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This investigation considers the complexity of output spaces of multi-layer cellular neural
networks. Let B be a set of admissible local output patterns coupled with input and let eB be
the set of admissible output patterns extracting from B. Since topological entropy is an
indicator for investigating the complexity of spaces, we study the topological entropy of
output spaces YU and Y which are induced by B and eB, respectively. A system has a dia-
mond if hðYUÞ–hðYÞ. Necessary and sufficient conditions for the existence of diamond are
demonstrated separately. Furthermore, numerical experiments exhibit some novel
phenomena.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Cellular neural networks is a large aggregate of analogue circuit. The system presents itself as an array of identical cells
which are locally coupled one another. Cellular neural networks have been widely applied in studying the signal propagation
between neurons, image processing, patterns recognition, information technology and VLSI [7–9,17–19,21].

In this paper we concentrate the investigation on one dimension case. One-dimensional cellular neural networks with
input is realized as
dxi

dt
¼ �xi þ

X
jkj6d

akyiþk þ
X
j‘j6d

b‘uiþ‘ þ z ð1Þ
for some d 2 N and i 2 Z. Herein
y ¼ f ðxÞ ¼ 1
2
ðjxþ 1j � jx� 1jÞ ð2Þ
is the output function and ui is the input term. A ¼ ½a�d; . . . ; ad� and B ¼ ½b�d; . . . ; bd� are feedback and controlling templates,
respectively, and z is the threshold. Mosaic solutions are crucial for studying the complexity of (1) [11,15]. A stationary solu-
tion �x ¼ ð�xiÞ is called mosaic if j�xij > 1 for all i 2 Z. Its corresponding output pattern is called mosaic pattern. For simplicity, we
use pattern for the abbreviation of mosaic pattern. The complexity of mosaic patterns for cellular neural networks are widely
studied [2,1,3,4,11,15]. Since the feedback and controlling templates are spatially invariant, the global pattern formation is
thus completely determined locally. These local patterns are then called admissible local patterns and a collection of admis-
sible local patterns is denoted by B. Investigating the output space of a circuit system such as cellular neural network is then
connected with symbolic spaces. Since every pattern in the output space is a bi-infinite binary string, the study of mosaic
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patterns is related to the elucidation of symbolic dynamical systems. For more details, reader is referred to [2,1,3,4,12–14,16]
and the references therein.

One-dimensional multi-layer cellular neural networks are considered by coupling several layers of cellular neural net-
works with input. It is understood as the following form:
dxðnÞi

dt
¼ �xðnÞi þ

X
jkj6d

aðnÞk yðnÞiþk þ
X
j‘j6d

bðnÞ‘ uðnÞiþ‘ þ zðnÞ; ð3Þ
where 1 6 n 6 N for some N 2 N; i 2 Z, and
yðn�1Þ
i ¼ uðnÞi for 2 6 n 6 N; uð1Þi ¼ ui is given:
Since we focus on mosaic patterns, this concentrates our attention on mosaic input patterns, that is, juij ¼ 1 for all i. The out-
put patterns yðNÞ ¼ ðyðNÞi Þ of the N-th layer are the only expression that can be observed since outputs yðnÞ are treated as input
uðnþ1Þ for n ¼ 1; . . . ;N � 1. Those output patterns produced by the rest N � 1 layers never ‘‘show up’’ and thus these layers are
called hidden layers. Recent research shows that hidden layers make an impact on the dynamics of the output layer such as
the broken of symmetry structure of entropy diagram (cf. [2,4]). This motivates the investigation of the relation between the
hidden and output layers. We will elucidate the relation based on the concept of topological entropy, it helps for the under-
standing of the distinction between the structure of the hidden and output layers.

