
A New Clustering Algorithm
Based on Graph Connectivity

Yu-Feng Li1, Liang-Hung Lu1, and Ying-Chao Hung2(B)

1 Department of Electrical Engineering, National Taiwan University,
Taipei 10617, Taiwan

lhlu@cc.ee.ntu.edu.tw
2 Department of Statistics, National Chengchi University,

Taipei 11605, Taiwan
hungy@nccu.edu.tw

Abstract. A new clustering algorithm based on the concept of graph
connectivity is introduced. The idea is to develop a meaningful graph
representation for data, where each resulting sub-graph corresponds to a
cluster with highly similar objects connected by edge. The proposed algo-
rithm has a fairly strong theoretical basis that supports its originality
and computational efficiency. Further, some useful guidelines are pro-
vided so that the algorithm can be tuned to optimize the well-designed
quality indices. Numerical evidences show that the proposed algorithm
can provide a very good clustering accuracy for a number of benchmark
data and has a relatively low computational complexity compared to
some sophisticated clustering methods.

Keywords: Clustering · Graph theory · Time complexity

1 Introduction

Finding meaningful clusters in large and complex data has been an important
task with a wide range of applications in biology, medicine, economics, psychol-
ogy, etc. This type of analysis belongs to the so-called unsupervised learning,
and the goal is to partition data into a certain (usually small) number of groups
with homogeneous/similar objects [1]. Over the years, there are a bunch of clus-
tering techniques introduced in the literature, which includes the hierarchical
clustering (e.g. agglomerative [2,3] and divisive trees [4]), squared error-based
optimization (e.g. K-means [5,6] and K-medoids [7]), mixture densities-based
approaches [8], graph theory [9,10], fuzzy analysis [11], neural networks (e.g.
self-organizing maps [12]), kernel-based approaches [13], just to name a few.

The usefulness of high connectivity in graphs to cluster analysis dates back
to the works in [14,15]. A similar concept was developed to represent the hier-
archical clustering [16,17]. Note that graph theory can also be used for nonhier-
archical clustering. Specifically, the idea is to discard inconsistent edges in the
minimum spanning tree and treat the remaining connected objects as clusters [7].
c© Springer Nature Switzerland AG 2019
K. Arai et al. (Eds.): SAI 2018, AISC 858, pp. 442–454, 2019.
https://doi.org/10.1007/978-3-030-01174-1_33

A New Clustering Algorithm Based on Graph Connectivity 443

A remarkable work is to treat the clusters as Highly Connected Subgraphs (HCS)
and employ a minimum cut procedure to separate a graph [18]. A probability
version for constructing the HCS is implemented by the CLICK algorithm, which
places Gaussian assumptions on the clusters and assigns probability weights to
edges [19]. Another similar work is the CAST algorithm, which models clusters
as corrupted clique graphs and adds high affinity objects or removes low affinity
objects from the cluster until no more changes occur [20]. Recently, a number of
graph clustering algorithms are developed to integrate structural and attribute
similarities - the readers can refer to [21,22] for some remarkable works.

In this paper, we propose a novel clustering algorithm based on the concept
of graph connectivity. Our goal is to identify a set of “noise objects” (named
as singular points in this work) so that meaningful subgraphs can be created
to recover all clusters in data. In addition, the algorithm is designed to have
relatively low computational complexity in comparison with some sophisticated
clustering algorithms introduced in the literature.

The remaining of this work is organized as follows. In Sect. 2, we introduce
some fundamental notations in graph theory and describe how the algorithm is
developed step by step. In addition, we provide (i) theoretical results to justify
the rationale of using identified singular points for finding meaningful clusters
and (ii) guidelines for choosing all tuning parameters in the algorithm and the
best number of clusters. In Sect. 3, we briefly introduce the time and storage
complexity of our proposed algorithm. In Sect. 4, we illustrate our algorithm
on some selected benchmark data and evaluate its performance by comparing
with some well-known clustering algorithms in terms of clustering accuracy, time
complexity, and storage complexity. Conclusions are made in Sect. 5.

2 Clustering Algorithm Based on Graph Connectivity

Consider a set of n objects X = {x1, x2, . . . , xn} in R
m, and the objective is to

find a set of meaningful clusters C = {C1, C2, . . .}, where each object xi ∈ Cj

for some j, Ci ∩ Cj = ∅ for i �= j, and X = ∪jCj . Objects belonging to the
same cluster are considered as homogeneous or similar. Note that to exclude
trivial cases, here we assume (i) the number of objects n is fairly large and (ii)
the number of clusters |C| is relatively smaller than n. We next introduce some
notations in graph theory that are necessary for developing our new clustering
algorithm.

