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Abstract

An industry consisting of a large number of small price

taking firms subject to idiosyncratic productivity shocks

is considered. At the moment of entry, a firm takes on

debt. We show that in a competitive equilibrium, some

firms exit and pay out their debt while others choose to

default. The outcome depends on the realization of firm‐
specific shocks. The paper demonstrates that if the firms

self‐select between exit with debt repayment and

default, then the default region is disconnected from

the exit region. The methodological contribution of the

paper is the analytical characterization of the long‐run
equilibrium for two scenarios of the initial distribution

of productivity shocks. We consider two public policy

mechanisms—contract enforcement and creditor pro-

tection. Our policy recommendation is that regulators

need to reduce the contract enforcement if they want to

decrease the long‐run default rate.
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1 | INTRODUCTION

1.1 | Motivation

Small businesses are an important part of the economy of virtually every nation. The importance of
small firms’ growth for economic development has been recognized in policy‐oriented literature
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(see, e.g., Beck, Demirguc‐Kunt, Laeven, & Levine, 2008). According to the US Small Business
Administration, small firms produce more than half of US nonfarm output, employ 50% of workers,
and pay 45% of total private payroll. Small firms represent 99.7% of all employer firms. Small firms
are an important source of income for the poor in developing countries. Ninety nine percent of the
firms in many poor countries have 10 or fewer workers (see, McKenzie, 2017). Many micro
enterprises in developing countries have high returns to capital, but also face risky revenue streams
(see de Mel, McKenzie, & Woodruff, 2019). In principle, equity offers several advantages over debt
when financing investments of this nature, but the use of equity in practice has been largely limited
to investments in much larger firms. Although there is a lot of optimism about the power of finance
for small‐scale business development, a growing literature (see, e.g., de Mel et al., 2019; Inekwe,
2019; McKenzie & Paffhausen, 2018) shows that success cannot be taken for granted and may
critically depend both on the entrepreneur’s personal characteristics and on institutions.

The goal of this paper is to understand how small firms’ entry and exit decisions are affected
by industry‐wide and firm‐specific exogenous parameters and procedures and to provide policy
recommendations. We leave for the future analysis of the optimal business tax policy as in
Becker and Schneider (2017).

Small firms rely heavily on external finance. Picard and Rusli (2018) emphasize the
importance of private debt financing in reducing government transfers and information costs.
Small firms have historically faced significant difficulties in accessing funding for positive net
present value (NPV) projects due to lack of credible information about them by potential
providers of funds. Maybe due to creditors’ cautiousness, bankruptcy rate (at least in the United
States) is low: The average annual default rate on small business administration (SBA) loans is
3.5% according to Glennon and Nigro (2005). Hillegeist, Keating, Cram, and Lundstedt (2004)
document that the average annual bankruptcy rate for US firms was 1% from 1980 to 2000.
Mester (1997) estimates the annual default rate for business loans as ranging between 1% and
3%. Herranz, Krasa, and Villamil (2015) use the Survey of Small Business Finances
administered by The Board of Governors of the Federal Reserve System and the US Small
Business Administration, data and find a large percentage of entrepreneurs who inject personal
funds to keep their firms alive. This may seem puzzling because incorporated firms are
protected by limited liability in case of bankruptcy. Negative equity and low default rates
indicate that bankruptcy is a strategic decision.

In the United States, businesses can file Chapter 7 or 11 for bankruptcy. Chapter 11 is
designed for large firms, or corporations negotiating debt restructuring while continuing their
operations. Chapter 7 is primarily intended as a bankruptcy procedure for consumers, but it is
also de facto a bankruptcy procedure for small firms. After filing for Chapter 7, an entrepreneur
“gets a fresh start” in the sense that debts are discharged and all future earnings are exempt
from debt payments.

Death or exit rates of small firms are fairly high. McKenzie and Paffhausen (2018) find that small
firms die at an average rate of 8.2% per year. Due to high exit rates of small firms, creditors face not
only default risk, but also prepayment risk, that is why it is really important to understand why
some small businesses partially financed by debt choose to exit and pay out their debt, while others
file for bankruptcy as well as creditor protection and contract enforcement mechanisms.

1.2 | Contribution and results

The main contribution of this paper is to derive an equilibrium model for a competitive industry
that, due to technological reasons, is composed of small firms and to demonstrate how small
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firms self‐select between default and exit with debt prepayment. Our numerical results produce
the exit rate at least two times higher than the default rate, which agrees with empirical findings
listed above. Our model also shows that when exit and default are strategic decisions, firms are
making negative profits before liquidation. Hence, the entrepreneurs have to inject their own
money to cover business losses. This agrees with empirical findings of Herranz et al. (2015).

We derive analytical expressions for equilibrium output price, debt coupon rate, entry rate of
new firms, and stationary distribution of active firms. We also describe analytically the
following four state space regions.

1. The good luck zone (the upper tail of the initial distribution of shocks): Firms in this zone
are the most productive ones. Eventually, they will exit, but they never default.

2. The exit zone (adjacent to the left boundary of the good luck zone): The entrepreneur finds
out that her own prospects are not too good but the investment project has sufficiently high
scrap value, so that it makes sense to sell the firm’s assets and pay back the debt.

3. The default zone (the lower tail of the initial distribution of shocks): The entrepreneur
observes that the future is too bleak and defaults immediately.

4. The Buridan zone (an interval that separates the default and exit zones): The entrepreneur
observes that her prospects are not great, but it is optimal to remain active, so she goes on
producing. If eventually the shock enters the default zone first, the firm defaults. If instead
the shock enters the exit zone first, then the firm pays the debt and exits. While the
entrepreneur is indecisive, her behavior resembles the behavior of the famous animal placed
between two piles of hay.

The novelty of prediction of our dynamic model is that the default zone is disconnected from
the exit zone, so that there are relatively unproductive firms that remain active for some time.
The dynamics of the firms inside the Buridan zone suggests that the firms may leave the
industry after a sequence of favorable productivity shocks. The reader must keep in mind that
the initial productivity shock of a firm in the Buridan zone is rather low. Had the entrepreneur
invested only her own assets in the project, she would have sold the firm immediately and
exited the industry. Since the project is partially financed by debt, the entrepreneur cannot sell
the firm immediately, because the value she will recover is insufficient to pay back the debt. At
the same time, the entrepreneur is too good to file for bankruptcy. She can always do this later if
her productivity worsens. So she needs a sequence of successful realizations of revenues to be
able to sell the firm at the scrap value that will at least be high enough to pay back the debt.

Exit from the Buridan zone with debt repayment can be interpreted as an intraindustry
liquidation. Fleming and Moon (1995) find that many liquidating firm assets are sold to firms
operating in the same industry. They describe such voluntary liquidations as an interesting
example of efficient and orderly asset reallocation. Since a voluntary liquidation is conducted at
management’s discretion, managers choose to liquidate when financial factors make it value‐
increasing for the firm. Fleming and Moon (1995) also document that liquidating firms
experience positive abnormal returns in the period preceding liquidation announcement. They
suggest that the market anticipates the firm’s liquidation and responds to this value enhancing
action.

Being able to characterize equilibrium values analytically is very important, because
comparative statics analysis becomes possible. In particular, we study how equilibrium values
depend on parameters that comprise contract enforcement and creditor protection mechanisms.
The contract enforcement is captured in our model by a penalty for debt prepayment, and
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creditor protection is modeled as a fraction of the firm’s assets which creditors get after
bankruptcy and liquidation costs have been paid. We find that the coupon rate decreases both
when contract enforcement is stronger and when the creditors can acquire a larger portion of
the firm’s assets in case of default.

The equilibrium price is much less sensitive to changes in the institutional parameters than
the coupon rate. The price decreases when the debtor protection increases: Firms have to pay
lower interest on their debt and therefore can sell their output at a lower price. The dependence
of the price on the credit enforcement parameter is less evident and can be nonmonotone. We
explain this nonmonotone effect as follows. Better contract enforcement reduces the coupon
rates, which in turn leads to lower prices. At the same time, the option value of exit (and hence
the total value of the equity of an active firm) decreases, the number of new entrants decreases
as well, which makes it possible for firms to rise prices to increase the equity values. If the
contract enforcement parameter is relatively small, the first effect dominates, for larger values
of this parameter, the second effect dominates.1

Since the aggregate demand for the firms’ output is decreasing in the price of output and
market clearing holds, we may conclude that the aggregate output increases with the creditor
protection, which agrees with Levine (1999). If we study the dependence of the average output
(per entering firm) on credit protection and enforcement we observe that the average output
increases in both parameters, which is also in accord with Levine (1999). A monotone
dependence on the contract enforcement parameter is due to the fact that the number of
entrants decreases, because entrepreneurs become more cautious when the penalty for debt
prepayment is higher.

We also find that when the exit option becomes less attractive due to higher cost of debt
prepayment, the exit zone shrinks, and both Buridan zone and the default zone become wider,
thus the exit rate decreases more sharply than the default rate. Moreover, no matter how small
the Buridan zone is, its existence is necessary for the firms to self‐select between exit and
default. We show that if the Buridan zone does not exist, all the firms will default eventually.
Thus, we conclude that regulators have to reduce the contract enforcement if they want to
decrease the long‐run default rate.

One of the ways regulators could improve creditor protection is reduction of bankruptcy and
liquidation costs, so that debt holders could capture a larger fraction of the firm’s assets. Another way
is introduction of so‐called debt covenants. We leave for the future examining how equilibrium values
depend of debt covenants. We believe that our dynamic model can be used as a benchmark for a
model with debt covenants. Suppose that the firm is declared bankrupt if its operating profit drops
below a certain level (equivalently the productivity shock drops below a certain threshold). Clearly,
such debt covenant makes no sense if the threshold is in the good luck or exit zone since the firm will
pay back the debt eventually, and bankruptcy procedures are costly. The threshold in the default zone
is useless because the firm will default strategically earlier than the profit drops below the contracted
level. Hence the contract has to specify the bankruptcy threshold which falls in the Buridan zone.

