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a b s t r a c t

This paper aims to characterize whether a multi-layer cellular neural network is of deep architecture;
namely, when can an n-layer cellular neural network be replaced by an m-layer cellular neural network
for m < n yet still preserve the same output phenomena? From a mathematical point of view, such
characterization involves investigating whether the topological structure of two (or multiple) layers is
conjugate. A decision procedure that addresses the necessary and sufficient condition for the topological
conjugacy between two layers in a network is revealed.
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1. Introduction

This paper focuses on the following dynamical systems.

d
dt

x(n)i (t) = −x(n)i (t)+ z(n) +

k∈N

(a(n)k f (x(n)i+k(t))

+ b(n)k f (x(n−1)
i+k (t))),

...
d
dt

x(2)i (t) = −x(2)i (t)+ z(2) +

k∈N

(a(2)k f (x(2)i+k(t))

+ b(2)k f (x(1)i+k(t))),
d
dt

x(1)i (t) = −x(1)i (t)+ z(1) +

k∈N

a(1)k f (x(1)i+k(t)),

(1)

for some integer n ≥ 2, i ∈ N, and t ≥ 0. Herein x(ℓ)i (t) = 0 for
1 ≤ ℓ ≤ n and t ≥ 0 provided i ≤ 0. The so-called neighborhood
N is a finite subset of integers Z; the output function

f (x) =
1
2
(|x + 1| − |x − 1|) (2)
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is a piecewise linear map. A = [A(1), . . . , A(n)] and B =

[B(2), . . . , B(n)] are the feedback and controlling templates, respec-
tively, where A(j) = [a(j)k ]k∈N , B(l) = [b(l)k ]k∈N for 1 ≤ j ≤ n, 2 ≤

l ≤ n; z = [z(1), . . . , z(n)] is the threshold. The template T of (1)
consists of the feedback and controlling templates and the thresh-
old, namely, T = [A,B, z]. Note that (1) are standard cellular neu-
ral networks (CNNs) if we let n = 1; in this casewe call them single
layer CNNs. Themain reason one chooses (2) to be the output func-
tion for (1) is the application of the pattern recognition and image
processing (Chua & Yang, 1988a, 1988b).

(1) are calledmulti-layer cellular neural networks (MCNNs, Chua
& Shi, 1990) for n ≥ 2. For the last few decades, MCNNs have
received considerable attention due to the fact that they have
been successfully applied to many areas such as signal prop-
agation between neurons and image processing (Chua & Yang,
1988a; Crounse & Chua, 1995; Murugesh, 2010; Yang, Nishio, &
Ushida, 2001, 2002), pattern recognition (Chua & Roska, 2002;
Crounse, Roska, & Chua, 1993; Peng, Zhang, & Liao, 2009), CMOS
realization (Carmona, Jimenez-Garrido, Dominguez-Castro, Espejo,
& Rodriguez-Vazquez, 2002; Xavier-de Souza, Yalcin, Suykens, &
Vandewalle, 2004), VLSI implementation (Chua & Shi, 1991), and
self-organization phenomena (Arena, Baglio, Fortuna, & Manga-
naro, 1998). The sufficient conditions for the complete stability of
(1) for n ≥ 1 can be found in Li (2009), Paolo-Civalleri and Gilli
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(1999), Savaci and Vandewalle (1992), Török and Roska (2004),Wu
and Chua (1997), Xu, Pi, Cao, and Zhong (2007) and Zou andNossek
(1991).

Some kind of stationary solution for (1) is essential, namely,
the mosaic solution, due to the wide range of complete stability
in the parameter space and the application to image processing.
For single layer CNNs, a mosaic solution x is a stationary solution
of (1) which satisfies |xi| ≥ 1 while its corresponding pattern
y = (yi) = (f (xi)) is called a mosaic output pattern. Since the
output function (2) is a piecewise linear function with f (x) = 1
(resp. −1) if x ≥ 1 (resp. x ≤ −1), the output of a mosaic solution
x = (xi)i∈N is an element in Σ = {−1,+1}N, and that is why we
call it a pattern.

Given an n-layer CNN with n ≥ 2, a stationary solution x =

(x(1)i , . . . , x
(n)
i )i∈Z ∈ R∞×n of (1) is called mosaic if |x(k)i | > 1 for

1 ≤ k ≤ N, i ∈ Z. The output y = (y(1)i · · · y(n)i )i∈Z ∈ {−1, 1}∞×n

of a mosaic solution is called a pattern, where y(k)i = f (x(k)i ). The
solution space Y of (1) stores the mosaic patterns y, and the output
spaceY(n) of (1) is the collection of the output patterns inY, or,more
precisely,

Y(n) = {(y(n)i )i∈Z : (y(1)i · · · y(n)i )i∈Z ∈ Y}.

There are two important problems for a given MCNN: (i) How
can we characterize whether an MCNN has deep architecture?1
and (ii) How can we train a deep architecture MCNN? Those two
problems are closely related to AI design, since deep architecture
may be required for any such design. As a general reference,
readers are referred to Bengio (2009) for more details.