2.1 Notations in Graph Theory

In graph theory each object xj is treated as a vertex (or node), while an edge is
used to connect similar objects. The idea of clustering is to partition the data
into a small number of edge-disjoint sub-graphs, where each sub-graph refers to
one cluster with similar objects connected by edges. An illustration of clustering
based on graph connectivity is given in Fig. 1, where data are partitioned into
three edge-disjoint sub-graphs G1, G2, and G3. Note that if we use a graph

444 Y.-F. Li et al.

notation G to represent the data X in Fig. 1, then we can write G = G1∪G2∪G3.
Further, the vertices in G1, G2, G3 represent the objects in three disjoint clusters
C1, C2, and C3, respectively.

Fig. 1. An illustration of clustering based on graph connectivity with three edge-
disjoint sub-graphs G1, G2 and G3.

To develop a meaningful graph (as shown in Fig. 1), for each object xi ∈ X
our first step is find the closest k objects (in Euclidean distance) and make
connections with these k objects (by k edges). This will automatically form an
undirected graph Gk = (V,E), where V represents the set of all vertices (i.e. all
objects) and E represents the set of all connected edges.

2.2 Selecting the Number of Edges for Graph Connection

Note that graph Gk is obviously affected by the choice of k. For example, if k is
chosen to be a smaller number, then every object is less likely to connect to other
objects. This will tend to create a larger number of sub-graphs (or clusters). On
the other hand, if k is chosen to be a larger number, then every object is more
likely to connect to other objects. This will tend to create a smaller number of
clusters. However, since our algorithm can further split the graph in later stages,
in the first step we recommend choosing a larger value of k. The following is a
rule of thumb for choosing k, which is based on the topological property (e.g.,
properties of a hexagon in a 2-D space) and a large number of experimental
trials:

k ≥ 6(m − 1), where m is the data dimension. (1)

For example, in a two dimensional data space (m = 2), we will recommend
choosing the value of k to be at least 6.

2.3 Identifying Singular Points for Splitting the Graph

It is noted that controlling the value of k may not always succeed in finding
a meaningful clustering, especially when the clusters have overlapping objects.

A New Clustering Algorithm Based on Graph Connectivity 445

These overlapping objects will often create “bad edges” to connect the graph,
thus resulting in a rather small number of clusters. We next introduce a proce-
dure for identifying these potential noise objects (named as singular points in
this paper), which are the key for splitting the graph.

Once we obtain the graph Gk = (V,E) based on a selected value of k, for
any object xi = v ∈ V we define the set of distance-d vertices by

Vv(d) = {u ∈ V : dGk(u, v) = d}, (2)

where dGk(u, v) is the geodesic distance between u and v based on graph Gk, viz.,
the minimum number of edges connecting u and v in Gk. A geometric illustration
of the set Vv(d) is given in Fig. 2, where v is an object located in the middle of
a dumbbell-shape data and d is chosen to be 8 and 10.

Fig. 2. A geometric illustration of the set Vv(d) (points on the black dashed lines) for
an object v located in the middle of a dumbbell-shape data, and d is chosen to be 8(a)
and 10(b).

Then, we make connections between two vertices u1, u2 ∈ Vv(d) if
dGk(u1, u2) ≤ d. This will create a new graph Gk

v,d = (Vv(d), Ev(d)), for which
the resulting set of clusters is denoted by C|Gk

v,d. We proceed by introducing
some other notations. Let us denote the set of singular points we wish to identify
by S and the graph with all singular points being excluded by G−S = (V \S,E).
For a positive integer a, define also the graph Gk

v,d,a = (Vv(d), Ev(d, a)), where
the set of edges Ev(d, a) = {{u1, u2} : dGk(u1, u2) ≤ a and u1, u2 ∈ Vv(d)}. Sim-
ilarly, the resulting set of clusters is denoted by C|Gk

v,d,a. Now, we are ready for
showing the following theorem:

Theorem 1: Given k, v, d, Gk
v,d, C|Gk

v,d and assume: (i) |Vv(d)| 	 |C|Gk
v,d| and

(ii) all clusters Ci ∈ C|Gk
v,d,a have similar sizes, then there exists some positive

integer a ≤ 2d such that

SI(v|k, d, a) =
∑

i:Ci∈C|Gk
v,d,a

1 + log|Ci ∩ Vv(d)|
log (|Vv(d)| + 1)