1.3 | Related literature

This paper relates to the literature of financing‐production decisions and industry equilibrium
models in a dynamic setting. This literature bridges the framework of dynamic contingent

1Krasa, Sharma, and Villamil (2008) also find nonlinear effects of credit enforcement and protection though they measure them in a different way.
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claims analysis and the framework developed by Hopenhayn (1992) and Hopenhayn and
Rogerson (1993) where the concept of stationary equilibrium is introduced to analyze industry
dynamics. Cooley and Quadrini (2001) introduce financing decisions in a model of competitive
industry based on the framework developed by Hopenhayn (1992), Hopenhayn and Rogerson
(1993), and study how financial frictions can explain empirical regularities of firm dynamics.
Miao (2005) presents an equilibrium model of a competitive industry where firms make
financing, entry, investment, and default decisions under uncertainty created by idiosyncratic
productivity shocks. In all these models with mixed financing, exit (not related to bankruptcy)
happens as a result of some catastrophic event (exogenous death), so firms never consider an
option to exit with debt prepayment. There are also models of competitive industry dynamics
with endogenous entry and exit decisions for all equity financed firms. See, for example Leahy
(1993), Caballero and Pindyck (1996), and Dixit and Pindyck (1996).

The aforementioned papers of industry dynamics use the real options approach to decision‐
making under uncertainty in continuous time. This approach recognizes the option value of
waiting and spells out why the naive NPV rule makes wrong policy recommendations. The real
options approach was introduced in the seminal paper by McDonald and Siegel (1986). Later,
this approach together with a large number of extensions and applications, including industry
equilibrium, were summarized by Dixit and Pindyck (1996).

The traditional literature in industrial organization develops and analyzes strategic models
of industry dynamics in discrete time, with endogenous entry and exit and thus variable
number of firms in oligopolistic industries (see, e.g., Amir & Lambson, 2003; Doraszelski &
Satterthwaite, 2010; Ericson & Pakes, 1995). See also Doraszelski and Pakes (2007) for a survey.
Unlike industry equilibrium models that admit analytical solutions as, for example, our model,
computational models such as, for example, Doraszelski and Satterthwaite (2010), make it
difficult (or impossible) to perform comparative statics analysis. Also, it is not clear whether
Doraszelski and Satterthwaite’s (2010) model remains computable if in each time period, a firm
has to chose among three possible actions: continue, default, or exit with debt prepayment.

1.4 | Outline

The rest of the paper is organized as follows. In Section 2, key features of our model are
presented and values of firms’ assets are derived. In Section 3, we write down and solve the
problem of the firm which takes the output price P and coupon rate ρ as given. We derive
sufficient conditions for the existence of the Buridan zone and calculate the default and exit
thresholds, which define the boundaries of the Buridan zone and good luck zone, and the value
functions of an active firm in these zones.

We obtain explicit analytical formulas for the exit threshold and value function in the good
luck zone, but the solution of the problem in the Buridan zone reduces to an algebraic equation
for the ratio of exit and default thresholds. This equation has a unique solution. Solving the
equation numerically, we derive analytical expressions for the thresholds and value function in
terms of the above ratio, P ρ, , and exogenous parameters of the model.

The relationship between firm size, growth rate, and endogenous entry and exit decisions
has attracted significant attention both in theoretical and empirical studies. The Gibrat law
states that firm size and growth are independent. In Section 4, we discuss empirically
documented departures from the Gibrat law as well as theoretical attempts to explain these
departures. We show that the Gibrat law does not hold in our model. In Section 5, we define the
competitive industry equilibrium. We find equilibrium output price and coupon rate from free

654 | BOYARCHENKO AND CHIANG



entry conditions for entrepreneurs and lenders, and use the market clearing condition to find
the equilibrium entry rate. A numerical example with comparative statics exercise is also
presented in Section 5. Section 6 concludes. Technical details are presented in appendix. In
appendix, we also demonstrate how to we calculate the steady‐state distributions of active firms
in the Buridan zone and good luck zone. In addition, we compute equilibrium entry rate and
rates of exit and default using an exogenously given demand function and the market clearing
condition.

2 | MODEL DESCRIPTION

2.1 | Key features of our model

Our model combines features of Dixit and Pindyck (1996) model of a competitive industry
dynamics, and Miao (2005). We add two key ingredients to the Dixit and Pindyck (1996) model
(DP‐model): a fixed operating cost and external financing.

Ex ante, firms in our model are identical—their initial productivity shocks are drawn from
the same distribution, and will follow the same stochastic process. Ex post, firms differ in the
realization of productivity shocks. As in DP‐model, shocks of different firms are independent,
and the industry aggregates are nonrandom due to the law of large numbers (for rigorous
justification, see, e.g, Judd, 1985).

An entrepreneur draws her initial productivity shock only after the investment had been
made. An active firm has to pay interest on the debt and operating costs; therefore, if the shock
is not a good one, the entrepreneur may decide to exit the industry immediately. On the other
hand, since shocks are firm specific, the entrepreneur knows that, on average, her bad luck is
not shared by her competitors; therefore it is not always necessary to exit at once. Instead, the
entrepreneur can wait and see if this bad luck is transitory. At the same time, even if the initial
shock is a good one, it may become optimal to leave the industry eventually if the stochastic
factor falls too low. If the entrepreneur finds it optimal to discontinue the firm’s operations, she
has two options: (a) sell the firm’s assets at a scrap value, pay back the debt, and exit the
industry; (b) file for bankruptcy. We call the first option exit with debt repayment, or simply
exit, and the second option—exit through default, or simply default. The fixed operating cost
together with the recoverability of some of the firm’s assets makes exit of the firm optimal.
External financing makes default optimal.

Unlike Cooley and Quadrini (2001) and Miao (2005), we ignore growth opportunities of the
firms and restrict our attention to exogenous leverage only. The model generalizes
straightforwardly to the case of frictionless choice of inputs of production as in the Miao (2005).

The investment is partially financed by debt. The entrepreneurs in our model borrow as
much as they are allowed to. According to Temkin and Kormendi (2003), small business lenders
typically require the borrower to place between 25% and 30% equity in the transaction so as to
exploit the tax advantages of debt. We leave for the future research the problem of the optimal
capital structure with endogenous exit and default. The main difference of our model from
Cooley and Quadrini (2001) and Miao (2005) is that both default and exit with debt payout are
options for an active firm.

Deriving an industry equilibrium, Miao (2005) considers only demand and supply markets
for industry output and ignores the market for loans. So, in his model with exogenous leverage,
the coupon payment is a parameter, but not an endogenous variable. As opposed to this, in our
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model, the equilibrium interest rate (and hence the coupon rate) is determined under the
assumption that lenders’ profit is zero (i.e., lenders are competitive).

We assume that both in case of exit and default, the entrepreneur can re‐enter the industry
as a new entrant. A possibility of re‐entry after exit agrees with McKenzie and Paffhausen
(2018) who find that firm death need not mean permanent exit from self‐employment for the
firm owner. A possibility of re‐entry after default corresponds to the core concept of Chapter 7.

All agents are risk‐neutral and discount the future at rate r > 0. A potential entrepreneur has
to invest a fixed size capital into a project (production technology) that will produce output
flow, Y , where Y is a firm‐specific productivity shock that follows the geometric Brownian
motion. The initial value of the shock is revealed after the investment had been made. The
output good is sold at the market price, P; therefore the firm’s operating revenue is YP.

We normalize the debt amount to one and express the output price, P, as a fraction of the
debt. We understand that in real life, the ability to borrow depends on the initial wealth and
credit history of the entrepreneur as well as the amount of the loan. For simplicity, we assume
that all these factors are reflected in a fixed instantaneous contractual coupon payment ρ; and ρ
is determined in equilibrium from the zero profit condition for the lenders. Zero profit
condition for the lenders is a standard assumption given that the credit market is competitive
and free of arbitrage. We rule out any dynamic adjustments to leverage assuming that such
adjustments are prohibitively costly. Let L be the leverage, that is, the ratio of the debt to the
total capital invested in the project. Then, the size of investment is ∕L1 . The part ∕L1 − 1 of the
investment is the entrepreneur’s own resources. In addition to the coupon payment ρ, the active
firm suffers the operating cost v also measured as a fraction of the initial debt.

Both potential managers and active firms are subject to the exogenous death which is modeled
as a Poisson process with the parameter λ > 0. This assumption (also used by Dixit & Pindyck,
1996, p. 275; Miao, 2005) ensures the existence of a stationary distribution of firms if the drift of the
underlying Brownian motion is nonnegative. If the drift is negative, it is not necessary to introduce
the exogenous death. See Section A.5 for details and derivation of the stationary distribution. In the
event of the exogenous death of an active firm, no value can be recovered.

2.2 | Value of assets

Let idiosyncratic productivity shocks be specified as ≥Y t= e , 0t
Xt . X X= { }t is the Brownian

motion, that is, Xt satisfies the following stochastic differential equation:

dX μdt σdW= + ,t t (1)

where ∈μ  and σ > 0 are, respectively, the drift and volatility of X , and dWt is the increment
of the standard Wiener process.

Let Y = ex be the current realization of the productivity shock. As a starting point, we define
the value of assets of the firm as the expected present value (EPV) of revenues which the firm
would generate if it never exits the industry except for the case of exogenous death:

⎡
⎣⎢

⎤
⎦⎥∫

∞
V Y E PY dt( ) = e .Y r λ t

tas
0

+
−( + ) (2)

Here and below, ≔ ∣E f Y E f Y Y Y[ ( )] [ ( ) = ]Y
t t 0 denotes the conditional expectation operator. It

is possible to use a more natural definition of Vas as the value of the unlevered firm with an
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option to exit. However, this leads to additional complication in the structure of the model, and
does not add any new insight.

The value of the assets satisfies the following differential equation (the Euler equation):

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟

∂

∂

∂

∂
∀r λ

σ
Y

Y
μ

σ
Y

Y
V Y PY Y+ −

2
− +

2
( ) = > 0.