This work is intended as an attempt to answer problem (i) and
study the learning algorithm of (ii). First we try to formulate (i) and
(ii) mathematically. LetΣ be a shift space; that is,Σ is a subset of
AN for some finite set A. C(Σ,Σ) denotes the collection of maps
from Σ to Σ . A map τ ∈ C(Σ,Σ) is called a factor (resp. an
embedding) if it is onto (resp. one-to-one). τ is called a conjugacy
if it is both a factor and an embedding. Then the above problem is
formulated as follows.

Problem 1. Given an n-layer CNN (1) with n ≥ 2.

(1) Corresponding to a given Y(1), what kind of Y(n) can be shown?
To be precise, what is the symbolic spaceY(n) according toY(1)?

(2) Given Y(i) and Y(j) for 1 ≤ i ≠ j ≤ n, does there exist a
conjugacy τ between them?

Problem 1-(1) is closely related to the learning algorithm of
MCNNs since one can figure out which kind of output solutions of
(1) can be produced from a given input. It is also worth pointing
out that if τ in Problem 1-(2) exists and i < j, then one can merge
the ith layer to the jth layer to form one layer since conjugacy
ensures that the phenomena exhibited by these two layers are
dynamically the same. By continuing this process one would
obtain a new MCNN such that each layer completely performs a
different function between the other layers (thus each layer cannot
be removed). Thus, one can characterize the depth of such an
MCNN. In Ban, Chang, and Lin (2012), Ban and Chang provided a
necessary and sufficient condition for determining whether Y(i)
and Y(j) are conjugated for some 1 ≤ i < j ≤ n; in this
case, an n-layer CNN can be replaced by an (n − j + i)-layer
CNN. Their criterion only works for the case where the symbolic
transitionmatrices of Y(i) and Y(j) are both right-resolving (defined
later). Later on, Chang (2015) obtained a necessary and sufficient

1 Deep architectures are composed of multiple levels of nonlinear operations,
such as in neural networkswithmany hidden layers or in complicated propositional
formulae re-using many sub-formulae.
condition for determining whether a multi-layer neural network
can be reduced to one with fewer layers without the assumption
in Ban et al. (2012); instead of right-resolving of the symbolic
transition matrix, the criterion proposed in Chang (2015) hinges
on the existence of the so-called factor-like matrix. This work
proposes an algorithm, which provides a necessary and sufficient
condition for determining the depth of an MCNN, for answering
Problem 1-(2); the main contribution of the proposed algorithm
is to demonstrate a workable criterion which can be realized by
programming, such that the result can be derived in seconds.

Meanwhile, recall that the well-known Hopfield neural net-
works (Hopfield, 1982, 1984) can be formulated asCiẋi = −

xi
Ri

+

N
j=1

ωijyj + θi,

yi = gi(λixi),

for i = 1, . . . ,N, (3)

where xi stands for the state of neuron iwith each activation func-
tion gi being sigmoid. It should be highlighted that if n = 1, then
the main difference between (1) and (3) is their output functions
and the weights between neurons. Hence the investigation of the
MCNNs in this paper can be extended to Hopfield neural networks
(HNNs) with somemodification. Roughly speaking, MCNNs are hy-
brids between conventional neural networks, such as HNNs, and
continuous automata; the behavior of the overall systems of both
MCNNs and HNNs is driven by the weights of the processing unit’s
linear interconnection. Themajor discriminator is that the connec-
tions between MCNN processors are local, while all the HNN pro-
cessors are fully interconnected. Beyond that, ourmethodology can
also be applied to determine whether two stable multi-layer neu-
ral networks are topologically conjugate, in other words, whether
or not two different neural networks, such as CNN and HNN, rec-
ognize the same images up to the change of color. The relatedwork
is in preparation.

As stated above, one of the applications of our algorithm is to
see whether two completely stable networks are likely to be con-
jugated, that is, to determine if two networks exhibit the same
dynamical behavior eventually. More precisely, the output of a
network converges to patternswhenever it is completely stable; in
this case, the output patterns are realized symbolically and can be
analyzed via our algorithm and theorem. To the best of our knowl-
edge, there is no such elucidation investigating multi-layer neu-
ral networks from this perspective. Furthermore, in Rakkiyappan,
Chandrasekar, Lakshmanan, and Park (2014), Rakkiyappan, Zhu,
and Chandrasekar (2014), the authors demonstrated the asymp-
totic stability of some types of stochastic neural networks with
time-dependent delays and Markovian jump parameters. A nat-
ural question is to ask under what conditions a stochastic neural
network with delays possesses similar behavior to a multi-layer
cellular neural network, up to conjugacy. It is also interesting to
elaborate the cost to simulate a stochastic neural networkwith de-
lays by a deterministic multi-layer network; more precisely, to an-
swer the question of how many layers we need, for instance, for
a multi-layer cellular neural network to exhibit the dynamical be-
havior of a stochastic Cohen–Grossberg neural network with de-
lays. The related work remains in preparation.

