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Abstract. This study investigates a multiplicative integer system, an invariant subset of the
full shift under the action of the semigroup of multiplicative integers, by using a method
that was developed for studying pattern generation problems. The spatial entropy and the
Minkowski dimensions of general multiplicative systems can thus be computed. A coupled
system is the intersection of a multiplicative integer system and the golden mean shift,
which can be decoupled by removing the multiplicative relation set and then performing
procedures similar to those applied to a decoupled system. The spatial entropy can be
obtained after the remaining error term is shown to approach zero.

1. Introduction
Multiplicative integer systems have been intensively studied in recent years; see [13–15,
23, 25, 26, 33, 34, 36] and the references therein. One of the main issues is to compute
the Minkowski (box) dimension and Hausdorff dimension of such systems and to compare
them. These two dimensions are equal in a shift space [16], a closed translation-invariant
subset of a full shift. However, for most known examples of multiplicative integer systems,
they are different. Since the computations of these two dimensions are difficult, effective
methods for computing them for general multiplicative systems must be developed.

This investigation is motivated directly by the work of Kenyon et al [26], who utilized
a variational method to obtain the results on

X0
2 = {(x1, x2, x3, . . .) ∈ {0, 1}N | xk x2k = 0 for all k ≥ 1}, (1.1)
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and also pointed out that the method fails for the system

X0
2,3 = {(x1, x2, x3, . . .) ∈ {0, 1}N | xk x2k x3k = 0 for all k ≥ 1}. (1.2)

This paper will consider the following two classes of systems:
(i) multi-dimensional decoupled systems like (1.2);
(ii) one-dimensional coupled systems like

XG
2 ≡X0

2 ∩6G

= {(x1, x2, . . .) ∈ {0, 1}N | xk x2k = 0 and xk xk+1 = 0 for all k ≥ 1}, (1.3)

where 6G is the golden mean shift.
In (i), this work provides an approach to the computation of the Minkowski dimension
of general multiplicative systems through computing spatial entropy, including (1.1) and
(1.2). In (ii), a sequence of lower and upper bounds is obtained to approach spatial entropy
of general one-dimensional coupled systems.

Firstly, the notion of Minkowski dimension is recalled. For any subset Z ⊂ Rm , the
upper and lower Minkowski dimension of Z can respectively be defined by

dimM (Z)= lim sup
ε→0

log N (Z , ε)
log(1/ε)

(1.4)

and
dimM (Z)= lim inf

ε→0

log N (Z , ε)
log(1/ε)

, (1.5)

where N (Z , ε) is the smallest number of balls of radius ε needed to cover Z [35]. When
the upper and lower Minkowski dimension are equal, denote the Minkowski dimension of
Z by dimM (Z)= dimM (Z)= dimM (Z).

Let SN = {0, 1, . . . , N − 1} be a set of symbols, N ≥ 2. The full shift is denoted by

SN
N = {x = (xi )

∞

i=1 | xi ∈ SN for all i ∈ N}.

Consider the map ϕ : SN
N → [0, 1] defined by ϕ(x)=

∑
∞

k=1 (xk/N k). For any subset X⊆
SN

N , let the corresponding set X̃= ϕ(X)⊆ [0, 1]. Then the upper and lower Minkowski
dimension dimM (X̃) and dimM (X̃) can be defined.

Next, we turn to the notion of the spatial entropy of X⊆ SN
N , introduced to study

the complexity of symbolic dynamical systems X⊂ SZn

N and the applications to lattice
dynamical systems [1, 2, 5–7, 12, 18–20, 24, 29, 31, 32, 37, 38]. The set of positive
integers N is now considered as a half of Z1, the one-dimensional lattice. The set of
positive integers N becomes a static discrete space, a geometric object. i ∈ N is the i th
site. The distance between i and i + 1 is unity. Therefore, in this paper, N is regarded as a
spatial object instead of a temporal object.

Let Zm = {1, 2, . . . , m} ⊂ N be the finite lattice of length m. For X⊆ SN
N , let Xm =

Xm(X) be the set of the m-sequences of X on Zm , that is,

Xm = {x |Zm : x ∈ X}. (1.6)

Let |Xm | be the cardinality of Xm . The upper spatial entropy is defined by

h(X)= lim sup
m→∞

log |Xm |

m
(1.7)
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and the lower spatial entropy is defined by

h(X)= lim inf
m→∞

log |Xm |

m
. (1.8)

When h(X)= h(X), h(X)= h(X)= h(X) is called the spatial entropy of X.
Then, using covers of cylinder sets of X̃, the Minkowski dimensions of X̃ are given by

dimM (X̃)=
1

log N
h(X), (1.9)

dimM (X̃)=
1

log N
h(X) (1.10)

and
dimM (X̃)=

1
log N

h(X) (1.11)

whenever the spatial entropy exists.
This study emphasizes the computation of the spatial entropy h(X) of the multiplicative

system X.
It is known that the spatial entropy h(X) always exists when X is a shift space due to

the subadditivity of log |Xm | in m. The spatial entropy is equal to the topological entropy
h(X, σ ), where σ is the shift map; see [31]. However, for a general subset of the full shift,
the spatial entropy may not exist, and when it does may not be equal to Bowen’s definition
of topological entropy [8]. In this paper, we show that the spatial entropy always exists
when X is in the form as in (1.1)–(1.3).

The multi-dimensional shifts of finite type have been studied intensively; see [9–12, 17–
20, 27, 28, 30–32, 37, 38, 40, 41] and the references therein. The authors have studied
pattern generation problems on multi-dimensional shifts of finite type and developed some
efficient means of studying the generation of admissible patterns, and then computing the
spatial entropy; see [1–7, 21, 22, 24, 29]. This study shows that these methods can be
used to study multi-dimensional decoupled systems, including X0

2,3, and one-dimensional
coupled systems of multiplicative integers.

To illustrate our method, equation (1.1) is investigated first. The spatial entropy h(X0
2)

has been shown to be

h(X0
2)=

∞∑
k=1

1
2k+1 log ak, (1.12)

where ak is a Fibonacci number with a1 = 2, a2 = 3 and ak+1 = ak + ak−1 for all
k ≥ 2 [14]. The derivation of (1.12) in [14] is through the computation of Minkowski
dimension and (1.9). The derivation of (1.12) in this paper is as follows. Denote by M2

the multiplicative relation set of the integers which are powers of 2:

M2 = {1, 2, 4, 8, 16, 32, . . . , 2n, . . .}. (1.13)

Denote by I2 the complementary index set of X0
2 that contains all positive odd integers:

I2 = {n ∈ N | 2 - n} = {2k + 1}∞k=0. (1.14)

The set of all natural number N can now be rearranged into

N=
⋃
i∈I2

iM2, (1.15)
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TABLE 1. Arrangement for positive integers by M2 and I2.

