÞ
i

dt
¼ �x

ðnÞ
i þ

X

jkj � d

a
ðnÞ
k y

ðnÞ
iþk þ

X

jkj � d

b
ðnÞ
k u

ðnÞ
iþk þ zðnÞ; ð3Þ

for some d 2 N; 1� n�N 2 N; i 2 Z, where

u
ðnÞ
i ¼ y

ðn�1Þ
i for2� n�N; u

ð1Þ
i ¼ ui; xið0Þ ¼ x0i ; ð4Þ

and the output function is defined in (2). Note that the linear

coupling1u
ðnÞ
i ¼ y

ðn�1Þ
i for 2� n�N in (4) makes such sys-

tems a coupled map lattice. MCNNs have received consid-

erable attention and were successfully applied to many areas

such as signal propagation between neurons, image pro-

cessing [23, 25, 28, 29, 59, 73, 74], pattern recognition [6, 8],

information technology [24, 60], CMOS realization [18, 35,

37] andVLSI implementation [38, 60, 70, 71].MCNN is also

the base of the deep neural networks, which is the kernel

technology of theMicrosoft’s speech recognition system [30,

46, 58, 63, 64, 77, 78]. Another important reason for coupling

CNNs is the simulation of the visual systemsofmammals [40,

41], with each layer symbolizing a single cortex in the visual

system.) In [68], the authors demonstrated a sufficient con-

dition for the complete stability of MCNNs. Recently, Ban

and Chang [10] showed that, for MCNNs, the more layers

infers the more phenomena that the models are capable of.

Thus, MCNNs indeed produce more abundant output spaces.

Another method to release the constraints of the sepa-

ration property is the inhomogeneous CNNs [5, 7, 9]. A

one-dimensional ICNN on Z is defined.

d

dt
xiðtÞ ¼ �xiðtÞ þ zi þ

X

k2N i

ak;if ðxkðtÞÞ; ð5Þ

where i 2 Z, andN i, which is a finite subset of Z, indicates

the neighborhood for neuron xi. As usual, the output function

f ðxÞ is defined in (2). An ICNN is also called a multiple

cellular neural network (MPCNN) since one may see later

(Sect. 4) that the mosaic solution space of such structure of

interaction will conjugate to some multiple shift space.

Traditionally, the template forCNN is homogeneous, i.e., the

template is space-invariant. However, there are more and

more neural networks that use inhomogeneous templates to

describe some of the problems that arise from the biological

and ecological contexts [33, 34, 45, 54, 75, 76]. Some new

and interesting phenomena of pattern formation and spatial

chaos were also found in ICNNs.

Spatial complexity for a given system is a concept that

unveils how complex the system is. Such an idea was first

defined by Chow et al. on the mosaic solutions of an array of

scalar non-linear dynamical systems [19–21]. The spatial

entropy (see [57] for the formal definition in symbolic

dynamical systems, and also see [69] for the general defini-

tion in ergodic theory) is used to measure the spatial com-

plexity of such systems. Therefore, spatial entropy is

commonly used to measure the complexity of the output

patterns for neural network equations. To be precise, let X �
0; 1f gN be a shift space and r be its shift map, i.e., rðxÞi ¼

xiþ1 for x 2 X and i 2 Z. Denote by CkðXÞ the cardinality of
the collection ofwords of length k. The spatial entropy is then

defined by the growth rate ofCkðXÞwith respect to k. That is,

hðXÞ ¼ lim
k!1

logCkðXÞ
k

; ð6Þ

whenever the limit (6) exists. Since the output function of

CNNs are piecewise linear [defined later in (2)] and themosaic

solutions (see Definition 2.1) usually conjugate to some shift

space. Equation (6) is often used to measure the complexity of

mosaic solutions. Roughly speaking, positive entropy of a

neural network indicates that the number of mosaic solutions

grows exponentially with respect to the length of the lattice. In

this case, we call such a system spatially chaotic, i.e.,

htopðXÞ[ 0. Otherwise, we call such systems pattern forma-

tion. There is plenty of literature that has studied these pattern

formation systems [31, 32, 43, 44, 66, 67]. However, system-

atic studies of spatially chaotic systems are few, especially in

MCNNs and ICNNs. The main difficulty appears in identify-

ing what the underlying symbolic space of the output solution

is. Once the underlying symbolic space is identified, well-

established knowledge of such symbolic space will be used to

compute the topological entropy or other statistic invariants.

Juang and Lin [50] proved that, for 1-d homogeneous

CNN, the underlying symbolic space of the mosaic solu-

tions forms a 1-d subshift of finite type (SFT for short, [57]).

Ban et al. [13, 14] proved that, for MCNNs, its underlying

symbolic space forms a sofic space, which is a factor of

SFT. In a sense, one sees that the MCNNs indeed produce

more complicated dynamics than single layer CNNs.

More recently, Ban and Chang [12] defined the so-called

initial value problem (IVP) of a MCNN as follows. Given

a 2 R
n and ‘ 2 N, the IVP of a MCNN is investigating

those solutions that satisfy 3 with initial condition a at

coordinate ‘. More precisely, the IVP of a MCNN focuses

on investigating the space

Xa ¼ fx ¼ ðxðnÞi Þi2N;1� n�N 2 R
1�N : x satisfiesð3Þ;

� ðxðnÞ‘ ÞNn¼1 ¼ ag:
ð7Þ

1 Such coupling is suggested by Chua and Roska. The purpose is to

design MCNNs for solving some image processing and pattern

recognition problems [25].
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The recent study has shown that the MCNN with initial

values produces a new underlying symbolic space, called

the Path set [1], with such space being used to solve some

problems in number theory, i.e., p -adic path set fractal [2].

