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This study demonstrates the devil’s staircase structure of topological entropy functions for one-
dimensional symmetric unimodal maps with a gap inside. The results are obtained by using
kneading theory and are helpful in investigating the communication of chaos.
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1. Introduction

Mappings of an interval to itself provide complex
behavior, which is important in many applications,
such as physics, engineering and so on. One method
of quantitatively characterizing the complex behav-
ior of a map is topological entropy. The topological
entropy can be considered to be the growth rate of
distinct states of a map. If the entropy of a map is
positive, then the map behaves chaotically.

This study investigates the chaotic behavior
of an one-dimensional symmetric unimodal map
which contains one symmetric gap inside the do-
main. Such maps are termed gap maps herein,
and are defined in Sec. 2. This work is motivated
by studying the models of cellular neural networks
(CNN) [Chua & Yang, 1988a, 1988b] and commu-
nication with chaos [Bollt & Lai, 1998]. CNN have

been extensively studied and applied, mainly in im-
age processing and pattern recognition, for details
see [Chua, 1998] and [Chua & Yang, 1988a, 1988b].
Previous studies [Ban et al., 2001, 2002; Hsu, 2000,
etc.] considered the complexity of stable station-
ary solutions of CNN with an unbounded piecewise-
linear output function. With the iteration method,
all stable stationary solutions are equivalent to or-
bits of certain gap maps. The structure of Smale’s
horseshoe and the devil’s staircase of entropy func-
tions for solutions like those above are obtained in
[Hsu, 2000; Hsu & Lin, 1999, etc.] Meanwhile, the
gaps in a map can be considered a means of provid-
ing noise immunity in schemes for communication
with chaos. Any possible motion can be achieved
by manipulating the system using slight perturba-
tion. Therefore, the relative likelihood of this mo-
tion in the uncontrolled system is unimportant and
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116 J.-C. Ban et al.

the topological entropy is the most relevant measure
of complexity in this case.

The dependence of the topological entropy of
gap maps on gap size is demonstrated herein by
applying kneading theory, and exhibits the devil’s
staircase structure. Kneading theory was devel-
oped by Minlor and Thurston [1988], and reveals
the importance of the itineraries of turning points
and so-called kneading sequences, which are defined
in Sec. 2. Two fundamentals in applying knead-
ing theory to a map are kneading determinant and
kneading polynomial. Investigating the relationship
between the kneading determinant and periodic
points of gap maps, obtains the following main
results:

Main Theorem. Assume f(x) is a strongly transi-

tive one-dimensional symmetric unimodal map (see
Definition 2.1) from a compact interval I to I with

positive entropy. Let fµ denote the gap map of f
as defined in Sec. 2, then there exists µ̄ > 0 such

that the entropy function h(µ) of fµ possesses the

following properties:

(i) h(µ) is a continuous, monotonic, and non-

increasing function of µ in [0, µ̄].
(ii) h(µ) > 0 for µ ∈ [0, µ̄) and h(µ) = 0 for

µ ≥ µ̄.

(iii) Furthermore, the subset Ω of [0, µ̄] consists of

µ such that h(µ) is locally constant, is open and

dense in [0, µ̄].

Therefore, the above results prove the devil’s stair-

case structure of h(µ).

The theorem is proved by using kneading theory
to characterize the different periodic orbits which
never fall into the gap of the map under iter-
ation. Kneading theory reveals that the maxi-
mal value of the roots of the kneading polynomial
decreases with gap size µ increased, while the cor-
responding kneading sequence decreases in lexi-
cographic ordering. The devil’s structure of the
entropy function for gap-tent maps (see Sec. 2) was
similarly obtained in [Życzkowski & Bollt, 1999] via
kneading theory. Moreover, Collet–Eckman [1980]
uses similar ideas to prove the sensitivity of certain
unimodal maps to initial conditions. Craczyk and
Światek [1997] considered the logistic map fµ(x) =
µx(1−x) using the box mapping method and proved
that the mapping fµ has an hyperbolic attracting
cycle for an open and dense set of parameters µ in
(0, 4].

This paper is organized as follows. Section 2
introduces some preliminary definitions, notations
and results for the dynamical system. Next, Sec. 3
generalizes the results of Sec. 2 to gap maps.
Finally, kneading theory is applied to prove the
main theorem in Sec. 4.

2. Preliminary

This section introduces some preliminary notations
and results from the dynamical system considered
herein, and which are used in proving the main the-
orem. Hereafter, we assume that I = [0, 1].