FIGURE 1. Representations for Zk .

where iM2 = {i, 2i, 22i, . . . , 2ni, . . .}. Clearly,

iM2 ∩ jM2 = ∅ (1.16)

if i, j ∈ I2 and i 6= j . Furthermore, the right-hand side of (1.15) can be regarded as the
first quarter of the two-dimensional lattice Z2

= Z1
× Z1; see Table 1.

On integer lattice Z1, for k ≥ 1, a k-lattice Zk can be represented by k-cells as in
Figure 1(a) for drawing numbers or k-vertices as in Figure 1(b) for drawing graphs below.

Let Mk and i Mk be the numbered lattices of the first k elements in M2 and in iM2 on
the Zk , respectively.

Let
N (m)= {k ∈ N | 1≤ k ≤ m} (1.17)

be the set of natural numbers that are less than or equal to m. For each n ≥ 1 and 1≤ i ≤
2n , let

qn(i)=max{q | i · 2q−1
≤ 2n
} = log2

⌊
2n+1

i

⌋
, (1.18)

where bxc is the largest integer that is less than or equal to x .
Then, from Table 1, it is clear that

N (2n)=
⋃

i∈I2,1≤i≤2n

i Mqn(i). (1.19)

For example, for n = 4,

N (24)= M5 ∪ (3M3) ∪ (5M2) ∪ (7M2) ∪ (9M1) ∪ (11M1) ∪ (13M1) ∪ (15M1).

(1.20)
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In terms of blank lattices, the numbers in N (24) lie on one copy of Z5, one copy of Z3,
two copies of Z2 and 22 copies of Z1.

To study N (2n), let

In(k)= |{i ∈ I2 | qn(i)= k, 1≤ i ≤ 2n
}|, (1.21)

k ≥ 1. It can be verified that

In(k)=


2n−1−k for 1≤ k ≤ n − 1,

0 for k = n,

1 for k = n + 1,

0 for k ≥ n + 2.

Therefore, from (1.19), the result for N (2n) in the following proposition can be proven.
For general Q ≥ 2, a similar result for N (Qn) also holds.

PROPOSITION 1.1. For integers Q ≥ 2 and n ≥ 1,

Qn
= (n + 1)+ n(Q − 2)+ (Q − 1)2

n−1∑
k=1

k · Qn−1−k . (1.22)

In particular,

2n
= (n + 1)+

n−1∑
k=1

k · 2n−1−k . (1.23)

Therefore, equation (1.23) states that the numbers in N (2n) are spread out on blank
lattices with one copy of Zn+1 and 2n−1−k copies of Zk , 1≤ k ≤ n − 1. In particular,
setting n = 4 in (1.23) yields (1.20).

Now, consider again system X0
2 and the target formula (1.12). For any n ≥ 1, let Xn be

the set of all admissible n-sequences in X0
2:

Xn = {(x1, x2, . . . , xn) ∈ {0, 1}Zn | xk x2k = 0 for all k ≥ 1 and 2k ≤ n}. (1.24)

Our purpose is to compute |Xn|, which is the number of elements in (1.11). The spatial
entropy h(X0

2) follows from

h(X0
2)= lim

n→∞

1
n

log |Xn|. (1.25)

The constraint
xk x2k = 0 (1.26)

in (1.24) is the admissible condition of the golden mean shift on M2, and it states that
symbol 1 is not allowed to follow symbol 1 immediately. Then the forbidden set on Z2 is
{ }. The transition matrix is

G =
[

1 1
1 0

]
. (1.27)

Let 6k be the set of all admissible patterns on Zk with respect to (1.27); then

|6k | = ak, (1.28)
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FIGURE 2. Numbered lattices Mk and i Mk .

which is the kth Fibonacci number. Since the constraint (1.26) applies to each iM2

independently for i ∈ I2,

|X2n | = |6n+1|

n−1∏
k=1

|6k |
2n−1−k

, (1.29)

which implies
1
2n log |X2n | =

1
2n an+1 +

n−1∑
k=1

1
2k+1 log ak . (1.30)

Hence, equation (1.12) can be shown by carefully computing |Xm | when 2n < m < 2n+1.
By a similar argument, equation (1.22) of Proposition 1.1 also recovers the following

results [14].

THEOREM 1.2. For any Q ≥ 2, denote the multiplicative integer system

X0
Q = {(x1, x2, . . .) ∈ {0, 1}N | xk xQk = 0 for all k ≥ 1}. (1.31)

Then

h(X0
Q)= (Q − 1)2

∞∑
k=1

1
Qk+1 log ak . (1.32)

Consideration of the above reveals the following three main parts of our study of X0
2.

(I) Identify the numbered lattice Mk and the admissible blank lattice Zk from the given
system; see Figures 1 and 2.

(II) Compute the numbers of copies of independent admissible lattices of the same
length; see formulae (1.22) and (1.23).

(III) Determine the set of all admissible patterns 6k , which can be generated on Zk , and
compute the number |6k |.

Notably, step (III) in the study of X0
2 is the classical one-dimensional pattern generation

problem; see [31].
First, consider multi-dimensional decoupled systems, including (1.2). Let

1< γ1 < γ2 < · · ·< γd (1.33)

be natural numbers, d ≥ 2, such that γi and γ j are relatively prime for all i < j , that is,

(γi , γ j )= 1 (1.34)

for all 1≤ i < j ≤ d, where (a, b) is the greatest common divisor of natural numbers a
and b.
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Denote
0 ≡ 0d = {γ1, γ2, . . . , γd} (1.35)

and

X0
0 ≡X0

γ1,γ2,...,γd

= {(x1, x2, x3, . . .) ∈ {0, 1}N | xk xγ1k xγ2k · · · xγd k = 0 for all k ≥ 1}. (1.36)

Let

M0 ≡ {γ
m1
1 γ

m2
2 · · · γ

md
d | m j ≥ 0, 1≤ j ≤ d}

= {qk}
∞

k=1, (1.37)

with qk < q j if k < j . Then equation (1.37) defines a sequence of d-dimensional numbered
lattices Mk of k cells. The blank lattices Lk are defined analogously; see (2.8). The
complementary index set I0 of M0 is defined by

I0 = {n ∈ N | γ j - n, 1≤ j ≤ d}. (1.38)

Hence,
N=

⋃
i∈I0

iM0. (1.39)

The following theorem for multi-dimensional decoupled system will be proven in §2.