As expected, ICNNs produce a new symbolic space.

Ban and Chang [11] proved that such systems produce new

underlying symbolic spaces called multiple shift spaces.

Such symbolic spaces are defined by Furstenberg [42], Fan

and Liao [39] in their studies of arithmetic progression and

Szemerédi’s theorem [36].

On the one hand, one may see that the MCNN and

ICNN produce abundant symbolic spaces for mathematical

study, with the mathematical foundation of such symbolic

space helping to compute the spatial complexity of such

neural systems. On the other hand, various neural network

equations present themselves as natural examples for new

symbolic dynamics. Thus, this study will set up a link

between symbolic dynamics and neural network equations.

We organize the materials as follows. In Sect. 2 we review

the results of classical CNNs,with themethods to compute the

topological entropy presented therein. Section 3 review the

results for MCNNs, and MCNNs with initial values. The

solutions structure and the method to compute their topolog-

ical entropy are also presented. Finally, the results for ICNN

are provided in Sect. 4 and the conclusion is given in Sect. 5.

2 Classical cellular neural networks

This chapter introduces the classical one-dimensional CNN

without input. The methodology for computing entropy

will also be introduced. First we introduce the concept of

mosaic patterns, which is crucial in our study.

Definition 2.1 (Mosaic patterns [50]) A mosaic solution

x ¼ ðxiÞi2Z of (1) is a stationary solution satisfying xij j � 1

for all i 2 Z. The output of mosaic solutions are called

mosaic patterns.

Since the output function in (2) is piecewise linear with

f ðxÞ ¼ 1 (resp. �1) if xj j � 1 (resp. xj j � 1), if x ¼ ðxiÞi2Z is

a mosaic solution, then its output must be an element in

�1;þ1f gZ, which is why we call it ‘‘patterns’’. Suppose y

is a mosaic pattern, the necessary and sufficient conditions

for yi ¼ 1, is

a� 1þ z[ �
X

0\jkj � d

akyiþk

0

@

1

A; ð8Þ

where a ¼ a0. Similarly, the necessary and sufficient con-

ditions for yi ¼ �1, is

a� 1� z[
X

0\jkj � d

ak�yiþk: ð9Þ

Substitute �1 and 1 by � and þ, respectively.

Let a ¼ ða�d; � � � ; a�1; a1; � � � ; adÞ. The basic set of

admissible local patterns with ‘‘ þ ’’ state in the center is

defined as

BðþÞ ¼ fv 2 f�1; 1g2d : a� 1þ z[ � ða � vÞg;

where � is the inner product in Euclidean space. Similarly,

the basic set of admissible local patterns with ‘‘ � ’’ state in

the center is defined as

Bð�Þ ¼ fv 2 f�1; 1g2d : a� 1� z[ a � vg:

Furthermore, the admissible local patterns induced by T

can be denoted by

B ¼ ðBðþÞ;Bð�ÞÞ:

For clarity, we consider the CNNs with nearest neighbor-

hood, i.e., d ¼ 1. In this case, the ordering matrix of (1)

can be defined as follows.

ð10Þ
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The idea of the ordering matrix is to ‘‘ store’’ the basic set

in X, then using X to generate all possible global patterns

(since template T is space-invariant). The transition matrix

according to the ordering matrix in (1) is defined by

Tði; jÞ ¼
1 if xij 2 B;
0 otherwise.

�

Denote by Zn the lattice in Z with length 2nþ 1 and Yn

(resp.Y) the mosaic solution of (1) in Zn (resp. Z). Let

Mm�mðRÞ be the collection of m� m matrices with real

entries, suppose A 2 Mm�mðRÞ we define R Að Þ and Rn Að Þ
for n 2 N as follows.

RðAÞ ¼ i0; . . .ð Þ 2 0; . . .;mf gN: Aðik; ikþ1Þ ¼ 1 for k 2 N

n o
;

RnðAÞ ¼ i0; . . .ð Þ 2 0; . . .;mf gn: Aðik; ikþ1Þ ¼ 1 for 0� k� nf g:
ð11Þ

Sometimes we call RnðAÞ the n -cylinder set of RðAÞ. Joung
and Lin [50] characterized the underlying space of Y and

presents its entropy formula.

Theorem 2.2 ([50]). Given T ¼ ½A; z�. Suppose the basic
set B is constructed according to T and the transition

matrix T is also constructed with respect to B and ordering

matrix (10). Then the following hold.

(1) The mosaic solution space Y ¼ YðTÞ is conjugate to
the subshift of finite type (also called Markov

system) induced by T . That is Y ’ RðTÞ. The

solution Yn ¼ YnðTÞ on Zn is equivalent to the n -

cylinder set of RðTÞ. That is Yn ¼ RnðTÞ.
(2) The topological entropy of Y is the logarithm of the

maximal eigenvalue of A, i.e.,

htopðYÞ ¼ log qðTÞ; ð12Þ

where qðBÞ stands for the maximal eigenvalue of B

for B.