The present paper devotes to build a mathematical foundation for circuit systems multi-layer cellular neural networks.
Considering one-layer cellular neural networks with input, the set of admissible local output patterns coupled with input
BðA;B; zÞ is determined by the templates A;B and threshold z. Let eBðA; B; zÞ be the set of admissible local output patterns
extracting from BðA;B; zÞ and let Y and YU be the output spaces induced by eBðA;B; zÞ and BðA;B; zÞ, respectively. It comes
immediately YU is a factor of Y and therefore hðYUÞ 6 hðYÞ [3,4,16]. hðYUÞ ¼ hðYÞ indicates the circuit system only loss a
few information and hðYUÞ < hðYÞ implies the losing rate of information is exponential with respect to the size of the circuit.
A system satisfies hðYUÞ < hðYÞ is said to have a diamond (cf. Definition 2.3 and Fig. 2). Although it is lack of a necessary and
sufficient condition, we give necessary and sufficient conditions for the existence of diamond in one-layer cellular neural
networks with input (Theorems 3.1 and 3.3).

Theorem 2.4 indicates that, for a two-layer cellular neural network, the data transmission between the first and second
layers are either uncountable-to-one (in this case, there exists a diamond) or finite-to-one (no diamond is observed). Let Y1

and Y2 be the output spaces of the first and second layers, respectively. Suppose there exists a factor map /, for instance,
from Y1 to Y2. There are many finer structure in this system such as the following. Suppose Y1 and Y2 are both Markov sys-
tems. How to estimate the degree of / (cf. [6])? Notable, investigating the degree of / clarifies the memory of Y1 and Y2. There
are many affirmative results if / is finite-to-one. However, it remains an popular issue and is unsolved in general. Suppose Y1

and Y2 are both strict sofic shifts. There is still no result so far based on our knowledge.
An essential problem is the existence of the factor / if we already know that a diamond is observed. Ban et al. [3] pro-

posed a methodology to demonstrate the existence of /. But a necessary and sufficient condition is still unclear.
The existence of diamond infers the existence of so-called compensation function (cf. [6, Section 3.3]). The compensation

function helps for the investigation of the finest structure between Y1 and Y2. More specifically, if there exists a compensa-
tion function n, then / would behave like a finite-to-one factor under n’s effect. Recently, Yayama [20, Theorem 3.2] inves-
tigated the statistical mechanism of the compensation function (cf. [20] and references 91–93 and 97 in [6]). The qualitative
behavior of the compensation function remains unclear in most cases. We remark that the investigation of the compensation
function is equivalent to elucidate diamonds between two spaces. Last but not least, neither the correspondence between
diamonds and compensation functions nor the correspondence between diamonds and infinite-to-one factors are theoret-
ically demonstrated. However, investigating these issues help for the understanding of the inner structure of these systems.
In this paper we propose some results, theoretically and numerically, to answer above questions.

Except for the criterion of the existence of diamond, we also obtain some interesting consequences via numerical exper-
iments. Many numerical results show that there is a symmetrical structure in topological entropy of one-layer cellular neural
networks without input and the symmetry is broken when input terms are considered (cf. Fig. 4). Propositions 2.1 and 2.2
demonstrate the symmetry comes from the topological conjugacy of two systems. Moreover, numerical experiments show
us many novel results (Facts 1–5). For example, we find a set of parameters that has diamonds for any set of input patterns.
We have two conjectures about these phenomena and are still working on them.

The rest of this elucidation is organized as follows. The upcoming section gives a brief introduction for the definitions and
results of one-layer cellular neural networks and symbolic dynamical systems. Section 3 investigates the necessary and suf-
ficient conditions for the existence of diamond. Some numerical experiments are proposed. Proof of our results are post-
poned until Section 4. The last section relates conclusion and discussion.