The rest of this paper is organized as follows. In Section 2,
we consider the simplest case, i.e., n = 2 and elucidate how to
produce the symbolic space of Y(2) according to a given Y(1). This
method can be easily extended to the general case where n > 2.
The so-called symbolic transition matrices S(i) of Y(i), for i = 1, 2,
are defined therein, which is helpful for the study of Problem-
(2). We prove that S(i) is the complete invariant for the existence
of conjugacy between Y(1) and Y(2) (Theorem 2.1). This gives the
affirmative answer for Problem-(2) of n = 2. Finally we extend
this result to the general case for arbitrary n ≥ 2 (Theorem 3.1) in
Section 3, and further discussion and our conclusion are addressed
in Section 4.
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2. Topological conjugacy for two-layer cellular neural net-
works

This section elucidates the conjugacy between the output and
hidden spaces of two-layer cellular neural networks to clarify the
idea of themethodology for the generalMCNNs,which is explained
in the next section.

To make the discussion easier to understand, we consider the
simplified two-layer neural networks (STCNNs) proposed as

dx(2)i

dt
= −x(2)i + a(2)y(2)i + a(2)r y(2)i+1 + b(2)u(2)i

+ b(2)r u(2)i+1 + z(2),

dx(1)i

dt
= −x(1)i + a(1)y(1)i + a(1)r y(1)i+1 + z(1),

(4)

where u(2)i = y(1)i for all i ∈ N. Suppose y =


···y(2)

−1y
(2)
0 y(2)1 ···

···y(1)
−1y

(1)
0 y(1)1 ···


is a

mosaic pattern. For i ∈ N, y(1)i = 1 if and only if

a(1) + z(1) − 1 > −a(1)r y(1)i+1. (5)

Similarly, y(1)i = −1 if and only if

a(1) − z(1) − 1 > a(1)r y(1)i+1. (6)

The same argument asserts

a(2) + z(2) − 1 > −a(2)r y(2)i+1 − (b(2)u(2)i + b(2)r u(2)i+1), (7)

and

a(2) − z(2) − 1 > a(2)r y(2)i+1 + (b(2)u(2)i + b(2)r u(2)i+1) (8)

are the necessary and sufficient conditions for y(2)i = −1 and
y(2)i = 1, respectively. Note that the quantity u(2)i in (7) and (8)
satisfies |u(2)i | = 1 for each i. Define ξ1 : {−1, 1} → R and
ξ2 : {−1, 1}3 → R by

ξ1(w) = a(1)r w, ξ2(w1, w2, w3) = a(2)r w1 + b(2)w2 + b(2)r w3.

Set

B(1)
=


y(1)y(1)r : y(1), y(1)r ∈ {−1, 1}satisfy (5), (6)


,

B(2)
=

 y(2)y(2)r

u(2)u(2)r
: y(2), y(2)r , u

(2), u(2)r ∈ {−1, 1}

satisfy (7), (8)

 .
That is,

y(1)y(1)r ∈ B(1)
⇔


a(1) + z(1) − 1 > −ξ1(y(1)r ),

if y(1) = 1;
a(1) − z(1) − 1 > ξ1(y(1)r ),

if y(1) = −1.

y(2)y(2)r

u(2)u(2)r
∈ B(2)

⇔


a(2) + z(2) − 1 > −ξ2(y(2)r , u

(2), u(2)r ),

if y(2) = 1;
a(2) − z(2) − 1 > ξ2(y(2)r , u

(2), u(2)r ),

if y(2) = −1.

The basic set of admissible local patterns B of (4) is then

B =


yyr
uur

:
yyr
uur

∈ B(2) and uur ∈ B(1)


.

The basic set of admissible local patterns plays an essential
role for investigating the structure of the solution space Y of
STCNNs. Substitute mosaic patterns −1 and 1 as symbols − and
+, respectively. Define the ordering matrix of {−,+}

Z2×2 by

X2 =



−
−

−
+

+
−

+
+

−
−

−−
−−

−−
−+

−+
−−

−+
−+

−
+

−−
+−

−−
++

−+
+−

−+
++

+
−

+−
−−

+−
−+

++
−−

++
−+

+
+

+−
+−

+−
++

++
+−

++
++


:= (xpq)1≤p,q≤4.

Notably, each entry in X is a 2 × 2 pattern since B consists of
2 × 2 local patterns. Suppose that B is given. The transition matrix
TB ≡ T = (T(p, q)) ∈ M4({0, 1}) is defined by

T(p, q) =


1, if xpq ∈ B;

0, otherwise

where 1 ≤ p, q ≤ 4. Let L = {α1, α2.α3, α4}, where

α1 := −−, α2 = −+, α3 = +−, α4 = + + .

For i = 1, 2, define the symbolic transition matrix S(i)B ≡ S(i) =

(S(i)(p, q)) for the ith layer as

S(i)(p, q) =


αki , if T(p, q) = 1 and xpq = αk2 � αk1;

∅, otherwise.

Herein � infers piling one pattern above another one; more
specifically,

t1t2 . . . tk � t ′1t
′

2 . . . t
′

k :=
t1t2 . . . tk
t ′1t

′

2 . . . t
′

k
.