We give the idea for the proof of Theorem 2.2, since

Eq. (1) is space-invariant, the constraint from (8) and (9)

make that every solution of (1) in Z satisfies the local rule

of BðþÞ and Bð�Þ. Thus, the solution space is equivalent to
the shift space (11). Once the underlying symbolic space is

identified as (11), X and T are systematic tools to generate

‘‘ all’’ possible global patterns and the formula (12) is a

well-known result on computing (6) (Theorem 4.3.1 of

[57]). First, we emphasis here that once the local pattern B
according to T is constructed, (1) of Theorem 2.2 is derived

by using the spatially invariant (also called isotropic)

property of the template T for (1). However, if T is spa-

tially variant, then (1) becomes inhomogeneous, i.e.,

ICNN, and Theorem 2.2 is no longer true. In this case, Y

produces an inhomogeneous symbolic dynamical system,

which makes the entropy formula difficult to compute.

Second, for multidimensional CNN, i.e., (1) is defined in

Z
d with d� 2, the computation of entropy is extremely

difficult, only few result is known. Ban et al. [15, 16]

establish the higher dimensional transition matrices to

overcome this difficulty, some lower and upper bounds for

entropy can be derived by using the skill therein. In the

following section we will introduce the MCNNs, as such a

system will produce more general underlying symbolic

dynamical systems. Namely, the sofic shift.

3 Multi-layer cellular neural networks

In this section the one-dimensional MCNN is study. We first

introduce how to produce a set of local patterns for cover

space Y, and factor space YðnÞ, then we compute its topo-

logical entropy by proving that YðnÞ is conjugate to a sofic

space. The collection of parameters is as follows. As usual,

A ¼ ½AðnÞ�1�n�N with AðnÞ ¼ ðaðnÞ�d; . . .; a
ðnÞ
d Þ is the feed-

back template,B ¼ ½BðnÞ�1�n�N withBðnÞ ¼ ðbðnÞ�d; . . .; b
ðnÞ
d Þ

is the controlling template, and z ¼ ½zðnÞ�1� n�N is the

threshold. T ¼ ½A;B; z� is the template of (3). As in Defini-

tion 2.1, we define themosaic patterns forMCNNas follows.

Definition 3.1 (Mosaic patterns for MCNN [14]). A

mosaic solution x ¼ ðxðnÞi Þi2Z of (3) is a stationary solution

satisfying x
ðnÞ
i

���
���� 1 for all i 2 Z and 1� n�N. The output

of mosaic solutions is called mosaic patterns.

For clarity, we consider the fundamental part of a

MCNN: the one-layer cellular neural networks with inputs.

dxi

dt
¼ �xi þ

X

jkj � d

akyiþk þ
X

j‘j � d

b‘uiþ‘ þ z;

where A ¼ ½�ad; � � � ; a; � � � ; ad�, B ¼ ½�bd; � � � ; b; � � � ; bd�
are the feedback and controlling templates, respectively,

and z is the threshold.

Consider the mosaic solution x, the necessary and suf-

ficient conditions for state ‘‘ þ’’ at cell Ci , i.e., yi ¼ 1, is

a� 1þ z[ �
X

0\jkj � d

akyiþk þ
X

j‘j � d

b‘uiþ‘

0

@

1

A; ð13Þ

where a ¼ a0. Similarly, the necessary and sufficient con-

ditions for state ‘‘ �’’ at cell Ci, i.e., yi ¼ �1, is

a� 1� z[
X

0\jkj � d

ak�yiþk þ
X

j‘j � d

b‘uiþ‘: ð14Þ

Rewrite the output patterns y�d � � � y � � � yd coupled with

input u�d � � � u � � � ud as
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Let

Vn ¼ fv 2 R
n : v ¼ ðv1; v2; � � � ; vnÞ;jvij ¼ 1 for 1� i� ng;

where n ¼ 4d þ 1, (13) and (14) can be rewritten in a

compact form by introducing the following notation.

Denote a ¼ ða�d; � � � ; a�1; a1; � � � ; adÞ, b ¼ ðb�d; � � � ;
b; � � � ; bdÞ. Then, a can be used to represent A0, the sur-

rounding template of A without center, and b can be used to

represent the template B. The basic set of admissible local

patterns with ‘‘ þ’’ state in the center is defined as

Bðþ;A;B; zÞ ¼ fv 	 w 2 Vn : a� 1þ z[ � ða � vþ b � wÞg;

where � is the inner product in Euclidean space. Similarly,

the basic set of admissible local patterns with ‘‘ � ’’ state in

the center is defined as

Bð�;A;B; zÞ ¼ fv 	 w 2 Vn : a� 1� z[ a � vþ b � wg:

Furthermore, the admissible local patterns induced by

ðA;B; zÞ can be denoted by

BðA;B; zÞ ¼ ðBðþ;A;B; zÞ;Bð�;A;B; zÞÞ:

For 1� n�N, let BðnÞ ¼ ðBðnÞðþÞ;BðnÞð�ÞÞ be the basic

set of admissible local patterns of the nth layer.

Definition 3.2 (Mosaic solution space Y and output

solution space YðNÞ [14]). The mosaic solution space Y of

(3), as defined by

Y ¼

� � � yðNÞ�1 y
ðNÞ
0 y

ðNÞ
1 � � �

..

.

� � � yð2Þ�1y
ð2Þ
0 y

ð2Þ
1 � � �

� � � yð1Þ�1y
ð1Þ
0 y

ð1Þ
1 � � �

8
>>>>><

>>>>>:

9
>>>>>=

>>>>>;


 f�1; 1gZ1�N ;

is generated by the basic set of admissible local patterns

B ¼ ðBð1Þ; . . .;BðNÞÞ

¼

y
ðNÞ
�d � � � yðNÞ�1 y

ðNÞ
0 y

ðNÞ
1 � � � yðNÞd

..

