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Abstract Inhomogeneous multi-layer neural networks (IHMNNs) have been applied in var-
ious fields, for example, biological and ecological contexts. This work studies the learning

problem of IHMNNs with an activation function f (x) = 1

2
(|x + 1| − |x − 1|) that derives

from cellular neural networks, which can be adapted to the study of the vision systems of
mammals. Applying the well-developed theory of symbolic dynamics, the explicit formulae
of the topological entropy of the output and hidden spaces are given. We also demonstrate
that, for any λ ∈ [0, log 2] and ε > 0, parameters such that the topological entropy h of
the hidden/output space of IHMNN that satisfies |h − λ| < ε exists. This means that the
collection of topological entropies is dense in the closed interval [0, log 2], which leads to
the fact that IHMNNs are universal machines in some sense and hence are more efficient in
learning algorithms. This paper aims to provide amathematical foundation for the illustration
of the capability of machine learning, while the method we have adopted can be extended to
the investigation of multi-layer neural networks with other activation functions.

Keywords Multi-layer neural networks · Topological entropy · Sofic shift · Cellular neural
networks

1 Introduction

In the past few decades, multi-layer neural networks (MNNs) have received considerable
attention and have been successfully applied to many areas such as combinatorial optimiza-
tion, signal processing and pattern recognition [1–6].
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Fig. 1 Three-layer neural
networks with the nearest
neighborhood

1st layer

2nd layer

3rd layer

One of themost important reasons for couplingNNs is the simulation of the visual systems
of mammals ([7,8], each layer symbolizing a single cortex in the visual system). T. Serre et
al. [9] proved that the mammal brain is organized into deep architectures, i.e., the number
of layers in MNNs is larger than was first thought. Scientists are interested in learning and
training in deep architectures [10–14] due to the architectural depth of the mammalian brain.
A great and successful series of results on deep architectures was obtained by Hinton et
al. in 2006 using Deep Belief Networks (DBNs) [15] and Restricted Boltzmann Machine
(RBM) [16] methods, and have been applied to many fields, e.g., classification tasks [17,18],
regression [19], dimensionality reduction [20,21], modeling textures [22], modeling motion
[23,24], and natural language processing [25,26]. The best general reference is referred to as
[27], wherein the reader can find the complete bibliography. The model studied in this paper
(15) is an extension of a sigmoid belief network, which is one kind of DBN. Differently from
investigating RBMs and DBNs as probabilistic networks, this work studies the abundance
of the pattern formation of MNNs. A MNN presented as a directed graph model is shown
in Fig. 1. Traditionally, the template (or weight, more specifically, the set of parameters)
for MNN is homogeneous (also known as isotropic), i.e., the template is space-invariant.
However, there are more and more MNNs that use inhomogeneous templates to describe
some of the problems that arise from biological and ecological contexts [28–33]. Some
new and interesting phenomena of pattern formation and spatial chaos were also found in
inhomogeneous MNNs (IHMNNs).

In this paper, we considered an activation function which arises from cellular neural
networks (CNNs, [34]). Namely,

f (x) = 1

2
(|x + 1| − |x − 1|).

Since CNNs have been applied to many areas such as image processing [35–40], the choice
of the activation function f (x) seems to be the best adapted to our goal on the study of the
vision systems of mammals. Related topics, such as pattern formation and spatial chaos for
mosaic solutions have been discussed in CNNs [41] and multi-layer CNN (MCNNs, [42])
models, herein an equilibrium solution of a neural network is called mosaic if |xi | > 1 for
all i . Aein and Talebi demonstrate that CNNs are able to model multidimensional systems
whose behaviors are governed by unknown/uncertain partial differential equations [43]. They
use a modified backpropagation algorithm to train a CNN so that it is capable of modeling
the dynamics of a two-dimensional mechanical vibration problem with unknown system
equations. However, it seems that there are few studies on MNN models with respect to the
activation function f (x).

The aim of this paper is to establish the mathematical foundation of mosaic solutions on
IHMNNs with activation function f (x). We focus on the complexity (entropy) of the mosaic
solution space. From the last paragraph, this topic seems to be more important and interesting
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The Spatial Complexity of IHMNNs 33

regarding the study of vision systems and is approaching the subject of artificial intelligence
(AI) [27]. It is remarkable that classical CNNs are a special case of IHMNNs when we use
an activation function f (x) derives from CNNs. We also emphasize that the method we have
provided herein is more general, an easy extension that leads us to consider the classical
McCulloch-Pitts model and signum activation function.

MNNs are relatively crude networks of neurons based on the neural structure of the
brain. They process records one at a time, and learn by comparing their classification of
the records with the known actual classification of the records. In the training phase, the
correct class for each record is known (this is termed “supervised training”), and the out-
put nodes can therefore be assigned “correct” values 1 for the node corresponding to the
correct class, and 0 for the others. Recently, Fukushima [8] proposed a new learning rule
named “add-if-silent” which produces a higher recognition rate for handwritten digits recog-
nition with a smaller scale of the network than the neocognitron of previous versions.
Assigning 0–1 values during the training process can be treated as the mosaic output ±1
of f (x).