THEOREM 1.3. Let 0 = {γ1, γ2, . . . , γd} satisfy (1.33) and (1.34). Then the spatial
entropy of X0

0 is given by

h(X0
0)=

∞∑
k=1

β0

(
1
qk
−

1
qk+1

)
log |6k |, (1.40)

where

β0 =
](I0 ∩ [1, γ1γ2 · · · γd ])

γ1γ2 · · · γd
. (1.41)

Finally, consider the one-dimensional coupled system

XG
Q ≡ X0

Q ∩6G , (1.42)

where 6G is the golden mean shift. Denote by L Q;k the degree-k blank lattice of the
admissible numbered lattice MQ;k(l); see Figure 6 for Q = 2 and Figure 7 for Q = 3. The
following theorem will be proven in §3.

THEOREM 1.4. For any Q ≥ 2 and k ≥ 2,

Q − 1
Q(Qk − 1)

log |6Q,G;k | ≤ h(XG
Q)≤

Q − 1
Q(Qk − 1)

(log |6Q,G;k | + k log 2) (1.43)

and

h(XG
Q)= lim

k→∞

Q − 1
Q(Qk − 1)

log |6Q,G;k |, (1.44)

where 6Q,G;k is the set of all admissible patterns on L Q;k .
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TABLE 2. Representation for M2,3.

After we completed our study of (i) and (ii), we became aware of the work of Peres
et al [33] on (1.2). These authors obtained the same results as ours for (1.2). Our
approach for studying (i) differs from theirs by using the results from an investigation of
pattern generation problems in computing spatial entropy, and involving the three specified
steps (I)–(III). Moreover, a modification of these procedures enables us to study the one-
dimensional coupled system (ii).

Multi-dimensional coupled systems like

XG
2,3 ≡X0

2,3 ∩6G

= {(x1, x2, . . .) ∈ {0, 1}N | xk x2k x3k = 0 and xk xk+1 for all k ≥ 1} (1.45)

are much more delicate. The problem of (1.45) is still not solved by using our method
which works well in studying the one-dimensional coupled system (1.3); see Remark 3.7.

The rest of this paper is arranged as follows. Section 2 studies multi-dimensional
systems and proves Theorem 1.3. Section 3 studies one-dimensional coupled systems
and proves Theorem 1.4.

2. Multi-dimensional systems
This section concerns multi-dimensional decoupled systems and proves Theorem 1.3.
First, X0

0 satisfying (1.33) and (1.34) is considered. Recall that

X0
0 ≡ {(x1, x2, x3, . . .) ∈ {0, 1}N | xk xγ1k xγ2k · · · xγd k = 0 for all k ≥ 1}. (2.1)

Before the three main steps, let M0 be the set of the numbers that are multiples of powers
of γ1, γ2, . . . , γn :

M0 ≡ {γ
m1
1 γ

m2
2 · · · γ

md
d | m j ≥ 0} ≡ {qk}

∞

k=1, (2.2)

with qk < q j if k < j . Notably, M0 can be arranged in a d-dimensional lattice with the
coordinate axes: powers of γ1, powers of γ2, . . . and powers of γn ; see Table 2 for M2,3.

The complementary index set I0 of X0
0 is the set of all natural numbers that cannot

be divided by γ j , 1≤ j ≤ d, as defined in (1.38). The set N of natural numbers can be
rearranged into the first octant of (d + 1)-dimensional space as

N=
⋃

i∈I0

iM0, (2.3)
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TABLE 3. Arrangement for positive integers by M2,3 and I2,3.

and for i, j ∈ I0 with i 6= j ,
iM0 ∩ jM0 = ∅. (2.4)

Indeed, the d + 1 coordinate axes are I0 and powers of γ j , 1≤ j ≤ d; see Table 3 for
X2,3.

In the following, X0
2,3 is used to illustrate above. Let M2,3 be the set of the numbers

that are multiples of powers of 2 and powers of 3:

M2,3 = {2k3l
| k, l ≥ 0} = {qk}

∞

k=1. (2.5)

In Table 2, M2,3 can be expressed as a quarter of Z2.
The complementary index set I2,3 of X0

2,3 is

I2,3 = {n ∈ N | 2 - n and 3 - n} = {6k + 1, 6k + 5}∞k=0. (2.6)

Therefore, the set N of natural numbers can be rearranged into the first octant of three-
dimensional space as in Table 3.

Now, for step (I), the admissible numbered and blank lattices, determined by the
constraint

xk xγ1k xγ2k · · · xγd k = 0, (2.7)

must be identified in X0
0 .

Since M0 can be arranged in a d-dimensional lattice, for any k ≥ 1, the L-shaped k-cell
numbered lattice Mk that contains {q1, q2, . . . , qk} can be defined; see Figure 3 for Mk

of X0
2,3, 1≤ k ≤ 8. Then, the k-cell (blank) lattice Lk can also be defined by deleting the

numbers of Mk . Indeed, for any k ≥ 1,

Lk = {(i1, i2, . . . , id) ∈ Zd
| γ

i1
1 γ

i2
2 · · · γ

id
d ≤ qk for i j ≥ 0, 1≤ j ≤ d}. (2.8)

Therefore, for step (I), the numbered lattice Mk and the admissible blank lattice Lk are
obtained. In contrast to X0

2, the lattice Lk is now n-dimensional.
Turning to step (II), let Zm = {1, 2, . . . , m} ⊂ N be the finite lattice of length n. From

(2.3), the lattice Zm can be arranged to be a finite (d + 1)-dimensional lattice with size m.
Firstly, some necessary notation is introduced. Let

J0;m = {i ∈ I0 | i ≤ m} (2.9)
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FIGURE 3. Numbered lattices Mk of X0
2,3.

be the intersection of I0 and Zm . For each i ∈ J0;m , let

q0;m(i)=max{q ∈M0 | iq ≤ m}. (2.10)

Then, for 1≤ k ≤ m, denote by

I0(k; m)= {i ∈ J0;m | q0;m(i)= qk} (2.11)

the subset of J0;m such that, for i ∈ J0;m , |iM0 ∩ Zm | = k. Let

α0(k; m)= |I0(k; m)|. (2.12)

It can be proven immediately that, for m ≥ 1,

Zm =

m⋃
k=1

⋃
i∈I0(k;m)

i Mk (2.13)

and

m =
m∑

k=1

α0(k; m) · k. (2.14)

Then, after rearranging by (2.13), Zm is decomposed into α0(k; m) copies of k-cell (blank)
lattice Lk , 1≤ k ≤ m.