.

y
ð2Þ
�d � � � y

ð2Þ
�1y

ð2Þ
0 y

ð2Þ
1 � � � yð2Þd

y
ð1Þ
�d� � � y

ð1Þ
�1y

ð1Þ
0 y

ð1Þ
1 � � �yð1Þd

8
>>>>><

>>>>>:

9
>>>>>=

>>>>>;


 f�1; 1gZð2dþ1Þ�N :

ð15Þ

We call YðNÞ the output space of (3). That is,

YðNÞ ¼ fðyðNÞi Þi2Z : y ¼ ðyðNÞi 	 � � � 	 yð1Þi Þi2Z 2 Yg:

For n 6¼ N, YðnÞ is called the hidden space.

The reason is named YðNÞ as the output space is due to

the fact that only Y ðNÞ will ‘‘ show up’’ in chip devices.

However, one easily sees that YðNÞ is a part of Y and is

influenced by Y ðnÞ for n 6¼ N, thus the mosaic solution at

another array is called hidden.

For simplicity we consider MCNNs with the nearest

neighborhood, that is, d ¼ 1 in the next subsection.

3.1 Two-layer cellular neural networks

A two-layer MCNN with nearest neighborhood is realized

as follows.

dx
ð1Þ
i

dt
¼ �x

ð1Þ
i þ

X

jkj � 1

a
ð1Þ
k y

ð1Þ
iþk þ zð1Þ;

dx
ð2Þ
i

dt
¼ �x

ð2Þ
i þ

X

jkj � 1

a
ð2Þ
k y

ð2Þ
iþk þ

X

jkj � 1

b
ð2Þ
k u

ð2Þ
iþk þ zð2Þ;

8
>>>>><

>>>>>:

ð16Þ

where u
ð2Þ
i ¼ y

ð1Þ
i for i 2 Z. The ordering matrix X2 of (16)

is a 16� 16 symbolic matrix defined in Fig. 1.

Let

a00 ¼ ��; a01 ¼ �þ; a10 ¼ þ�; a11 ¼ þþ :

Define

ai1i2ai02i3 ¼ £ , i2 6¼ i02: ð17Þ

If ai1i2ai02i3 6¼ £, then it is a pattern with size 3� 1 and

denoted by ai1i2i3 . Write

X2 ¼

X11 X12 X13 X14

X21 X22 X23 X24

X31 X32 X33 X34

X41 X42 X43 X44

0
BBB@

1
CCCA and

Xij ¼

xij;11 xij;12 xij;13 xij;14

xij;21 xij;22 xij;23 xij;24

xij;31 xij;32 xij;33 xij;34

xij;41 xij;42 xij;43 xij;44

0
BBB@

1
CCCA;

for 1� i; j� 4 as Fig. 1. xij;kl means the pattern
ar1r2ar02r3
as1s2as02s3

,

where
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r1 ¼
i� 1

2

� �
; r2 ¼ i� 1� 2r1; r02 ¼

j� 1

2

� �
;

r3 ¼ j� 1� 2r02;

s1 ¼
k � 1

2

� �
; s2 ¼ k � 1� 2s1; s02 ¼

l� 1

2

� �
;

s3 ¼ l� 1� 2s02:

ð18Þ

If ar1r2ar02r3 ¼ £ or as1s2as02s3 ¼ £, then xij;kl ¼ £. Fur-

thermore, if xij;kl 6¼ £, then it is denoted by the pattern

ar1ar2ar3
as1as2as3

in fþ;�gZ3�2 .

Roughly speaking, the above discussion unveils that in

each small block of the ordering matrix X2, the ‘‘ top’’

patterns are the same. For example, in X43 the top 3� 1,

patterns are the same as þþ�, and for X12 is ��þ.

Suppose that B is given. The transition matrix T �
TðBÞ 2 M16ðRÞ is a 16� 16 matrix defined by

Tðp; qÞ ¼
1; ifxpq 2 B;
0; otherwise:

�

Herein we express the ordering matrix X2 ¼ ðxpqÞ1� p;q� 16

to ease the notation. We have

T ¼ T2 � ðE4  T1Þ; ð19Þ

where Ek is a k � k matrix with all entries being 1’s, and T1
and T2 are the transition matrices of the first and second

layer, respectively.

Let Y 
 f�;þgZ1�2 be the solution space of (16). That

is,

where B is the set of admissible local patterns. It comes

immediately from Theorem 2.2 that Y is a shift of finite

type.

To ease the notation, denote by y1y2y3 	

u1u2u3 and

ð20Þ

where y ¼ ðyiÞi2Z;u ¼ ðuiÞi2Z. Then, we can write Y as

Fig. 1 The enlarged ordering

matrix of two-layer neural

networks
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Y ¼ fy 	 u : yiyiþ1yiþ2 	 uiuiþ1uiþ2 2 B for i 2 Zg

One can see that the ordering matrix in Fig. 1 is a sys-

tematic way to store the the patterns of size 3� 2, and note

that Tn (the multiplication of T) generates global patterns

of size nþ 2ð Þ � 2. However, we are only interested in the

top layer pattern, Theorem 2.2 is not applicable in this

occasion. Thus we need some new idea to overcome this

problem. Namely, the labeled graph approach. Define

/ð1Þ;/ð2Þ : Y ! f�;þgZ by

/ð1Þðy 	 uÞ ¼ u /ð2Þðy 	 uÞ ¼ y

Set Yð‘Þ ¼ /ð‘ÞðYÞ for ‘ ¼ 1; 2. If y 	 u 2 Y is a solution of

(16), then only the top pattern y can be observed. The

bottom pattern u is hidden in this system. Recall that the

dynamical behavior of the output space Y ð2Þ is influenced

by the hidden space Y ð1Þ. Unlike Y, the symbolic dynamics

of YðiÞ i ¼ 1; 2 is not a subshift of finite type. Actually, they

are sofic instead.

