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a b s t r a c t

This paper investigates whether the output space of a multi-layer cellular neural network can be realized
via a single layer cellular neural network in the sense of the existence of finite-to-onemap fromone output
space to the other. Whenever such realization exists, the phenomena exhibited in the output space of the
revealed single layer cellular neural network is at most a constant multiple of the phenomena exhibited
in the output space of the original multi-layer cellular neural network. Meanwhile, the computation
complexity of a single layer system is much less than the complexity of a multi-layer system. Namely,
one can trade the precision of the results for the execution time. We remark that a routine extension of
the proposed methodology in this paper can be applied to the substitution of hidden spaces although the
detailed illustration is omitted.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Cellular neural networks (CNNs), introduced by Chua and Yang
(1988a, 1988b), have been one of the most investigated paradigms
in neural information processing (Chua, 1998). CNNsmust be com-
pletely stable in a wide range of applications (e.g., pattern recogni-
tion), i.e., each trajectory should converge toward some stationary
state. The study of stationary solutions is thus important. More-
over, the investigation ofmosaic solutions is essential due to the im-
portance of learning algorithms and the training process. Roughly
speaking, a learning algorithm is more efficient if there are more
abundant output patterns for a given CNN.

Coupled systems based on CNNs, namely multi-layer cellular
neural networks (MCNNs), have received considerable attention
and have been successfully applied to many areas such as
signal propagation between neurons, image processing, pattern
recognition, information technology, CMOS realization and VLSI
implementation (Arena, Baglio, Fortuna, & Manganaro, 1998; Ban
& Chang, 2013; Carmona, Jimenez-Garrido, Dominguez-Castro,
Espejo, & Rodriguez-Vazquez, 2002; Chua & Roska, 2002; Chua &
Shi, 1991; Chua & Yang, 1988a; Crounse & Chua, 1995; Crounse,
Roska, & Chua, 1993; Li, 2009; Murugesh, 2010; Peng, Zhang,
& Liao, 2009; Xavier-de Souza, Yalcin, Suykens, & Vandewalle,
2004; Yang, Nishio, & Ushida, 2001, 2002). The development
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of CNNs has been inspired by the visual systems of mammals
(Fukushima, 2013a, 2013b). The sufficient conditions for the
complete stability of MCNNs can be found in Török and Roska
(2004). Just as with CNNs, the study of mosaic solutions is also
important and interesting. Recently, Ban and Chang (2009) showed
that for MCNNs, more layers infer that models are capable of more
phenomena.

A multi-layer cellular neural network is represented as

d
dt

x(N)
i (t) = −x(N)

i (t) + z(N)

+


k∈N

(a(N)
k f (x(N)

i+k(t)) + b(N)
k f (x(N−1)

i+k (t))),

...
d
dt

x(2)
i (t) = −x(2)

i (t) + z(2)

+


k∈N

(a(2)
k f (x(2)

i+k(t)) + b(2)
k f (x(1)

i+k(t))),

d
dt

x(1)
i (t) = −x(1)

i (t) + z(1)
+


k∈N

a(1)
k f (x(1)

i+k(t)),

(1)

for some integer N ≥ 2, i ∈ Z, and t ≥ 0. The inputs for the
neurons in the kth layer are the outputs of the (k−1)th layer in the
proposed model (1) for 2 ≤ k ≤ N . Fig. 1 shows the connections
of a three-layer CNNwith the nearest neighborhood. The so-called
neighborhoodN is a finite subset of integers Z; the output function

f (x) =
1
2
(|x + 1| − |x − 1|) (2)
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Fig. 1. Three-layer cellular neural networks with nearest neighborhood.

is a piecewise linear map.A = [A1, . . . , AN ] andB = [B2, . . . , BN ]

are the feedback and controlling templates, respectively, where
Aj = [a(j)

k ]k∈N , Bl = [b(l)
k ]k∈N for 1 ≤ j ≤ N, 2 ≤ l ≤ N; z =

[z(1), . . . , z(N)
] is the threshold. The template T of (1) consists of

the feedback and controlling templates and the threshold, namely
T = [A,B, z]. Note that (1) is a standard CNN if N = 1. This type
of case is referred to as a single layer CNN.

A mosaic solution x is a solution of (1) which satisfies |xi| > 1
and its corresponding pattern y = (yi) = (f (xi)) is called a mosaic
output pattern. Since the output function (2) is piecewise linear
with f (x) = 1 (resp. −1) if x ≥ 1 (resp. x ≤ −1), the output of a
mosaic solution x = (xi)i∈Z must be an element inΣ = {−1, +1}Z,
which is why we call them patterns.

Given an N-layer MCNNwith N ≥ 2, we denote Y(N) as the out-
put solution space corresponding to a given input (ui)i∈Z; namely,

Y(N)
= {(yi)i∈Z : (yi)i∈Z is a output solution

for some input (ui)i∈Z} .

A natural question arises: when Y (N) behaves like a single layer
CNN, can we find some map which links both systems? Such a
problem is called a realization problem since once this phenomenon
has occurred, the given MCNN is realized by a single layer CNN
system. From a mathematical point of view, the advantage of
realizing a MCNN by a CNN is that one can classify MCNNs in
terms of CNNs. If it indeed behaves like a single layer CNN, then it
is easier to control. From an engineering perspective meanwhile,
a realizable MCNN helps us to reduce the computation of such
machines. In other words, this type of CNN is indeed a shallow
architecture neural network model (cf. Bengio, 2009, Bengio &
LeCun, 2007, Chang, 2015, Fukushima, 2013b, Hinton, Osindero, &
Teh, 2006, Utgoff & Stracuzzi, 2002). Let C(Σ, Σ) denote the set
of continuous maps from Σ to Σ . A map τ ∈ C(Σ, Σ) is called
a factor (resp. an embedding) if it is onto (resp. one-to-one). τ is
called a conjugacy if it is both a factor and embedding. A realization
problem can be achieved by raising the following problem.