The investigation of mosaic solutions is most essential inMNNmodels due to the learning
algorithm and training processing since the complete stability of the systems and the activa-
tion function we chose (cf. [37,44–46]). More abundant output patterns make the learning
algorithm more efficient. From the mathematical point of view, the larger the set of topo-
logical entropies of MNNs is, the more phenomena MNNs are capable of. Denseness of the
entropy set indicates that, in some sense,MNNs are capable of exhibiting any phenomena one
requests, and hence leadsMNNs to the universal machine. This makes the learning more effi-
cient. Many types of activation function, e.g., linear, McCulloch-Pitts, signum, sigmoid and
Ramp functions, are chosen for many specific purposes. The activation function represents
which conditions of the synapses will be activated. Different activation function produces
different dynamical systems on output solutions. Related investigation will be illustrated in
future works.

This paper is organized as follows. In Sect. 2, we set up the notation and terminology
of homogeneous MNNs, with the necessary materials from symbolic dynamical systems
provided to compute the complexity (entropy) for the mosaic solutions. Section 3 is devoted
to the study of complexity of the constant IHMNNs (CIHMNNs). The rigorous value for
the entropy can be computed therein and this leads us to solve well-known ε-dense property
for entropy which comes from the universality of neural networks. A brief conclusion is
presented in Sect. 4.

2 Preliminary

This section introduces notations and terminologies of homogeneousMNNs. Some results in
our previous work [47], such as the determination of the basic set of admissible local patterns
and the transition matrix, are presented to make the present investigation self-contained. Ban
and Chang [47] relate the elucidation of the output space to symbolic dynamics and apply
the well-developed theory of symbolic dynamical systems to find the explicit formula of the
topological entropy of the output space. It is remarkable that topological entropy is related to
the spectral radius of some matrix presentations of the system, which reduce the reliance on
familiarity with symbolic dynamics. Readers who are interested in more detailed information
about symbolic dynamics are referred to the book by Lind and Marcus [48] or our previous
work [42].
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34 J.-C. Ban, C.-H. Chang

A one-dimensional MNN is realized as
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d

dt
x (k)
i (t) = −x (k)

i (t) + z(k) + a(k) f (x (k)
i (t)) +

∑

�∈N
b(k)
� f (x (k−1)

i+� (t)),

d

dt
x (1)
i (t) = −x (1)

i (t) + z(1) + a(1) f (x (1)
i (t)) +

∑

�∈N
a(1)
� f (x (1)

i+�(t)),
(1)

for some N ∈ N, k = 2, . . . , N and i ∈ Z. We call the finite subset N ⊂ Z the neigh-
borhood, and the piecewise linear map f (x) = 1

2 (|x + 1| − |x − 1|) is called the output
function. The template T = [A,B, z] is composed of a feedback templateA = (A1, A2)with
A1 = (a(1), . . . , a(N )), A2 = (a(1)

� )�∈N , a controlling template B = (B2, . . . , BN ), and the

threshold z = (z(1), . . . , z(N )), where Bk = (b(k)
� )�∈N for k ≥ 2. An equilibrium solution

x = (x (1)
i , · · · , x (N )

i )i∈Z ∈ R
Z∞×N of (1) is calledmosaic if |x (k)

i | > 1 for 1 ≤ k ≤ N , i ∈ Z.

The output y = (y(1)
i · · · y(N )

i )i∈Z ∈ {−1, 1}Z∞×N of a mosaic solution is called a mosaic

pattern, where y(k)
i = f (x (k)

i ). The solution space Y of (1) stores the patterns y, and the
output space Y(N ) of (1) is the collection of the output patterns, more precisely,

Y(N ) = {(y(N )
i )i∈Z : (y(1)

i · · · y(N )
i )i∈Z ∈ Y}.

For 1 ≤ � ≤ N − 1, the space

Y(�) = {(y(�)
i )i∈Z : (y(1)

i · · · y(N )
i )i∈Z ∈ Y}

is called the (�th) hidden space of (1). It turns out that the complexity of the solution and
output spaces are closely related to how many neighbors a neuron is connected to, i.e., the
size of its neighborhood. To investigate the structure ofY andY(N ), it is essential to consider
MNNs with the nearest neighborhood. A neighborhoodN is called the nearest neighborhood
ifN = {−1, 1}. In [47], the authors showed that there is a positive integer K and unique set
of non-overlapping open sub-regions {Pk}Kk=1 of the parameter space P of (1) such that P is
the union of the closure of {Pk}Kk=1, and

Y(N )(T) = Y(N )(T′) if and only if T, T
′ ∈ Pk for some k,

where Y(N )(T) indicates the output space of (1) with respect to the template T.
To clarify the discussion, we concentrate on MNNs with the number of layers N = 2.