Definition 2.1. Let f : I → I be a continuous
map. Additionally, we say that

(i) point c ∈ int I where f has a local extremum
is called a turning point.

(ii) f is unimodal if f is piecewise monotone,
f(∂I) ⊂ ∂I and has precisely one turning point
c in I. Moreover, f is said to be symmetric if
it is symmetric with respect to c.

(iii) f is said to be strongly transitive if for any
subinterval J ⊂ I \{c}, there exists k ≥ 0 such
that int I ⊆ fk(J).

(iv) Assume f denotes an unimodal map with turn-
ing point c. Let µ > 0 and subinterval J of I
be defined by J = (c − µ, c + µ) ⊂ I, then the
map fµ ≡ f |I\J is termed a gap map of f with
size µ.

Strong transitivity is well known to be impor-
tant for a map with chaotic behavior. Birkhoff’s
theorem (see [Ott, 1994]) is as follows.

Proposition 2.1. Let f be a strongly transitive

map, then the periodic points of f are dense in I
and unstable.

The dense and instability results in Proposi-
tion 2.1 play the key role in investigating the be-
havior of periodic orbits related to kneading theory.
Some useful gap maps which are strongly transitive
are illustrated below.

Example 2.1. Lorentz-type gap map. Let f : I →
I represent a strongly transitive Lorentz-type map,
that is, f satisfies

(1) c ∈ int I exists such that f is monotonic on
[0, c) and (c, 1].
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Devil’s Staircase of Gap Maps 117

(2) limx→c− f(x) = 1 and limx→c+ f(x) = 0.
(3) The set D =

⋃

n≥0 f−n(c) is dense in I.

The gap map fµ of f is termed the Lorentz-type
gap map.

Example 2.2. Unimodal-type gap map. Let fµ

denote a gap map of f with turning point c. If

(1) fµ is monotonic increasing for [0, c−µ] and de-
creasing for [c + µ, 1].

(2) limx→c−µ fµ(x) = limx→c+µ fµ(x).

The gap map fµ of f is called the unimodal-type
gap map.

One type of unimodal-type gap map is the gap-
tent map defined by

Tµ(x; λ) =



















λx if x ∈
[

0,
1

2
− µ

]

,

λ(1 − x) if x ∈
[

1

2
+ µ, 1

]

,

where λ > 0 and µ < 1/2. The following results
display the strong transitivity of certain gap maps.

Proposition 2.2. Assume f is a Lorentz-type map

of I. Let fµ be the related Lorentz-type gap map of

f . If there exists q > 1, n1 > 0 and n2 > 0 such

that

(1) f ′(x) ≥ q for all x ∈ I\{c},
(2) f i

µ(0) ∈ [0, c − µ), for i = 1, · · · n1 and

fn1+1
µ (0) /∈ [0, c − µ),

(3) f j
µ(1) ∈ (c + µ, 1], for i = 1, . . . , n2 and

fn2+1
µ (1) /∈ (c + µ, 1],

(4) min{qn1+1, qn2+1} > 2,

then fµ is strongly transitive.

Proof. See [Afraimovich & Hsu, 1998]. �

The approach used to prove Proposition 2.2 can
also be used to prove the strong transitivity of the
gap-tent map in the following.

Corollary 2.1. If
√

2 ≤ λ ≤ 2, then the gap-tent

map Tλ is strongly transitive.

Using Proposition 2.1, the property of strong
transitivity for a map describes the complex
behavior of a dynamic system. However, complex
behavior must be described more precisely. One

important quantity characterizing the complex be-
havior of a map is entropy. The devil’s staircase
structure of entropy function for certain gap-tent
maps were studied in [Życzkowski & Bollt, 1999].
Since the gap-tent maps are symmetric, it gives us
the motivation to generalize the similar results to
symmetric unimodal-gap maps. The entropy de-
scribes the growth rate of different states of a map
and is defined as follows.

Definition 2.2

(i) Let f : X → f denote a continuous map on
space X with metric d. A set S ⊂ X is termed
(n, ε)-separated for f for n a positive integer
and ε > 0, provided that for every pair of dis-
tinct points x, y ∈ S, there is at least one k
with 0 ≤ k < n such that d(f k(x), fk(y)) > ε.

(ii) The number of different orbits of length n (as
measured by ε) is defined by

γ(n, ε, f) = max{](S)|S ⊂ X is (n, ε)

− separated set for f} (1)

where ](S) represents the number of elements
in S.