The structure of the output space

Y(2) = {(yi)i∈N : there exists (ui)i∈N such that (yi � ui)i∈N ∈ Y}

is determined by S(2). Similarly, we can investigate the topological
property of the hidden space

Y(1) = {(ui)i∈N : there exists (yi)i∈N such that (yi � ui)i∈N ∈ Y}

via the symbolic transition matrix S(1).
The solution space of a STCNN is a subspace of {−,+}

∞×2, and
the output/hidden space, which is a subspace of {−,+}

∞, is a pro-
jection of the solution space. Since each STCNN is a locally coupled
system, it is seen that every element in the output space (resp. hid-
den space) can be revealed via the symbolic transition matrix S(2)
(resp. S(1)). More precisely, for each y = (yi)i∈N ∈ Y(2) and n ≥ 2,
the truncated pattern (yi)ni=1 is stored in (S(2))n−1, wherein the
product of symbolic transition matrices indicates combining two
patterns whenever the terminal symbol of the first pattern and the
initial pattern of the other are coincident. The symbolic transition
matrix, briefly speaking, is used for elucidating the properties of
the solution, output, and hidden spaces of an MCNN. Example 2.1
provides an intuitive observation of how a symbolic transitionma-
trix assists in the investigation of the output space of an MCNN;
readers are referred to Ban, Chang, Lin, and Lin (2009) for more de-
tails.

Example 2.1. Suppose the templates of a STCNN are given by

[a(1), a(1)r , z
(1)

] = [2.9, 1.7, 0.1]

[a(2), a(2)r , b
(2), b(2)r , z

(2)
] = [−0.3,−1.2, 0.7, 2.3, 0.9].
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Evidently, the solution space Y is generated by the set of local
patterns

B =


−+

−−
,

−+

+−
,

+−

−+
,

+−

++
,

++

−+
,

++

++


and the transition matrix T is

T =

0 0 1 0
0 0 1 0
0 1 0 1
0 1 0 1

 .
Let us focus on the hidden space Y(1). The symbolic transition
matrix of Y(1) is

S(2) =

∅ ∅ α1 ∅
∅ ∅ α3 ∅
∅ α2 ∅ α2
∅ α4 ∅ α4

 .
To see that (S(1))n−1 stores those truncated output patterns of
length n, we consider the case where n = 3. It can be seen from
B that the truncated hidden patterns of length 3 are

− − +, + − +, − + −, + + −, − + +, + + +.

Meanwhile,

(S(1))2 =

∅ α1α2 ∅ α1α2
∅ α2α3 ∅ α3α2
∅ α2α4 α2α3 α2α4
∅ α4α4 α4α3 α4α4



=

∅ − − + ∅ − − +

∅ − + − ∅ + − +

∅ − + + − + − − + +

∅ + + + + + − + + +


stores all the truncated hidden patterns above.

For a given symbolic transition matrix S, we construct the
symbolic total amalgamation matrix Stot as follows:

Algorithm 2.1 (Total Amalgamation Algorithm). Given a symbolic
transition matrix S that has no empty rows or columns.

Step 1. If there are no two identical rows or columns in S, then
Stot = S.

Step 2. Delete the jth row (respective column) if it is identical to
the ith row (respective column) for some i < j.

Step 3. Add the jth column (respective row) to the ith column
(respective row), then delete the jth column (respective
row).

Step 4. Repeat Steps 1–3.

The total amalgamation algorithm is meant to reduce the
complexity of a symbolic transition matrix and, in the meantime,
remains capable of presenting the structure of its corresponding
space. Example 2.2 shows how the algorithm reduces the
dimension of a symbolic transition matrix, and Proposition 2.1
demonstrates that the reduced symbolic transition matrix still
presents the same space as the original matrix does.

Example 2.2. Suppose Y is a sofic shift with a labeled graph
presentation G. The symbolic transition matrix S of Y is expressed
as

S =

a b c
∅ d e
a b c



Fig. 1. A labeled graph G whose symbolic transition matrix having two identical
rows gives rise to the inference that the outgoing edges of two vertices are the same.
The amalgamation labeled graph Gtot of G is a labeled graph that merges such two
vertices.

and has two identical rows. Applying the total amalgamation
algorithm to S we have

S =

a b c
∅ d e
a b c


❀


a b c
∅ d e


❀


a + c b c
e d e



❀


a + c b
e d


= Stot.

The labeled graph presentation Gtot of Stot is shown in Fig. 1.

Proposition 2.1. Suppose Y is a sofic shift with the symbolic
transition matrix S having no empty rows or columns. Let Stot be
the symbolic transition matrix obtained from applying the total
amalgamation algorithm to S, and let Ytot be the sofic shift derived
from Stot. Then Y is coincident with Ytot.

Proof. Without loss of generality, we assume that S has exactly
two identical columns and Stot is obtained by removing one of
these two columns and replacing two corresponding rows by their
summation, which has no identical columns. Let G = (G,L)
be a labeled graph presentation of S with an underlying directed
graph G = (V, E) consisting of vertices set V and edges set E .
More precisely, V = {vi}

r
i=1 with r being the dimension of S,

e = (vi, vj) ∈ E if and only if S(i, j) ≠ ∅, and L : E → A is
the labeling defined as L(e) = a if and only if e = (vi, vj) ∈ E and
S(i, j) = a. It can be seen that the kth and the ℓth columns of S are
coincident which infers Vk

= Vℓ and L(v, vk) = L(v, vℓ) for all
v ∈ Vk, where

Vk
= {v ∈ V : (v, vk) ∈ E}

consists of those vertices that are the initial states of edges ending
at vk.