Problem 1. Let Y(N) be the output solution space of a MCNN (1)
with N ≥ 2.

(1) Does a pair (Y, π) ∈ Σ ×C(Σ, Σ) exist, where Y is themosaic
solution space of a single layer CNN and π : Y → Y(N) is a
factor from Y to Y(N)?

(2) Does π preserve the topological entropy, i.e., htop(Y) = htop
(π(Y))?

(3) When does the factor π become an embedding, i.e., π is one-
to-one?

Note that Y and Y(N) are conjugate once (1) and (3) are satisfied.

It is worth pointing out that if π exists in the Problem 1–(1),
then it links Y(N) with some single layer CNN. Therefore, the output
space Y(N) is controlled by the factors π and Y. If Problem 1-(2)
holds, then the complexity of both Y(N) and Y are the same, and it
is important for the application of the learning algorithm. Finally,
Y(N) and Y are topologically the same if one ensures the factor π is
also an embedding (Problem 1-(3)), and one simply replaces Y(N)

with Y in this case.
The aim of this paper is to study the above problem. Theo-

rem 4.2 provides a natural and intrinsic characterization of Prob-
lem 1-(1) and 1-(2) by using the hidden Markov technique of
symbolic dynamics. However, Problem 1-(3) is still unknown and
is beyond the scope of the current study.

We also emphasize that one may raise the same problems on
Y(i) and Y(j) for 1 ≤ i, j ≤ N . More precisely, does a factor π be-
tween Y(i) and Y(j) exist for some 1 ≤ i, j ≤ n which preserves
topological entropy? When does the factor π become an embed-
ding? Some partial results are provided by Chang (2015). We em-
phasize that such a problem has to do with one given MCNN, and
discuss the relationship between the output spaces of certain lay-
ers in such MCNNs. On the contrary, this study focuses on the re-
lationship between a MCNN with other single layer CNNs. These
two problems are different due to the fact that if Y(i) and Y(j) are
extracted from the same MCNN, they inherit the same system in-
formation, making the discussion easier.

The rest of this paper is organized as follows. Section 2 considers
the learning problem of two-layer cellular neural networks in
pattern formation. Section 3 focuses on the realization problem
of two-layer cellular neural networks, and the necessary and
sufficient conditions for the existence of an entropy-preserving
map between the output spaces of one and two-layer cellular
neural networks. Following the discussion in Sections 2 and 3,
Section 4 extends the results to general multi-layer cellular neural
networks. Some discussion and suggestions for possible future
research are given in Section 5 as a conclusion to the presentwork.

2. Learning problem of two-layer cellular neural networks

Learning problems (also called inverse problems) are some of
the most investigated topics in a variety of disciplines. From a
mathematical point of view, determining whether a given collec-
tion of output patterns can be seen through a CNN/MCNN is es-
sential for the study of learning problems. This section reveals the
necessary and sufficient conditions for the capability of exhibiting
the output patterns of single layer cellular neural networks. The
discussion can be applied to the elucidation of general cases, has
addressed in Section 4.

A two-layer cellular neural network is seen as
dx(2)

i

dt
= −x(2)

i +


|k|≤d

a(2)
k y(2)

i+k +


|ℓ|≤d

b(2)
ℓ u(2)

i+ℓ + z(2),

dx(1)
i

dt
= −x(1)

i +


|k|≤d

a(1)
k y(1)

i+k +


|ℓ|≤d

b(1)
ℓ u(1)

i+ℓ + z(1),

(3)

for some d ∈ N, and u(2)
i = y(1)

i for i ∈ Z; N represents the set of
positive integers and Z denotes the set of integers. The prototype
of (3) is

dxi
dt

= −xi +

|k|≤d

akyi+k +


|ℓ|≤d

bℓui+ℓ + z. (4)

Here A = [−ad, . . . , ad], B = [−bd, . . . , bd] are called feedback
and controlling templates, respectively; z is known as the threshold,
and yi = f (xi) =

1
2 (|xi + 1| − |xi − 1|) is the output of xi. The

quantity xi represents the state of the cell at i for i ∈ Z. The output
of a stationary solution x̄ = (x̄i)i∈Z is called an output pattern. A
mosaic solution x̄ satisfies |x̄i| > 1 and its corresponding pattern ȳ
is called amosaic output pattern. Considering themosaic solution x̄,
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Fig. 2. Suppose U is a proper subset of V 2
= {−1, 1}2 . There are only 12 possible choice of U that satisfies linear separation property.
the necessary and sufficient conditions for the state ‘‘+’’ at cell Ci,
i.e., ȳi = 1, is

a − 1 + z > −

 
0<|k|≤d

akȳi+k +


|ℓ|≤d

bℓui+ℓ


, (5)

where a = a0. Similarly, the necessary and sufficient conditions
for the state ‘‘−’’ at cell Ci, i.e., ȳi = −1, is

a − 1 − z >


0<|k|≤d

akȳi+k +


|ℓ|≤d

bℓui+ℓ. (6)

To avoid ambiguity we denote the notation ȳi as yi and refer
to the output pattern y−d · · · y0 · · · yd coupled with the input
u−d · · · u0 · · · ud as

y−d · · · y−1y0y1 · · · yd
u−d · · · u−1u0u1 · · · ud

≡ y−d · · · yd � u−d · · · ud ∈ {−1, 1}(2d+1)×2. (7)

Let

V n
= {v ∈ Rn

: v = (v1, v2, . . . , vn), and |vi| = 1, 1 ≤ i ≤ n},

where n = 4d + 1. (5) and (6) can be rewritten in a compact form
by introducing the following notation.