2
2

2

2

2

as (3)

We introduce the notation β σ β μβΨ( ) = ( /2) +2 2 . The value of assets V Y( )as is finite if and
only if the following no‐bubble condition holds:

r λ+ − Ψ(1) > 0. (4)

In Section A.1, we show that

V Y
PY

r λ
( ) =

+ − Ψ(1)
.as (5)

The value of the equity of the firm which commits itself to production and coupon payments
until the moment of the Poisson random death is

∕ ∕ ∕V Y V Y ρ v r λ PY r λ ρ v r λ bY a( ) = ( ) − ( + ) ( + ) = ( + − Ψ(1)) − ( + ) ( + ) = − ,0 as 1

(6)

where

∕ ∕b b P P r λ a a ρ ρ v r λ= ( ) = ( + − Ψ(1)), = ( ) = ( + ) ( + ).1 1

Assume that in case of exit with prepayment, the entrepreneur recovers a fraction ∈α [0, 1)1

of the firm’s assets. In the literature on partially irreversible investment, it is common to assume
that the liquidation value is fixed. We believe that the liquidation value changes as market
prices change, hence it depends on the value of the firm’s assets. This also agrees with
Doraszelski and Satterthwaite (2010) who introduce random scrap values into their model.
Also, the firm returns α3 to the lender, where ≥α 13 . If α > 13 , then the contract specifies a
penalty for prepayment. We interpret α3 as a contract enforcement parameter. If the
entrepreneur files for bankruptcy, she gets nothing.

3 | FIRM ’S PROBLEM

The firm chooses the optimal time of default and optimal time of exit, denoted τd and τe, which
maximize the value of the equity:

∫
∧

{
}

[ ]

[ ]

V Y E PY ρ v dt

E α V Y α1

( ) = sup e ( − − )

+ e ( ( ) − ) .

τ τ

Y
τ τ

r λ t
t

Y
τ τ

τ r λ
τ

, 0

−( + )

<
− ( + )

1 as 3

d e

d e

e d
e

e

BOYARCHENKO AND CHIANG | 657



The first term on the RHS of the last equation is the EPV of profits until exit or default
(whichever happens first), and the second term is the net gain for the entrepreneur in the event
of exit. Notice that there is no term responsible for the option value of reentering the industry:
In the competitive case which we consider, this value is zero.

To find optimal τd and τe, we represent the value of the equity as

⎡
⎣⎢

⎤
⎦⎥∫

∫

∞

∧

∞{ [ ]

[ ]

V Y E PY ρ v dt

E ρ v PY dt

E α V Y α1

( ) = e ( − − )

+ sup e ( + − )

+ e ( ( ) − ) }.

Y r λ t
t

τ τ

Y

τ τ

r λ t
t

Y
τ τ

τ r λ
τ

0

+
−( + )

,

+
−( + )

<
− ( + )

1 as 3

d e
d e

e d
e

e

(7)

The first term on the RHS of the last equation is V Y( )0 , the term under the supremum is the
option value to leave the industry; therefore we write

V Y V Y V Y( ) = ( ) + ( ).0 opt (8)

In Section A.2, we show that

{ }

[ ]

[ ]

[ ] [ ]

V Y E a V Y

E a α α V Y

E G Y E G Y
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1

1 1
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(9)

where

G Y a bY( ) = − ,d 1 (10)

G Y a α bY( ) = − (1 − )e 2 1 (11)

are the payoffs in the event of default and exit, respectively. Here a a ρ a ρ α= ( ) = ( ) −2 2 1 3. If the
penalty for debt prepayment is too high then no firm will exit the industry with debt repayment.
Therefore, we assume that ∕α ρ r λ< ( + )3 , which implies a > 02 .

3.1 | Exit options

Payoff functions Gd and Ge are linear and decreasing. The line G Y( )e has smaller (in absolute
value) slope than G Y( )d because the exiting firm can partially recover the value of its assets.
Since a a G Y> , ( )e1 2 and G Y( )d intersect. Let Hb be a (unique) solution to G H G H( ) = ( )e b d b .
Straightforward calculations show that ∕H α α b= ( )b 3 1 .

We are interested in the case when the intersection happens in the positive cone, that is,
G H( ) > 0d b . Equivalently,

a bH a
α

α
− = − > 0.b1 1

3

1
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It is easy to check that the last inequality holds iff

≔a
a

a
α< (1 − ) .1

2
1
−1 (12)

If Condition (12) does not hold, the value of default is higher than the value of exit for all values
ofY s.t.G Y( ) > 0d . In other words, if (12) is not satisfied, the penalty for prepayment is too high
and/or the scrap value of the firm is too low, so that it is never optimal to exit without default.

In the rest of the paper, we assume that (12) holds. Since a1,2 depend on ρ, Condition (12)
involves ρ, which is an endogenous variable, so we will need to check it after we solve the
model. For low realizations of the idiosyncratic shock (Y H< b), the value of default is higher
than the value of exit. For Y H> b, the value of exit is higher than the value of default. An active
firm will certainly choose the mode of exit with the higher value. Let

G Y G Y G Y( ) = max{ ( ), ( ), 0}d e

be the payoff from leaving the industry. If the firm leaves the industry at a random time τ it will
get the payoff G Y( )τ . We see that the firm’s problem is equivalent to the problem of optimal
exercise of the perpetual American option with the payoff G Y( ), that is,

V Y E G Y( ) = sup [e ( )].
τ

Y r λ τ
τopt

−( + )

Notice that had we considered a static model where the uncertainty is resolved at the
moment of entry, or an isomorphic problem with naive treatment of uncertainty, where upon
observing the initial productivity the firms decide whether to exit or default on the now‐or‐
never basis, the firms whose productivity shock Y H< b would have defaulted immediately, the
firms with the shock level ∕ ∕H Y a α b< < (1 − )b 2 1 would have exited immediately, and the rest
of them would have remained active until a random death took place. Condition (12) would
have been the necessary and sufficient condition for separation of the firms into those who exit
with debt repayment and those who exit through default.

In the dynamic model, Condition (12) does not ensure that some firms may find optimal to
exit without default. The necessary and sufficient conditions can be derived after possible
shapes of the inaction region are analyzed. Before doing this, we will consider a benchmark
case, when the firm has only one exit option available.

3.2 | The case of one exit option

In this case,G Y G Y( ) = max{ ( ), 0}i , where i e= if default is not an option, and i d= if exit with
debt repayment is not an option. If the idiosyncratic shock is sufficiently high, it is optimal to
remain active. Let Hi0 ( ∈i e d{ , }) be the level of the shock s.t. the firm stays in the industry if
Y H> i0 and leaves the industry the first time ≤Y Hi0. The standard argument shows (see, e.g.,
Dixit & Pindyck, 1996) that in the inaction region ∞H( , + )i0 , the option value of exit satisfies
the following equation:
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⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟

∂

∂

∂

∂
r λ

σ
Y

Y
μ

σ
Y

Y
V Y Y H+ −

2
− +

2
( ) = 0, > .i

i

2
2

2

2

2

opt 0 (13)

The general solution to this equation can be written as

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟V Y A

Y

H
A

Y

H
Y H( ) = + , > .i

i
i

β

i
i

β

iopt
− +

0
0

− +

The option value of exit vanishes as → ∞Y , therefore A = 0i
+ . At the threshold, Hi0, the option

value satisfies the value matching and smooth pasting conditions:

V H G H V H G H( ) = ( ), ( )′( ) = ′ ( ).i
i i i

i
i i iopt 0 0 opt 0 0

The last two conditions are equivalent to

A a b H A β b H= − , = − ,i i i i i i i
−

0
− −

0

where a a a a b b= , = , =d e d1 2 , and b α b= (1 − )e 1 . Whence we derive

⋅A
a

β
H

β

β

a

b
κ

a

b
=
1 −

and =
− 1

= (1) .i
i

i
i

i

i

i

−
− 0

−

− −

Here and below we use the notation

κ β
β

β β
( ) =

−
.±

±

±
(14)

Thus the optimal thresholds for the exit with and without default are

H κ
a

b
H κ

a

α b
= (1) and = (1)

(1 − )
.d e0 −

1
0 −

2

1

Notice that

H

H

α a

a
α a=

(1 − )
= (1 − ) < 1d

e

0

0

1 1

2
1

if (12) is satisfied.
The option value of leaving the industry is

⎧
⎨⎪

⎩⎪
⎛
⎝⎜

⎞
⎠⎟

≤

V Y

a

β

Y

H
Y H

G Y Y H

( ) = 1 −
if > ,

( ) if .

i
i

i

β

i

i i

opt
−

0
0

0

−
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Observe that

⎛
⎝⎜

⎞
⎠⎟⇔V H V H

H

H
a( ) > ( ) > .e

e
d

e
d

e

β

opt 0 opt 0
0

0

−

Straightforward calculations show that the last inequality is equivalent to

a α< (1 − ) .κ
1
− (1)− (15)

Later, we will prove that (15) is the necessary and sufficient condition for existence of the
Buridan zone. If (15) is satisfied, Condition (12) is satisfied as well, because α < 11 and
κ (1) < 1− .

3.3 | Characterization of inaction regions with two exit options

NowG Y G Y G Y( ) = max{ ( ), ( ), 0}d e . It is clear that at high levels of the productivity shock, it is not
optimal to exercise the option to exit or default. Denote by H+ the minimal number such that the
firm remains active at all levelsY H> +. The argument in the previous subsection can be invoked to
prove that in the region ∞H( , + )+ , the option value of exit or default is of the form

⎛
⎝⎜

⎞
⎠⎟V Y A

Y

H
Y H( ) = , > .

β

opt
+

+
+

−

(16)

The constant A and the exercise boundary H+ can be found from the value matching and
smooth pasting conditions:

A G H β A G H H= ( ), = ′( ) ,+
−

+ + (17)

whence we see that H+ solves the equation

β G H G H H( ) = ′( ) .−
+ + + (18)

For a sufficiently large A, the curve Vopt
+ does not touch the curve G. As A decreases, the

touchdown happens eventually, and we obtain the exercise threshold at the point of tangency,
H+. Clearly, three cases are possible; we show them in the G Y( , )‐plane, in Figure 1.

Case I. The curve Vopt
+ touches the curve G at a point on the Gd portion, but not on the Ge

portion. H H= d+ 0 is the default boundary. The firm never exits without default, and it
defaults the first time ≤Y H+.

Case II. The curve Vopt
+ touches the curve G at a point on the Ge portion, but not on the Gd

portion. Then H H= e+ 0 is an exit boundary, and H H> b+ . Starting with the
supposition that the interval ∞H( , )+ is the firm’s inaction region, we will arrive at a
contradiction, which will demonstrate that the inaction region is disconnected in this
case. Suppose that H+ is the unique exit threshold. Then the option value of exit is
given by
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⎧⎨⎩
̃

≤
V Y

AY Y H

G Y Y H
( ) =

, > ,

( ), .