Let us use X0
2,3 to illustrates (2.11) and (2.13). For m = 36, it is easy to verify that

I2,3(1; 14)= {19, 23, 25, 29, 31, 35},
I2,3(2; 14)= {13, 17},
I2,3(3; 14)= {11},
I2,3(4; 14)= {7},
I2,3(5; 14)(14)= {5},
I2,3(14; 14)(14)= {1}.

The others are empty. Therefore,

Z36 =

( ⋃
i∈{19,23,25,29,31,35}

i M1

)
∪ 17M2 ∪ 13M2 ∪ 11M3 ∪ 7M4 ∪ 5M5 ∪ M14

and
m = 36= 6 · 1+ 2 · 2+ 1 · 3+ 1 · 4+ 1 · 5+ 1 · 14.

The following proposition shows the limiting density of α0(k; m), the number of the
copies of Lk , as m tends to infinity, which is crucial in computing the spatial entropy.
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PROPOSITION 2.1. On X0
0 , for k ≥ 1,

lim
m→∞

α0(k; m)
m

= β0

(
1
qk
−

1
qk+1

)
, (2.15)

where

β0 =
](I0 ∩ [1, γ1γ2 · · · γd ])

γ1γ2 · · · γd
. (2.16)

Proof. Fix k ≥ 1. For each i ∈ J0;m , it is clear that if q0;m(i)= qk , then

iqk ≤ m < iqk+1.

Then

I0(k; m)=
(

m
qk+1

,
m
qk

]
∩ I0. (2.17)

Therefore,

lim
m→∞

α0(k; m)
m

= lim
m→∞

β0

(
m
qk
−

m
qk+1

)
m

= β0

(
1
qk
−

1
qk+1

)
. (2.18)

The proof is complete. �

Having obtained the limiting density (2.15) of the copies of Lk , step (II) is complete.
Y=The final step (III) is to compute the admissible patterns on the d-dimensional lattice
Lk for all k ≥ 1.

The basic lattice L0 of X0
0 is defined by

L0 =
{
(i1, i2, . . . , id) ∈ Zd

∣∣∣∣ 0≤
d∑

k=1

ik ≤ 1 for ik ≥ 0, 1≤ k ≤ d
}
, (2.19)

the d-dimensional L-shaped lattice with the origin (0, 0, . . . , 0) as the corner vertex. From
the constraint

xk xγ1k xγ2k · · · xγd k = 0 (2.20)

and M0 can be arranged in a d-dimensional lattice, with the coordinate axes: powers of
γ j , 1≤ j ≤ d, we define the forbidden set

F0 = {U = (ui1,i2,...,id ) ∈ {0, 1}L0 | ui1,i2,...,id = 1 for all (i1, i2, . . . , id) ∈ L0}.

Then the basic set of admissible patterns is defined by

B0 = {0, 1}L0 \ F0, (2.21)

which induces a d-dimensional shift of finite type 6(B0) on the d-dimensional lattice
space Zd . Denote by 6k =6k(B0) the set of all admissible patterns determined by B0 on
Lk . Indeed,

6k =6k(B0)
= {U ∈ {0, 1}Lk :U |L∈ B0 for all L = L0 + v⊆ Lk with some v ∈ Zd

}. (2.22)
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For example, consider X0
2,3. The basic lattice L2,3 is defined by

L2,3 = {(i, j) ∈ Z2
| 0≤ i + j ≤ 1 for i, j ≥ 0} = {(0, 0), (1, 0), (0, 1)}, (2.23)

that is,

,

the L-shaped lattice with origin (0, 0) as the corner vertex. The forbidden local pattern on
L2,3 is { }

. (2.24)

Therefore, the basic set of admissible patterns is

B2,3 =

{ }
; (2.25)

see [5, 6]. For k ≥ 1, 6k =6k(B2,3) is the set of all admissible patterns on Lk that are
determined by B2,3. Previously, two-dimensional pattern generation problems on L-shaped
lattices have been studied by Lin and Yang in [29].

Recall that X0;n is the set of the n-sequences of X0 on Zn , that is,

X0;n = {(x1, x2, . . . , xn) ∈ {0, 1}Zn | xk xγ1k · · · xγd k = 0 for all k ≥ 1 and γdk ≤ n}

and
h(X0

0)= lim
n→∞

1
n

log |X0;n|.

Having completed the above procedures, we will now prove Theorem 1.3, which says
that the spatial entropy of X0

0 that satisfies (1.33) and (1.34) is equal to

h(X0
0)=

∞∑
k=1

β0

(
1
qk
−

1
qk+1

)
log |6k |.

Proof of Theorem 1.3. First, for any n ≥ 1, let X0;n be the set of all admissible n-
sequences on Zn in X0

0 . From condition (2.20), by (2.3), it is easy to see that for any
two i1, i2 ∈ I0 , the admissible patterns on i1M0 and the admissible patterns on i2M0 are
mutually independent.

Then, by (2.13), we have that for any n ≥ 1,

|X0;n| =
n∏

k=1

|6k |
α0(k;n).

Therefore, from Proposition 2.1,

h(X0
0)= lim

n→∞

log |X0;n|
n

= lim
n→∞

( n∑
k=1

α0(k; n) log |6k |

)/
n

=

∞∑
k=1

β0

(
1
qk
−

1
qk+1

)
log |6k |.

The proof is complete. �
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TABLE 4. bk of X0
2,3.

k 5 14 26 43
bk 14 3722 5 434 757 172 749 984 030

Remark 2.2.
(i) Consider X0

2,3. Denote by
|6k | = bk (2.26)

the number of the patterns in 6k . Since no exact formula relates 2m3n to qi for
M2,3 in Table 2, unlike for a Fibonacci number, no recursive formula exists for bk ;
see [39]. This fact creates the most difficulty in computing spatial entropy for a
multi-dimensional system; see [5, 6, 29]. However, for relatively small k, bk can be
computed using the transition matrices developed in [5, 6]. Table 4 presents a few
cases for qk = 6l , 1≤ l ≤ 4.