Since Vk
= Vℓ, deleting the ℓth column of S means that the

vertex vℓ is eliminated and those edges with terminal state vℓ
are merged with appropriately corresponding edges with terminal
state vk in the sense L(v, vk) = L(v, vℓ) for all v ∈ Vk. To
complete the mergence of vk and vℓ, we replace

Ek = {e ∈ E : e = (vk, v) for some v ∈ V}

by Ek ∪ Eℓ. Namely, vk is substituted as the initial state of
those edges starting from vℓ. This operation is the realization
of Step 3 in the total amalgamation algorithm on the labeled
graph presentation G of S, with a new labeled graph Gtot thereby
constructed.

For each n ∈ N, let Pn(G) and Pn(Gtot) denote the set of paths of
length n in G and Gtot, respectively. To be specific,

Pn(G) = {w1w2 · · ·wn : wi = L(vki , vki+1),

(vki , vki+1) ∈ E for all i}.
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Obviously, every path w of length n in G is a path of length n in
Gtot. Conversely, suppose w ∈ Pn(Gtot). If w does not pass through
vk (herein we use the notation vk to refer to the new vertex that is
the mergence of vk and vℓ in the original graph), then w ∈ Pn(G).
Otherwise, assume that the initial state of w is vk and vk is not
treated as an intermediate state of w. Suppose w is not a length-n
path in G that starts from vk. Letm be the smallest index such that
wm ≠ L(vk, v) for all v ∈ V . The definition of Gtot demonstrates
that wm = L(vℓ, v) for some v ∈ V , and hence w is a path with
initial state vℓ. It follows that Pn(Gtot) ⊆ Pn(G).

Similarly, we can demonstrate that every path of length n in
Gtot is also a path of the same length in G. Since Y and Ytot consist
of paths of infinite length in S and Stot, respectively, it follows
Y = Ytot. This completes the proof. �

Given an n × n symbolic transition matrix S, we say that S is
right-resolving if, for 1 ≤ p ≤ n, S(p, q1) ≠ S(p, q2) for 1 ≤

q1, q2 ≤ n, except for empty entries. The graphical meaning of
a right-resolving symbolic transition matrix is that, in its related
labeled graph presentation, no two edges start from one vertex
carrying the same symbol. For two symbolic transition matrices S1
and S2, we say that S1 is equivalent to S2 by declaring S1 ≈ S2
if there exists a one-to-one correspondence between the symbols
of S1 and S2 such that S1 equals S2 modulo such bijection of their
underlying symbolic monomials. For example,

∅ b
b + c 2a


≈


∅ a

a + d 2e


≈


∅ α

α + tt 2β


.

It follows immediately that two spaces represented by equivalent
symbolic transition matrices are topologically conjugate. Suppose
Y(1) and Y(2) are the hidden and output spaces of a STCNN
with symbolic transition matrices S(1) and S(2), respectively.
Theorem 2.1 proposes a decision procedure for determining
whether Y(1) is conjugate to Y(2).

Theorem 2.1. Suppose S(1)tot and S(2)tot are both right-resolving without
empty rows/columns. Then Y(1) ∼= Y(2) if and only if S(1)tot ≈ P−1S(2)totP
for some permutation matrix P. In general, there exist symbolic
transition matrices H(1) and H(2) such that Y(1) ∼= Y(2) if and only
if H(1)tot ≈ P−1H(2)totP for some permutation matrix P.

Proof. Firstwe consider the casewhere S(1)tot and S(2)tot are both right-
resolving. Let T(1)tot and T(2)tot be the incidencematrices of S(1)tot and S(2)tot ,
respectively. Herein the incidence matrix of a symbolic transition
matrix is obtained by replacing every nonempty symbolwith 1 and
replacing empty symbolswith 0. For instance, the incidencematrix
of

a a + c
b ∅


is

1 2
1 0


.

Let G(1) and G(2) be the graph presentation of T(1)tot and T(2)tot , re-
spectively, and let X(1) and X(2) be the space consisting of those
infinite paths in G(1) and G(2), respectively. Then X(i) is the canon-
ical right-resolving cover of Y(i) for i = 1, 2 (cf. Lind & Marcus,
1995). Suppose φ(1) : X(1) → Y(1) and φ(2) : X(2) → Y(2) are such
two covers. Fujiwara demonstrated that Y(1) and Y(2) are topolog-
ically conjugate if and only if there exists some topological conju-
gacy ψ : X(1) → X(2) which takes the quotient relation of φ(1) to
the quotient relation of φ(2) (Fujiwara, 1987). Namely, Y(1) ∼= Y(2)
if and only if X(1) ∼= X(2). Furthermore, Williams showed that
X(1) ∼= X(2) if and only if T(1)tot = P−1T(2)totP for somepermutationma-
trix P (Williams, 1973). Since T(i)tot is the incidence matrix of S(i)tot for
i = 1, 2, T(1)tot = P−1T(2)totP indicates that S(1)tot ≈ P−1S(2)totP . Proposi-
tion 2.1 demonstrates that S(i)tot produces Y(i). Therefore, Y(1) ∼= Y(2)

if and only if S(1)tot ≈ P−1S(2)totP for some permutation matrix P .
For the case where S(i)tot is not right-resolving for some i, there

exists a right-resolving symbolic transition matrix H(i) which still
exactly represents the original Y(i) (Lind & Marcus, 1995). (Such
a matrix is obtained by applying the so-called subset construction
method in the automaton theory.) Similar to the discussion above,
we conclude that Y(1) ∼= Y(2) if and only if H(1)tot ≈ P−1H(2)totP for
some permutation matrix P . This completes the proof. �

Example 2.3. Suppose the templates of an STCNN are given by the
following:

[a(1), a(1)r , z
(1)

] = [2.9, 1.7, 0.1]

[a(2), a(2)r , b
(2), b(2)r , z

(2)
] = [−0.3,−1.2, 0.7, 2.3, 0.9].

Then the basic set of admissible local patterns is

B =


−+

−−
,

−+

+−
,

+−

−+
,

+−

++
,

++

−+
,

++

++


.

The transition matrix T of the solution space Y is

T =

0 0 1 0
0 0 1 0
0 1 0 1
0 1 0 1

 ,
and the symbolic transition matrices of the hidden and output
spaces are

S(1) =

∅ ∅ α1 ∅
∅ ∅ α3 ∅
∅ α2 ∅ α2
∅ α4 ∅ α4

 and S(2) =

∅ ∅ α2 ∅
∅ ∅ α2 ∅
∅ α3 ∅ α4
∅ α3 ∅ α4


respectively. Deleting the first column and the first row of S(1) and
S(2) and using the original notations to indicate the new matrices,
we have

S(1) =

∅ α3 ∅
α2 ∅ α2
α4 ∅ α4


and S(2) =

∅ α2 ∅
α3 ∅ α4
α3 ∅ α4


respectively. Furthermore, following the total amalgamation
algorithm we derive that

S(1)tot =


α4 α3
α2 ∅


and S(2)tot =


∅ α2
α3 α4


,

and it is seen that S(2)tot ≈ P−1S(1)totP with P =


0 1
1 0


. Applying

Theorem 2.1, we can conclude that Y(1) ∼= Y(2). In fact, for this
example, Y(1) = Y(2) since S(2)tot = P−1S(1)totP .

Remark 2.1. We remark that the bijective maps in the determina-
tion of the equivalence of S(1) and S(2) in Theorem 2.1 are either (i)
the identity map, or (ii) the change of symbols that interchanges
‘‘+’’ with ‘‘−’’.

3. Topological conjugacy for multi-layer cellular neural net-
works

The idea addressed in the previous section can be applied to
provide a general perspective when it comes to examining the
equivalence of the topological structures of the output space and a
specific hidden space (or two hidden spaces) inmulti-layer cellular
neural networks. This section aims to extrapolate the discussion in
the previous section to more general cases.

A one-dimensional MCNN is realized as

dx(l)i
dt

= −x(l)i +


|k|≤d

a(l)k y(l)i+k +


|ℓ|≤d

b(l)ℓ u(l)i+ℓ + z(l), (9)
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for some d ∈ N, 1 ≤ l ≤ n ∈ N, i ∈ N, where

u(l)i = y(l−1)
i for 2 ≤ l ≤ n and

y(l)i = f (x(l)i ) =
1
2
(|x(l)i + 1| − |x(l)i − 1|).

Once we focus on the mosaic solution of (9), namely, |x(l)i | > 1
for all i ∈ N, 1 ≤ l ≤ n, the following procedure divides the
parameter space into finitely equivalent regions such that any two
sets of parameters possess the same output patterns if and only if
they belong in the same region. For 1 ≤ l ≤ n, the output y(l)i = 1
if and only if

a(l)0 − 1 + z(l) > −

 
0<|k|≤d

a(l)k y(l)i+k +


|ℓ|≤d

b(l)ℓ u(l)i+ℓ


;

the output y(l)i = −1 if and only if

a(l)0 − 1 − z(l) >


0<|k|≤d

a(l)k y(l)i+k +


|ℓ|≤d

b(l)ℓ u(l)i+ℓ.

Let

VN
= {v ∈ RN

: v = (v1, v2, . . . , vN), and |vi| = 1, 1 ≤ i ≤ N},

where N = 4d+ 1. We denote α(l) = (a(l)
−d, . . . , a

(l)
−1, a

(l)
1 , . . . , a

(l)
d ),

β(l) = (b(l)
−d, . . . , b

(l)
d ). It follows immediately that the collection of

admissible local patterns centered by ‘‘+1’’ and ‘‘−1’’ are

B
(l)
+ = {v � w : a(l) − 1 + z(l) > −(α(l) · v + β(l) · w)}

and

B
(l)
− = {v � w : a(l) − 1 − z(l) > α(l) · v + β(l) · w},

respectively. Herein we reuse the notation � to pile two patterns
(which need not be of the same size) together. For instance,

t1t2t3 � t ′1t
′

2t
′

3t
′

4 =
t1t2t3
t ′1t

′

2t
′

3t
′

4
.