β

opt
+

+

−

We will use the following general results of the optimal stopping theory to demonstrate
that ̃V Y( )opt cannot be the option value, and, therefore, the inaction region must be of a
more complex form than a semi‐infinite interval ∞H( , + )+ . If τ* is an optimal stopping
time, then

[ ]V Y E G Y( ) = e ( )*Y r λ τ
τopt

−( + ) *

satisfies the following two conditions (see, e.g., Theorem 2.4 in Peskir & Shiryaev,
2006):

≥V Y G Y Y( ) ( ), > 0;opt (19)

≥ ≥V Y E V Y Y t( ) e [ ( )], > 0, 0.rt Y
topt

−
opt (20)

The first condition says that the option value has to be at least as big as the payoff
(otherwise, it would have been optimal to exercise the option earlier). The second
condition tells us that the current option value is at least as big as its present value,
that is, if the option is exercised optimally, it is impossible to increase its value by
waiting longer.

Evidently, ̃V Y( )opt satisfies (19). We will show now that there is a neighborhood of
Hb, where ̃V Y( )opt violates (20), hence ̃V Y( )opt cannot be the option value. Intuitively,
̃V Y( )opt cannot be the option value because it has a kink at Hb. Therefore, there is an

Y

Y

Y

H
+

H
b

H
b

H
+

H
d

H
b

H
+

FIGURE 1 Payoffs Gd (solid line) and Ge (dashes), and the option value to exit ∕V A Y H= ( )βopt
+

+
−
(dots).

Upper panel: Case 1. Only default is possible, and H H= d+ 0 is the default boundary. Middle panel: Case 2. At

H H= e+ 0, it is optimal to exit. Lower panel: Case 3. At H H=d d0, it is optimal to default; at H H= e+ 0, the value

of exit and waiting for default is equal
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additional inaction interval around Hb. To see why, divide the time into discrete
periods of length tΔ , and assume that in each period, the variable Y either moves
up or down by an amount hΔ . Let the probability that it moves up be p, and the
probability that it moves down be q p= 1 − . Using the random walk representation of
the Brownian motion (see, e.g., Dixit & Pindyck, 1996), one can show that
h σY tΔ = Δ and

⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠p

μ

σ
t q

μ

σ
t=

1

2
1 + Δ , =

1

2
1 − Δ .

For a small tΔ , we can write (20) as

≥V Y r λ t E V Y( ) (1 − ( + )Δ ) [ ( )].Y
topt opt Δ (21)

Suppose that the current realization of the shock is ∕Y H σ t= (1 − Δ 2)b . Then

̃V Y G Y G H
bσ t

H( ) = ( ) = ( ) +
Δ

2
d d b bopt

(recall that G Y G Y( ) > ( )d e for Y H< b). With probability p,

∕Y Y h H σ t O t= + Δ = (1 + Δ 2) + (Δ ),t bΔ

and with probability q,

∕Y Y h H σ t O t= − Δ = (1 − 3 Δ 2) + (Δ ).t bΔ

Hence

̃ ∕ ∕E V Y pG H σ t qG H σ t O t

pG H qG H p α
bσ t

H q
bσ t

H O t

G H
bσ t

H
α bσ t

H O t

[ ( )] = [ ( (1 + Δ 2)) + ( (1 − 3 Δ 2 )) + (Δ )]

= ( ) + ( ) − (1 − )
Δ

2
+

3 Δ

2
+ (Δ )

= ( ) +
Δ

2
+

Δ

4
+ (Δ ),

Y
t e b d b

e b d b b b

d b b b

opt Δ

1

1

and

̃r λ t E V Y G H
bσ t

H
α bσ t

H O t V Y(1 − ( + )Δ ) [ ( )] = ( ) +
Δ

2
+

Δ

4
+ (Δ ) > ( ).Y

t d b b bopt Δ
1

opt
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The case when the current realization of the shock is ∕Y H σ t= (1 + Δ 2)b can be
treated similarly. Hence there is a neighborhood of Hb, where ̃V Y( )opt does not satisfy
(20), therefore ̃V Y( )opt is not the option value. Hence H+ is not the unique exit barrier.
Therefore, there must be an additional subset of the inaction region H H( , )d − around Hb

where waiting is optimal. We will find this interval in Subsection 3.5. The firm stays
alive if Y H> + or ∈Y H H( , )d − . The firm exits the first time the shock Y enters the
interval H H[ , ]− + , and defaults the first time ≤Y Hd. Hence the interval H(0, ]d is the
default zone, H H( , )d − is the Buridan zone, H H[ , ]− + is the exit zone, and ∞H( , + )+ is
the good luck zone, described in the Introduction. See Figure 2 for illustration.

Notice that for a general payoff function, the inaction region may be a union of
intervals ∞a b(0, ), ( , + ), and a number of intervals of the form c d( , ), where

a c d b0 < < < < . In this model, the inaction zone adjacent to zero is impossible,
because firms with very low productivity shocks will not stay in the industry, hence we
can rule out an interval of the form a(0, ) as a candidate for a subset of the inaction
region. We have already established that a semi‐infinite inaction interval of the form

∞b( , + ), namely, ∞H( , + )+ , exists. It remains to consider an inaction interval of the
form c d( , ). In Subsection 3.5 below, we show that the boundaries of such an interval
are uniquely determined in terms of their ratio ∕R d c= > 1, and derive an algebraic
equation for R. After that, we prove that this equation has a unique solution on

∞(1, + ), which satisfies the necessary condition d d R H= ( ) < +. Hence, the Buridan
zone is unique.

Case III. The curveVopt
+ touches both curvesGd andGe. This case can be regarded as the degenerate

case of Case 2, with H H=− +. An active firm defaults the first time ≤Y H H=d d0. At
Y H H= = e+ 0, the firm is indifferent between exiting and staying alive.

Y

G
d

G
e

V
opt

V+
opt

H
d

H
b

H+H

FIGURE 2 Case 2: exit and default. Graphs of Gd and Ge, and option values Vopt
− and Vopt

+ in the Buridan
zone and good luck zone. Hd is the default boundary, and H± are the exit boundaries
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3.4 | Existence of the Buridan zone

To derive explicit conditions for Cases 1, 2, and 3, consider the option with the payoffGd and the
one with the payoff Ge. On the strength of (12), H H<d e0 0. Obviously,

• Case 1 ⇔ V H V H( ) > ( ).d
e

e
eopt 0 opt 0

• Case 2 ⇔ V H V H( ) < ( ).d
e

e
eopt 0 opt 0

• Case 3 ⇔ V H V H( ) = ( )d
e

e
eopt 0 opt 0 .

We are interested in Case 2 because it generates both endogenous exit without default and
default. In the Subsection 3.2, we derived thatV H V H( ) < ( )d

e
e

eopt 0 opt 0 iff (15) holds. Hence (15) is
the necessary and sufficient condition for existence of the Buridan zone. Condition (15) involves
one endogenous variable ρ, and therefore, after the model with exit and default is solved, we
need to check (15) for consistency.

The results obtained so far are summarized in the following theorem:

Theorem 3.1. Assume that (15) holds. Then

(i) the firm remains active in a region of the form ∪ ∞H H H( , ) ( , + )d − + , where
H H H< <d − +;

(ii) Hd is the default boundary, and H H,− + are exit boundaries;
(iii) H+ is given by

H H P ρ κ
a ρ

α b P
= ( , ) = (1)

( )

(1 − ) ( )
;+ + −

2

1

(22)

(iv) for the firm in the good luck zone, ∞H( , + )+ , the option value of exit is given by

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟V Y G H

Y

H

a

β

Y

H
( ) = ( ) =

1 −
,e

β β

opt
+

+
+

2

−
+

− −

(23)

and the value of the equity in the good luck zone is

⎛
⎝⎜

⎞
⎠⎟V Y bY a

a

β

Y

H
( ) = − +

1 −
.

β
+

1
2

−
+

−

(24)

It remains to find H H V, ,d − opt
− , and V− —the default and exit thresholds from the Buridan

zone, the option value of leaving the industry, and value of the equity in the Buridan zone.

3.5 | Boundaries of the Buridan zone

The option value of leaving the industry satisfies the following differential equation in the
Buridan zone:
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⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟

∂

∂

∂

∂
∈r λ

σ
Y

Y
μ

σ
Y

Y
V Y Y H H+ −

2
− +

2
( ) = 0, ( , ).d

2
2

2

2

2

opt
−

− (25)

We write the general solution of (25) as

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟V Y A

Y

H
A

Y

H
( ) = + .

d

β

d

β

opt
− − +

− +

(26)

The constants A A,+ − and optimal thresholds H H,d − are found from the value matching and
smooth pasting conditions (see, e.g., Section 9.1 in Peskir & Shiryaev, 2006):

V H G H V H G H( ) = ( ), ( )′( ) = ′ ( ),d d d d d dopt
−

opt
− (27)

V H G H V H G H( ) = ( ), ( )′( ) = ′ ( ).e eopt
−

− − opt
−

− − (28)

Using (10), (11), and (26), we can write (27) and (28) as

A A a bH+ = − ,d+ −
1 (29)

β A β A bH+ = − ,d+ + − − (30)

A R A R a α bH+ = − (1 − ) ,β β+ −
2 1 −

+ −

(31)

β A R β A R α bH+ = −(1 − ) ,β β+ + − −
1 −

+ −

(32)

where ∕R H H= d− . Set

R R R R
aR

κ

aR

κ
Δ = Δ( ) = − , Δ = Δ ( ) =

− 1

(1)
+
1 −

(1)
,β β

β β

1 1
+ −

+ −

+ −

(33)

R
aR

κ
R

aR

κ
RΔ = Δ ( ) =

− 1

(1)
+
1 −

(1)
,

β
β

β
β

2 2
+ −

+

−

−

+
(34)

B B R
R

a R
B B R

R

R
= ( ) =

Δ ( )

Δ( )
, = ( ) =

Δ ( )

Δ( )
,1 1

1
2 2

2 (35)

and consider the equation

≔α R
R

R
F R(1 − ) =

Δ ( )

Δ ( )
( ).1

2

1

(36)

Define R1 as a zero of RΔ ( )1 on ∕( )a1, β−1 −
and R2 as a zero of RΔ ( )2 on ∕( )R a, β

1
−1 −

. In appendix,
we prove the following:
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Lemma 3.2. Let R be a solution to (36) on ∕( )R a, β
2

−1 −
. Then

a) the solution of Systems (29)–(32) is given by

H
κ κ a B

b

ρ v B

P
=

(1) (1)
=
( + )

,d
+ − 1 1 1 (37)

H RH= ,d− (38)

⎛
⎝⎜

⎞
⎠⎟A κ β a

b

κ
H= ( ) −

(1)
,d

+
−

+
1

−

(39)

⎛
⎝⎜

⎞
⎠⎟A κ β a

b

κ
H= ( ) −

(1)
.d

−
+

−
1

+

(40)

b) H H H< <d − +.