(iii) The topological entropy of f is defined as

h(f) = lim
ε→0, ε>0

lim
n→∞

ln γ(n, ε, f)

n
. (2)

Several methods exist for computing the en-
tropy of a dynamical system. This study applies the
kneading theory developed by Minlor and Thurston
[1988] to calculate the entropies of gap maps. First,
the symbolic dynamics associated with a unimodal
map are introduced. Let Σ = {0, c, 1}N , that is, an
element of Σ is a sequence x = (x0, x1, . . . , xn, . . .)
where each xi ∈ {0, c, 1}. Meanwhile, let σ : Σ →
Σ represent the shift map σx = y where yi = xi+1.

Definition 2.3. Let f denote an unimodal map
with turning point c.

(i) The itinerary of x with respect to f , de-
noted by I(x) is the sequence i = (i0(x),
i1(x), . . . , in(x), . . .) where

ij(x) =















0, if f j(x) < c ,

1, if f j(x) > c ,

c, if f j(x) = c .
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118 J.-C. Ban et al.

(ii) A signed lexicographic ordering ≺ on Σ is de-
fined as follows. Let si = ti for i = 1 to n − 1,
then s ≺ t if either

(a) τn−1(s) is even and sn < tn

or

(b) τn−1(s) is odd and sn > tn,

where τk =
∑k

i=0 si. We also write s � t if
s ≺ t or s = t.

(iii) The kneading sequence of f , denoted by Kf ,
is defined as the itinerary of point f(c), i.e.

Kf = I(f(c)) .

(iv) Sequence s is n-periodic if si = si+n for i ≥ 0,
and denoted by s = (s0, s1, . . . , sn−2, sn−1)

∞.

Since f(c) is the extremun of f over the interval
I, it is known that for a given unimodal map, the
most important one, among all its itineraries, is the
itinerary of point f(c), i.e. the kneading sequence
of f . The sufficient and necessary conditions for a
sequence in Σ to be an itinerary of some point in I
is recalled as follows.

Proposition 2.3 (see [Xie, 1996]). Let Kf =
e1 · · · en · · · be the kneading sequence of a unimodal

map f, then

(i) If s = I(x) is an itinerary of a point x ∈ I,
then

σi(s) � Kf for all i ≥ 1 .

(ii) If s ∈ Σ and Kf does not contain the symbol

c, and s = s1, . . . , sn . . . , satisfies inequalities

σi(s) ≺ Kf for all i ≥ 1 ,

then there exists a point x ∈ I such that

t = I(x).

The main theorem is established by examining
the relationship between entropy and kneading se-
quence. The results of [Molnor & Thurston, 1988],
can be stated as follows:

Proposition 2.4. Let f be an unimodal map with

the kneading sequence Kf = (e1, e2, . . . , en−1,
en)∞, then the topological entropy of f is the log-

arithm of the largest positive root of the following

equation

P (λ) = λn−1 + ε′1λ
n−2 + · · · + ε′n−1 = 0 . (3)

Here ei ∈ {0, 1}, ε(0) = 1, ε(1) = −1, εi = ε(ei)
and ε′i =

∏i
k=1 εk.

From [Molnor & Thurston, 1988], the poly-
nomial P (λ) is closely related to the kneading
determinant defined by Thurston and Milnor. In
fact, P (λ) is the characteristic polynomial of the
Stefan transition matrix. The coefficients of P (λ)
are uniquely determined by the periodic kneading
sequence which represents the itinerary of a periodic
turning point. Kneading determinants are consid-
ered an important tool for computing the entropy
of one-dimension maps. However, Proposition 2.4
is enough for us to consider the polynomial P (λ).

3. Properties of Gap Maps

The definitions and results from Sec. 2 relating to
gap maps are generated in this section.

Definition 3.1. Let f be an unimodal map with
turning point c and fµ is the gap map of f .

(i) Define set G∞ ⊂ I by G∞(µ) =
⋃∞

i=1 f−i
µ (c −

µ, c + µ).
(ii) The kneading sequence of fµ, written as Kfµ,

is defined by either

(a) if f i(c + µ) /∈ (c − µ, c + µ) for all i ≥ 1,
then Kfµ = I(f(c + µ))

or

(b) if f i(c + µ) ∈ (c−µ, c + µ) for some i ≥ 1,
let µ̂ be the µ-nearest number such that
fk(c+ µ̂) is equal to c− µ̂ or c+ µ̂ for some
k ≥ 1, then

Kfµ = Kfµ̂ = I(f(c + µ̂)) .