2. Preliminary

For reader’s convenience, we recall some definitions and known results first. To ease the discussion, suppose d ¼ 1 and
a�1 ¼ b�1 ¼ 0. That is, every cell only receive signals from the nearest cell on its righthand side. (1) is then reduced as the
form
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dxi

dt
¼ �xi þ ayi þ a1yiþ1 þ bui þ b1uiþ1 þ z: ð4Þ
Considering the set of mosaic solutions, we denote patterns ‘‘�1’’ and ‘‘1’’ by symbols ‘‘�’’ and ‘‘þ’’, respectively. It is seen
that the necessary and sufficient condition for ‘‘þ’’ at cell Ci, i.e., xi > 1, is
aþ z� 1 > �a1�yiþ1 � ðbui þ b1uiþ1Þ: ð5Þ
Similarly, the necessary and sufficient condition for ‘‘�’’ at cell Ci is
a� z� 1 > a1�yiþ1 þ ðbui þ b1uiþ1Þ: ð6Þ
With abuse of the notation we denote �y ¼ ð�yiÞ by y ¼ ðyiÞ. Moreover, representing the local output patterns y0y1 coupled with
input u0u1 as
y0y1

u0u1
:¼ y0y1}u0u1 for simplicity:
Let BðA;B; zÞ# f�;þgZ2�2 be the set of admissible local patterns with respect to A;B and z. Denote the parameter space by
P ¼ fðA;B; zÞg. Every BðA;B; zÞ is related to a partition of P. Reader is referred to [4,10].

Since we concern mosaic output patterns, it is natural to request the input term u ¼ ðuiÞ being mosaic. That is, ui 2 f�;þg
for i 2 Z. Suppose parameters a1; b; b1 are fixed, (5) and (6) partition ða; zÞ-space into 81 subregions. Numbering these sub-
regions by a pair ½m;n� for 0 6 m;n 6 8, where m and n stands for the number of inequalities in (5) and (6) the parameters a
and z satisfy. More specific,
m ¼ #fy 2 f�;þg : þy}u0u1 2 BðA; B; zÞ for some y;u0;u1 2 f�;þgg;
n ¼ #fy 2 f�;þg : �y}u0u1 2 BðA; B; zÞ for some y;u0;u1 2 f�;þgg:
Topological entropy is frequently used to elucidate the complexity of output space derived by BðA;B; zÞ. Given B# f�;þgZ2�2 ,
set RnðBÞ# f�;þgZn�2 by
RnðBÞ :¼ fy1 . . . yn}u1 . . . un : yiyiþ1}uiuiþ1 2 B for all ig:
The topological entropy hðBÞ is defined by
hðBÞ ¼ lim
n!1

log #RnðBÞ
n

: ð7Þ
The existence of the limit comes from the submultiplicativity of #RnðBÞ (cf. [16]), where #E indicates the cardinality of E.
Define the ordering matrix of f�;þgZ2�2 by
Since the ordering matrix indicates how those patterns of given length are generated by admissible local patterns, it is
used for the examination of the topological entropy. Reader is referred to [4,5] for more details. Every B corresponds to
an ordering matrix XðBÞ. For those y0y1}u0u1 R B, we substitute them as £. The transition matrix TðBÞ of B is a 0� 1 matrix
defined by
tij ¼
1; xij–£;

0; xij ¼£:

�

Fig. 1. Graph representation of all admissible local patterns for one- layer cellular neural networks without input.



Fig. 2. Graph representation of diamond.
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where TðBÞ ¼ ðtijÞ16i;j64 and XðBÞ ¼ ðxijÞ16i;j64. The transition matrix plays a key role for the calculation of topological entropy
of the output space of B (cf. [4,11,12]). Positive topological entropy demonstrates #RnðBÞ increases exponentially and
hðBÞ ¼ 0 indicates polynomial growth rate of #RnðBÞ.

Suppose b ¼ b1 ¼ 0, i.e., considering cellular neural networks without input. A necessary and sufficient condition for
hðBðA; zÞÞ > 0 is given.

Proposition 2.1. Suppose that b ¼ b1 ¼ 0. Given A ¼ ½a; a1� and z, denote by BðA; zÞ the set of admissible local patterns induced by
A and z. Let 0 6 m;n 6 2 be the number of local patterns with y0 ¼ þ and y0 ¼ �, respectively. Then
hðBðA; zÞÞ > 0 ()
mþ n ¼ 4; a1 > 0;

mþ n P 3; a1 < 0:

�

An intuitive explanation for Proposition 2.1 is the graph representation of the admissible local patterns (cf. Fig. 1). m and n

assert how many edges are concluded in the graph representation of BðA; zÞ. An output space X that has a graph represen-
tation is called a one-step shift of finite type (SFT).