For a two-layer neural network with its nearest neighborhood, since N is finite and T is
invariant for each i , the output space is determined by the so-called basic set of admissible
local patterns. Replace −1 and 1 by − and +, respectively; the basic set of admissible local
patterns of the first layer is a subset of

{− − −,− − +,− + −,− + +,+ − −,+ − +,+ + −,+ + +},
while the basic set of admissible local patterns of the second layer is a subset of the ordered
set {p1, . . . , p8}, where p1, . . . , p8 are

(2)

respectively. Denote the local pattern
α

α1 α2 by α � α1α2. Suppose y is a mosaic pattern; for
each i ∈ Z, the necessary and sufficient condition for y(2)

i = 1 is

a(2) − 1 + z2 > −(b(2)
−1y

(1)
i−1 + b(2)

1 y(1)
i+1), (3)
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and the necessary and sufficient condition for y(2)
i = −1 is

a(2) − 1 − z2 > b(2)
−1y

(1)
i−1 + b(2)

1 y(1)
i+1. (4)

Set

B(2)(+) =
{
y(2) � y(1)

1 y(1)
2 : y(1)

1 , y(1)
2 satisfy (3), y(2) = 1

}
,

B(2)(−) =
{
y(2) � y(1)

1 y(1)
2 : y(1)

1 , y(1)
2 satisfy (4), y(2) = −1

}
.

The basic set of admissible local patterns of the second layer is denoted by B(2) =
(B(2)(+),B(2)(−)). Similarly, for each i ∈ Z, the necessary and sufficient conditions for
y(1)
i = 1 and y(1)

i = −1 are

a(1) − 1 + z1 > −(a(1)
−1 y

(1)
i−1 + a(1)

1 y(1)
i+1), (5)

and
a(1) − 1 − z1 > a(1)

−1 y
(1)
i−1 + a(1)

1 y(1)
i+1, (6)

respectively. Set

B(1)(+) =
{
y(1)
1 y(1)y(1)

2 : y(1)
1 , y(1)

2 satisfy (5), y(1) = 1
}

,

B(1)(−) =
{
y(1)
1 y(1)y(1)

2 : y(1)
1 , y(1)

2 satisfy (6), y(1) = −1
}

.

The basic set of admissible local patterns of the first layer is denoted by B(1) =
(B(1)(+),B(1)(−)). The solution space Y of (1) is then described as

Y =

⎧
⎪⎨

⎪⎩

y =
(
y(2)
i

y(1)
i

)

i∈Z
: y(2)

i � y(1)
i−1y

(1)
i+1 ∈ B(2),

y(1)
i−1y

(1)
i y(1)

i+1 ∈ B(1)

⎫
⎪⎬

⎪⎭
. (7)

Since the solution spaceY is determined by the basic set of admissible local patterns, these
local patterns play an essential role for investigating MNNs. To reveal the complexity of the
global patterns, we assign each local pattern its order and introduce the ordering matrix.
Define

and
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36 J.-C. Ban, C.-H. Chang

Herein ∅ means no pattern is generated. Suppose B(T) = (B(1),B(2)) is the basic set of
admissible local patterns of (1)with respect to the templateT. SetXi (p, q) = ∅ ifXi (p, q) /∈
B(i) for i = 1, 2. The symbolic product of the ordering matrices then assert all possibilities of
global patterns that are generated by the admissible local patterns. See [47] for more details.
Aside from elucidating the set of global patterns, we are also interested in the number of
global patterns. For this purpose, we consider the transition matrix.

The transition matrix T is defined by

T(i, j) =
⎧
⎨

⎩

1, pi , p j ∈ B(2) and
αi−1α j−1αi+1, α j−1αi+1α j+1 ∈ B(1);

0, otherwise;
(8)

herein pk defined in (2), and presented as αk � αk−1αk+1 for k = 1, . . . , 8. Furthermore, the
transition matrix of the second layer T2 ∈ M8×8({0, 1}) is defined by

T2(i, j) = 1 if and only if pi , p j ∈ B(2), (9)

while the transition matrix of the first layer T1 ∈ M4×4({0, 1}) is defined by
T1(i, j) = 1 if and only if X1(i, j) ∈ B(1). (10)

Denote T 2
1 = (Ti, j )2i, j=1 as four smaller 2 × 2 matrices and define T 1 by

T 1(p, q) = Ti, j (k, l), where p = 2i + j − 2, q = 2k + l − 2. (11)

Ban and Chang [47] showed that

T = T2 ◦ (E2 ⊗ T 1), (12)

where Ek is a k×k matrix with all entries being 1’s, ◦ and⊗ are the Hadamard andKronecker
products, respectively. Furthermore, the output space Y(2) is topologically conjugated to a
so-called sofic shift in symbolic dynamical systems (cf. [47, Theorem 2.4]).

To make this manuscript self-contained, the following is a brief introduction of sofic shifts
in symbolic dynamical systems. A detailed instruction for symbolic dynamical systems is
referred to in [48].