(iii) A sequence s ∈ {0, c, 1}N is admissible for fµ

if x ∈ I\(c−µ, c+µ) exists such that I(x) = s.

From Proposition 2.4, it is natural to define the
language Lµ(f) of fµ by

Lµ(f) = {x ∈ I \ G∞|σi(x) ≺ Kfµ, for i ≥ 0} .

(4)

Then, the entropy function of fµ can be defined by
the language as follows:

Definition 3.2. Let fµ be an unimodal-type gap
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Devil’s Staircase of Gap Maps 119

map with

Sn(µ) ≡ card{x ∈ Lµ(f)||x| = n} and

S(µ) ≡ lim
n→∞

{Sn(µ)} 1

n .

The topological entropy h(µ) of fµ is defined by
h(µ) = lnS(µ). Here, |x| denotes the length of
string x.

From [Bowen, 1973] and [Robinson, 1995], the
above definition of topological entropy is consistent
with that in Definition 2.2. Additionally, Sn(µ) can
be considered the growth number of fµ as length n

increases. If we replace Sn(µ) and S(µ) with S̃n(µ)
and S̃(µ), respectively, where

S̃n(µ) = {x ∈ Sn(µ)|I(x) = 1} and

S̃(µ) ≡ lim
n→∞

{S̃n(µ)} 1

n ,
(5)

then it is easy to check that h(µ) = ln S̃(µ) owing
to Sn(µ) =

∑n
k=1 S̃k(µ) + 1. Therefore, we assume

I(x) = 1 for all x ∈ Sn(µ) hereafter and recall the
results of [Xie, 1996] as follows.

Proposition 3.1

(i) Let fµ denote an unimodal type gap map with

kneading sequence Kfµ = {e1, . . . , en, . . .} and

ei ∈ {0, 1}, then

Sn(µ) + ε′1Sn−1(µ) + ε′2Sn−2(µ)

+ · · · + ε′n−1S1(µ) +
1

2
ε′n =

1

2
. (6)

(ii) If n > 1 and Kfµ = {e1, . . . , en}∞ with n > 1,
then h(µ) is equal to the logarithm of the largest

positive root of P (λ).
(iii) If Kfµ1

and Kfµ2
are two kneading sequences

with Kfµ1
≺ Kfµ2

, then h(µ1) < h(µ2).

Proof. The proof of the results resembles [Xie,
1996], the only difference being the assumption
∑n

i=1 ei is an even number, an assumption needed
for (ii) in [Xie, 1996]. In fact, this assumption is
not necessary. Consider the power series =(t) by

=(t) =
1

2
+

∞
∑

i=1

Si(µ)ti . (7)

The radius of convergence of =(t) is 1/S(µ), and
has a pole at t = 1/S(µ). Multiply (7) by 1 and

ε′it
i for i = 1 to n − 1, respectively. This operation

produces
(

1 +
n−1
∑

i=1

ε′it
i

)

=(t) =
1

2

n−1
∑

i=0

ti, for |t| <
1

S(µ)
,

(8)

and 1/S(µ) is a root of P (λ). Let R(0) = 1,
R(1) = 0, R(e1, . . . , en) =

∏n
i=1 R(ei) and rewrite

Lµ(f) = {x ∈ I \G∞|σi(x) � R(Kfµ), for i ≥ 0} ,

then
∑n

i=1 R(e1, . . . , ei) is an odd number. Hence,
using similar arguments, we also obtain
(

1 +
n−1
∑

i=1

ε′it
i

)

=(t) =
1

2

n−1
∑

i=0

(−1)iti, for |t| <
1

S(µ)
.

(9)

Therefore, the results of Proposition 3.1 hold even
when

∑n
i=1 ei is odd, and the proof is complete. �

Example 3.1

(i) Suppose the kneading sequence Kfµ = (1,
0, 1)∞ is as in Fig. 1, then P (λ) = λ2 − λ − 1.
Hence, the entropy h(µ) = ln((1 +

√
5)/2).

On the other hand, consider the covering
relationship between I1 and I2 in Fig. 1, the
Stefan graph is

I1 → I2, I2 → I1 and I2 → I2 .

Hence, the polynomial P (λ) is the characteris-
tic polynomial of transition matrix M by

M =

[

0 1

1 1

]

.

I
2

gap�
I10�    1

1

Fig. 1.
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120 J.-C. Ban et al.

I
2

gap�I10�    1

1

Fig. 2.

(ii) Suppose the kneading sequence Kfµ = (0,
1, 0)∞ is as in Fig. 2, then the number

∑n
i=1 ei

is odd. The entropy is equal to ln((1 +
√

5)/2)
is as in Fig. 1.