(ii) Define
rk = |6k |/|6k−1| = bk/bk−1 (2.27)

for k ≥ 2. From Table 2 and Figure 3, it is easy to verify that

rk = 2 if qk = 2n, (2.28)

for some n ≥ 1. On the other hand, it can be shown that there exists C ≤ 31
16 such that

rk ≤ C for qk 6= 2n for all n ≥ 2. (2.29)

Therefore, {rk} cannot have a limit as k tends to∞, unlike the Fibonacci sequence
which has the limit (1+

√
5)/2. Further study of {rk} and bk is needed.

In the following, an approximation of (1.40) is given. For n ≥ 1, let

h(n)(X0
0)=

n∑
k=1

β0

(
1
qk
−

1
qk+1

)
log |6k |. (2.30)

Clearly, from Theorem 1.3, h(n)(X0
0) is a lower bound of h(X0

0), and h(n)(X0
0) increasingly

approaches h(X0
0) as n tends to infinity. Furthermore, let

E (n)(X0
0)≡

∞∑
k=n+1

β0

(
1
qk
−

1
qk+1

)
log 2k

=

∞∑
k=1

β0

(
1
qk
−

1
qk+1

)
log 2k

−

n∑
k=1

β0

(
1
qk
−

1
qk+1

)
log 2k

= β0

( ∞∑
k=1

1
qk
−

n∑
k=1

1
qk
+

n
qn+1

)
log 2, (2.31)

where
∞∑

k=1

1
qk
=

d∏
j=1

1
1− 1/γ j

.
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TABLE 5. h(n)(X0
2,3) for X0

2,3.

n 4 13 25 42
h(n)(X0

2,3) 0.319901 0.537229 0.620707 0.645733

TABLE 6. Representation for M2,3,5.

Hence,
h(X0

0)− h(n)(X0
0)≤ E (n)(X0

0). (2.32)

For example, consider X0
2.3. Table 5 presents cases for n with qn+1 = 6l and 1≤ l ≤ 4.

Moreover, h(152)(X0
2,3)≈ 0.654303 and E (152)(X0

2,3)≈ 0.0000238741.
The following example considers the three-dimensional system X0

2,3,5.

Example 2.3. For d = 3, consider

X0
2,3,5 = {(x1, x2, x3, . . .) ∈ {0, 1}N | xk x2k x3k x5k = 0 for all k ≥ 1}.

Then
M2,3,5 = {2m3n5r

| m, n, r ≥ 0}

can be arranged into the first octant of Z3; see Table 6. Clearly,

I2,3,5 = {30k + j | j ∈ {1, 7, 11, 13, 17, 19, 23, 29} and k ≥ 0}.

The first five numbered lattices are listed as shown in Figure 4.

FIGURE 4. Numbered lattices Mk of X0
2,3,5.

The basic lattice is

L2,3,5 = .
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TABLE 7. |6n(2, 3, 5)| for X0
2,3,5.

n 5 10 15 20 25
|6n(2, 3, 5)| 30 904 25 720 738 816 19 959 552

Therefore, it can be verified that

h(X0
2,3,5)=

∞∑
k=1

β2,3,5

(
1
qk
−

1
qk+1

)
log |6k(2, 3, 5)|, (2.33)

where β2,3,5 =
4

15 and the forbidden set of 6k(2, 3, 5) is
{ }

. Moreover, the nth-order
approximation of (2.33) is as follows. For n ≥ 1, let

h(n)(X0
2,3,5)=

n∑
k=1

β2,3,5

(
1
qk
−

1
qk+1

)
log |6k(2, 3, 5)|.

In Table 7, some cases for |6n(2, 3, 5)| in 1≤ n ≤ 25 are listed. Moreover, h(25)(X0
2,3,5)≈

0.548837.

The previous idea also applies to the system X0
0 that does not satisfy conditions (1.33)

and (1.34), where 0 = {γ1, γ2, . . . , γd}. Without conditions (1.33) and (1.34), M0 cannot
be arranged in a d-dimensional lattice. Consider, then, the prime factors of γ j , 1≤ j ≤ d.
Indeed, let C∗ be the least common multiple of γ1, γ2, . . . , γd . Denote by

0∗ = {p1, p2, . . . , pQ} (2.34)

the set of prime factors of C∗ with p1 < p2 < · · ·< pQ , Q ≥ 1. Clearly, 0∗ satisfies both
(1.33) and (1.34), and then M0∗ can be arranged in a Q-dimensional lattice.

Furthermore, X0
0 can be studied by using M0∗ and I0∗ . Denote

M0∗ ≡ {p
m1
1 pm2

2 · · · pm Q
Q | m j ≥ 0, 1≤ j ≤ Q} = {q∗k }

∞

k=1, (2.35)

with q∗k < q∗j if k < j . The complementary index set I0∗ of M0∗ is defined by

I0∗ = {n ∈ N | p j - n, 1≤ j ≤ Q}. (2.36)

For k ≥ 1, let the k-cell lattice L∗k of X0
0 be

L∗k = {(i1, i2, . . . , iQ) ∈ ZQ
| pi1

1 pi2
2 · · · piQ

Q ≤ q∗k for iq ≥ 0, 1≤ q ≤ Q}. (2.37)

Now the constraint
xk xγ1k xγ2k · · · xγd k = 0 (2.38)

can be expressed in terms of 0∗. Indeed, define the basic lattice L0 of X0
0 by

L0 = {(i1, i2, . . . , iQ) ∈ ZQ
| pi1

1 pi2
2 · · · piQ

Q ∈ {1, γ1, γ2, . . . , γd}}. (2.39)

Then the forbidden set F0 is given by

F0 = {U = (ui1,i2,...,iQ ) ∈ {0, 1}L0 | ui1,i2,...,iQ = 1 for all (i1, i2, . . . , iQ) ∈ L0}.
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Therefore, the basic set of admissible patterns can be written

B0 = {0, 1}L0 \ F0. (2.40)

Notably, B0 induces a Q-dimensional shift of finite type 6(B0).
Let 6k(B0) be the set of all admissible patterns that can be determined by B0 on L∗k ,

k ≥ 1. In the following, Theorem 1.3 is generalized for X0
0 without conditions (1.33) and

(1.34).