A labeled graph G = (G,L) consists of an underlying graph G = (V, E) and the labeling
L : E → A which assigns to each edge a label from the finite alphabet A, where V and E
refer to the sets of vertices and edges, respectively. A sofic shift X is defined by

X = {(ωi )i∈Z : ωi = L(ei ), ei ∈ E, ter(ei ) = init(ei+1)}
for some labeled graph G, where ter(e) and init(e) mean the terminal and initial vertices
of the edge e ∈ E , respectively. Without loss of generality, we may assume that there is at
most one edge connecting two vertices. The transition matrix TG of the labeled graph G is
indexed by the vertices V and TG(p, q) = 1 if and only if there is an edge from p to q . Set
the alphabet A = {a00, a01, a10, a11}, where

a00 = −−, a01 = −+, a10 = +−, a11 = + + .
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The Spatial Complexity of IHMNNs 37

Define the symbolic transition matrix as

S =
((

a00 a01
a10 a11

)

⊗ E4

)

◦ T, S(i, j) = ∅ if T(i, j) = 0. (13)

Let V = {p1, . . . , p8}, and ei j ∈ E if init(ei j ) = pi , ter(ei j ) = p j and T(i, j) = 1. Define
L : E → A by

L(ei j ) = ai j , where k =
⌊
k − 1

4

⌋

,

where �·
 is the Gauss function. Let G = (G,L) be the labeled graph with underlying graph
G = (V, E) and labeling L. It can be seen that the output space Y(2) = X is the sofic shift
defined by G.

One of the most frequently used quantums for the measure of spatial complexity is the
topological entropy. Let X be a symbolic space and let �n(X) denote the number of the
patterns in X of length n. The topological entropy of X is defined by

h(X) = lim
n→∞

log�n(X)

n
, provided the limit exists.

The space X is called pattern formation if h(X) = 0, and spatial chaos otherwise. Similarly
to [42], it can be verified that the topological entropy of the output space of (1) is h(Y(2)) =
log ρT if the labeled graph constructed from T is right-resolving, where ρT is the spectral
radius of T. Here a labeled graph G = (G,L) is called right-resolving if the restriction of L
to EI is one-to-one, where EI consists of those edges starting from I .

If G is not right-solving, there exists a labeled graph H, derived by applying the subset
construction method (SCM) to G, such that the sofic shift defined by H is identical to the
original space. The new labeled graph H = (H,L′) is constructed as follows:

The vertices I of H are the nonempty subsets of the vertex set V of G. If I ∈ V ′ and
a ∈ A, let J denote the set of terminal vertices of edges in G starting at some vertices in I
and labeled a, i.e., J is the set of vertices reachable from I using the edges labeled a. There
are two cases.

1) If J = ∅, do nothing.
2) If J �= ∅, J ∈ V ′ and draw an edge in H from I to J labeled a.

Carry this out for each I ∈ V ′ with each a ∈ A producing the labeled graph H. Then,
each vertex I in H has at most one edge with a given label starting at I . This implies that
H is right-resolving. Theorem 2.1 indicates that the topological entropy of the output space
Y(2) is related to the spectral radius of the transition matrix of (1).

Theorem 2.1 (See [47, Theorem2.6])LetG be the labeled graphobtained from the transition
matrix T of (1). The topological entropy of the output space Y(2) is

h(Y(2)) =
{
log ρT, if G is right-resolving;
log ρH, otherwise;

(14)

whereH is the transition matrix of the labeled graphH, which is obtained by applying SCM
to G.

Example 2.2 (See [47, Example 2.7]) Suppose T = (A,B, z) with A1 = (2.2, 1.7), A2 =
(−4,−2),B = (−2.6,−1.4), and z = (−1.2, 0.3). The transition matrices for the first and
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second layer are

T1 =

⎛

⎜
⎜
⎝

0 1 0 0
0 0 1 1
1 1 0 0
0 0 0 0

⎞

⎟
⎟
⎠

and

T2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 1 1 1 0 0
0 0 1 1 1 1 0 0
0 0 1 1 1 1 0 0
0 0 1 1 1 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

respectively. Furthermore, it is seen that

T 1 =

⎛

⎜
⎜
⎝

0 1 1 0
0 1 1 0
0 1 0 0
1 1 0 0

⎞

⎟
⎟
⎠

and

T =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 1 0 0
0 0 1 0 0 1 0 0
0 0 1 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Applying symbols on the transitionmatrix derives the symbolic transitionmatrix of theMNN
as

S =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

∅ ∅ ∅ ∅ ∅ a01 ∅ ∅

∅ ∅ ∅ ∅ a01 a01 ∅ ∅

∅ ∅ a10 ∅ ∅ a11 ∅ ∅

∅ ∅ a10 ∅ ∅ a11 ∅ ∅

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Since the labeled graph G, which is obtained from T, is not right-resolving, applying the
subset construction method to G derives a right-resolving labeled graphH (cf. Figure 2). The
transition matrix of H, indexed by p3, p4, p5, p6, {p5, p6}, is

H =

⎛

⎜
⎜
⎜
⎜
⎝

0 0 0 1 0
0 0 0 0 1
1 0 0 1 0
1 0 0 1 0
0 0 1 1 0

⎞

⎟
⎟
⎟
⎟
⎠

.
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Fig. 2 The labeled graphH
obtained by applying SCM to G.
An extra vertex p9 = {p5, p6} is
created so that H is
right-resolving

p3

p5

p6

p4

p9
a01

a10

a11

a10

a11 a01
a10

a11

Theorem 2.1 indicates that the topological entropy of the output space Y(2) is h(Y(2)) =
log ρH = log g, where g = 1 + √

5

2
is the golden mean.