Definition 3.3 (Labeled graph and sofic shift). A labeled

graph G ¼ ðG;LÞ consists of an underlying graph G with

edge set E, and the labeling L : E ! A assigned to each

edge a label from the finite alphabet A. A sofic shift is

defined by X ¼ XG for labeled graph G.

Definition 3.4 (Right-resolving). A labeled graph G ¼
ðG;LÞ is right-resolving if, for some vertex I of G, the

edges starting from I carrying different labels.

Let A ¼ a0; . . .; a8f g, where
a0 ¼ ���; . . .; a8 ¼ þþþ:

That is, we arrange the patterns of length 3 in a lexico-

graphic order. For i ¼ 1; 2, define LðiÞ : þ;�f gZ3�2!
þ;�f gZ3�1 by

Lð1Þðy0y1y2 	 u0u1u2Þ ¼ u0u1u2;Lð2Þðy0y1y2 	 u0u1u2Þ
¼ y0y1y2:

The following theorem demonstrates that the solution

space Y ðiÞ for i ¼ 1; 2 is conjugate to a sofic shift. The

knowledge of computing entropy of sofic shifts can be used

to compute their topological entropy. Given a transition

matrix T 2 R
n�n, denoted by GT , the induced graph of T

which consists of the vertex set V ¼ 1; . . .; nf g and edge

set E ¼ ði; jÞ : 1� i; j� nf g with ði; jÞ 2 E if and only if

Tði; jÞ ¼ 1 for some 1� i; j� n.

Theorem 3.5 (Ban et al. [14]). Let T ¼ ½A;B; z� be given
for (16), the basic set B is constructed in ( 15) according to

T and T is the transition matrix according to ordering

matrix X2. Then

(1) Y is conjugate to a subshift of finite type. Namely,

Y ’ RðTÞ (defined in (11)).

(2) For i ¼ 1 or 2, YðiÞ is conjugate to the labeled graph

GðiÞ ¼ ðGT ;LðiÞÞ. That is

Y ðiÞ ’ GðiÞ ¼ ðGT ;LðiÞÞ:

(3) If GðiÞ ¼ ðRðTÞ;LðiÞÞ is right resolving for i ¼ 1 or 2,

then

htopðY ðiÞÞ ¼ log qðTÞ:

(4) If GðiÞ ¼ ðRðTÞ;LðiÞÞ is not right resolving for some

i ¼ 1 or 2. Then there exists a scheme (called subset

construction) transforming GðiÞ to be a right resolv-

ing labeled graph. That is, there exists a new bT and

bLðiÞ such that bGðiÞ ¼ ðRðbT Þ; bLðiÞÞ is a right resolving
labeled graph and

htopðY ðiÞÞ ¼ log qðbT Þ:

Note here that Theorem 3.5 provides a complete result

for computing the topological entropy in a 2-layer MCNN.

(1) of Theorem 3.5 represents that the covering space is

still a subshift of finite type, i.e., the Markov system. (3) of

Theorem 3.5 represents that the projection space Y ðiÞ i ¼
1; 2 (hidden and output solution spaces) produce new

underlying symbolic space, namely, the sofic space. It is

well-known that the subshift of finite type is a sofic space;

however, there are many strict sofic spaces, i.e., it is sofic

but not a subshift of finite type. From a mathematical point

of view, Theorem 3.5 reveals that the MCNNs are indeed a

generalization of the one-layer CNN.

3.2 Recursive formula for MCNNs

From the previous section, one can divide the scheme of

computing topological entropy into three parts: (I) Identify

the local patterns (basic sets according to T); (II) Construct

the appropriate ordering matrix to store the local patterns,

and (III) Identify the underlying symbolic dynamical sys-

tem according to the ordering matrix and then applying the

knowledge from the SD to compute the entropy.

For CNNs and MCNNs, step (I) is robust; once step (II)

is constructed, step (III) is also robust. Thus step (II) is

crucial. However, a systematic scheme for constructing the

ordering matrices is found in general layers MCNNs.

The ordering matrix XN of all possible local patterns in

fþ;�gZ3�N is defined recursively as
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XN ¼

X11 X12 £ £

£ £ X23 X24

X31 X32 £ £

£ £ X43 X44

0

BBB@

1

CCCA;

where

Xi1j1 ¼

Xi1j1;11 Xi1j1;12 £ £

£ £ Xi1j1;23 Xi1j1;24

Xi1j1;31 Xi1j1;32 £ £

£ £ Xi1j1;43 Xi1j1;44

0

BBB@

1

CCCA;

for 1� k�N � 2, and

where 1� ik; jk � 4, and 1� k�N. The construction con-

tains a self-similarity property in XN . As discussed in the

previous section, xi1j1;i2j2;���;iN�1jN�1;iN jN means the pattern

ðar11r12ar012r13Þ 	 ðar21r22ar022r23Þ 	 � � � 	 ðarN1rN2ar0N2rN3Þ

in fþ;�gZ3�N , where ark1rk2ar0k2rk3 is defined in (17), and

rk1 ¼
ik � 1

2

� �
; rk2 ¼ ik � 1� 2rk1; r0k2 ¼

jk � 1

2

� �
;

rk3 ¼ jk � 1� 2r0k2:

The pattern is £ if ark1rk2ar0k2rk3 ¼ £ for some 1� k�N.