Set α = (a−d, . . . , a−1, a1, . . . , ad) and β = (b−d, . . . , bd).
Then, α can be used to represent A′, the surrounding template of
Awithout a center, and β can be used to represent the template B.
The basic set of admissible local patterns with the ‘‘+’’ state in the
center is defined as

B+(A, B, z) = {v � w : (v, w) ∈ V n,

a − 1 + z > −(α · v + β · w)}, (8)

where ‘‘·’’ is the inner product in Euclidean space. Similarly, the
basic set of admissible local patterns with the ‘‘−’’ state in the
center is defined as

B−(A, B, z) = {v � w : (v, w) ∈ V n,

a − 1 − z > α · v + β · w}. (9)

Furthermore, the admissible local patterns induced by (A, B, z) can
be denoted by

B(A, B, z) = (B+(A, B, z), B−(A, B, z)), (10)
whereB+(A, B, z) = {v+ � w : v � w ∈ B+(A, B, z)},B−(A, B, z) = {v− � w : v � w ∈ B−(A, B, z)},

and v+ ∈ V 2d+1 (resp. v− ∈ V 2d+1) are obtained by inserting 1
(resp. −1) at the center coordinate of v ∈ V 2d.

Suppose U is a subset of V n. Let U c
= V n

\ U . We say that
U satisfies the linear separation property if there exists a hyper-
plane H that separates U and U c . More precisely, U satisfies the
separation property if and only if there exists a linear functional
g(z1, z2, . . . , zn) = c1z1 + c2z2 + · · · + cnzn such that

g(v) > 0 for v ∈ U and g(v) < 0 for v ∈ U c .

Fig. 2 interprets those U ⊂ V 2 satisfying the linear separation
property.

Let

P n+2
= {(A, B, z)| A, B ∈ M1×(2d+1)(R), z ∈ R}, (11)

where n = 4d+1 andMr×s(R) indicates a r×s real-valuedmatrix.
Ban, Chang, Lin, and Lin (2009) showed that the parameter space
P n+2 can be partitioned into finite equivalent sub-regions; that is,
two sets of parameters induce identical basic sets of admissible
local patterns if and only if they belong to the same partition in
the parameter space.

Theorem 2.1 (SeeHsu, Juang, Lin, & Lin, 2000). There exists a positive
integer K(n) and a unique collection of open subsets {Pk}Kk=1 of P n+2

satisfying
(i) P n+2

= ∪
K
k=1 Pk.

(ii) Pk ∩ Pℓ = ∅ for all k ≠ ℓ.
(iii) B(A, B, z) = B(A′, B′, z ′) if and only if (A, B, z), (A′, B′, z ′) ∈

Pk for some k.
Here P indicates the closure of P in P n+2.

Remark 2.2. Ban et al. extended Theorem 2.1 to the case where
the parameter space of a MCNN can also be partitioned into finite
equivalent sub-regions (Ban et al., 2009). More specifically, Theo-
rem 2.1 plays an essential role in the learning problem of MCNNs.
For each sub-region P ⊂ P n+2, every collection of corresponding
parameters is obtained from the coefficients of the equation of a
hyperplane H that separates not only B+(A, B, z) and B+(A, B, z)c
but also B−(A, B, z) and B−(A, B, z)c . Readers are referred to Ban
and Chang (2009) and Ban et al. (2009) for more details.
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Theorem 2.1, as mentioned in Remark 2.2, ‘‘implicitly’’ demon-
strates that a collection of patterns B = (B+, B−) is realized
via a cellular neural network, i.e., there exists A, B and z such thatB+(A, B, z) = B+ and B−(A, B, z) = B−, if and only if B+, Bc

+

and B−, Bc
−

can be separated by same hyperplane, respectively.
Theorem 2.3 enhances the result of Theorem 2.1 and provides an
affirmative response for the inverse problem of MCNNs explicitly.
Before presenting the theoremwe consider the following example.
Suppose U ⊆ V n. Let −U denote the reflection of U with respect
to the origin, or in other words,

−U = {(v1, v2, . . . , vn) ∈ V n
: (−v1, −v2, . . . ,−vn) ∈ U}.

Theorem 2.3. A collection of patterns B = (B+, B−) can be real-
ized in (4) if and only if either of the following conditions is satisfied:
(Inv1) −B+ ⊆ B− and B− satisfies linear separation property.
(Inv2) −B− ⊆ B+ and B+ satisfies linear separation property;

Proof. It suffices to show that both (Inv1) and (Inv2) infer that
there exists A, B, and z such that B = B(A, B, z). As follows, we
show that B satisfies (Inv1) and is adequate for realizing B in (4).
Other cases can be performed analogously.

Since B− satisfies the linear separation property, there exist
parameters

a1, a2, . . . , a2d, b1, b2, . . . , b2d+1, a, and z

such that
(i) the hyperplane

H : a − z − 1 −

2d
i=1

aiti +
2d+1
j=1

bjsj = 0

separates B− and Bc
−
;

(ii) g(v1, w1) ≠ g(v2, w2) for all (v1, w1) ≠ (v2, w2) ∈ V n, where
g(v, w) = α · v + β · w, α = (a1, a2, . . . , a2d), and β =

(b1, b2, . . . , b2d+1).

Without loss of generality, we may assume that
a − z > 1 + g(v, w), if v � w ∈ B−;

a − z < 1 + g(v, w), if v � w ∈ Bc
−
.