THEOREM 2.4. Let 0 = {γ1, γ2, . . . , γd}. Then the spatial entropy of X0
0 is given by

h(X0
0)=

∞∑
k=1

β0∗

(
1

q∗k
−

1
q∗k+1

)
log |6k(B0)|, (2.41)

where

β0∗ =
](I0∗ ∩ [1, p1 p2 · · · pQ])

p1 p2 · · · pQ
, (2.42)

and 0∗, M0∗ and I0∗ are given by (2.34), (2.35) and (2.36), respectively.

Proof. First, from the construction of (2.34)–(2.36), it is clear that

N=
⋃

i∈I0∗
iM0∗

and for i, j ∈ I0∗ with i 6= j ,
iM0∗ ∩ jM0∗ = ∅.

It is easy to see that γq ∈M0∗ for 1≤ q ≤ d. Moreover, if n ∈ iM0∗ for some i ∈ I0∗ ,
then γqn ∈ iM0∗ for all 1≤ q ≤ d. Hence, from constraint (2.38), the admissible patterns
on i1M0∗ and on i2M0∗ are mutually independent for i1 6= i2 ∈ I0∗ .

As in the proof of Theorem 1.3, we can define J0∗;n , q0∗;n(i), I0∗(k; n) and α0∗(k; n).
It can be proven that

I0∗(k; n)=
(

n
q∗k+1

,
n
q∗k

]⋂
I0∗

and

lim
n→∞

α∗0(k; n)
n

= β0∗

(
1

q∗k
−

1
q∗k+1

)
.

Next, theconstraint (2.38) and the construction of B0 imply that the admissible patterns
on iM0∗ , i ∈ I0∗ , are completely determined by B0 . Hence,

|X0;n| =
n∏

k=1

|6k(B0)|α0∗ (k;n),

where 6k(B0) is the set of all admissible patterns determined by B0 on L∗k . Therefore,
equation (2.41) follows. The proof is complete. �

The following example illustrates Theorem 2.4.
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Example 2.5. Consider X0
2,8. It is easy to see that 0∗ = {2}. From (2.39), the basic

lattice L2,8 = {0, 1, 3} = , where the third cell is deleted. The forbidden set F2,8 is
{ } and B2,8 = {0, 1}L2,8 \ F2,8. Define the associated transition matrix

Then

h(X0
2,8)=

∞∑
k=1

1
2k+1 log |6k(B2,8)|,

where |6m(B2,8)| = 2m and |6n(B2,8)| = |A(2, 8)n−3
| for 1≤ m ≤ 3 and n ≥ 4.

In the remainder of this section, constraint (2.38) is further relaxed. Therefore, we can
study more general cases than X0

0 . For simplicity, only 0 satisfying conditions (1.33) and
(1.34) is studied.

For any N ≥ 2, consider a multiplicative system of N symbols, {0, 1, 2, . . . , N − 1}.
For any d ≥ 1, let the constraint set C be a subset of {0, 1, . . . , (N − 1)d}. Denote by
X0(N , C) the multiplicative integer system with constraint set C:

X0(N , C)= {(x1, x2, . . .) ∈ {0, 1, . . . , N − 1}N | xk xγ1k · · · xγd k ∈ C for k ≥ 1}. (2.43)

Then the basic set B0(N , C) of admissible patterns on L0 is given by

B0(N , C)=
{

U = (ui1,i2,...,id ) ∈ {0, 1, . . . , N − 1}L0
∣∣∣∣ ∏
(i1,i2,...,id )∈L0

ui1,i2,...,id ∈ C
}
.

(2.44)

The following theorem can be proven similarly Theorem 1.3.

THEOREM 2.6. Let 0 = {γ1, γ2, . . . , γd} satisfy (1.33) and (1.34) and C ⊆
{0, 1, . . . , (N − 1)d}. The spatial entropy of X0(N , C) is given by

h(X0(N , C))=
∞∑

k=1

β0

(
1
qk
−

1
qk+1

)
log |6k(B0(N , C))|, (2.45)

where 6k(B0(N , C)) is the set of d-dimensional admissible local patterns that can be
generated by B0(N , C) on Lk .

Proof. The only difference between X0
0 and X0(N , C) is their constraints. By (2.43), it is

easy to see that the basic set B0(N , C) can completely determine the patterns on iM0 for
i ∈ I0 . Therefore, the result follows. �

The following example illustrates Theorem 2.6.
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FIGURE 5. Representation for XG
2 .

Example 2.7. Let N = 3 and C = {0, 2}. Then

X2(3, C)= {(x1, x2, x3, . . .) ∈ {0, 1, 2}N | xk x2k ∈ {0, 2} for all k ≥ 1}.

The basic set of admissible local patterns is now given by

B2(3, C)= { }.

The associated transition matrix is

Therefore, as in Theorem 1.2,

h(X2(3, C))= 4
∞∑

k=1

1
3k+1 log ak(2; 3, C),

where a1(2; 3, C)= 3 and ak(2; 3, C)= |A(2; 3, C)k−1
| for all k ≥ 2.

3. One-dimensional coupled systems
This section investigates the one-dimensional coupled system which is an intersection of
the multiplicative integer system X0

Q , Q ≥ 2, and the golden mean shift 6G , that is,

XG
Q ≡X0

Q ∩6G

= {(x1, x2, x3, . . .) ∈ {0, 1}N | xk xQk = 0 and xk xk+1 = 0 for all k ≥ 1}. (3.1)

To incorporate the effect of 6G in XG
Q , Table 1 for X0

2 is replaced by Figure 5 for XG
2 .

As in Table 1, the horizontal lines in Figure 5 connect the integers in iM2 for each i ∈ I2;
the effect comes from X0

2. On the other hand, the bold zigzag line in Figure 5 connecting
all natural integers comes from 6G . Therefore, for any i 6= j in I2, iM2 and jM2 are
no longer mutually independent. In fact, they are all coupled through the relation set M2.
Therefore, (3.1) is regarded as a coupled system.
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In this section, the main steps for the study of the spatial entropy of XG
Q are as follows.

(I)c Identify the lattice MQ;k (and L Q;k), which is the maximal connected graph of degree
k.

(II)c In the region [1, m] ∩ N, find the almost maximal number of disjoint copies of
mutually independent MQ;k , and compute the number of unused vertices.

(III)c Compute the number 6Q,G;k of admissible patterns on Lk .
Step (I)c gives the admissible lattices of h(XG

Q), and (II)c gives lower and upper bounds
of h(XG

Q). Then h(XG
Q) follows if the error term in (II)c approaches zero as n tends to

infinity. To minimize the error in (II)c, the amount of unused lattices should be as small
as possible. Therefore, the choice of MQ;k or the graph L Q;k in (I)c should be as large as
possible as far as they are decoupled.