Otherwise, it is denoted by the pattern

ðar11ar12ar13Þ 	 ðar21ar22ar23Þ 	 � � � 	 ðarN1arN2arN3Þ

in fþ;�gZ3�N . The following Theorem asserts that

enlarging the local patterns to be rectangles helps for the

determination of the transition matrix T of the solution

space.

Theorem 3.6 Suppose T is the transition matrix of the

solution space of (3) with nearest neighborhood, and Tk is

the transition matrix of the kth layer. Then

T ¼ ðTN  E4N�1Þ � ðE4  TN�1Þ 2 M4nþ1�4nþ1ðRÞ;
ð23Þ

where

Tk ¼ ðTk  E4k�1Þ � ðE4  Tk�1Þ 2 M4kþ1�4kþ1ðRÞ;
for 3� k�N� 1; ð24Þ

and

T2 ¼ T2 � ðE4  T1Þ 2 M16�16ðRÞ: ð25Þ

3.3 MCNNs with initial values

In this section we review the studies on the MCNN with

initial conditions. Recently, Ban and Chang [12] proved

that the solution space of MCNN with initial condition

forms a so-called path set in symbolic dynamics. To ease

the notation, let f ðxÞ ¼ ðfðxðnÞi ÞÞi2N;1�n�N, where

x ¼ ðxðnÞi Þi2N;1�n�N 2 R
1�N. Set

Ya ¼ fy ¼ ðyðnÞi Þi2N;1� n�N 2 R
1�N : y ¼ fðxÞ;x 2 Xag:

ð26Þ

For 1� n�N, define UðnÞ : R1�N ! R
1�1 by

UðnÞðxÞ ¼ ðxðnÞi Þi2N, where x ¼ ðxðnÞi Þi2N;1� n�N. Set

Xi1j1;i2j2;���;ik jk ¼

Xi1j1;i2j2;���;ik jk ;11 Xi1j1;i2j2;���;ik jk;12 £ £

£ £ Xi1j1;i2j2;���;ik jk ;23 Xi1j1;i2j2;���;ik jk ;24

Xi1j1;i2j2;���;ik jk ;31 Xi1j1;i2j2;���;ik jk;32 £ £

£ £ Xi1j1;i2j2;���;ik jk ;43 Xi1j1;i2j2;���;ik jk ;44

0
BBB@

1
CCCA; ð21Þ

Xi1j1;i2j2;���;iN�1jN�1
¼

xi1j1;���;iN�1jN�1;11 xi1j1;���;iN�1jN�1;12 £ £

£ £ xi1j1;���;iN�1jN�1;23 xi1j1;���;iN�1jN�1;24

xi1j1;���;iN�1jN�1;31 xi1j1;���;iN�1jN�1;32 £ £

£ £ xi1j1;���;iN�1jN�1;43 xi1j1;���;iN�1jN�1;44

0

BBB@

1

CCCA; ð22Þ
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YðnÞ
a ¼ fy ¼ ðyiÞi2N : y ¼ UðnÞðyÞ; y 2 Yg:

We call Ya the solution space, YðNÞ
a the output space, and

YðnÞ
a with n 6¼ N the n-th hidden space of (3) with initial

condition.

ðxðnÞ‘ ÞNn¼1ð0Þ ¼ a; ‘ 2 N; a 2 R
N: ð27Þ

We leave it as an open problem to characterize the com-

plete stability for mosaic solutions of IVP of MCNN.

Problem 3.7 Find the conditions for the complete sta-

bility for mosaic solutions of IVP of MCNN.

To understand the underlying symbolic space ofYðNÞ
a and

YðnÞ
a for n 6¼ N, we introduce the notion of path set which

has been defined by Abram and Lagarias [1] recently.

Definition 3.8 (Path set [1]). Suppose G ¼ ðG;LÞ is a

labeled graph with underlying directed graph G ¼ ðV; EÞ
and labeling L : E ! A. The path set (or pointed follower

set) P ¼ XGðvÞ is the subset of AN made up of the symbol

sequences of successive edge labels of all possible one-

sided infinite walks in G issuing from the distinguished

vertex v. Many different ðG; vÞ may give the same path set

P � AN; and we call any such ðG; vÞ a presentation of P.

The following theorem unveils that the solution space

YðnÞ
a of MCNN with initial condition forms a Path set for

n ¼ 1; . . .;N.

Theorem 3.9 (Theorem 1.2. [12]). Given a 2 R
n. Sup-

pose YðNÞ
a , and YðnÞ

a are the solution, output, and hidden

spaces of 3 with initial condition 27, 1� n�N � 1. Then

YðnÞ
a are topologically conjugated to path sets for

1� n�N.

The identification of the solution space of MCNN with

initial condition with Path set helps us to compute their

spatial entropy. There is another definition for path set,

called the path topological entropy.

Definition 3.10 (Theorem 1.7. [1]) Suppose P is a path

set. Let NI
nðPÞ denote the number of distinct initial blocks

of length n in P. The path topological entropy of P is

defined by

hpðPÞ ¼ lim sup
n!1

1

n
logNI

nðPÞ:

The difference between the spatial entropy (6) and the

path topological entropy is that the spatial entropy con-

siders the growth rate of ‘‘ all’’ distinct blocks in the given

space [3]. In [1], the authors showed that the spatial

entropy of a path set coincides with its path topological

entropy.