Let

c1 = max{g(v, w) : v � w ∈ B−},

c2 = min{g(v, w) : v � w ∈ Bc
−
},

c3 = max{g(v, w) : v � w ∈ −B+},

c4 = min{g(v, w) : v � w ∈ (−B+)c}.

Then

c1 = c3 < c2 = c4 if − B+ = B−;

c3 < c4 ≤ c1 < c2 if − B+ ( B−.

Let

a = 1 +
1
4
(c1 + c2 + c3 + c4) and z =

1
4
(c3 + c4 − c1 − c2).

It follows that

a − 1 + z > −g(v, w) for all v � w ∈ B+;

a − 1 + z < −g(v, w) for all v � w ∈ Bc
+

and

a − 1 − z > g(v, w) for all v � w ∈ B−;

a − 1 − z < g(v, w) for all v � w ∈ Bc
−
.

In other words, let A be obtained from A by replacing a as a. Then
B(A, B, z) = B.

This completes the proof. �
3. Realizing two-layer cellular neural networks via cellular
neural networks

This section elucidates the realization problem of two-layer
cellular neural networks in order to clarify methodology behind
general MCNNs, as presented in the next section. More specifically,
we investigate if the output space of a given two-layer cellular
neural network can be embedded into the output space of
some single layer cellular neural network with a finite-to-one
map. Notably, the methodology we introduce also works for the
realization problem with respect to hidden space.

To make the discussion easier to understand, we consider a
simplified two-layer cellular neural networks (STCNNs) proposed as

dx(2)
i

dt
= −x(2)

i + a(2)y(2)
i + a(2)

r y(2)
i+1

+ b(2)u(2)
i + b(2)

r u(2)
i+1 + z(2),

dx(1)
i

dt
= −x(1)

i + a(1)y(1)
i + a(1)

r y(1)
i+1 + z(1),

(12)

where u(2)
i = y(1)

i for all i ∈ Z. Suppose y =


···y(2)

−1y
(2)
0 y(2)1 ···

···y(1)
−1y

(1)
0 y(1)1 ···


is a

mosaic pattern. For i ∈ Z, y(1)
i = 1 if and only if

a(1)
+ z(1)

− 1 > −a(1)
r y(1)

i+1. (13)

Similarly, y(1)
i = −1 if and only if

a(1)
− z(1)

− 1 > a(1)
r y(1)

i+1. (14)

The same argument asserts

a(2)
+ z(2)

− 1 > −a(2)
r y(2)

i+1 − (b(2)u(2)
i + b(2)

r u(2)
i+1), (15)

and

a(2)
− z(2)

− 1 > a(2)
r y(2)

i+1 + (b(2)u(2)
i + b(2)

r u(2)
i+1) (16)

are the necessary and sufficient conditions for y(2)
i = −1 and y(2)

i

= 1, respectively. Note that the quantity u(2)
i in (15) and (16)

satisfies |u(2)
i | = 1 for each i. Define ξ1 : {−1, 1} → R and

ξ2 : {−1, 1}3×1
→ R by

ξ1(w) = a(1)
r w, ξ2(w1, w2, w3) = a(2)

r w1 + b(2)w2 + b(2)
r w3.

Set

B(1)
=


y(1)y(1)

r : y(1), y(1)
r ∈ {−1, 1} satisfy (13) and (14)


,

B(2)
=

 y(2)y(2)
r

u(2)u(2)
r

: y(2), y(2)
r , u(2), u(2)

r ∈ {−1, 1}

satisfy (15) and (16)

 .

That is,

y(1)y(1)
r ∈ B(1)

⇔


a(1)

+ z(1)
− 1 > −ξ1(y

(1)
r ), if y(1)

= 1;
a(1)

− z(1)
− 1 > ξ1(y

(1)
r ), if y(1)

= −1.

y(2)y(2)
r

u(2)u(2)
r

∈ B(2)

⇔


a(2)

+ z(2)
− 1 > −ξ2(y(2)

r , u(2), u(2)
r ), if y(2)

= 1;
a(2)

− z(2)
− 1 > ξ2(y(2)

r , u(2), u(2)
r ), if y(2)

= −1.
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The basic set of admissible local patterns B of (12) is then

B =


yyr
uur

:
yyr
uur

∈ B(2) and uur ∈ B(1)


.

The basic set of admissible local patterns plays an essential
role in investigating the structure of the solution space Y of
STCNNs. Substitute mosaic patterns −1 and 1 as symbols −and +,
respectively. Define the ordering matrix of {−, +}

2×2 by

X2 =



−
−

−
+

+
−

+
+

−
−

−−
−−

−−
−+

−+
−−

−+
−+

−
+

−−
+−

−−
++

−+
+−

−+
++

+
−

+−
−−

+−
−+

++
−−

++
−+

+
+

+−
+−

+−
++

++
+−

++
++


:= (xpq)1≤p,q≤4.

Notably each entry in X is a 2 × 2 pattern since B consists of
2 × 2 local patterns. Suppose that B is given. The transition matrix
T ≡ T(B) ∈ M4({0, 1}) is defined by

T(p, q) =


1, if xpq ∈ B;

0, otherwise.

where 1 ≤ p, q ≤ 4. Let L = {α1, α2, α3, α4}, where

α1 := −−, α2 = −+, α3 = +−, α4 = + + .