Now we make the following statement.

Theorem 3.3. Assume that Condition (15) is satisfied. Then

a) Equation (36) has a solution on ∕( )R a, β
2

−1 −
, and the Buridan zone exists;

b) the boundary points of the Buridan zone are defined by (37) and (38);
c) the value of the equity in the Buridan zone is

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟V Y bY a A

Y

H
A

Y

H
( ) = − + + ,

d

β

d

β
−

1
− +

− +

(41)

where A+ and A− are given by (39) and (40);
d) the option value of leaving the industry is

⎧

⎨

⎪⎪⎪⎪

⎩

⎪⎪⎪⎪

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

≤

∈

∈

≥

V Y

a bY Y H

A
Y

H
A

Y

H
Y H H

a α bY Y H H

a

β

Y

H
Y H

( ) =

− if ,

+ if [ , ],

− (1 − ) if [ , ],

1 −
if .

d

d

β

d

β

d

β

opt

1

− +
−

2 1 − +

2

−
+

+

− +

−

(42)

Finally, we can write the value of the equity of the firm whose current shock is Y as

⎧
⎨
⎪⎪

⎩
⎪⎪

≤

∈

∈

≥

V Y V Y V Y

Y H

V Y Y H H

α bY α Y H H

V Y Y H

( ) = ( ) + ( ) =

0 if ,

( ) if [ , ],

− if [ , ],

( ) if .

d

d
0 opt

−
−

1 3 − +

+
+

(43)
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4 | SIZE DEPENDENCE OF GROWTH RATE AND
VOLATILITY OF GROWTH

The initial conclusion of the Gibrat law which states that firm size and growth are independent
was rejected by a number of empirical studies. See extensive discussion of empirical fundings
and theoretical models that tried to explain those findings in Cooley and Quadrini (2001).
Cooley and Quadrini (2001) was the first model that accounts simultaneously for the
conditional size and age dependence. The main idea in Cooley and Quadrini (2001) is that to
reproduce all stylized facts of the firm dynamics, it is necessary to have two dimensions of
heterogeneity across firms. In a frictionless market, the exogenous productivity shock fully
determines the size and dynamics of the firm. Cooley and Quadrini (2001) introduce financial
market frictions in a basic model of industry dynamics with persistent idiosyncratic productivity
shocks and instantly adjustable capital and labor. With financial frictions, the size of the firm
also depends on its equity. Cooley and Quadrini (2001) only found the sought after effects for a
very small class of dynamics (a two‐state Markov process). Correct age dependence in that
model is driven by assumptions that new entrants are more productive, and productivity shocks
are highly persistent. This driving assumption contradicts an empirical fact presented in
MacKay and Phillips (2005): “...entrants begin less capital‐intensive and less profitable than
incumbents...” The latter fact agrees with Williams’ (1995) prediction that entering firms must
rely on less efficient, more labor‐intensive technologies because of the limited access to capital
markets.

Boyarchenko (2006) shows that both conditional age and size dynamics of firms can be
naturally explained even in the absence of financial frictions, though undoubtedly the latter are
important. Instead, Boyarchenko (2006) introduces a different friction, which is one of the key
components of the real options theory. Namely, she assumes that investment is irreversible, or
reversible at a cost, and constructs a model of a competitive industry equilibrium refining the
model in Dixit and Pindyck (1996) and demonstrates size and age dependence that agree with
empirical findings.

To be able to derive age dependence, one needs to be able to compare firms from different
cohorts. To this end, Boyarchenko (2006) introduces two stages of a firm development, where in
the second stage, firms have an option to adopt a better technology at a sunk cost. In the current
paper, we cannot compare firms from different cohorts, but we can compare firms of different
equity size.

As in Cooley and Quadrini (2001), we measure the size of the firm by its equity. First, we
consider a firm in the Buridan zone with the value function V Y( )− given by (41). Applying the
Itô lemma to V−, we obtain

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟

∂

∂

∂

∂
dV

σ
Y

Y
μ

σ
Y

Y
V dt Y V Y σdW=

2
+ +

2
+ ( ( ))′ .t−

2
2

2

2

2
− − (44)

Using (25), (26), and (41), we derive

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟

∂

∂

∂

∂

σ
Y

Y
μ

σ
Y

Y
V ψ bY r λ V Y

2
+ +

2
= (1) + ( + ) ( ).

2
2

2

2

2
−

opt
− (45)
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A typical assumption in the real options literature, which guarantees that the no‐bubble
condition holds for any r > 0, is ψ (1) = 0, hence the first term on the RHS in (45) is zero.
Substituting (45) into (44) and dividing both sides of Equation (44) by V−, we arrive at

dV

V

r λ V

V
dt

Y V Y

V
σdW=

( + )
+

( ( ))′
,t

−

−

opt
−

−

−

−
(46)

where the factor at dt is the rate of growth, and the factor at dWt is the volatility of growth. Since
Vopt
− is a decreasing function, and V− is an increasing function of Y , the growth rate is a

decreasing function of Y . Furthermore, it is a decreasing function of V−, because V− is
increasing in Y . For the volatility of growth ∕Y V Y V( ( ))′− −, the situation is less clear because
both the numerator and the denominator are increasing in Y (recall that V− is convex).
Numerical examples show that, for reasonable parameter values, ∕Y V Y V( ( ))′− − increases as a
function of Y , and hence as a function of V−. See Figure 3 for illustration.

Similarly, for the firm born in the good luck zone,

dV

V

r λ V

V
dt

Y V Y

V
σdW=

( + )
+

( ( ))′
.t

+

+

opt
+

+

+

+
(47)

Repeating the same argument as above, we conclude that the rate of growth ∕r λ V V( + ) opt
+ + is a

decreasing function of V+. As Figure 4 shows, the volatility of growth may be a nonmonotone
function of V+.

Thus, our results agree with empirical findings that the growth rate of a firm is decreasing in
its size. This holds for the firms born both in the Buridan zone and in the good luck zone. For
the firms born in the Buridan zone, the volatility of growth decreases as the firm becomes
larger, which is quite natural, because the larger the firm is, the farther it is away from the
default boundary. Hence, for the larger firm it becomes more and more likely that it will exit
with the debt prepayment. Interestingly, numerical experiments show that for the firms born in
the good luck zone, the volatility of growth may be a nonmonotone function of the firm’s equity
size. For a firm born close to the exit threshold, volatility increases as the firm grows until it
reaches the peak. After that, volatility decreases in the firm’s size. The nonmonotone behavior

(a) (b)

FIGURE 3 Rate of growth (a) and volatility of growth (b) of a firm in the Buridan zone. Parameters:
r λ σ α α α v P ρ= 0.04, = 0.01, = 0.2, = 0.25, = 0.5, = 1.05, = 1.2, = 0.01, = 0.0531 2 3
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can be explained as follows. If the idiosyncratic shock is close to the exit boundary, it is very
likely that the firm will exit the industry soon, so the volatility is relatively low. As the firm
starts growing, its growth may continue for a while, or it may be transitory and the firm will
exit, so the volatility increases. After the size of the firm reaches some critical value, it becomes
less and less likely that it will exit in the nearest future, therefore the volatility starts decreasing.

5 | EQUILIBRIUM PRICE OF OUTPUT AND
COUPON RATE

5.1 | Industry equilibrium

We define a long‐run industry equilibrium as a list P ρ N g H H H( , , , , , , )dact − + , where P is the
equilibrium price, ρ is the coupon rate, N is the entry rate, and gact is the stationary distribution
of active firms, s.t. (a) firms choose the exit and/or default thresholds to maximize their NPV,
(b) free entry conditions are satisfied, and (c) the good market clears.

So far, we calculated the exit and default thresholds, value of the firm’s equity taking the
endogenous variables P and ρ as given. In this section, we derive a system of two equations for
P and ρ using the following two free entry conditions: The expected value of a new entrant is
equal to the size of the investment, and lenders earn zero profit.

Assume that initial shocks Y are distributed on an interval Y Y[ , ]min max with Y H H< <dmin −

and H Y<+ max. Let g Y( ) be the p.d.f. of Y .
Recall that the entrepreneur has to invest ∕L1 − 1 at the moment of entry and after

observing the productivity shock, gets V Y( ), given by (43). Therefore, the free entry condition
for entrepreneurs is

∫ ∫ ∫∕L V Y g Y dY α bY α g Y dY V Y g Y dY1 − 1 = ( ) ( ) + ( − ) ( ) + ( ) ( ) ,
H

H

H

H

H

Y
−

1 3
+

d

−

−

+

+

max

(48)

whereV+ andV− are given by (24) and (41), respectively. The first term on the RHS of (48) is the
expected value of active firms in the Buridan zone, the second term is the expected value of the
firms that exit immediately and pay back the debt, and the last term is the expected value of
active firms in the good luck zone.

(a) (b)

FIGURE 4 Rate of growth (a) and volatility of growth (b) of a firm in the good luck zone. Parameters:
r λ σ α α α v P ρ= 0.04, = 0.01, = 0.2, = 0.25, = 0.5, = 1.05, = 1.2, = 0.01, = 0.0531 2 3
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The free entry condition for the lenders (which is also a no‐arbitrage condition) is

D

D

∫ ∫

∫ ∫

α b Yg Y dY V Y g Y dY

α g Y dY V Y g Y dY

1 = ( ) + ( ) ( )

+ ( ) + ( ) ( ) ,

Y

H

H

H

H

H

H

Y

2
−

3
+

d

dmin

−

−

+

+

max
(49)

where DV
− and DV

+ are the values of the debt of an active firm in the Buridan zone and good luck
zone, respectively. The terms on the RHS of (49) represent contributions of the firms in the
default zone, Buridan zone, exit zone, and good luck zone, respectively.