Before the system XG
Q is decoupled, the following definition is needed.

Definition 3.1. Two sets of integers of M and M ′ are mutually independent in XA
Q if

M ∩ M ′ = ∅ (3.2)

and any numbers m in M and m′ in M ′ are not consecutive and also not consecutive as
powers of Q, that is, if m = Qn for some n then m′ 6= Qn+1 and Qn−1.

Then the following lemma can be obtained.

LEMMA 3.2. Suppose M and M ′ are mutually independent in XG
Q . Then

|6(M ∪ M ′)| = |6(M)||6(M ′)|, (3.3)

where6(M) is the set of all admissible patterns on lattice M, and6(M ′) and6(M ∪ M ′)
are defined analogously.

Proof. Since M and M ′ are decoupled in XG
Q , the patterns in6(M) are independent of the

patterns in 6(M ′). Therefore, the result holds. �

In step (I)c, as in the decoupled system X0
Q , the admissible numbered lattice MQ;k is

first picked up. First, XG
2 is considered. In Figure 6, some M2;k(l) are drawn for 1≤ k ≤ 4.

The choice of M2;k is recursive and robotic. The basic idea is that any number can
produce the next generation through X2 or 6G . More precisely, for each number n, if
n ∈ I2, then n can produce the next generation 2n ∈ nM2. If n /∈ I2 with n = i2m , m ≥ 1,
then n can produce 2n = i2m+1

∈ iM2 through X2 and n ± 1= i2m
± 1 ∈ I2 through6G .

In summary, a complete production cycle is as follows. If n ∈ I2, then n produces 2n and
then 2n ± 1. If n = i2m , m ≥ 1, then n produces i2m+1 and then i2m+1

± 1.
For example, M2;1(3) has one cell, and the number 3 is regarded as the first-generation

number. M2;2(3) is constructed from M2;1(3) by producing number 6 from 3 through
3M2. Immediately, 6 creates numbers 5 and 7 as descendants through 6A. M2;2(3) is of
degree 2 since there are two numbers {3, 6} on the horizontal line.

The construction of M2;3 from M2;2 is performed similarly: the number 6 yields number
12 in 3M2. At the same time, the numbers 5 and 7 yield the numbers 10 and 14 in 5M2

and 7M2, respectively. Next, the numbers 10, 14 and 12 yield their descendants 9, 11, 13,
15 and 11, 13 in I2 through 6G , as presented in Figure 6(e). Now, the three numbers 3,
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FIGURE 6. Admissible numbered lattices M2;k (l).

6 and 12 are in the lowest horizontal direction, and M2;3(3) is therefore of degree 3. On
M2;k(i), the maximal number of cells in the horizontal direction is k, and M2;k(i) is of
degree k.

Now, for general XG
Q , MQ;k(l) can be defined formally as follows.

Definition 3.3. For each l ∈ {1+ j Q | j ≥ 1} ⊂ IQ , let VQ;1(l)= {l, l + 1, . . . , l + Q −
2}, and for k ≥ 1, define

VQ;k+1(l)= {Qi, Qi ± 1, Qi ± 2, . . . , Qi ± (Q − 1) | i ∈ VQ;k(l)}.

Then, let MQ;1(l)= VQ;1(l) and for k ≥ 2, define

MQ;k+1(l)≡ MQ;k(l) ∪ VQ;k+1(l).

Moreover, the blank lattice L Q;k of degree k is defined by deleting the numbers of MQ;k(l).

Notably, MQ;k(l) and MQ;k(l ′) are mutually independent when l is not in MQ;k(l ′). See
Figure 7 for M3;2(4), M3;2(7) and M3;3(4).
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FIGURE 7. Admissible numbered lattices M3;k (l).

FIGURE 8. Illustration for computing L3;3.

The following lemma gives the number of vertices of L Q;k .

LEMMA 3.4. For any Q ≥ 2 and k ≥ 2, the number |L Q;k | of vertices of L Q;k is

|L Q;k | =
Q(Qk

− 1)
Q − 1

− k. (3.4)

Proof. First, equation (3.4) is proven for the case Q = 3. The other cases can be treated
analogously.

For Q = 3, let
a3,n = 2 · 3n .

The blank lattice L3;2 can be obtained from M3;2(4) in Figure 7, and

|L3;2| = a3,1 + (a3,1 + a3,2)= 10.

Now L3;3 is obtained from M3;3(4) in Figure 7 and can be grouped as shown in Figure 8.
In Figure 8, it is easy to see that the three numbers in the bottom layer are equal to 2,

the two numbers in the middle layer are equal to 2 · 3 and the number in the top layer is
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FIGURE 9. Mutually independent M2;2(l) in N (32).

equal to 2 · 32. Then,

|L3;3| =

3∑
l=1

l∑
j=1

a3, j

= a3,1 + (a3,1 + a3,2)+ (a3,1 + a3,2 + a3,3)

= |L3;2| + 26.

By induction, it can be proven that

|L3;k | = |L3;k−1| + 3k
− 1 (3.5)

for all k ≥ 2. Therefore, equation (3.4) follows for Q = 3.
Now, for general Q ≥ 2,

aQ,n = (Q − 1)Qn−1.

Similarly, it can be proven that

|L Q;k | = |L Q;k−1| + Qk
− 1, (3.6)

for all k ≥ 2. Therefore, (3.4) holds. The proof is complete. �

Having identified the lattices MQ;k and L Q;k , in a given range

N (m)≡ { j | 1≤ j ≤ m},

step (II) is then to be carried out, that is, the number of disjoint copies of mutually
independent MQ;k(l)⊂N (m) with l ∈ {1+ j Q | j ≥ 1} ⊂ IQ is computed.

For example, for XG
2 , in Figure 9, N (32) can be decoupled by M2;2(3), M2;2(9),

M2;2(11), M2;2(13), M2;2(15) and the numbers in {1, 2, 4, 8, 10, 12, 14, 16, 20, 24, 28,
32} are not used. There is one copy M2;2(3) in N (23) \N (2) and four copies M2;2(9),
M2;2(11), M2;2(13), M2;2(15) in N (25) \N (23); see Figure 9.