4. Proof of the Main Theorem

To prove the continuity of entropy function, we need
to consider the following two cases:

case (i): fµ(c + µ) ∈ G∞(µ) \ G∞(µ),
case (ii): fµ(c + µ) ∈ G∞(µ).

For case (i), there are also two subcases to be con-
sidered, i.e.

(a) c + µ is a periodic point

or

(b) c + µ is an aperiodic point, i.e. neither periodic
nor eventually periodic point.

In (a), c + µ is an unstable periodic point by the
strong transitivity of f , i.e. every periodic point is
repelling. Suppose c + µ is a n periodic point, then
there exist a neighborhood U of c + µ such that for
every subset Ω ⊂ U , there exists a positive integer
p(Ω) such that fnj|Ω is a homomorphism and

fnj(Ω) ⊂ U, for 1 ≤ j ≤ p, and fnp(Ω)∩U = ∅ .

Hence, without lost of generality, we can choose a
sequence {(Ωi, pi)}∞i=1 such that

(α) Ωi

⋂

Ωj = ∅, for i 6= j,
(β) fnk|Ωj

is a homomorphism for k = 1 to pj,
(γ) fnpj(Ωj)

⋂

U = ∅.

Due to the strong transitivity of f , there exists
c + µj ∈ Ωj for each j such that I(f(c + µj)) has
the following properties:

(1) I(f(c+µj)) = ((e1, . . . , en)pi ·I(fnpj (c+µj)))
∞,

where ei = Ii(f(c + µj)).
(2) {c + µj}∞j=1 are distinct and monotonic.
(3) limj→∞ c + µj = c + µ.

Therefore, by kneading theorem, we have

h(µj) = max{λ|λ > 0 and Γj(λ) = 0} ,

and

h(µ) = max{λ|λ > 0 and Γ(λ) = 0} ,

where

Γj(λ) =

(

1 +
n−1
∑

i=1

ε′iλ
i

) pj
∑

j=0

λjpj +

m(pj)−1
∑

j=npj+1

ε′jλ
j ,

(10)

Γ(λ) =

(

1 +
n−1
∑

i=1

ε′iλ
i

)

∞
∑

j=0

λj , (11)

and m(pj) is the smallest positive integer that sat-

isfies fm(pj)(c + µj) = c + µj. Since Γj and Γ have
the same coefficients up to the first npj terms and
pj → ∞ as j → ∞, by the Cauchy integral formula,
we obtain that h(µj) tends to h(µ).

To prove the results of case (b), we need the
following lemma.

Lemma 4.1. Let c + µ be the point such that

(1◦) |I(f(c + µ))| = ∞, here | · | is denoted as the

length of I(f(c + µ)),

(2◦) f i(c + µ) /∈ int G∞(µ), for all i ≥ 1,

then there exists a sequence of periodic points and

positive integers {(c + µj, pj)}∞j=1 such that

lim
j→∞

c + µj = c + µ

and

Ii(f(c + µj)) = Ii(f(c + µ)), for 1 ≤ i ≤ pj .

Proof. By the strong transitivity of f , without lost
of generality, we may choose n > such that

In(f(c+µ))≡(I1(f(c+µ)), . . . , In(f(c+µ))) is even
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and
In(f(c + µ)) = 1 .

Similar results can also be obtained for the other
case. By (2◦), we have fn(c + µ) > c + µ and let
c + µ∗ be the point such that

Ii(f(c + µ∗)) = Ii((f(c + µ)), for i = 1, . . . , n

and

fn+1(c + µ∗) = c + µ .

Moreover, we have fn+1(c + µ) > c + µ by assump-
tions. Therefore, let U = (c+µ, c+µ∗) then f i|U is
a homeomorphism for i = 1 to n and fn+1(U) ⊃ U .
Hence, by the contraction mapping principle, there
exists a periodic point c + µn ∈ U such that

Ii(f(c + µn)) = Ii(f(c + µ)), for i = 1, . . . , n .

Continue the same process and apply the monotonic
property of itinerary, we can find pj and c+µj such
that

Ii(f(c + µj)) = Ii(f(c + µ)), for

i = 1, . . . , pj

and

lim
j→∞

c + µj = c + µ .

The proof is complete. �

By Lemma 4.1 and the same arguments of (a),
we also obtain that h(µj) tend to h(µ) as j → ∞
by taking such µj as in above lemma.