3 Inhomogeneous Multi-layer Neural Networks

Based on the discussion of homogeneous MNNs, we now consider IHMNNs. Traditionally,
the template for MNN is homogeneous (also known as isotropic), i.e., the template is space-
invariant. However, there are more and more MNNs that use inhomogeneous templates
to describe some of the problems that arise from biological and ecological contexts. This
motivates the investigation of the topological complexity of the output spaces of IHMNNs.

A one-dimensional IHMNN is realized as
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

d

dt
x (k)
i (t) = −x (k)

i (t) + z(k)i + a(k)
i f (x (k)

i (t)) +
∑

�∈Ni,k

b(k)
� f (x (k−1)

i+� (t)),

d

dt
x (1)
i (t) = −x (1)

i (t) + z(1)i + a(1)
i f (x (1)

i (t)) +
∑

�∈Ni,1

a(1)
� f (x (1)

i+�(t)),
(15)

for some N ∈ N, k = 2, . . . , N and i ∈ Z. The template T = [Ti ]i∈Z consists of infinite sub-
templates Ti = [Ai ,Bi , zi ], where Ai = (Ai;1, Ai;2) with Ai;1 = (a(1)

i , . . . , a(N )
i ), Ai;2 =

(a(1)
� )�∈N1,i , B = (Bi;2, . . . , Bi;N ) with Bi;k = (b(k)

� )�∈Ni,k , and zi = (z(1)i , . . . , z(N )
i ). The

neighborhood N = [Ni,1, . . . ,Ni,N ]i∈Z also consists of infinitely many components. An
IHMNN is called a constant IHMNN (CIHMNN) if the neighborhood N and the template
T are periodic up to shifts. More precisely, there exists a positive integer L ∈ N such that
N′ = [N ′

i,1, . . . ,N ′
i,N ]i∈Z and T

′ = [T′
i ]i∈Z satisfy Ni+ j L ,k = N ′

i,k and T
′
i+ j L = T

′
i for

i, j ∈ Z and 1 ≤ k ≤ N , where

K′
i = Ki − i = { j − i : j ∈ Ki }, K = N , T.

It can be seen that CIHMNNs generalize the concept of the classical MNNs. More precisely,
a classical MNN is a CIHMNN with L = 1. The essential description of a one-dimensional
CIHMNN is presented in the following form:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

d

dt
x (k)
i (t) = −x (k)

i (t) + z(k)
i

+ a(k)
i

f (x (k)
i (t)) +

∑

�∈Ni,k

b(k)
� f (x (k−1)

i+�L (t)),

d

dt
x (1)
i (t) = −x (1)

i (t) + z(1)
i

+ a(1)
i

f (x (1)
i (t)) +

∑

�∈Ni,1

a(1)
� f (x (1)

i+�L (t)),
(16)
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40 J.-C. Ban, C.-H. Chang

where k = 2, . . . , N , 1 ≤ i ≤ L , and i = i (mod L). To clarify the discussion, we assume
that N = 2 and Ni = {−1, 1} is the nearest neighborhood for 1 ≤ i ≤ L .

Let	 = {1, . . . , L} be a finite index set. The one-dimensional latticeZ can be decomposed
into L non-overlapping subspaces

Z =
⋃

j∈	

Z j =
⋃

j∈	

{ ji , i ∈ Z}, {m : m = CL + j,C ∈ Z}

where ji = j + i L . Thus, (16) immediately can then be restated as

⎧
⎪⎨

⎪⎩

d

dt
x (2)
ji

(t) = −x (2)
ji

(t) + z(2)j + a(2)
j f (x (2)

ji
(t)) + b(2)

j;−1 f (x
(1)
ji−1

(t)) + b(2)
j;1 f (x

(1)
ji+1

(t)),

d

dt
x (1)
ji

(t) = −x (1)
ji

(t) + z(1)j + a(1)
j f (x (1)

ji
(t)) + a(1)

j;−1 f (x
(1)
ji−1

(t)) + a(1)
j;1 f (x

(1)
ji+1

(t)),

(17)
for j ∈ 	, i ∈ Z. Similarly to the discussion in the previous section, for a fixed j ∈ 	,
there exist basic sets of admissible local patterns of the first and second layers, say, B(1)

j =
(B(1)

j (+),B(1)
j (−)) and B(2)

j = (B(2)
j (+),B(2)

j (−)), respectively. The basic set of admissible

local patterns B j = (B(1)
j ,B(2)

j ) determines the solution space Y j as

Y j =

⎧
⎪⎨

⎪⎩

y =
(
y(2)
ji

y(1)
ji

)

i∈Z
: y(2)

ji
� y(1)

ji−1
y(1)
ji+1

∈ B(2)
j ,

y(1)
ji−1

y(1)
ji
y(1)
ji+1

∈ B(1)
j

⎫
⎪⎬

⎪⎭
. (18)