Based on the above idea, we compute the number of disjoint copies of mutually
independent MQ;k(l)⊂N (m) as follows. Clearly, for m ≥ 1, the N (m) can be
decomposed as

N (m) \ {1} =
J⋃

j=1

NQ,k(m, j)
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FIGURE 10. Illustration for computing α2,2(2, 1) and α2,2(2, 2).

where
NQ,k(m, j)= (m/Qk j , m/Qk( j−1)

] ∩ N (3.7)

and

J =max
{

j ≥ 1
∣∣∣∣ m

Q j > 1
}
. (3.8)

It is easy to see that

NQ,k(m, j)=
k−1⋃
l=0

(m/Q jk−l , m/Q jk−l−1
] ∩ N. (3.9)

For 1≤ j ≤ J , let

N ∗Q,k(m, j)= (m/Q jk, m/Q jk−1
] ∩ {1+ pQ | p ≥ 1}. (3.10)

It can easily be proved that if l ∈N ∗Q,k(m, j), then MQ;k(l)⊂NQ,k(m, j). Clearly, for
l, l ′ ∈N ∗Q,k(m, j) with l 6= l ′, MQ;k(l) and MQ;k(l ′) are mutually independent.

Therefore, there are
αQ,k(m, j)≡ ](N ∗Q,k(m, j)) (3.11)

disjoint copies of mutually independent MQ;k(l)⊂NQ,k(m, j). Moreover, there are

αQ,k(m)≡
J∑

j=1

αQ,k(m, j) (3.12)

disjoint copies of mutually independent MQ;k(l) in N (m).
For example, consider XG

2 . There are

α2,2(2, 1)= ]((m/4, m/2] ∩ {1+ 2p | p ≥ 1})

disjoint copies of mutually independent M2;2(l) in N2,2(m, 1)= (m/4, m] ∩ N, and there
are

α2,2(2, 2)= ]((m/16, m/8] ∩ {1+ 2p | p ≥ 1})

disjoint copies of mutually independent M2;2(l) in N2,2(m, 2)= (m/16, m/4] ∩ N; see
Figure 10.

For step (II), the following lemma shows the limiting density of αQ,k(m), the number
of disjoint copies of mutually independent MQ;k(l) in N (m), as m tends to infinity.



Pattern generation problems arising in multiplicative integer systems 1257

LEMMA 3.5. If Q ≥ 2 and k ≥ 1, then

lim
m→∞

αQ,k(m)
m

=
Q − 1

Q(Qk − 1)
. (3.13)

Furthermore, let
βQ,k(m)≡ m − αQ,k(m) · |L Q;k | (3.14)

be the number of vertices that are not used in choosing the αQ,k(m) disjoint copies of
mutually independent MQ;k(l) in N (m). Then

lim
m→∞

βQ,k(m)
m

=
(Q − 1)k

Q(Qk − 1)
. (3.15)

Proof. From (3.10)–(3.12),

lim
m→∞

αQ,k(m)
m

= lim
m→∞

J∑
j=1

αQ,k(m, j)/m

= lim
m→∞

[ J∑
j=1

(
m

Q jk−1 −
m

Q jk

)
1
Q

]/
m

=

∞∑
j=1

(
1

Q jk−1 −
1

Q jk

)
1
Q

=
Q − 1

Q(Qk − 1)
.

Next, by Lemma 3.4 and (3.14),

lim
m→∞

βQ,k(m)
m

= lim
m→∞

1−
αQ,k(m)

m
|L Q;k |

= 1−
Q − 1

Q(Qk − 1)

(
Q(Qk

− 1)
Q − 1

− k
)

=
(Q − 1)k

Q(Qk − 1)
.

The proof is complete. �

Finally, for step (III), denote by 6Q,G;k the admissible patterns of XG
Q on L Q;k . In the

following, we will now prove Theorem 1.4 which says that XG
Q has two sequences of lower

and upper bounds that can approach the spatial entropy h(XG
Q). Indeed,

Q − 1
Q(Qk − 1)

log |6Q,G;k | ≤ h(XG
Q)≤

Q − 1
Q(Qk − 1)

(log |6Q,G;k | + k log 2), (3.16)

and
h(XG

Q)= lim
k→∞

Q − 1
Q(Qk − 1)

log |6Q,G;k |. (3.17)

Proof of Theorem 1.4. First, from the above procedure to find αQ,k(m) copies MQ;k(l) in
N (m), all MQ;k(l) are mutually independent. In N (m), since 0 is a safe symbol of XG

Q , we
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TABLE 8. Lower and upper bounds for XG
2 .

n 2 3 4
|62,G;n | 9 237 213 624
h(n)(XG

2 ) 0.366204 0.390576 0.409066
h̄(n)(XG

2 ) 0.597253 0.539107 0.501485

put 0 on the vertices that are not used in the procedure. Then the lower bound of |X Q,G;m |

can be obtained:
|X Q,G;m | ≥ |6Q,G;m |

αQ,k (m). (3.18)

For the upper bound of |X Q,G;m |, since two symbols 0 and 1 may appear on the vertices
that are not used in the procedure, it is clear that

|X Q,G;m | ≤ |6Q,G;m |
αQ,k (m) · 2βQ,k (m). (3.19)

Therefore, by Lemma 3.5, equation (3.16) holds. Furthermore, from (3.16), (3.17)
follows immediately. The proof is complete. �

Example 3.6. Consider the one-dimensional couple system XG
2 ≡ X0

2
⋂
6G . Table 8

presents a numerical approximation of (3.16). For n ≥ 1, let

h(n)(XG
2 )=

1
2(2n − 1)

log |62,G;n| and h̄(n)(XG
2 )= h(n)(XG

2 )+
n

2(2n − 1)
log 2.

Then it is clear that
h(n)(XG

2 ) < h(XG
2 ) < h̄(n)(XG

2 ).

Remark 3.7. In studying the one-dimensional coupled system XG
Q , for each k ≥ 1, we split

the natural numbers N into two parts,

N=Uk ∪Wk, (3.20)

where Uk is used to select the mutually independent admissible numbered lattice MQ;k(l)
for approximating the entropy, and Wk is the set of cells removed from N to achieve
independence of MQ;k(l) in Uk . A good splitting requires

lim
k→∞

lim
n→∞

|Wk ∩ [1, n]|
|Uk ∩ [1, n]|

= 0; (3.21)

see Lemma 3.5 and Theorem 1.4.
However, for the two-dimensional coupled system XG

2,3, this paper does not find any
means to split N into two parts such that (3.21) holds. The connection between X0

2,3 and
6G is quite complicated. A better understanding of the connection is required before
dealing with XG

2,3.
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