Define the symbolic transition matrix S ≡ S(B) as

S(p, q) =


αi, if T(p, q) = 1 and xpq = αi � αj for some j;
∅, otherwise. (17)

In Ban and Chang (2013), Ban and Chang demonstrated that the
structure of the output space

Y(2)
= {(yi)i∈Z : there exists (ui)i∈Z such that (yi � ui)i∈Z ∈ Y}

is determined by S. Similarly we can investigate the topological
property of the hidden space

Y(1)
= {(ui)i∈Z : there exists (yi)i∈Z such that (yi � ui)i∈Z ∈ Y}

with an appropriate symbolic transition matrix.
From a mathematical viewpoint, a realization problem inves-

tigates whether the output space of a two-layer system is topo-
logically conjugate to the output space of a single layer system.
To achieve the desired result, we recall the groundwork known as
Williams’ Classification Theorem.

Definition 3.1. Let A and B be nonnegative integral matrices. An
elementary equivalence from A to B is a pair (R, S) of rectangular
nonnegative matrices satisfying A = RS and B = SR. A strong shift
equivalence from A to B is a sequence of ℓ elementary equivalences

(R1, S1) : A = A0 = R1S1, A1 = S1R1

(R2, S2) : A1 = R2S2, A2 = S2R2

...

(Rℓ, Sℓ) : Aℓ−1 = RℓSℓ, Aℓ = B = SℓRℓ

for some ℓ. In this case we say that A is strong shift equivalent to B
and write A B.
Theorem 3.2 (Williams’ Classification Theorem, SeeWilliams, 1973).
Suppose A and B are nonnegative integral matrices. Let X and Y be the
spaces with transition matrices A and B, respectively. Then X and Y
are topologically conjugate if and only if A and B possess strong shift
equivalence.

The realization problem of two-layer cellular neural networks
begins with partitioning S into an ordered collection of symbolic
matrices S1, S2, S3, S4, which was introduced by Coven and Paul
(1975), as follows. For i = 1, 2, 3, 4, define Si as

Si(p, q) =


αi, S(p, q) = αi;

∅, otherwise. (18)

In other words, Si is derived by projecting S with respect to the
symbol αi, and S = S1 + S2 + S3 + S4. Following the definition of
Si we set a 0–1 matrix Ti as

Ti(p, q) =


1, Si(p, q) ≠ ∅;

0, otherwise. (19)

Let {0, e} be the trivial Boolean algebra. Construct T∗

i , a matrix over
{0, e}, from Ti by

T∗

i (p, q) = e ⇐⇒ Ti(p, q) = 1 (20)

for 1 ≤ i ≤ 4.
Furthermore, let G be the semigroup generated by {T∗

i }
4
i=1. For

i = 1, 2, 3, 4, Ai is a 0–1 matrix indexed by (G \ {0}) × {1, 2, 3, 4}
which is defined as

Ai((R, k), (S, ℓ)) =


1, k = i and R = T∗

i S;
0, otherwise (21)

where 0 ∈ M4({0, e}) is the zero matrix. Theorem 3.3 therefore
asserts an affirmative answer for the realization problem of two-
layer cellular neural networks.

Theorem 3.3. Suppose T and S are the transitionmatrix and symbolic
transition matrix of the output space Y(2) of (12), respectively. Let Si,
Ti, T∗

i , and Ai be defined as in (18), (19), (20), and (21), respectively,
and let A be the square matrix obtained from A1 + A2 + A3 + A4 by
deleting both the kth row and the kth column if either of which is a
zero vector. Then there is a single layer cellular neural network with
output space Y′ and a finite-to-one factor Φ : Y′

→ Y(2) if and only
if A T′, where T′ is the transition matrix of Y′.

Remarkably, Theorem 3.3 works for realizing the hidden space
Y(1) via the output space of a single layer cellular neural network
with aminormodification. More precisely, the realization problem
of hidden space can be elucidated by substituting the symbolic
transition matrix S with S′, where

S′(p, q) =


αj, if T(p, q) = 1 and xpq = αi � αj for some i;
∅, otherwise. (22)

Instead of addressing the proof of Theorem 3.3 immediately, the
following example explores the key points of the existence of a
single layer cellular neural network and its corresponding factor.
Rigorous proof is postponed to the next section and is illustrated
by a general case.

Consider a STCNN given by
dx(2)

i

dt
= −x(2)

i − 0.3y(2)
i − 1.2y(2)

i+1

+ 0.7y(1)
i + 2.3y(1)

i+1 + 0.9,

dx(1)
i

dt
= −x(1)

i + 2.9y(1)
i + 1.7y(1)

i+1 + 0.1.

(23)



14 J.-C. Ban, C.-H. Chang / Neural Networks 70 (2015) 9–17
It follows that the basic set of admissible local patterns of the
mosaic solution space of (23) is

B =


−+

−−
,

−+

+−
,

+−

−+
,

+−

++
,

++

−+
,

++

++


.

The transition matrix T and the symbolic transition matrix S of the
hidden space Y(1) are

T =

0 0 1 0
0 0 1 0
0 1 0 1
0 1 0 1

 and S =

∅ ∅ α1 ∅
∅ ∅ α3 ∅
∅ α2 ∅ α2
∅ α4 ∅ α4

 ,

respectively. Partitioning S and T as defined in (18) and (19) infers
that

S1 =

∅ ∅ α1 ∅
∅ ∅ ∅ ∅
∅ ∅ ∅ ∅
∅ ∅ ∅ ∅

 , S2 =

∅ ∅ ∅ ∅
∅ ∅ ∅ ∅
∅ α2 ∅ α2
∅ ∅ ∅ ∅

 ,

S3 =

∅ ∅ ∅ ∅
∅ ∅ α3 ∅
∅ ∅ ∅ ∅
∅ ∅ ∅ ∅

 , S4 =

∅ ∅ ∅ ∅
∅ ∅ ∅ ∅
∅ ∅ ∅ ∅
∅ α4 ∅ α4

 ,

and

T1 =

0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0

 , T2 =

0 0 0 0
0 0 0 0
0 1 0 1
0 0 0 0

 ,

T3 =

0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 , T4 =

0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 1

 .