To evaluate the integrals in (49), we need to determine DV
+ and DV

−.

5.2 | Good luck zone

While the firm is in the good luck zone, the debt holders receive coupon payment, ρ. When the
firm liquidates, the creditors receive α3. Therefore, the value of the debt of a firm in the good
luck zone, DV

+, solves the following boundary problem:

D

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟

∂

∂

∂

∂
r λ

σ
Y

Y
μ

σ
Y

Y
V Y ρ Y H+ −

2
− +

2
( ) = , > ,

2
2

2

2

2
+

+ (50)

DV H α( ) = .+
+ 3 (51)

Also, DV
+ is bounded. Therefore, DV

+ is of the form

D

⎛
⎝⎜

⎞
⎠⎟V Y

ρ

r λ
A

Y

H
( ) =

+
+ ,

β
+

+

−

where the constant A is easily found from the boundary condition (51):

A α
ρ

r λ
= −

+
.3

Thus, the value of the debt of the firm in the good luck zone is

D
⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟V Y

ρ

r λ

ρ

r λ
α

Y

H
( ) =

+
−

+
− .

β
+

3
+

−

(52)

The first term in (52) is the present value of the stream of coupons paid by a firm that never
exits voluntary, the second term is the net loss incurred in case of exit.

5.3 | Buridan zone

A firm in the Buridan zone pays the coupon until exit or default. As in Leland (1994, 1998),
Leland and Toft (1996) assume that in case of default, the creditors capture the fraction α2 of the
firm’s assets. The remaining portion is lost as the cost of bankruptcy procedures. Parameter α2 is
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a proxy for creditor protection in our model. The value of the debt of the firm in the Buridan
zone, DV

−, solves the following boundary problem

D

D

D

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟

∂

∂

∂

∂
r λ

σ
Y

Y
μ

σ
Y

Y
V Y ρ H Y H

V H α

V H α bH

+ −
2

− +
2

( ) = , < < ,

( ) = ,

( ) = .

d

d d

2
2

2

2

2
−

−

−
− 3

−
2

The general solution is

D D D

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟V Y

ρ

r λ
A

Y

H
A

Y

H
( ) =

+
+ + .

d

β

d

β
− + −

+ −

(53)

Substituting the general solution into the boundary conditions, we obtain a system of two
equations with two unknowns DA

+ and DA
−:

D D

D D

A R A R α
ρ

r λ

A A α bH
ρ

r λ

+ = −
+

,

+ = −
+

,

β β

d

+ −
3

+ −
2

+ −

where ∕R H H= d− , as before. Applying the Cramer theorem, we find that the value of the debt
of the firm in the Buridan zone is given by (53), where

D D

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

∕ ∕A A

α
ρ

r λ
α bH

ρ

r λ
R

α bH
ρ

r λ
R α

ρ

r λ

= Δ Δ, = Δ Δ,

Δ = −
+

−
+

,

Δ = −
+

− +
+

,

d
β

d
β

+
+

−
−

+ 3 2

− 2 3

−

+

(54)

and Δ is given by (33).

5.4 | Numerical example

In this subsection, we calculate the equilibrium assuming that the p.d.f. of the initial shocks is
concentrated in a very small neighborhood of two points ∈X H H( , )d− − and X H>+ +:

g c g c g= + ,−
−

+
+

where g± is concentrated around X± (c c c> 0, + = 1±
+ − ). The goal of this example is to study

how equilibrium variables depend on contract enforcement parameter, α3, and creditor
protection parameter, α2. We vary ∈α [1, 1.05]3 (where α = 13 is the case when there is no
penalty for debt prepayment) and ∈α [0.45, 0.55]2 . Leland (1994) uses α = 0.52 . The variance
and drift of the underlying Brownian motion are σ = 0.2 and ∕μ σ= − 22 , which are typical
values in the real options literature (see, e.g., Dixit & Pindyck, 1996). We set the annual riskless
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rate r = 0.04, which is a typical choice in macro and finance literature, and the exogenous death
rate λ = 0.01, which is the minimal estimated default rate for business loans (see Hillegeist
et al., 2004; Mester, 1997). The leverage is L = 0.5, which corresponds to the average leverage
for small firms (see Herranz et al., 2015). We set c c X= 0.8, = 0.2, = 20+ −

+ , and X = 8− ,
which generates realistic default rates between 2.5% and 2.7%. To find the equilibrium entry
rate, we use an isoelastic demand curveQ P= ϵ− with ϵ = 10, which is a typical choice in macro
models. Recall that we derived the industry equilibrium assuming that ρ α r λ> ( + )3 and the
Buridan zone exists, that is, Condition (15) is satisfied. It is straightforward to check that
Condition (15) is equivalent to

ρ
α r λ

α
v>

( + )

1 − (1 − )
− .

κ

3

1
(1)−

Hence, we must find the equilibrium coupon rate, ρ, s.t.

⎧⎨⎩
⎫⎬⎭ρ α r λ

α r λ

α
v> max ( + ),

( + )

1 − (1 − )
− .

κ3
3

1
(1)−

Notice that if ∕( )v α r λ α α> ( + )(1 − ) 1 − (1 − )κ κ
3 1

(1)
1

(1)− − , then the Buridan zone exists for
any ρ α r λ> ( + )3 . We set v = 0.5, to ensure existence of the Buridan zone.

In Figure 5a, we plot the dependence of the equilibrium coupon rate on the contract
enforcement parameter, α3, for three different levels of the creditor protection parameter, α2.
The coupon rate decreases both when contract enforcement is stronger and when the creditors
can acquire a larger portion of the firm’s assets in case of default, which is quite intuitive. The
dependence of the equilibrium price on α2 and α3 is shown in Figure 5b. Evidently, the price is
much less sensitive to changes in the institutional parameters than the coupon rate. The price
decreases when the debtor protection increases: Firms have to pay lower interest on their debt
and therefore can sell their output at a lower price. The dependence of the price on the credit
enforcement parameter is less evident. We see that the price slightly goes down for small levels
of α3, but then starts growing. Please see the Introduction for an explanation of this
phenomenon. Since the aggregate demand for the firms’ output is P ϵ− and market clearing

(a) (b)

FIGURE 5 (a) Dependence of equilibrium coupon rate on α2 and α3; (b) dependence of equilibrium price on
α2 and α3
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holds, we may conclude that the aggregate output increases with the creditor protection. If we
look at the dependence of the average output (per entering firm) on credit protection and
enforcement, plotted in Figure 6a, we see that the average output increases in both parameters.

Figures 6b and 7a demonstrate how equilibrium exit and default rates (scaled by the number
of active firms) depend on parameters α2 and α3. Both rates decrease in α2 and α3. This is due to
the fact that the coupon rate becomes smaller as these two parameters increase. Observe that
exit rates drop more sharply than default rates when α3 increases, because, in addition to lower
interest payments on the debt, exit option becomes less attractive. Notice that all equilibrium
values, except for the price, change more due to changes in the penalty for prepayment than to
changes in the creditor protector parameter, α2.

Finally, in Figure 7b, we plot the operating profit levels that trigger default, π =*d
PH ρ v− −d , and exit, π PH ρ v= − −*± ± , as functions of α3. For comparison, we also show
π PX ρ v= − −± ± —the operating profits at the moment of entry. Observe that both at the exit
and default thresholds, profits are negative. This agrees with Herranz et al. (2015): Despite
limited liability, entrepreneurs inject their personal funds to keep firms alive for some time.

(a) (b)

FIGURE 6 (a) Dependence of average output on α2 and α3; (b) dependence of exit rates on α3 and α2

(a) (b)

FIGURE 7 (a) Dependence of default rates on α3 and α2; (b) dependence of default and exit thresholds in
terms of operating profits on α3
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6 | CONCLUSION

We have constructed a model of competitive industry equilibrium that generates endogenous
exit with debt payout and default for the firms partially financed by debt. The outcome of
investment for each entrepreneur depends on the initial draw of the firm‐specific productivity
shock. Some of the entrepreneurs enter the industry with such a high level of productivity
shock, that they will exit eventually, but default is never optimal for them. Other firms, though
start producing, will file for bankruptcy if their productivity deteriorates, and exit paying out the
debt if the productivity shocks are favorable. The model allows one to analyze how equilibrium
coupon rate, price, output, exit, and default rates depend on the exogenous variables, in
particular, on contract enforcement and creditor protection.

One of the immediate extensions of the model is to endogenize the amount of the debt and study
the optimal capital structure. In the current model, there is no information asymmetry; however,
modeling active lenders allows one to extend the model by introducing asymmetric information and
to consider firm dynamics with optimal lending contracts similar to Clementi and Hopenhayn
(2006) and Albuquerque and Hopenhayn (2004). Following the line of research suggested in Evans
and Jovanovic (1989), it would be interesting to distinguish entrepreneurs not only by their
productivity shocks, but by the initial wealth distribution as well. Finally, as it was mentioned in the
Introduction, this model can be used as a benchmark case for a model with debt covenants.
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APPENDIX A: TECHNICAL CALCULATIONS

A.1 | Proof of (2.5)

Consider the characteristic equation

r λ β+ − Ψ( ) = 0. (A1)

Denote by β β< 0 <− + the roots of Equation (A1). Under the no‐bubble condition (4), β > 1+ ,
and it can be proved that ≤V Y CY( )as , whereC > 0 is a constant. The general solution to Euler
equation (3) is

V Y A Y A Y AY( ) = + + .β β
as

+ −+ −

Since the value of the assets is bounded by CY , we conclude that A = 0± . It is easy to find the
remaining constant, A, substituting AY for V Y( )as in (3). As a result, we derive (5).

A.2 | Proof of (3.3)

It follows from (7) that

∫
∧

∞{ [ ]

[ ]
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d e
d e

e d
e

e
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First, using the strong Markov property of the Brownian motion, we change the variable
↦ ∧t t τ τ+ d e and calculate
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⎡
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using the law of iterated expectations, and we proceed
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and (9) follows.