In this case, B
(l)
+ and B

(l)
− are consisting of patterns of height 2,

whose top pattern is of length 2d and bottom pattern is of length
2d+1. The basic set of admissible local patterns for the lth layer of
(9) is then recorded as B(l)

= (B(l)
+ , B(l)

− ), whereB(l)
+ = {v+ � w : v � w ∈ B

(l)
+ },B(l)

− = {v− � w : v � w ∈ B
(l)
− },

and v+ ∈ V 2d+1 (resp. v− ∈ V 2d+1) is obtained by inserting 1
(resp. −1) at the center coordinate of v ∈ V 2d. We denote the
parameters of (9) by (A,B, z), herein

A = (A(1), . . . , A(n)), B = (B(1), . . . , B(n)), and
z = (z(1), . . . , z(n)).

Then, the admissible local patterns induced by (A,B, z) can be
denoted by

B(A,B, z) = (B(1),B(2), . . . ,B(n)).

Following the determination of the basic set of admissible
local patterns we introduce the ordering matrix in similar fashion
to our investigation in the previous section. We substitute the
output patterns ‘‘−1’’ and ‘‘+1’’ by − and +, respectively. First,
we assign each pattern in {−,+}

d′
×n an order so that the ordering

matrix Xd′×n is well-defined, where d′
= 2d + 1 is the width of

admissible local patterns. We define χ : {−,+} → {0, 1} and
η : {−,+}

k×l
→ N as

χ(−) = 0, χ(+) = 1,
and

η

x =

x1,l x2,l · · · xk,l
x1,l−1 x2,l−1 · · · xk,l−1
...

...
. . .

...
x1,1 x2,1 · · · xk,1


= 1 +


i,j

χ(xi,j) · 2l(k−i)+(l−j),

respectively. For example, those patterns in the collection
{−,+}

2×2 are ordered as

η


−−

−−


= 1, η


−+

−−


= 2, . . . , η


+−

++


= 15, η


++

++


= 16.

The ordering matrix Xd′×n of (9) is then well-defined according to
the η-ordered set {−,+}

(d′
−1)×n. Once the basic set of admissible

local patterns B is assigned, the transition matrix T ≡ T(B) ∈

M(d′−1)n({0, 1}) is defined as
T(p, q) = 1 if and only if X(p, q) ∈ B,

where 1 ≤ p, q ≤ 2(d
′
−1)n. Let Ad′ = {−,+}

d′
×1

= {αi}
2d

′

i=1 be an
alphabet consisting of binary patterns of dimension d′

× 1, where
αi represents the symbol x = x1 . . . xd′ ∈ {−,+}

d′
×1 satisfying

i = 1 + Σd′

j=1χ(xj)2
d′

−j. Express X(p, q), 1 ≤ p, q ≤ 2(d
′
−1)N , as

αkn � αkn−1 � · · · � αk1 . For 1 ≤ ℓ ≤ n, let S(ℓ) ≡ S(ℓ)(B) be the ℓth
symbolic transition matrix over Ad′ ∪ {∅} and be defined as

S(ℓ)(p, q) =


αkℓ , if T(p, q) = 1,

X(p, q) = αkn � · · · � αk1;

∅, otherwise.

Let
Y(ℓ) = {(y(ℓ)i )i∈N : (y(n)i � y(n−1)

i � · · · � y(1)i )i∈N ∈ Y}

for 1 ≤ ℓ ≤ n. It is demonstrated that S(ℓ) well-describes
the topological structure of the ℓth hidden space Y(ℓ), while
S(n) describes the topological structure of the output space Y(n)
completely (Ban et al., 2009).

To investigate whether Y(ℓ1) is topologically conjugate to Y(ℓ2)
for 1 ≤ ℓ1, ℓ2 ≤ n, we start with the construction of the symbolic
total amalgamation matrices of S(ℓ1) and S(ℓ2). Suppose S(ℓ1) and
S(ℓ2) consist of no empty rows and columns (we delete the empty
rows/columns and their corresponding indexed columns/rows if
necessary). Here an empty row/column refers to a row/column
consisting of an empty entry ∅. Let S(ℓ1)tot and S(ℓ2)tot be obtained
by applying the total amalgamation algorithm to S(ℓ1) and S(ℓ2),
respectively. We then have the following theorem:

Theorem 3.1. Suppose S(ℓ1)tot and S(ℓ2)tot are both right-resolving
without empty rows/columns. ThenY(ℓ1) ∼= Y(ℓ2) if and only if S(ℓ1)tot ≈

P−1S(ℓ2)tot P for some permutation matrix P. For general cases, there
exist right-resolving matrices H(ℓ1) and H(ℓ2) such that Y(ℓ1) ∼= Y(ℓ2)

if and only if H(ℓ1)tot ≈ P−1H(ℓ2)tot P for some permutation matrix P.
Proof. The proof is analogous to the discussion in the proof of
Theorem 2.1, and thus is omitted. �

Example 3.1. Consider a three-layer cellular neural network given
as

dx(3)i

dt
= −x(3)i + a(3)y(3)i + a(3)r y(3)i+1 + b(3)y(2)i

+ b(3)r y(2)i+1 + z(3),

dx(2)i

dt
= −x(2)i + a(2)y(2)i + a(2)r y(2)i+1 + b(2)y(1)i

+ b(2)r y(1)i+1 + z(2),

dx(1)i

dt
= −x(1)i + a(1)y(1)i + a(1)r y(1)i+1 + z(1),

(10)
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where

[a(1), a(1)r , z
(1)

] = [2.9, 1.7, 0.1],

[a(i), a(i)r , b
(i), b(i)r , z

(i)
] = [−0.3,−1.2, 0.7, 2.3, 0.9] for i = 2, 3.