Theorem 3.11 (Theorem 1.8. [1]). For a path set P, we
have

hPðPÞ ¼ hðPÞ:

It is known that the spatial entropy of a sofic shift relates

to the maximal eigenvalue of its corresponding transition

matrix. Theorems 3.9 and 3.11 indicate that the path

topological entropy of either one of the solution, hidden,

and output spaces also relates to the maximal eigenvalue of

their corresponding transition matrices if the transition

matrix comes from a reachable presentation. Herein a

presentation ðG; vÞ of a path set P is called reachable if

each vertex of G can be reached by a directed path from v.

Theorem 3.12 (Theorem 1.3. [12]). Suppose X 2
fYa;Y

ð1Þ
a ; . . .;YðnÞ

a g and ðG; vÞ is a reachable presentation

of X. If the labeled graph G is right-resolving, then

hðXÞ ¼ log qðTÞ:

where T is the transition matrix of G.

Remark 3.13 For any path set P ¼ ðG; vÞ, Theorem 3.2.

of [1] ensures that there always exists such presentation in

Theorem 3.12. That is, G is right-resolving and ðG; vÞ is

reachable.

4 Multiple cellular neural networks

This section considers the ICNNs, i.e., inhomogeneous

CNN. As we mentioned in introduction, we also call them

MPCNNs. As usual T ¼ ½A; z� is the template according to

(5). Two different types, namely, constant- and arithmetic-

type MPCNNs are discussed herein. One may see that such

two different structures of interaction will produce differ-

ent multiple symbolic spaces and these two types include

most class of MPCNNs.

4.1 Constant-type MPCNN

A MPCNN is called a constant-type (CCNN) if the

neighborhood N ¼ fN i : i 2 Zg is a finite set and the

threshold z consists of finite components. It is seen that the

CCNNs generalize the concept of the CNNs that were

introduced in [25, 26]. More precisely, a CNN is a CCNN

with N i ¼ N j and Ai ¼ Aj for all i; j 2 Z. An essential

description of a CCNN is that there exists a positive integer

‘� 2 such that z ¼ ½z1; . . .; z‘� and N ¼ fN1; . . .;N ‘g
satisfy N pþq‘ ¼ N p; zpþq‘ ¼ zp for 1� p� ‘; q 2 Z.

Restated, a one-dimensional CCNN is of the form
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d

dt
xiðtÞ ¼ �xiðtÞ þ zi þ

X

k2N
i

ak;if ðxiþ‘kðtÞÞ; ð28Þ

where 1� i� ‘ and i ¼ i (mod ‘). Without loss of gener-

ality, we assume that every neighborhoodN i ¼ f�1; 0; 1g,
i.e., the nearest neighborhood. In this case, the feedback

template of (28) is A ¼ ½Aj�1� j� ‘, where Aj ¼
½a�1;j; a0;j; a1;j�.

Let K ¼ f1; . . .; ‘g. The one-dimensional lattice Z can

be decomposed into ‘ non-overlapping subspaces

Z ¼
[

j2K
Zj ¼

[

j2K
fm : m ¼ C‘þ j;C 2 Zg ¼

[

j2K
fji; i 2 Zg:

Set ji ¼ jþ ‘i. Equation (28) can then be restated as

follows.

d

dt
xji ¼ �xji þ zj þ

X

jkj � 1

ak;jf ðxjiþk
Þ; j 2 K; i 2 Z: ð29Þ

Suppose y is a mosaic pattern, for each j 2 K and i 2 Z, the

construction of BjðþÞ and Bjð�Þ is the same as Sect. 2 for

j 2 K. The set of admissible local patterns B of a constant

CNN is then

BðT; zÞ ¼ ðB1ðþÞ; . . .;B‘ðþÞ;B1ð�Þ; . . .;B‘ð�ÞÞ:

Similar to the discussion in [50], the output space Y can be

represented as

Y ¼ fy ¼ ðyjiÞ : yji�d
� � � yji � � � yjiþd

2 ðBjðþÞ;Bjð�ÞÞ
for j 2 K; i 2 Zg:

Ban and Chang [11] showed that Y is topologically con-

jugated to the direct product of the output spaces Yj of the

classical CNNs, where Yj is determined by ðBÞj ¼
ðBjðþÞ;Bjð�ÞÞ for j 2 K. That is, Y ffi

Q
j2K Yj.

Theorem 4.1 (Theorem 4.9 [11]). The spatial entropy of

the output solution Y for the constant-type multiple cellular

neural networks (28) is

hðYÞ ¼ 1

‘

X

j2K
hðYjÞ:

4.2 Arithmetic-Type MPCNN

A MPCNN is called an arithmetic-type (ACNN) if there

exists a positive integer ‘� 2 such that

N i ¼ N j; zi ¼ zj whenever
j

i
¼ 0 ðmod‘Þ:

The essential description of an ACNN is that z ¼ ½zj�‘ 6jj and
N ¼ fN jg‘ 6jj. More precisely, an ACNN with nearest

neighborhood is realized as the form

d

dt
xiðtÞ ¼ �xiðtÞ þ zi þ

X

k2N
i

ak;if ðxi�‘iþkðtÞÞ; i 2 N;

ð30Þ

where ‘-i, i� i, i

i
¼ 0 (mod ‘), and N i ¼ f0; 1g.