It follows that, for 1 ≤ j ≤ L ,Y j is the solution spaceY defined in (7) after relabeling. Hence
Y j is topologically conjugated to the solution space of a traditional two-layer neural network.
Notably, (17) infers that a CIHMNN is decomposed into L independent MNNs. More pre-
cisely, let φ j : Y → Y j be the canonical projection for 1 ≤ j ≤ L . A straightforward
examination demonstrates that

φ : Y → Y1 × Y2 × · · · × YL

defined by φ = (φ1, φ2, . . . , φL) is an isomorphism, where× is the Cartesian product. If one
replacesY andY j byY(2) andY(2)

l , respectively, for 1 ≤ j ≤ L , analogous discussion leads

to topological conjugacy between Y(2) and Y(2)
1 × · · · × Y(2)

L . Theorem 3.1 then follows.

Theorem 3.1 Suppose Y and Y(2) (respectively Y j and Y(2)
j ) are the solution and output

spaces of (16) (respectively (18) ), respectively. Then

Y ∼= Y1 × · · · × YL and Y(2) ∼= Y(2)
1 × · · · × Y(2)

L , (19)

where × is the Cartesian product.

The ordering matrix of Y j is defined by
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while is the same as that defined in the previous section.
Similar to the discussion above, the transition matrix of Y is
defined by

T j (m, n) =
⎧
⎨

⎩

1, pm, pn ∈ B(2)
j , αm−1αn−1αn+1 ∈ B(1),

and αn−1 = αm+1;
0, otherwise.

(20)

Suppose Tj,1 and Tj,2 are the transition matrices of the first and second layers of Y j , respec-
tively. It is an immediate result from the definition of X1 and X

′
2 that

T j = Tj,2 ◦ (E2 ⊗ Tj,1) for j ∈ 	. (21)

Theorem 3.2, which comes immediately from Theorem 3.1, reveals the spatial complexity
of a CIHMNN.

Theorem 3.2 Suppose Y(2) is the output space of (16) with subspaces Y(2)
j defined in (18),

1 ≤ j ≤ L. Then the topological entropy of Y(2) is

h(Y(2)) = 1

L
(h(Y(2)

1 ) + · · · + h(Y(2)
L )). (22)

Similarly, the topological entropy of the solution space Y is

h(Y) = 1

L
(h(Y1) + · · · + h(YL)). (23)

Moreover, let ρ j be the spectral radius of T j and let � j be the spectral radius of H j for
1 ≤ j ≤ L, where H j is the transition matrix of the labeled graph obtained by applying

SCM to the labeled graph of Y(2)
j . Then

h(Y) = 1

L

L∑

j=1

ρ j , h(Y(2)) = 1

L

L∑

j=1

� j .

Since the output space of a CIHMNNconsists of binary patterns, the topological entropy is
either zero or is less than or equal to log 2. Thus, it is natural to ask whether or not the entropy
set, i.e., the collection of the topological entropies of all output spaces, of CIHMNNs is dense
in the closed interval [0, log 2]. Denseness of the entropy set indicates that CIHMNNs are
capable of exhibiting “arbitrary” phenomena. In other words, CIHMNNs are universal in
some sense. The upcoming corollary asserts an affirmative result.
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Table 1 The topological entropy h(Y(2)) of CIHMNNs with 2 -components and the templates being given by

(a(1)
1 , z(1)1 , a(1)

1;−1, a
(1)
1;1) = (a(1)

2 , z(1)2 , a(1)
2;−1, a

(1)
2;1) = (1.5, −2, 2, −4) and (b(2)

1;−1, b
(2)
1;1) = (b(2)

2;−1, b
(2)
2;1) =

(1, 3)

0 log
√
2 log 2

0 0 log 4√2 log
√
2

log
√
2 log 4√2 log

√
2 log 4√8

log 2 log
√
2 log 4√8 log 2

The topological entropies h(Y(2)
1 ) and h(Y(2)

2 ) as the parameters a(2)
1 , a(2)

2 , z(2)1 , and z(2)2 vary, are listed in
the column and row, respectively. A richer choice of topological entropies is observed

Corollary 3.3 The set of topological entropies of CIHMNNs is dense in the closed interval
[0, log 2]. More precisely, given ε > 0 and λ ∈ [0, log 2], there exists a CIHMNN such that
|h(Y(2)) − λ| < ε.

Proof It suffices to show that, for 1 ≤ � ≤ 2k and k ∈ N, there exists a CIHMNN satisfying

h(Y(2)) = �

2k
log 2.