Since the parameters for the second and the third layer networks
are exactly the same, it is intuitive that such a three-layer network
can be reduced to a two-layer system. We show that this is true by
applying Theorem 3.1.

Evidently, the solution space of (10) is generated by the set

B =


+−
−+
−−

,
++
−+
−−

,
+−
−+
+−

,
++
−+
+−

,
−+
+−
−+

,
−+
+−
++

,
+−
++
−+

,
++
++
−+

,
+−
++
++

,
++
++
++


.

Defining the ordering matrix X3 indexed by

−
−
−
,

+
−
−
,

−
+
−
,

+
+
−
,

−
−
+
,

+
−
+
,

−
+
+
,

+
+
+
,

it is seen that the transition matrix is

T =



0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 1


.

Since the first, second, and fifth columns of T are zero vectors, we
can reduce T to a 5 × 5 matrix
0 0 1 0 0
0 0 0 1 1
1 1 0 0 0
0 0 1 0 0
0 0 0 1 1


without loss of generality. In this case, the three symbolic
transition matrices for (10) are

S(1) =


∅ ∅ α2 ∅ ∅
∅ ∅ ∅ α2 α2
α3 α3 ∅ ∅ ∅
∅ ∅ α2 ∅ ∅
∅ ∅ ∅ α2 α2

 ,

S(2) =


∅ ∅ α3 ∅ ∅
∅ ∅ ∅ α4 α4
α2 α2 ∅ ∅ ∅
∅ ∅ α3 ∅ ∅
∅ ∅ ∅ α4 α4

 ,
and

S(3) =


∅ ∅ α2 ∅ ∅
∅ ∅ ∅ α3 α4
α3 α4 ∅ ∅ ∅
∅ ∅ α2 ∅ ∅
∅ ∅ ∅ α3 α4

 ,
respectively; applying the total amalgamation algorithm to
S(i), i = 1, 2, 3, we derive that

S(1)tot =


∅ α2
α3 α2


, S(2)tot =


α4 α3
α2 ∅


, and

S(3)tot =


∅ α2
α3 α4


,

respectively. It can be verified that S(2)tot = P−1S(3)totP with P =
0 1
1 0


and there exists no permutation matrixM such that S(1)tot =
M−1S(i)totM for i = 2, 3; hence Y(2) is topologically conjugate to
Y(3) and this three-layer network can be replaced by a two-layer
network without compromising its functionality.

4. Conclusion and discussion

This paper investigates whether or not an n-layer cellular
neural network can be reduced to an m-layer cellular neural
network, where m < n. More specifically, this work identifies
the ‘‘actual depth’’ of a given multi-layer neural network such that
the optimized network still exhibits the same phenomena as the
original one up to the change of symbols. From a mathematical
point of view, this is equivalent to studying whether the output
spaces of the ith layer are topologically conjugate to the output
space of the jth layer for some i, j satisfying 1 ≤ i < j ≤ n.

We propose an algorithm to achieve our target by introducing
a symbolic transition matrix and compare the two ‘‘operated’’
symbolic transition matrices to see if they are the same, up to a
permutation and the change of symbols. The contribution of the
presentwork focuses on thosemulti-layer cellular neural networks
where the number of neighbors for each cell in each layer is the
same, and the template (also known asweight) is invariant for each
layer.

It is remarkable that our methodology can extend to the
following cases:

(a) Different numbers of neighbors for distinct layers, i.e., the
number of neurons connected to x(j)i depends on i, j.

(b) Different templates for distinct neurons, i.e., the template of x(j)i
depends on i, j.

(c) Application of different output functions to the same network.
(d) Two individual (multi-layer) neural networks.

Notably, the last case is an extension of Ban and Chang (2015). The
related work is in preparation and will be elaborated in a future
paper.

We conclude this paper with a further discussion of Exam-
ple 2.3. It is elucidated that the two-layer cellular neural network
given in Example 2.3 can be replaced by a single layer network
since its output space is conjugate to the hidden space. Consider
the following cellular neural network

xi
dt

= −xi + 2yiuyi+1 − 0.3, i ∈ N, (11)

wherein the output space of (11) is generated by the patterns

−−, −+, +−,

and the symbolic transition matrix is

S =


α1 α2
α3 ∅


.

Notably, the one-to-one correspondence between S and S(2)tot is

α1 ↔ α4, α2 ↔ α3;

hence these two networks exhibit the same dynamics.
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