Next, we consider case (ii), i.e. f(c + µ) ∈
G∞(µ). The following lemma is necessary for the
proof.

Lemma 4.2. If fµ(c + µ) ∈ G∞(µ)\G∞(µ), then

there exist ε0 > 0 such that fµ(c + µ + ε) ∈ G∞(µ),
for all 0 < ε < ε0.

Proof. Suppose the result is false, then there exists
a neighborhood U of [0, 1] such that f(c + µ + ξ) ∈
G∞(µ)\G∞(µ) for all ξ in U . Therefore, f(c+µ+ξ)
has the same itinerary for all ξ in U . Without loss of
generality, we may assume that c+µ is a n-periodic
point and which gives fn(U) = U . However, this
result contradicts the strong transitivity of f . The
proof is complete. �

By Lemma 4.2, case (ii) can be considered as
case (i) by a small perturbation of µ. Indeed, if

f(c + µ) ∈ G∞(µ), then there exists 0 < ε < ε0

such that f(c + µ + ε) ∈ G∞(µ + ε)\G∞(µ + ε).
Since G∞(µ) is an open set, there exists a neigh-
borhood U of µ such that f(c+µ+ ξ) ∈ G∞(µ+ ξ)
for all µ + ξ ∈ U . To prove the continuity of en-
tropy function, we may assume that f(c + ν + ε) is
a n-periodic point. Denote Σ(µ) by

Σ(µ) = {x|x ∈ [0, 1]\G∞(µ)} ,

then Σ(µ) = Σ(µ + ε) for 0 < ε < ε0. Hence
h(µ) = h(µ + ε) for all ξ ∈ U , i.e. the entropy
function h(µ) is a continuous function of µ in
case (ii).

To prove the continuity result of case (i), we can
construct infinite many periodic points which ap-
proach to a given periodic point or aperiodic point.
For such infinite many periodic points, there ex-
ist small perturbations of these points which will
fall into the set G∞(µ), i.e. belong to the case (ii).
Hence, by the same arguments, there exist intervals
of parameters µ such that fµ has the same entropy
and such intervals form an open and dense set, i.e.
the entropy function has the nonuniform Cantor set
structure or devil’s staircase structure. The proof
is complete.

Remark 4.1. Let f be a symmetric unimodal map
with negative Schwarzian derivative. If f has a
periodic point t with period 2mp, where m ≥ 0,
p is a prime number and t is a maximal point,
i.e. σi(I(t)) ≺ I(t) for i ≥ 1. Then the entropy
function h(µ) of fµ also has the same structure as
the main theorem. The results will appear in our
further study.

References
Afraimovich, V. S. & Hsu, S.-B. [1998] Lectures on

Chaotic Dynamical Systems, National Tsing-Hua
University, Hsinchu, Taiwan.

Ban, J.-C., Chien, K.-P., Hsu, C.-H. & Lin, S.-S.
[2001] “Spatial disorder of CNN-with asymmetric out-
put function,” Int. J. Bifurcation and Chaos 11(8),
2085–2095.

Ban, J.-C., Hsu, C.-H. & Lin, S.-S. [2002] “Spatial chaos
of cellular neural networks,” Int. J. Bifurcation and

Chaos 12(3), 525–534.
Bollt, E. & Lai, Y.-C. [1998] “Dynamics of coding

in communicating with chaos,” Phys. Rev. E58,
1724–1736.

Bowen, R. [1973] “Topological entropy for noncompact
sets,” Trans. Amer. Math. Soc. 184, 125–136.

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
00

3.
13

:1
15

-1
22

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

T
IO

N
A

L
 C

H
IA

O
 T

U
N

G
 U

N
IV

E
R

SI
T

Y
 o

n 
04

/2
7/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.



122 J.-C. Ban et al.

Cao, K.-F., Chen, Z.-X. & Peng, S.-L. [1995] “Global
metric regularity of the devil’s staircase of topological
entropy,” Phys. Rev. E51, 1989–1995.

Chua, L. O. & Yang, L. [1988a] “Cellular neural
networks: Theory,” IEEE Trans. Circuits Syst. 35,
1257–1272.

Chua, L. O. & Yang, L. [1988b] “Cellular neural net-
works: Applications,” IEEE Trans. Circuits Syst. 35,
1273–1290.

Chua, L. O. [1998] CNN: A Paradigm for Complexity,
World Scientific Series on Nonlinear Science, Series A,
Vol. 31.

Collet, P. & Eckmann, J.-P. [1980] Iterated Maps of the

Intervals as Dynamical Systems, Progress on Physics,
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