A routine computation that deduces the semigroupG generated by
{T∗

i }
4
i=1 is

G = {0, T∗

1, T
∗

2, T
∗

3, T
∗

4, T
∗

5, T
∗

6, T
∗

7, T
∗

8},

where T∗

1, T
∗

2, T
∗

3, T
∗

4 is defined in (20), and

T∗

5 =

0 e 0 e
0 0 0 0
0 0 0 0
0 0 0 0

 , T∗

6 =

0 0 0 0
0 0 0 0
0 0 e 0
0 0 0 0

 ,

T∗

7 =

0 0 0 0
0 e 0 e
0 0 0 0
0 0 0 0

 , T∗

8 =

0 0 0 0
0 0 0 0
0 0 0 0
0 0 e 0

 .

In addition, T∗

i T
∗

j = 0 for 1 ≤ i ≤ 4, 1 ≤ j ≤ 8 except

(1) T∗

1T
∗

2 = T∗

5, T
∗

1T
∗

6 = T∗

1;
(2) T∗

2T
∗

3 = T∗

6, T
∗

2T
∗

4 = T∗

2, T
∗

2T
∗

7 = T∗

2, T
∗

2T
∗

8 = T∗

6;
(3) T∗

3T
∗

2 = T∗

7, T
∗

3T
∗

6 = T∗

3;
(4) T∗

4T
∗

3 = T∗

8, T
∗

4T
∗

4 = T∗

4, T
∗

4T
∗

7 = T∗

4, T
∗

4T
∗

8 = T∗

8 .

It comes immediately that

A1 = E2 ⊗



0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


,

A2 = E2 ⊗



0 0 0 0 0 0 0 0
0 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


,

A3 = E2 ⊗



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0


,

A4 = E2 ⊗



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 1


,

where E2 =


1 1
1 1


and ⊗ is the Kronecker product. We point out

that Ai is indexed by
(T∗

1, 1), (T
∗

2, 1), . . . , (T
∗

8, 1), (T
∗

1, 2), (T
∗

2, 2), . . . , (T
∗

7, 4), (T
∗

8, 4).

After deleting those zero rows and columns from Σ4
i=1Ai the

desired matrix A is seen as

A =


0 0 0 1 1 0
0 0 1 0 0 1
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 1 1 0
0 0 1 0 0 1

 .

By rearranging the second and third indices of A, to avoid
ambiguity, we still denote the new matrix as A, and thus we have

A = I2 ⊗

0 1 1
1 0 0
0 1 1


, where I2 is the 2 × 2 identity matrix.

To restate, A is a diagonal matrix composed of two identical
irreducible sub-matrices.

It remains to find a single layer cellular neural network with

transition matrix T being strong shift equivalent to


0 1 1
1 0 0
0 1 1


.

Consider T =


1 1
1 0


, which is the transition matrix of the

cellular neural network
dxi
dt

= −xi + 2yi − yi+1 − 0.3, i ∈ Z. (24)

Let

E =

1 0
0 1
1 0


, F =


0 1 1
1 0 0


.

Then0 1 1
1 0 0
0 1 1


= EF FE = T.

Williams’ Classification Theorem and Theorem 3.3 demonstrate
that there exists a 2-block factor Φ from the output space of (24)
to the hidden space of (23).
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4. Realization problem of multi-layer cellular neural networks

This section is devoted to extending Theorems 2.3 and 3.3 to
general MCNNs. A one-dimensional MCNN is realized as

dx(l)
i

dt
= −x(l)

i +


|k|≤d

a(l)
k y(l)

i+k +


|ℓ|≤d

b(l)
ℓ u(l)

i+ℓ + z(l), (25)

for some d ∈ N, 1 ≤ l ≤ N ∈ N, i ∈ Z, where

u(l)
i = y(l−1)

i for 2 ≤ l ≤ N and

y(l)
i = f (x(l)

i ) =
1
2
(|x(l)

i + 1| − |x(l)
i − 1|).

First, focusing on the mosaic solution of (25), namely, |x(l)
i | > 1

for all i ∈ Z, 1 ≤ l ≤ N , the following procedure divides the
parameter space into finitely equivalent regions so that any two
sets of parameters possess the same output patterns if and only if
they belong in the same region. For 1 ≤ l ≤ N , the output y(l)

i = 1
if and only if

a(l)
0 − 1 + z(l) > −

 
0<|k|≤d

a(l)
k y(l)

i+k +


|ℓ|≤d

b(l)
ℓ u(l)

i+ℓ


;

the output y(l)
i = −1 if and only if

a(l)
0 − 1 − z(l) >


0<|k|≤d

a(l)
k y(l)

i+k +


|ℓ|≤d

b(l)
ℓ u(l)

i+ℓ.

Recall that

V n
= {v ∈ Rn

: v = (v1, v2, . . . , vn), and |vi| = 1, 1 ≤ i ≤ n},

where n = 4d + 1. Let α(l)
= (a(l)

−d, . . . , a
(l)
−1, a

(l)
1 , . . . , a(l)

d ), β(l)
=

(b(l)
−d, . . . , b

(l)
d ). Similarly, as discussed in the previous section, the

collection of admissible local pattern centered by ‘‘+1’’ and ‘‘−1’’
are

B
(l)
+ = {v � w : (v, w) ∈ V n, a(l)

− 1 + z(l)

> −(α(l)
· v + β(l)

· w)}

and

B
(l)
− = {v � w : (v, w) ∈ V n, a(l)

− 1 − z(l) > α(l)
· v + β(l)

· w},

respectively. The basic set of admissible local patterns for the lth
layer of (25) is then recorded as B(l)

= (B(l)
+ , B(l)

− ), whereB(l)
+ = {v+ � w : v � w ∈ B

(l)
+ },B(l)

− = {v− � w : v � w ∈ B
(l)
− },

and v+ ∈ V 2d+1 (resp. v− ∈ V 2d+1) is obtained by inserting 1 (resp.
−1) at the center coordinate of v ∈ V 2d. Denote the parameters of
(25) by (A,B, z), herein

A = (A(1), . . . , A(N)), B = (B(1), . . . , B(N)), and
z = (z(1), . . . , z(N)).