≈ |C|Gk
v,d,a|. (3)

446 Y.-F. Li et al.

Proof: We briefly sketch the proof here. Given any v ∈ V , it is clear that
∑

i:Ci∈C|Gk
v,d,a

[1 + log|Ci ∩ Vv(d)|]

≈
∑

i:Ci∈C|Gk
v,d,a

log [ri · |Vv(d)|] , (4)

where 0 ≤ ri ≤ 1 for all i and
∑

i:Ci∈C|Gk
v,d,a

ri = 1. Since we assume |Vv(d)| 	
|C|Gk

v,d| and ri � r = |C|Gk
v,d,a|−1 for all i, (4) can be approximately written

as
1
r

· {log r + log |Vv(d)|}
= |C|Gk

v,d,a| · {log|C|Gk
v,d,a|−1 + log |Vv(d)|}

= |C|Gk
v,d,a| · log|C|Gk

v,d,a|−1 + |C|Gk
v,d,a| · log |Vv(d)|

≈ |C|Gk
v,d,a| · log (|Vv(d)| + 1) . (5)

Dividing (4) by the term log (|Vv(d)| + 1) in (5), we then obtain

SI(v|k, d, a) ≈ |C|Gk
v,d,a|.

For an appropriately defined set of singular indices S, we can show that
|C|Gk

v,d,a| ≈ |C|Gk
−S |, which is the number of clusters by excluding all the sin-

gular points from data. This implies that the value of SI(v|k, d, a), named as
the singular index, can be used to identify if v is a potential “noise object”.
More specifically, if SI(v|k, d, a) > 1, we say that object v is a singular point
since there exists “more than one cluster” a geodesic distance d away from v
(which is the result indicated by Theorem 1). Note that once all singular points
are identified, we can develop the graph Gk

−S (by excluding all singular points)
and find out the associated clustering result C|Gk

−S . To cluster each singular
point s ∈ S, we can simply employ the “plurality vote” (or weighted vote) based
on the clustering of vertices in the neighborhood of s. Here the neighborhood is
defined via the geodesic distance based on graph Gk.

Figure 3 illustrates all the identified singular points for the dumbbell data
shown in Fig. 2, where (k, a) = (6, 5) and d = 8 and 10.

It should be mentioned that different choices of d and a may result in different
sets of singular points (recall that k is fixed beforehand). As can be seen from
Fig. 3, a smaller value of d results in fewer singular points and a larger value
of d (but not unbounded) results in more singular points. This will nevertheless
affect the clustering result. Here we provide some useful guidelines for choosing
the values of d and a. Based on a large number of data clustering experiences,
our first guideline suggests that

5 ≤ d ≤ diam(Gk), (6)

where diam(Gk) is the maximum geodesic distance between two vertices in graph
Gk. The second guideline suggests that one can find the best combination of

A New Clustering Algorithm Based on Graph Connectivity 447

(a)

d = 8 d = 10

(b)

Fig. 3. An illustration of identified singular points (in red color) for the dumbbell data
shown in Fig. 2, where (k, a) = (6, 5) and d = 8(a) and 10(b).

(d, a) so that the variation of singular indices for all identified singular points is
minimized. That is,

(d∗, a∗) = arg
5≤d≤diam(Gk)

0<a<2d

min Var(SI(v|k, d, a)). (7)

Note that (7) is clearly a mixed-integer optimization problem in a constrained
2-dimensional space. Therefore, finding the optimum solution (d∗, a∗) is not a
difficult task, it can be done by a simple grid search.

2.4 Determining the Number of Clusters

Since each singular index, under some conditions, is approximately the number
of clusters around a singular point, it can be used to determine the best number
of clusters for the entire data set. Once (k, d, a) are appropriately chosen based
on the guidelines introduced above, we can collect the singular indices of all
identified singular points and examine the likelihood (or probability) that each
possible number of clusters happens. For example, Fig. 4 shows the histograms
of all singular indices greater than one (after taking the ceiling function) for the
dumbbell data shown in Fig. 2, where (k, d, a) = (6, 8, 5) and (6, 10, 5). As can
be seen, both histograms suggest there are two clusters in the data.