A.3 | Proof of Lemma 3.2

First, we solve (29) and (30) for A A,+ − and derive
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which are (39) and (40), respectively. Recall that ∕H κ a b= (1)d0 − 1 , hence ∕ ∕b a κ H= (1) d1 − 0, and
we can write
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Finally, we introduce

B
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Next, we solve (31) and (32) for A Rβ+ +
and A Rβ− −

and derive
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Recall that ∕ ∕H H κ a b α= = (1) (1 − )e0 + − 2 1 , hence ∕ ∕α b a κ H(1 − ) = (1)1 2 − +, and we can write

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

A R κ β a
H

H

A R κ β a
κ H

κ H

= ( ) 1 − ,

= ( ) 1 −
(1)

(1)
.

β

β

+
−

+
2

−

+

−
+

−
2

− −

+ +

+

−

Set

B
H

H κ
=

(1)
.2

−

+ +

(A5)

Notice that H H<− + iff ∕B κ< 1 (1)2 + . Finally, we write

A R κ β a κ B= ( ) (1 − (1) ),β+
−

+
2 + 2

+

(A6)

A R κ β a κ B= ( ) (1 − (1) ).β−
+

−
2 − 2

−

(A7)

Divide (A6) by (A3) and (A7) by (A4) and recall that ∕a a a=1 2 :

aR
κ B

κ B

aR
κ B

κ B

=
1 − (1)

1 − (1)
,

=
1 − (1)

1 − (1)
.

β

β

+ 2

+ 1

− 2

− 1

+

−
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For a given R, the system above is a system of linear equations w.r.t. B B,1 2 which can be written
as

aR B B
aR

κ

aR B B
aR

κ

− =
− 1

(1)
,

− + =
1 −

(1)
.

β
β

β
β

1 2
+

1 2
−

+

+

−

−

Applying the Cramer theorem, we find

B
a

B=
Δ

Δ
, =

Δ

Δ
,1

1
2

2

where Δ, Δ1, and Δ2 are the functions of R given by (33) and (34). Observe that B B,1 2 derived
above are the same as in (35). It follows from (A2) and (A5) that B > 01 and B > 02 . By
definition, ∕R H H= > 1d− , therefore RΔ( ) > 0. Notice that

⎛
⎝⎜

⎞
⎠⎟a

κ κ
Δ (1) = ( − 1)

1

(1)
−

1

(1)
< 01

+ −

and

R
aβ R

κ

aβ R

κ
Δ′ ( ) =

(1)
−

(1)
> 0,

β β

1

+ −1

+

− −1

−

+ −

because β β< 0 < 1 <− +. As → ∞ → ∞R R, Δ ( )1 as well, hence there exists R > 11 s.t.
RΔ ( ) > 01 for all R R> 1. Clearly, R1 is a solution to RΔ ( ) = 01 , or, equivalently to

aR

κ

aR

κ

− 1

(1)
= −

1 −

(1)
,

β β

+ −

+ −

and we can conclude that ∕R a1 < < β
1

−1 −
.

Next, we notice that Δ (1) = Δ (1) < 02 1 . Write RΔ ( )2 as

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟( )

R R
aR

κ

aR

κ
R

R R
aR

κ
R

Δ ( ) =
− 1

(1)
+
1 −

(1)

= Δ ( ) +
1 −

(1)
− 1 .

β
β β

β β

β
β

β β

2
+ −

−

1
−

−

−

+ −

+ −

−

−

+ −

We see that R RΔ ( ) < Δ ( )2 1 for all ∕R a< β−1 −
, and

∕
∕( )

( )a
a

a
Δ =

Δ
> 0.β

β

2
−1 1

−1
−

−
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Hence there exists ∈ ∕( )R R a, β
2 1

−1 −
, s.t., RΔ ( ) = 02 2 . In the general case, it is difficult to

establish uniqueness of R2. We will concentrate on the case of shock dynamics which is
common in the literature: assume that the process for the shocks is a martingale, that is

E [e ] = e .x X xt (A8)

Since the moment generating function of a random variable y N b σ~ ( , )2 is

E [e ] = e ,βy βΨ( )

and Xt, conditioned on X x=0 , is distributed as a normal variable with the mean bt x+ and
variance σ t2 , we derive

[ ]E e = e .x βX βx t β+ Ψ( )t (A9)

Therefore (A8) is satisfied iff Ψ(1) = 0, equivalently, iff ∕μ σ= − 22 . For this value of the drift, μ,
the roots of the characteristic equation, β β,+ −, satisfy β β+ = 1− + . Straightforward
calculations show that in this case,

⎛
⎝⎜

⎞
⎠⎟

R
β β R

κ

β β R

κ

β R

κ κ

β R

κ κ

β R

κ κ

β

β
R R

Δ″ ( ) = −
( − 1)

(1)
+

( − 1)

(1)

= −
(1) (1)

+
(1) (1)

=
(1) (1)

( ) − 1 > 0 for > 1.

β β

β β

β
β β

2

− − −2

+

+ + −2

−

−2 −2

+ −

+2 −2

+ −

−2 −2

+ −

+

−
2 −

− +

− +

−

+ −

Hence Δ2 is convex for R > 1. Therefore R2 is a unique zero of RΔ ( )2 on ∞R( , )1 , hence
RΔ ( ) > 02 for R R> 2.
Recall that we need ∕B κ< 1 (1)2 + . On the strength of (34), the last inequality can be written as

⇔κ R aR
κ

κ
R aR(1)Δ < Δ (1 − ) >

(1)

(1)
(1 − ).β β β β

+ 2
+

−

+ − + −

Since ∕κ κ(1) (1) > 1+ − , the last inequality can hold iff aR1 − < 0β− , that is, iff ∕R a< β−1 −
.

Consider the ratio

B

B

a R

R
=

Δ ( )

Δ ( )
.2

1

2

1

(A10)

We can also write

B

B

H H

H H
R
H

H
R α a= = = (1 − ) .d

d

d

e

2

1

− 0

+

0

0
1 (A11)

From (A10) and (A11), we obtain Equation (36).
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Let R be a solution to (36) on ∕( )R a, β
2

−1 −
. Then ∕B B κ H RH> 0, 0 < < 1 (1), = d1 2 + − , and

H H H< <d − +. From (A2), we derive

∕H κ B H κ B κ a b= (1) = (1) (1) ,d d+ 1 0 + 1 − 1

and (37) obtains. From (A5),

H RH κ B H= = (1) .d− + 2 +

This concludes the proof of Lemma 3.2.

A.4 | Proof of Theorem 3.3

(a) Since RΔ ( )2 2 = 0, and RΔ ( ) > 01 2 , we have F R( ) = 02 , and α R(1 − ) > 01 2 . Hence

α R F R(1 − ) > ( )1 2 2 . To prove existence of a solution to (36) on ∕( )R a, β
2

−1 −
, it suffices to

show that ∕ ∕( )F a α a> (1 − )β β−1
1

−1− −
. We have ∕( )F a a=β−1 −1−

, therefore we need to
show that

⇔ ⇔∕ ∕a α a
α

a a α> (1 − )
1

1 −
> < (1 − ) .β β β κ−1

1
−1

1

( −1)
1
− (1)− − −

−

The last inequality is (15). Hence (36) has a solution on ∕( )R a, β
2

−1 −
iff (15) is satisfied.

Numerical examples for a wide range of parameters indicate that F is concave for
∈ ∕( )R R a, β

2
−1 −

; therefore (36) has a unique solution.
(b) Follows from Lemma 3.2.
(c) Follows from the definition of the value of the equity.
(d) By construction, the value function (42) satisfies Equations (13) on ∞H( , )+ , (25) on

H H( , )d − and value matching and smooth pasting conditions at Y H H H= , , d+ − . Hence (42)
is the option value and ≥ ∣ ≤ ≥ ∣ ≥τ t Y H τ t Y H= inf( 0 ), = inf( 0 )t t+ + − − , and

≥ ∣ ≤τ t Y H= inf( 0 )d t d are the optimal stopping times (see, e.g., Section 9 in Peskir &
Shiryaev, 2006). Moreover, since (36) has a unique solution, and H H,+ −, and Hd are
uniquely defined by (22), (38), and (37), respectively, there are no other optimal stopping
times in the class of hitting times, and the inaction region is uniquely described as

∪ ∞H H H( , ) ( , )d − + .

A.5 | Long‐run distribution of active firms

Let N and gact be the equilibrium entry rate and stationary distribution of active firms,
respectively. We represent gact in the form g Ng=act

0. The distribution of entrants is Ng, and
each entrant leaves the industry instantly unless the initial shock is either in the Buridan zone
or good luck zone. It is more convenient to derive the long‐run distributions in terms of
x X= log . We will also use the notation: h H h H= log , = logd d − −, and h H= log+ +. Following
the argument similar to the one in Dixit and Pindyck (1996), Chapter 8, Section 4C, we obtain
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the following boundary problems for g0,− and g0,+, the restrictions of g0 to h h[ , ]d − and
∞h[ , + )+ , respectively:

⎛
⎝⎜

⎞
⎠⎟∂ ∂λ

σ
μ g x g x h x h−

2
+ ( ) = ( ), < < ,x x d

2
2 0,−

− (A12)

g h g h( ) = ( ) = 0,d
0,− 0,−

− (A13)

and

⎛
⎝⎜

⎞
⎠⎟∂ ∂λ

σ
μ g x g x h x−

2
+ ( ) = ( ), < ,x x

2
2 0,+

+ (A14)

∞g h g( ) = (+ ) = 0.0,+
+

0,+ (A15)

After g0,− and g0,+ are calculated, we find the rates of default and exit (we refer the reader to
Dixit & Pindyck, 1996, Chapter 8, Section 4C):

R
σ
N g h R

σ
N g h g h=

2
( )′( ), =

2
[−( )′( ) + ( )′( )].ddef

2
0,−

exit

2
0,−

−
0,+

+ (A16)

Notice that the rate of default in (A16) is the rate of endogenous default only, and to account for
the total default rate, one needs to add the exogenous default rate to Rdef . The exogenous default
happens due to the exogenous death; and the rate is λNact, where Nact is the total number of
active firms which can be calculated as