Then the admissible local patterns induced by (A,B, z) can be
denoted by

B(A,B, z) = (B(1), B(2), . . . , B(N)).

Theorem 4.1 reveals the necessary and sufficient conditions for the
existence of admissible local patterns of (25) and indicates that the
parameter space P = RN(n+2) is divided into finitely equivalent
regions. The proof of Theorem 4.1 is similar to the demonstration
of Theorem 2.1 with a minor modification and can be routinely
verified; thus, specific details are omitted here.
Theorem 4.1. A collection of local patterns B is the basic set of
admissible local patterns of some MCNNs if and only if B = (B(1),
B(2), . . . , B(N)) such that B(l) satisfies Theorem 2.3 for 1 ≤ l ≤ N.
Furthermore, there exists K ∈ N and a unique collection of open sets
{Pk}Kk=1 of P satisfying

(i) P = ∪
K
k=1 Pk.

(ii) Pk ∩ Pℓ = ∅ for all k ≠ ℓ.
(iii) B(A,B, z) = B(A′,B′, z′) if and only if (A,B, z), (A′,B′, z′)

∈ Pk for some k.

The rest of this section concentrates on the realization problem
of multi-layer cellular neural networks. The scheme for investigat-
ing the realization problem of MCNNs is similar to the discussion
in the previous section with more complicated calculations.

Substitute the output patterns ‘‘−1’’ and ‘‘+1’’ by − and +,
respectively. First, assign each pattern in {−, +}

D×N in order so
that the orderingmatrixXD×N is well-defined, whereD = 2d+1 is
the width of admissible local patterns. Define χ : {−, +} → {0, 1}
and η : {−, +}

k×l
→ N as

χ(−) = 0, χ(+) = 1,
and

η

x =

x1,l x2,l · · · xk,l
x1,l−1 x2,l−1 · · · xk,l−1
...

...
. . .

...
x1,1 x2,1 · · · xk,1


= 1 +


i,j

χ(xi,j) · 2l(k−i)+(l−j),

respectively. For example, the patterns in the collection {−, +}
2×2

are ordered as

η


−−

−−


= 1, η


−+

−−


= 2, . . . , η


+−

++


= 15,

η


++

++


= 16.

The orderingmatrix XD×N of (25) is thenwell-defined according to
the η-ordered set {−, +}

(D−1)×N . Once the basic set of admissible
local patterns B is obtained, the transition matrix T ≡ T(B) ∈

M(D−1)N({0, 1}) is defined as
T(p, q) = 1 if and only if X(p, q) ∈ B,

where 1 ≤ p, q ≤ 2(D−1)N . Let AD = {−, +}
D×1

= {αi}
2D
i=1 be

an alphabet consisting of binary patterns of dimensionD×1,where
αi presents the symbol x = x1 . . . xD ∈ {−, +}

D×1 satisfying
i = 1 + ΣD

j=1χ(xj)2D−j. Express X(p, q), 1 ≤ p, q ≤ 2(D−1)N , as
αkN �αkN−1 � · · · �αk1 . For 1 ≤ ℓ ≤ N , let S(ℓ)

≡ S(ℓ)(B) be the ℓth
symbolic transition matrix over AD ∪ {∅} and be defined as

S(ℓ)(p, q) =


αkℓ , if T(p, q) = 1, X(p, q) = αkN � · · · � αk1;

∅, otherwise. (26)

Let
Y(ℓ)

= {(y(ℓ)
i )i∈Z : (y(N)

i � y(N−1)
i � · · · � y(1)

i )i∈Z ∈ Y}

for 1 ≤ ℓ ≤ N . It is demonstrated that S(ℓ) well describes the topo-
logical structure of the ℓth hidden space Y(ℓ), and S(N) describes
the topological structure of the output space Y(N) completely. The
reader is referred to Ban and Chang (2013) and Ban et al. (2009) for
more details.

We denote S as S(N) to avoid ambiguity. The realization prob-
lem of (25) starts from partitioning S into an ordered set of sym-
bolic matrices {Sk}2

D

k=1 as follows. For 1 ≤ k ≤ 2D, define Sk as the
projection of S that only records the symbol αk. More precisely,

Sk(p, q) =


αk, S(p, q) = αk;

∅, otherwise. (27)
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S = Σ2D
k=1Sk are derived immediately. Let Tk be the incidence

matrix of Sk, i.e.,

Tk(p, q) =


1, Sk(p, q) ≠ ∅;

0, otherwise.

Denote T∗

k as thematrix over the trivial Boolean algebra B = {0, e}
which is obtained by replacing 1’s in Tk by e’s. SupposeG is the free
semigroupwith generators {T∗

k}
2D
k=1. For 1 ≤ k ≤ 2D, let Ak be a 0–1

matrix indexed by (G \ {0}) × {1, 2, . . . , 2D
} defined as

Ak((R, i), (S, j)) =


1, i = k, R = T∗

kS;
0, otherwise. (28)

Furthermore, let A be the matrix obtained by deleting the ith row
and the ith column of ΣAk if either of which is a zero vector.
Theorem 4.2 generalizes Theorem 3.3 in multiple layers cases.