Another way of choosing the best number of clusters is to maximize the ratio
of “between-group variance SB” to “within-group variance SW ” by controlling
the values of (d, a), that is,

Trace(SB)
|C| − 1

/
Trace(SW)

n − |C| . (8)

Based on the empirical study given by [23], this strategy achieves the best
performance among 30 criteria for determining the number of clusters. We sum-
marize the detailed steps of our clustering method in the following algorithm.

448 Y.-F. Li et al.

Fig. 4. The histograms of all singular indices greater than one (by taking the ceiling
function) for the dumbbell data shown in Fig. 2, where (k, d, a) = (6, 8, 5) (panel (a))
and (k, d, a) = (6, 10, 5) (panel (b)).

2.5 Algorithm

(1) Initial Setup: Compute all pairwise Euclidean distances ||xi−xj ||, xi, xj ∈ X ,
i, j ∈ {1, . . . , n}.

Step 1: Select a fairly large k based on the rule in (1), develop the graph
Gk = (V,E) based on all data in X .

Step 2: Select a value d based on (6) and a value a < 2d, compute the
singular index SI(v|k, d, a) by (3) for each v ∈ Gk.

Step 3: Repeat Step 2 and search the best combination (d∗, a∗) by utilizing
the guideline given in (7).

Step 4: Identify the set of singular points S based on the selected (k, d∗, a∗),
create a graph Gk

−S = (V \ S,E) by excluding all singular points.
Step 5: Re-cluster V \ S based on graph Gk

−S and assign clusters to each
singular point s ∈ S by plurality vote (or weighted vote), obtain the clustering
result C.

Note that one may determine the best number of clusters in C by examining
the histograms of SI(v|k, d∗, a∗) (as shown in Fig. 4) and the guideline given in
(8). This allows to adequately revise the choice of (d∗, a∗) in Step 3 and execute
Steps 4–5 one more time so as to obtain a better clustering result.

3 Time and Space Complexity

Let us describe first the space complexity of the proposed algorithm. First, the
space complexity for the initial setup is O(n2), since we need to store all pairwise
distances of the n objects. Then, in Step 1 the space complexity for storing the n
vertices of the graph Gk = (V,E) is clearly O(n). These together then constitute
a total space complexity O(n2).

Next, we explore the time complexity for implementing the proposed algo-
rithm. First, the time complexity for obtaining the nearest k neighbors of each
object is O(n log n), which is based on the structure of a k-d tree [24]. Next,
the time complexity for establishing the graph Gk is O(n), which is obtained by

A New Clustering Algorithm Based on Graph Connectivity 449

using the Breadth-First Search [25] and triangle inequality for geodesic distance.
We now examine the time complexity for identifying all the singular points. Let
D be the matrix that stores all pairwise geodesic distances between vertices in
Gk and denote its inverse by D−1 = I (we can show that I always exists).
The reason why we employ the matrix I for implementing the algorithm is the
following: If dGk(u1, u2) = δ, we then have

I(u∗
1, δ) = u2 and I(u∗

2, δ) = u1, (9)

where u∗
1 and u∗

2 are the two “pointers” referring to the original indices of objects
u1 and u2 in Gk, respectively. Note that (9) can be used to speed up the search
of Vv(d), which results in the time complexity O

(∑
v∈V Vv(d)

)
. Further, by

placing an assumption that clusters in Vv(d) are fairly uniformly distributed, we
can show that

O

(
∑

v∈V

Vv(d)

)
≈ O

(
n

(
d

dmax

m√
n

)m−1
)

= O

((
d

dmax

)m−1

n2−1/m

)
= O

(
rm−1
d n2−1/m

)
, (10)

where rd = d/dmax < 1 and dmax = diam(Gk). Since m ≥ 2 and n is large, the
time complexity of implementing the algorithm is obviously dominated by (10).

4 Clustering Benchmark Data: Illustration
and Evaluation

In this section, we first demonstrate how to utilize the proposed algorithm for
clustering some benchmark data. Then, we evaluate the algorithm by compar-
ing with other well-known and widely used clustering algorithms in terms of
accuracy, time complexity, and space complexity.

4.1 Banana Sets

We illustrate our clustering algorithm on two selected data with banana shapes.
In the first data the two bananas are located a bit far from each other, while in the
second data the two bananas are intentionally placed fairly close to each other.
As discussed fruitfully in the literature, clustering this type of data appears to
be a non-trivial task. The clustering results along with the identified singular
points are shown in Figs. 5 and 6.