To achieve this, let L = 2k , Y(2)
j be the full 2-shift for 1 ≤ j ≤ �, and let Y(2)

j consist of

either (−)∞ or (+)∞ for � + 1 ≤ j ≤ 2k . Theorem 3.2 demonstrates that

h(Y(2)) = 1

2k
(h(Y(2)

1 ) + · · · + h(Y(2)
2k

))

= 1

2k

�∑

j=1

log 2 = �

2k
log 2.

This completes the proof. ��
Example 3.4 Suppose the templates of CIHMNNs are given by

(a(1)
1 , z(1)1 , a(1)

1;−1, a
(1)
1;1) = (a(1)

2 , z(1)2 , a(1)
2;−1, a

(1)
2;1)

= (1.5,−2, 2,−4)

and
(b(2)

1;−1, b
(2)
1;1) = (b(2)

2;−1, b
(2)
2;1) = (1, 3).

It is seen that, for all possible choices of (a(2)
1 , z(2)1 ) and (a(2)

2 , z(2)2 ), the topological entropies

of Y(2)
1 and Y(2)

2 are a subset of {0, log√
2, log 2}. The topological entropy of the output

space Y(2) such that Y(2) ∼= Y(2)
1 × Y(2)

2 is presented in Table 1.

Remark 3.5 An immediate extension of Theorems 3.1, 3.2, and Corollary 3.3 is that, given
an inhomogeneous N -layer neural network (16), for 0 ≤ � ≤ N ,

a. Y(�) ∼= Y(�)
1 × · · · × Y(�)

L ;

b. h(Y(�)) = 1

L

∑L
j=1 h(Y(�)

j ) = 1

L

∑L
j=1 log ρ

(�)
j ;

herein Y(0) refers to Y, and ρ
(�)
j is the spectral radius of the transition matrix of Y(�)

j after
applying SCM to its corresponding labeled graph. Furthermore,
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c. the entropy set {h(Y(�))} is dense in the closed interval [0, log 2].
To see the affirmation of statements in Remark 3.5, one can tell that a CIHMNN (16) with
the nearest neighborhood Ni = {−1, 1} for 1 ≤ i ≤ L and i = i (mod L) can be restated
as
⎧
⎪⎨

⎪⎩

d

dt
x (k)
ji

(t) = −x (k)
ji

(t) + z(k)j + a(k)
j f (x (k)

ji
(t)) + b(k)

j;−1 f (x
(1)
ji−1

(t)) + b(k)
j;1 f (x

(1)
ji+1

(t)),

d

dt
x (1)
ji

(t) = −x (1)
ji

(t) + z(1)j + a(1)
j f (x (1)

ji
(t)) + a(1)

j;−1 f (x
(1)
ji−1

(t)) + a(1)
j;1 f (x

(1)
ji+1

(t)),

where 2 ≤ k ≤ N , j ∈ 	 = {1, . . . , L}, and i ∈ Z. Similar discussion on the elucidation of
Theorem 3.1 approves Remark 3.5(a), i.e.,

Y(�) ∼= Y(�)
1 × · · · × Y(�)

L

for 0 ≤ � ≤ N . Following Remark 3.5(a), Remark 3.5(b) and (c) reveal the explicit formula
of the topological entropy of the hidden/output/solution space and the capability of universal
machines for CIHMNNs.

To see that Remark 3.5 holds for an arbitrary neighborhood, an inhomogeneous two-layer
neural network with two-nearest neighborhood Ni = {−2,−1, 1, 2} ≡ N is addressed to
clarify the methodology. The generalized investigation follows by combining the upcoming
illustration and the recursive formulae in [47]. In this case, (16) is expressed as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d

dt
x (2)
ji

(t) = −x (2)
ji

(t) + z(2)j + a(2)
j f (x (2)

ji
(t)) +

∑

�∈N
b(2)
j;� f (x

(1)
ji+�

(t)),

d

dt
x (1)
ji

(t) = −x (1)
ji

(t) + z(1)j + a(1)
j f (x (1)

ji
(t)) +

∑

�∈N
a(1)
j;� f (x

(1)
ji+�

(t)),

for j ∈ 	 = {1, . . . , L}, i ∈ Z, and ji = j + Li . Analogous to the study of Theorem 3.1,
the solution space Y j is realized as

Y j =

⎧
⎪⎪⎨

⎪⎪⎩

y =
(
y(2)
ji

y(1)
ji

)

:y(2)
ji

� y(1)
ji−2

y(1)
ji−1

y(1)
ji+1

y(1)
ji+2

∈ B(2)
j ,

y(1)
ji−2

y(1)
ji−1

y(1)
ji
y(1)
ji+1

y(1)
ji+2

∈ B(1)
j

⎫
⎪⎪⎬

⎪⎪⎭

,

where B(1)
j and B(2)

j is the basic set of admissible local patterns of the first and second layer,
respectively. The ordering matrix X2, indexed by