⎡
⎣⎢

⎤
⎦⎥∫ ∫

∞
N N g x dx g x dx= ( ) + ( ) .

h

h

h
act

0,−
+

0,+

d

−

+

(A17)

It is evident that whatever the analytical expressions for g0,− and g0,+ are, both functions are
independent of N , and therefore, we can use them to find N from the last equilibrium
condition. Given N , the aggregate output is

⎡
⎣⎢

⎤
⎦⎥∫ ∫

∞
q N g x dx g x dx= e ( ) + e ( ) .

h

h
x

h

x0,−
+

0,+

d

−

+

If the demand function is Q, then using the market clearing condition, q Q P= ( ), we obtain

⎡
⎣⎢

⎤
⎦⎥∫ ∫∕

∞
N Q P g x dx g x dx= ( ) e ( ) + e ( ) .

h

h
x

h

x0,−
+

0,+

d

−

+

(A18)

Finally, the distribution of the active firms is g x Ng x( ) = ( )act
− 0,− , for x in the Buridan zone, and

g x Ng x( ) = ( )act
+ 0,+ , for x in the good luck zone.
In the case of an exponential g, explicit calculations are straightforward. In the next

subsection, we present calculations for the case of a bimodal distribution concentrated around
two points.
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A.6 | The case of a bimodal distribution concentrated around two points

In this subsection, we calculate explicitly (albeit approximately) the equilibrium distribution of
firms assuming that the p.d.f. of the initial shocks is concentrated in a very small neighborhood
of two points ∈x h h( , )d− − and x h>+ +. This situation is possible in equilibrium with α = 13 as
well as with α > 13 . Note that if α = 13 , then one of the points must be in the good luck zone,
and the other below the exit zone h h[ , ]− + . Assuming g c g c g= +−

−
+

+, where g± is concentrated
around x± (c c c> 0, + = 1±

+ − ), and taking into account that the process is a diffusion, we
conclude that g c g c g= +0 − 0,− + 0,+, where g0,− is the solution to problems (A12) and (A13) with
g g= −, and g0,+ is the solution to problems (A14) and (A15) with g g= +. We derive an
approximate formula for g0,− replacing g− with the Dirac delta function supported at x−.

Denote by ̃ ̃β β< 0 <
− + the roots of the characteristic equation

λ
σ
β μβ−

2
+ = 0.

2
2

A particular solution to (A12) can be found as

∫
̃ ̃ ∞ ̃

∞
̃

g x
β β

λ
x y dy1( ) =

−
e ( + )e .p
β y

x
β x y x

− +

0

+
−

( ,+ )
( + − )

+

−

−
−

If x x< −, then

∫
̃ ̃

̃ ̃

̃ ̃

̃ ̃

̃ ̃

∞ ̃ ̃ ̃

̃ ̃ ̃ ̃

g x
β β

λ
dy

β β

λ β β

β β

λ β β

( ) =
−

e

=
−

( − )
e =

−

( − )
e ,

p x x

β x x β β y

β x x β β x x β x x

− +

−

+
( − )−( − )

− +

+ −
( − )−( − )( − )

− +

+ −
( − )

−

−
−

+ −

−
−

+ −
−

+
−

and if ≥x x−, then

∫
̃ ̃ ̃ ̃

̃ ̃

∞ ̃ ̃ ̃ ̃
g x

β β

λ
dy

β β

λ β β
( ) =

−
e =

−

( − )
e .p

β x x β β y β x x

− +

0

+
( − )−( − )

− +

+ −
( − )

−
−

+ − −
−

Thus,

̃ ̃

̃ ̃
̃

∞
̃

∞{ }g x
β β

λ β β
x x1 1( ) =

−

( − )
e ( ) + e ( ) .p
β x x

x
β x x

x

− +

+ −
( − )

(− , )
( − )

[ ,+ )

+
−

−

−
−

−

The general solution is

̃ ̃
g x C C g x( ) = e + e + ( ),β x β x

p
0,− + −

+ −

where C± are found from the zero boundary conditions:
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̃ ̃

̃ ̃

̃ ̃

̃ ̃

̃ ̃ ̃

̃ ̃ ̃

C C
β β

λ β β

C C
β β

λ β β

e + e +
−

( − )
e = 0,

e + e +
−

( − )
e = 0.

β h β h β h x

β h β h β h x

+ −

− +

+ −
( − )

+ −

− +

+ −
( − )

d d d
+ − +

−

+
−

−
−

−
− −

Using the Cramer theorem, we obtain

̃ ̃

̃ ̃

̃ ̃

̃ ̃
C

β β

λ β β
C

β β

λ β β
=

Δ

( − )Δ
, =

Δ

( − )Δ
,+

− + +

+ −
−

− + −

+ −

where

̃ ̃ ̃ ̃

̃ ̃ ̃

̃ ̃ ̃

Δ = e − e ,

Δ = e − e ,

Δ = e − e .

β h β h β h β h

β h x β h β h x h

β h β h x β h h x

+ +

+ ( − )+ ( − + )

− + ( − ) ( + − )

d d

d d

d d

+ −
−

+
−

−

+
−

−
−

−
− −

+ −
− −

+
− −

In the result, we obtain

̃ ̃

̃ ̃
̃

∞
̃

∞

̃ ̃

̃ ̃ ̃ ̃

̃ ̃
̃ ̃

̃ ̃ ̃ ̃

̃ ̃ }
{g x

β β

λ β β
x x1 1( ) =

−

( − )
e ( ) + e ( )

+
e − e

e − e
e +

e − e

e − e
e .

β x x
x

β x x
x

β h x β h x

β h β h β h β h

β h β x
β h x β h x

β h β h β h β h

β h β x

0,−

− +

+ −
( − )

(− , )
( − )

[ ,+ )

( − ) ( − )

+ +

+
( − ) ( − )

+ +

+
d d

d d d d

d

+
−

−

−
−

−

+
−

−
−

+
−

− + −
−

−
−

+

−
− −

+
− −

+
−

− + −
−

+ −

(A19)

Substituting (A19) and g x( ) = 00,+ into (A16) and (A18), we can obtain explicit formulas for the
rates of endogenous default and exit from the Buridan zone. The rates are

̃ ̃

̃ ̃
̃

̃ ̃

̃ ̃

̃ ̃ ̃ ̃

̃ ̃

̃
̃ ̃

̃ ̃ ̃ ̃

̃ ̃

{
}

R c
Nσ β β

λ β β
β

β β

= −
2 ( − )

e − e

e − e
e

+ e +
e − e

e − e
e ,

β h x β h x

β h β h β h β h

β h β h

β h x
β h x β h x

β h β h β h β h

β h β h

def
−

2 − +

+ −

( − ) ( − )

+ +

+ +

+ ( − )
( − ) ( − )

+ +

− +

d d

d d

d

d

d d

d d

+
−

−
−

+
−

− + −
−

−
−

+

+
−

−
− −

+
− −

+
−

− + −
−

+ −

(A20)

and

̃ ̃

̃ ̃
̃

̃ ̃

̃ ̃

̃ ̃ ̃ ̃

̃ ̃

̃
̃ ̃

̃ ̃ ̃ ̃

̃ ̃

{
}

R c
Nσ β β

λ β β
β

β β

=
2 ( − )

e − e

e − e
e

+ e +
e − e

e − e
e .

β h x β h x

β h β h β h β h

β h β h

β h x
β h x β h x

β h β h β h β h

β h β h

exit
− −

2 − +

+ −

( − ) ( − )

+ +

+ +

− ( − )
( − ) ( − )

+ +

− +

d d

d d

d d

d

+
−

−
−

+
−

− + −
−

−
−

+
−

−
− −

−
− −

+
− −

+
−

− + −
−

+ −
−

(A21)

Using (A17) and (A19), we obtain the number of active firms in the Buridan zone
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̃ ̃

̃ ̃ ̃ ̃

̃ ̃

̃ ̃

̃ ̃ ̃ ̃

̃ ̃ ̃

̃ ̃

̃ ̃ ̃ ̃

̃ ̃ ̃

{

}
( )

( )

N
c Nβ β

λ β β β β
=

−

( − )

1 − e
+

e − 1

+
e − e

e − e
e e − e

+
e − e

e − e
e e − e .

β h x β h x

β h x β h x

β h β h β h β h

β h β h β h

β h x β h x

β h β h β h β h

β h β h β h

act
−

− − +

+ −

( − )

+

( − )

−

( − ) ( − )

+ +

( − ) ( − )

+ +

d d

d d

d d

d

d d

d d

+
−

−
−

+
−

−
−

+
−

− + −
−

−
−

+
−

+

−
− −

+
− −

+
−

− + −
−

+ −
−

−

(A22)

Similarly to (A19), we obtain, for ≥x h+,

̃ ̃

̃ ̃
̃

∞

̃
∞

̃ ̃

g x
β β

λ β β
x

x

1

1

( ) =
−

( − )
{e ( )

+ e ( ) − e }.

β x x
x

β x x
x

β h x β h x

0,+

− +

+ −
( − )

(− , )

( − )
[ ,+ )

( − )− ( − )

+
+

+

−
+

+

+
+ +

−
+

(A23)

The rate of exit from the good luck zone is

̃ ̃

̃ ̃
̃ ̃

̃ ̃

̃ ̃

̃

{ }R c
Nσ β β

λ β β
β β

c
Nσ β β

λ

=
−

2 ( − )
e − e

= −
2

e .

β h x β h x

β h x

exit
+ +

2 − +

+ −

+ ( − ) − ( − )

+
2 − +

( − )

+
+ +

+
+ +

+
+ +

(A24)

The number of active firms in the good luck zone is

̃( )N
c N

λ
= 1 − e .β h x

act
+

+
( − )

+
+ + (A25)

Hence, in the case of the bimodal distribution concentrated around x− in the Buridan zone
and x+ in the good luck zone, the proportion of active firms that default per unit of time is

R
R

N N
λ=

+
+ ,def

0 def

act
−

act
+

(A26)

and the proportion of active firms that exit per unit of time is

R
R R

N N
=

+

+
.exit

0 exit
−

exit
+

act
−

act
+

(A27)
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