As can be seen from Figs. 5 and 6, our algorithm works very well for the
first banana set. Obviously, there are two clusters found and we need merely a
small number of singular points to separate two clusters. On the other hand,
the two bananas have a certain number of overlapping points in the second set.

450 Y.-F. Li et al.

Fig. 5. The identified singular points (in red color) for the banana data (a) and the
clustering result (b). Here we choose (k, d, a) = (6, 5, 7).

Fig. 6. The identified singular points (in red color) for the banana data (a) and the
clustering result (b). Here we choose (k, d, a) = (6, 15, 20).

In this case, we need to select the tuning parameters (k, d, a) so as to create
enough singular points for separating different clusters. However, overloading
the singular points may result in a larger number of clusters, as can be seen
from Fig. 6 (there are 3 clusters found).

4.2 Ring Sets

We illustrate our clustering algorithm on a data set with two different sizes of
rings. The clustering result is shown in Fig. 7. As can be seen, our algorithm
works perfectly for clustering this ring data. In general, methods based on the
graph theory works particularly well for this type of data with circular and
curved structures.

4.3 Gaussian Clusters

We illustrate our clustering algorithm on a data emulated by 15 bivariate Gaus-
sian distributions. The result is shown in Fig. 8. As can be seen, our algorithm
also works perfectly for this type of data with a fairly large number of clusters.

A New Clustering Algorithm Based on Graph Connectivity 451

Fig. 7. The original data comprised of two clusters with a ring structure (a) and the
clustering result (b). Here we choose (k, d, a) = (6, 5, 5).

Fig. 8. The original data comprised of 15 clusters emulated by 15 bivariate Gaussian
distributions (a) and the clustering result (b). Here we choose (k, d, a) = (6, 9, 7).

We next evaluate the numerical performance of our proposed algorithm by
comparing with other well-known clustering algorithms - such as the K-means,
kernel K-means, and another graph-based method called the Highly Connected
Sub-graphs (HCS) implemented by the well-known efficient Stoer-Wagner algo-
rithm [26]. The clustering accuracy along with the time and storage complexity
are provided for all methods based on three benchmark data: Iris, banana set,
and ring set. It is noted that the Iris data have four features and three labeled
classes. To implement the clustering algorithms, we hide the class labels and
treat each class as a cluster. The results are given in Table 1.

As can be seen from Table 1, our algorithm has a very good clustering accu-
racy for all three benchmark data considered in this study - the accuracy is high
above 90%. The two methods kernel K-means and HSC also have a clustering
accuracy above 90% for the banana and ring data, but do not perform as well as
our algorithm for the Iris data (the accuracy is below 90% for both methods).
It is worth noting that our algorithm has the time complexity O(rm−1

d n2−1/m).
Since m > 1 and rd < 1, it is obviously less than that of kernel K-means and HSC
(they are O(n2) and O(n2 log n), respectively). To see how much time complexity
is reduced by our algorithm in practice, let us consider an example with m = 5,

452 Y.-F. Li et al.

Table 1. The clustering accuracy, time complexity, and storage complexity for the
methods considered in this study. Note that the “Big O” notation is removed due to a
limited space

Data Our Algorithm K-means Ker. K-means HSC

Iris 91% 78% 89% 85%

Banana 91% 55% 93% 92%

Ring 98% 54% 93% 95%

Time rm−1
d n2−1/m n n2 n2 log n

Space n2 n n2 n2

rd = 0.5, and n = 1, 000. Some algebra shows that the kernel K-means and
HCS require respectively 106 and 6.9 × 106 computations, while our algorithm
requires merely 1.57 × 104 computations - a staggering two orders of magnitude
reduction. It is also noted that the K-means algorithm can be developed (e.g. the
Lloyd’s Algorithm [5]) to have a low time and storage complexity O(n). However,
it has a relatively low clustering accuracy (78%, 55% and 54%) for these three
benchmark data. In summary, compared to the well-known clustering methods,
our algorithm appears to be very competitive in clustering accuracy and has a
relatively low computational complexity (or time complexity).

5 Conclusion

In this paper, we propose a new clustering algorithm based on the concept of
graph connectivity. We also provide some useful guidelines so that all param-
eters in the algorithm can be adequately tuned so as to produce a meaningful
clustering result. Numerical evidences show that our algorithm can provide a
very good clustering accuracy for a number of benchmark data. In addition, it
has a relatively low time complexity in comparison with two sophisticated clus-
tering methods - kernel K-means and HCS. It should be mentioned that due to
the conditions placed in Theorem 1, the idea of employing the singular points
for splitting the data may not succeed in some cases - e.g., the data with unbal-
anced sizes of clusters or with a small number of objects compared to the feature
dimension (i.e. data with a small n and relatively large m). We are currently
investigating (i) how to improve the algorithm so that it can deal with data with
various types of clustering structures; and (ii) the performance of our algorithm
in comparison with other sophisticated clustering algorithms. We hope to report
some promising results in the future work.