Theorem 4.2. Suppose T and S are the transitionmatrix and symbolic
transition matrix of the output space Y(N) of (25), respectively. Let A
be defined as above. Then there is a single layer cellular neural network
with output space Y′ and a finite-to-one factor Φ : Y′

→ Y(N) if and
only if A U, where U is the transition matrix of Y′.

Proof. Observe that B is trivial Boolean algebra and G is a free
semigroup generated by {T∗

k}
2D
k=1 inferring the following:

(a) (M1M2)
∗

= M∗

1M
∗

2 .
(b) Mi1 · · ·Mik = 0 if and only ifM∗

i1
· · ·M∗

ik
= 0.

(c) G is finite.

Let φ : G × G → G be defined as

φ(M1,M2) =


M1, if A((M1, i), (M2, j)) = 1 for some i, j;
0, otherwise.

Assume X is the space represented by A. The construction of A
reveals that Φ : X → Y(N) is a finite-to-one factor since G is finite,
where Φ is obtained from φ by shifting coordinates.

Let Y′ be the output space of some single layer cellular
neural network and U is the transition matrix of Y′. Williams’
Classification Theorem demonstrates that X ∼= Y′ if and only if
A U. For the case that A U, there exists a one-to-one and onto
map Ψ : Y′

→ X. The map Φ = Φ ◦ Ψ is the desired conjugacy
between Y′ and Y(N). This completes the proof. �

5. Conclusion and further discussion

This paper investigates whether the output space of a multi-
layer cellular neural network can be realized via a single layer
cellular neural network based on the existence of finite-to-one
maps from one output space to another. Theorem 4.2 reveals
a necessary and sufficient condition for the realization problem
of multi-layer cellular neural networks. Notably, the proposed
methodology can be applied to realizing the specific hidden space
of a multi-layer cellular neural network via a single layer system.
We summarize the procedure of the general cases of Theorem 4.2
as follows.

Assume Y is the mosaic solution space of a multi-layer cellular
neural networkwith d-nearest neighborhood, and T is its transition
matrix. Let D = 2d + 1 and S = {αi}

D
i=1, where

α1 = − − · · · − −, α2 = − − · · · − +,

α3 = − − · · · + −, . . . , αD = + + · · · + +.

Step 1 Construct the symbolic transition matrix S(ℓ) from T as
defined in (26) for the ℓth hidden space Y(ℓ). (The output
space Y(N) is considered as a special case where ℓ = N .)
Extract {Sk}2

D

k=1 from S(ℓ) as defined in (27).
Step 2 Let G be the semigroup generated by the matrices, which
come from Sk for 1 ≤ k ≤ 2D, over trivial Boolean algebra,
and let A be the matrix obtained by deleting both the ith
row and the ith column ofΣAk if either one of them is zero,
where {Ak}

2D
k=1 as in (28). Then there is a finite-to-one factor

mapΦ fromX toY(ℓ), hereinX is the spacewhose transition
matrix is A.

Step 3 Determine whether there is a single layer cellular neural
network whose output space is Y′ with transition matrix U
such that A U, i.e., A is strongly shift equivalent to U. The
possible selection of U is constrained by Theorem 2.3 and
the radius d of the neighborhood.

Step 4 The strong shift equivalence of A and U is a necessary and
sufficient condition for the existence of conjugacy Ψ :

Y′
→ X. The desired finite-to-one factor Φ : Y′

→ Y(ℓ)

for realizing the ℓth hidden space (or the output space) of
a multi-layer cellular neural network via the output space
of a single layer cellular neural network is then defined as
Φ = Φ ◦ Ψ .

This realization problem naturally leads to a question: when
does the finite-to-one map, if it exists, become one-to-one?
Notably, the existence of Φ depends on the existence of Ψ . Since
Φ = Φ ◦ Ψ and Ψ , if it exists, is always a conjugacy, this is same
as asking when does Φ become one-to-one. Future studies could
further discuss this topic.

Other interesting topics related to this remain to be discussed.
To conclude this study, we point out some of the biological
relevance of neural networks. Countless studies have investigated
the application of multi-layer and single layer cellular neural
networks in biology. As follows, we offer brief illustration of some
of these works.

Neural networks were developed initially to model biological
functions such as human brains or visual systems. They are intelli-
gent, thinking machines, and they learn from experience in a way
that no conventional computer can. Moreover, they can rapidly
solve hard computational problems. The adaptive resonance the-
ory and neocognitron were inspired by the organization of the vi-
sual nervous system.

The neocognitron is a neural network model proposed by
Fukushima, based on neurophysiological findings drawn from the
visual systems of mammals. There are two major types of cells in
the neocognitron, and the neocognitron consists of the cascaded
connection of a number of modules, each of which consists of
a layer of one type of cell followed by a layer of another type
of cell. The powerful capabilities and computational complexity
of the neocognitron are acquired from the architecture of the
cascaded connection of mixed layers of different types of cells in
a hierarchical network. This architecture is useful for recognizing
robust visual patterns and image processing.

Although the model of the neocognitron is different from that
of a cellular neural network, the methodology proposed for the
realization problem in multi-layer cellular neural networks can be
extended to the case of the neocognitron. Related works are in the
preparation phase. For further references related to the application
of multi-layer networks in biology, refer to Fukushima (2013a,
2013b), Lin, Simossis, Taylor, and Heringa (2005), Mattick (2003),
Tarca, Carey, Chen, Romero, andDrăghici (2007) and the references
therein.
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