Let K ¼ fj : ‘-jg be an infinite index set. The set of

positive integers N is then decomposed into the disjoint

union of infinitely many subsets by

N ¼
[

j2K
Nj ¼

[

j2K
fj‘i : i� 0g :¼

[

j2K
fjigi� 0:

(30) can then be represented as

d

dt
xj‘iðtÞ ¼ �xj‘iðtÞ þ zj þ

X

0� k� 1

ak;jf ðxj‘iþkðtÞÞ; j 2 K; i� 0:

ð31Þ

In this case, the feedback template A ¼ ½Aj�j2K consists of

infinitely many smaller templates Aj ¼ ½a0;j; a1;j�, and the

threshold is z ¼ ½zj�j2K.
Suppose y is a mosaic pattern, for each j 2 K and i� 0,

the necessary and sufficient condition for yji ¼ 1 is

a0;j � 1þ zj [ a1;jyjiþ1
; ð32Þ

and the necessary and sufficient condition for yji ¼ �1 is

a0;j � 1� zj [ ak;1yjiþ1
: ð33Þ

Set

The set of admissible local patterns B of a constant CNN is

then

BðT; zÞ ¼ ðBjðþÞ;Bjð�ÞÞj2K:

The output space Y is then represented as

Y ¼ fy ¼ ðyjiÞ : yji � � � yjiþ1
2 ðBjðþÞ;Bjð�ÞÞforj 2 K; i� 0g:

Similar to that the output space Y of a constant CNN

can be decomposed into finitely many subspaces Yj such

that Yj is a SFT for each j. The output space of an

arithmetic CNN is decomposed into countable subspaces;

more precisely, Y ffi
Q

j2K Yj, where Yj is determined

bythe basic set of admissible local pattern Bj ¼
ðBjðþÞ;Bjð�ÞÞ.

A set function v : 2R ! 0; 1f gR is defined by vðEÞðxÞ :
¼ vEðxÞ ¼ 1 if and only if x 2 E for E being a non-empty

subset of R. For n 2 N and j 2 K such that j\n, define
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kjðnÞ ¼ log‘
n

j

� �
;

KjðnÞ ¼ ðkjðnÞ � dj þ 1ÞvNðkjðnÞ � dj þ 1Þ:

It is seen that both kjðnÞ and KjðnÞ are non-negative inte-

gers. To compute the spatial entropy of ACNN, we intro-

duce some notations first. Set

mjðnÞ ¼
T
kjðnÞ
j

���
��� if KjðnÞ[ 0;

2kjðnÞþ1 otherwise:

8
><

>:
ð34Þ

Recall that Tj is the transition matrix of Yj. The spatial

entropy of ACNN can be computed as follows.

Theorem 4.2 (Theorem 3.1. [11]). Suppose that there

exists d 2 N such that dj � d for j 2 K. Then the spatial

entropy of the output solution Y for the arithmetic-type

multiple cellular neural networks (31) is

hðYÞ ¼ lim
n!1

1

n

X

j�n;j2K
logmjðnÞ; ð35Þ

where mjðnÞ is defined in (34).

5 Conclusion

In this survey we review the recent results for computing

the topological entropy for various types of CNN

(1) Classical cellular neural networks (Theorem 2.2):

(a) The solutions structure forms a subshift of

finite type;

(b) The topological entropy is the logarithm of the

maximal eigenvalue of its transition T .

(2) Multi-layer cellular neural networks (Theorem 2.2):

(a) The solutions structure forms a sofic shift;

(b) If the labeled graph is right-resolving, then the

topological entropy is the logarithm of the

maximal eigenvalue of its transition T;

(c) If the labeled graph is not right-resolving, one

can use subset construction to form a right-

resolving one.

(3) Multi-layer cellular neural networks with initial

values:

(a) The solutions structure forms a path set

(Theorem 3.9);

(b) If the presentation ðG; vÞ is right-resolving and

reachable, then the topological entropy is the

logarithm of the maximal eigenvalue of its

transition T (Theorem 3.12);

(c) There always exists a presentation ðG; vÞ of a
path set which is right-resolving and

reachable.

(4) Multiple cellular neural networks:

(a) The solutions structures forms a multiple shift

(Sect. 4);

(b) The entropy formula is presented in Theorems

4.1 and 4.2.

5.1 Problems

We list some open problems for further study.

Problem 5.1 General method on the computation of

spatial entropy for MPCNN? For Arithmetic-Type

MPCNN, Theorem 4.2 provides formula on computing the

entropy. However, the formula rely heavily on its archi-

tecture and rules on each Yj. Therefore, a general method

on the computation of entropy for a given MPCNN is still

lacking.

Problem 5.2 As Problem 5.1, what is the rigorous

number of (35) in Theorem 4.2?

Problem 5.3 General method for the computation of the

number of n-cylinders of Y with some boundary conditions

for MPCNN. For example, periodic, Dirichlet and

Neumann.

Problem 5.4 (Realization problem). What kind of values

of spatial entropy can be realized by a CNN, MCNN,

MCNN with initial values or ICNN?

5.2 Outlooks

[2-d CNN] How to compute the spatial entropy for

2-dimensional CNN, MCNN, MCNN with initial values or

ICNN? What are their underlying spaces? These are very

difficult problems, even in the symbolic dynamical sys-

tems, only few result is known.

[Multiple-valued output functions] Note that f in (2) is

2-valued output function. That is, it has only 2 saturate

states þ1;�1f g. Recently, there are more and more

research on designing CNN by using multiple-valued out-

put function [49, 53] and apply to associative memories

[51, 52, 79, 81] and disease diagnosis [4, 80]. Nature

problems arise: How to compute the entropy for CNN with

multiple-valued output function? What are their dynamics,

e.g., stability, synchronization or machine learning related

problems?
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