A New Clustering Algorithm Based on Graph Connectivity 453

References

1. Hansen, P., Jaumard, B.: Cluster analysis and mathematical programming. Math.
Program. 79, 191–215 (1997)

2. Sneath, P.: The application of computers to taxonomy. J. Gen. Microbiol. 17,
201–226 (1957)

3. Sorensen, T.: A method of establishing groups of equal amplitude in plant soci-
ology based on similarity of species content and its application to analyzes of the
vegetation on danish commons. Biologiske Skrifter 5, 1–34 (1948)

4. Kaufman, L., Rousseeuw, P.: Finding Groups in Data: An Introduction to Cluster
Analysis. Wiley, New York (1990)

5. Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28, 129–
137 (1982)

6. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning.
Springer, New York (2001)

7. Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice-Hall, New Jersey
(1988)

8. Everitt, B., Landau, S.: Cluster Analysis. Amold, London (2001)
9. Harary, F.: Graph Theory. Addison-Wesley, Boston (1969)

10. Karypis, G., Han, E., Kumar, V.: Chameleon: hierarchical clustering using dynamic
modeling. IEEE Comput. 32, 68–75 (1999)

11. Zadeh, L.: Fuzzy sets. Inf. Control 8, 338–353 (1965)
12. Kohonen, T.: Self-organizing Maps. Springer, New York (2001)
13. Schölkopf, B., Smola, A., Müller, K.: Nonlinear component analysis as a kernel

eigenvalue problem. Neural Comput. 10, 1299–1319 (1998)
14. Matula, D.W.: The cohesive strength of graphs. In: Chartrand, G., Kapoor, S.F.

(eds.) The Many Facets of Graph Theory. Lecture Notes in Mathematics, vol. 110,
pp. 215–221. Springer, Berlin (1969)

15. Matula, D.W.: k-components, clusters and slicings in graphs. SIAM J. Appl. Math.
22, 459–480 (1972)

16. Cherng, J., Lo, M.: A hypergraph based clustering algorithm for spatial data sets.
In: Proceedings of the IEEE International Conference on Data Mining, pp. 83–90
(2001)

17. Estivill-Castro, V., Lee, I.: AMOEBA: hierarchical clustering based on spatial prox-
imity using Delaunay diagram. In: Proceedings of the 9th Symposium on Spatial
Data Handling, pp. 7a.26–7a.41 (1999)

18. Hartuv, E., Shamir, R.: A clustering algorithm based on graph connectivity. Inf.
Process. Lett. 76, 175–181 (2000)

19. Sharan, R., Shamir, R.: CLICK: a clustering algorithm with applications to gene
expression analysis. In: Proceedings of the 8th International Conference on Intel-
ligent Systems for Molecular Biology, pp. 307–316 (2000)

20. Ben-Dor, A., Shamir, R., Yakhini, Z.: Clustering gene expression patterns. J. Com-
put. Biol. 6, 281–297 (1999)

21. Zhou, Y., Cheng, H., Yu, J.X.: Graph clustering based on structural/attribute
similarities. Proc. VLDB Endow. 2, 718–729 (2009)

22. Parimala, M., Lopez, D.: Graph clustering based on structural attribute neighbor-
hood similarity (SANS). In: Proceedings of the IEEE International Conference on
Electrical, Computer and Communication Technologies (ICECCT), pp. 1–4 (2015)

23. Milligan, G., Cooper, M.: An examination of procedures for determining the num-
ber of clusters in a data set. Psychometrika 50, 159–179 (1985)

454 Y.-F. Li et al.

24. Blum, M., Floyd, R.W., Pratt, V.R., Rivest, R.L., Tarjan, R.E.: The bounds for
selection. J. Comput. Syst. Sci. 7, 448–461 (1973)

25. Moore, E.F.: The shortest path through a maze. In: Proceedings of the Interna-
tional Symposium on the Theory of Switching, pp. 285–292 (1959)

26. Stoer, M., Wagner, F.: A simple min-cut algorithm. J. ACM 44, 585–591 (1997)