{α � β−2β−1β1β2 : α, βi ∈ {−,+}, i = −2,−1, 1, 2},
is defined as

X2(α � β−2β−1β1β2, α
′ � β ′−2β

′−1β
′
1β

′
2) = αα′ � β−2β−1β1β2β

′
1β

′
2

if β−1β2 = β ′−2β
′
1, and

X2(α � β−2β−1β1β2, α
′ � β ′−2β

′−1β
′
1β

′
2) = ∅

otherwise. The ordering matrix X1, indexed by

{γ1γ2γ3γ4 : γi ∈ {−,+}, 1 ≤ i ≤ 4},
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is defined as

X1(γ1γ2γ3γ4, γ
′
1γ

′
2γ

′
3γ

′
4) = γ1γ2γ3γ4γ

′
4

if γ2γ3γ4 = γ ′
1γ

′
2γ

′
3, and

X1(γ1γ2γ3γ4, γ
′
1γ

′
2γ

′
3γ

′
4) = ∅

otherwise. Furthermore, the transition matrix T j of the solution space, indexed by

{α � β−2β−1β1β2 : α, βi ∈ {−,+}, i = −2,−1, 1, 2},
is a 0–1 matrix defined as

T j (α � β−2β−1β1β2, α
′ � β ′−2β

′−1β
′
1β

′
2) = 1

if and only if

1. β−1β2 = β ′−2β
′
1;

2. αα′ � β−2β−1β1β2β
′
1β

′
2 ∈ B(2)

j ;

3. β−2β−1β1β2β
′
1, β−1β1β2β

′
1β

′
2 ∈ B(1)

j .

Meanwhile, the transition matrix Tj;2 ∈ M32×32({0, 1}) of the second layer is given by

Tj;2(α � β−2β−1β1β2, α
′ � β ′−2β

′−1β
′
1β

′
2) = 1

if and only if

1. β−1β2 = β ′−2β
′
1;

2. αα′ � β−2β−1β1β2β
′
1β

′
2 ∈ B(2)

j ;

the transition matrix Tj;1 ∈ M16×16({0, 1}) of the first layer is given by

Tj;1(γ1γ2γ3γ4, γ ′
1γ

′
2γ

′
3γ

′
4) = 1

if and only if X1(γ1γ2γ3γ4, γ
′
1γ

′
2γ

′
3γ

′
4) ∈ B(1)

j . Denote T 2
j;1 = (Tp,q)

8
p,q=1 as 64 smaller

2× 2 pieces; let T j;1 be the rearrangement of T 2
j;1 so that the patterns present in T j;1 are the

same as the bottom patterns presenting in the left-top 16 × 16 block of Tj;2. Then it can be
seen that T j = Tj;2 ◦ (E2 ⊗ T j;1). Applying appropriate labeling on T j derives the labeled

graph presentation ofY j ,Y
(1)
j , andY(2)

j , respectively. More precisely, the labeling L(1),L(2)

for Y(1)
j ,Y(2)

j are given by

L(1)(T j (α � β−2β−1β1β2, α
′ � β ′−2β

′−1β
′
1β

′
2)) = β−2β−1β1β2β

′
1β

′
2

and

L(2)(T j (α � β−2β−1β1β2, α
′ � β ′−2β

′−1β
′
1β

′
2)) = αα′

respectively, provided

T j (α � β−2β−1β1β2, α
′ � β ′−2β

′−1β
′
1β

′
2) = 1.

Letρ j be the spectral radius ofT j , and letρ
(1)
j , ρ

(2)
j be the spectral radius ofmatrices obtained

by applying SCM to the labeled graph presentation of Y(1)
j ,Y(2)

j , respectively. Theorem 2.1
infers that

h(Y(k)
j ) = log ρ

(k)
j , k = 0, 1, 2,

where Y(0)
j = Y j and ρ

(0)
j = ρ j . This completes the elucidation of Remark 3.5.
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4 Conclusion

This paper investigates the spatial complexity of the mosaic solution space andmosaic output
space of constant IHMNNs (16). The reason we concentrate on mosaic solutions is that the
investigation of mosaic solutions is most essential in MNN models due to the learning algo-
rithm and training processing. More abundant output patterns make the learning algorithm
more efficient. A quantity that is frequently used for the number of output patterns is topo-
logical entropy. From the mathematical viewpoint, the denseness of the entropy set asserts
that CIHMNNs are almost capable of exhibiting any phenomena requested. This makes
CIHMNNs the universal machine in some sense and approves of CIHMNNs as efficient in
learning algorithms. The activation function considered in this paper derives from CNNs.
Since cellular neural networks have been applied to many areas such as image processing,
the choice of the activation function seems to be convincingly adapted to our goal on the
study of the vision systems of mammals. By applying the well-developed theory of symbolic
dynamics, we demonstrate the explicit formula of the topological entropy of the solution,
and the hidden and output spaces of IHMNNs.

We also emphasize that the method we have provided herein is more general, an easy
extension leading us to consider the classical McCulloch-Pitts model and signum activation
function. The related works are in preparation.
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