Let X1;X2 be two shift spaces with shift maps r1;r2, where ri : Xi ! Xi is defined by ðriðxÞÞk ¼ xkþ1 for k 2 Z; i ¼ 1;2. A
map / : X1 ! X2 satisfies r2 � / ¼ / � r1 is called factor map if / is onto. We say that X1 is topological conjugate to X2 if and
only if there exists a one-to-ont factor map from X1 to X2.

Suppose the parameters in (4) are determined except a and z. There is a one-to-one correspondence between the sets of
admissible local patterns fBðA;B; zÞg and subregions f½m;n�g06m;n68. For the sake of clarity we denote BðA;B; zÞ by Bð½n;m�Þ. Let
XBð½n;m�Þ ¼ fðyiÞ 2 f�;þg
Z : 9ðuiÞ 2 f�;þgZ such that yiyiþ1}uiuiþ1 2 Bð½n;m�Þ for i 2 Zg ð8Þ
be the output space induced by Bð½n;m�Þ.

Proposition 2.2. Suppose that a1; b; b1 2 R are fixed. For 0 6 m;n 6 8;XBð½m;n�Þ is topological conjugate to XBð½n;m�Þ.

Proposition 2.2 explains why the topological entropy diagram is symmetric when there is no external input patterns
added. See the top diagram in Fig. 3. We postpone the proof to the last section.

Suppose X1;X2 are two shift spaces and / : X1 ! X2 is a one-block factor map, that is, ð/ðxÞÞn ¼ /ðxnÞ for x 2 X1;n 2 Z. We
introduce a so-called diamond that measures the loss of information caused by the factor map /.

Definition 2.3. If there exist i1 . . . ik–j1 . . . jk 2 RnðX1Þ with i1 ¼ j1; ik ¼ jk and /ði1 . . . ikÞ ¼ /ðj1 . . . jkÞ, where RnðXÞ consists of
all admissible words in X of length n. Then we say / has a diamond.

Fig. 2 illustrates graph representation of a diamond. The following theorem indicates a necessary and sufficient condition
for examining whether a factor map has a diamond.

Theorem 2.4 [12, Theorem 4.1.7]. Suppose / : X1 ! X2 is a one-block factor map between irreducible shifts of finite type and
hðX1Þ > 0. Then either
(1) / is uniformly bounded-to-one,
(2) / has no diamond and
(3) hðX1Þ ¼ hðX2Þ

or
(1) / is uncountable-to-one on some point,
(2) / has a diamond and
(3) hðX1Þ > hðX2Þ.
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Theorem 2.4 demonstrates that the investigation of existence of diamond between X1 and X2 is equivalent to investigat-
ing whether hðX1Þ ¼ hðX2Þ or not. The computation of topological entropy of one-layer cellular neural networks with input is
essential for the computation of topological entropy of multi-layer cases. We illustrate a brief review for the computation of
topological entropy of one-layer cellular neural networks with input. Reader is referred to [2,1,4,12] and the references
therein for more details.

An output space Y is called sofic shift if Y has a labeled graph representation.1 Suppose YU is an output space of some one-
layer neural network with input. Then YU is a sofic shift [4]. Denote by s1; s2; s3; s4 the output patterns ��;�þ;þ�;þþ respec-
tively. Suppose BðA;B; zÞ is determined. We define the symbolic transition matrix eTðBðA;B; zÞÞ ¼ ðetijÞ by
1 A la
is an in

2 Rou
these tw
et ij ¼
s‘; xij – £ and s‘ is the top pattern of xij;

£; otherwise:

�

where XðBðA;B; zÞÞ ¼ ðxijÞ is the ordering matrix derived from BðA;B; zÞ. The incidence matrix TðBðA;B; zÞÞ ¼ ðtijÞ ofeTðBðA;B; zÞÞ is defined by
tij ¼
1; et ij – £;

0; otherwise:

(

A labeled graph is called right-resolving if all edges start from the same vertex carrying different symbols. Similarly, the sym-
bolic transition matrix eTðBðA;B; zÞÞ is right-resolving if it has right-resolving labeled graph representation. In other words,eTðBðA;B; zÞÞ is right-resolving if for each row every symbol occurs at most once. The topological entropy of YU is
hðYUÞ ¼ log qðTÞ if eT is right-resolving, where qðTÞ is the spectral radius of T. If eT is not right-resolving, then applying the
so-called subset construction method2 on eT is necessary for the computation of the topological entropy of YU. We refer reader
to [16].

3. Diamond: uncountable-to-one factor

3.1. Necessary and sufficient conditions for diamond

Suppose A;B and z are given. Let BðA;B; zÞ be the set of admissible local patterns. Define eBðA;B; zÞ the set of admissible
local output patterns by
eBðA;B; zÞ :¼ fy0y1 2 f�;þg

Z2�1 : 9 u0u1 2 f�;þgZ2�1 such that y0y1}u0u1 2 BðA;B; zÞg:
For each pattern y0y1 2 eBðA;B; zÞ, denote by Iðy0y1Þ the collection of input patterns of y0y1. That is,
Iðy0y1Þ ¼ fu0u1 2 f�;þgZ2�1 : y0y1}u0u1 2 BðA;B; zÞg:
Define the output space YU and the projection space Y by
YU ¼ fðyiÞi2Z : 9 uiuiþ1 2 f�;þgZ2�1 such that yiyiþ1}uiuiþ1 2 BðA;B; zÞ for i 2 Zg;
Y ¼ fðyiÞi2Z : yiyiþ1 2 eBðA; B; zÞ for i 2 Zg:
It is clear that YU # Y.

Theorem 3.1. If #Iðy0y1ÞP 2 for each y0y1 2 eBðA;B; zÞ, then there is no diamond in YU. In this case, hðYUÞ ¼ hðYÞ.
Theorem 3.1 indicates the necessary condition for diamond is
9 y0y1 2 eBðA;B; zÞ such that #Iðy0y1Þ ¼ 1: ðDÞ
Nevertheless, (D) is not a sufficient condition for seeking diamond.

Example 3.2. Suppose that A;B and z satisfy
a1 > b > �b1 > 0; a1 > b� b1
and m ¼ n ¼ 5. That is, the set of admissible local patterns eBðA;B; zÞ consists of
��}��; ��}�þ; ��}þ�; ��}þþ; �þ}�þ;

þ�}þ�; þþ}��; þþ}�þ; þþ}þ�; þþ}þþ:
beled graph is a directed graph G paired with a set of labeling L assigned on the edges. Y has a labeled graph representation means, for each y 2 Y, there
finite path in G whose label is y. Fig. 3 is a labeled graph representation for cellular neural networks.
ghly speaking, yielding the subset construction method creates a right-resolving labeled graph which has more vertices than the original one, and yet
o graphs present the same space. In other words, the cost of making a right-resolving graph is to increase the ‘‘size’’ of the graph.
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Let s1; s2; s3; s4 denote the output patterns ��;��;þ�;þþ respectively. The symbolic transition matrix
T ¼

s1 s1 £ s2

s1 s1 £ £

£ £ s4 s4

s3 £ s4 s4

0BBB@
1CCCA
and the projection space Y is a full shift with topological entropy hðYÞ ¼ log 2. Since the labeled graph representation of T is
not right-resolving, applying subset construction is necessary for the computation of topological entropy of YU. It can be ver-
ified that the symbolic transition matrix derived by applying subset construction on T is
H ¼

£ £ £ s2 s1 £

£ £ £ £ s1 £

£ £ £ £ £ s4

s3 £ £ £ £ s4

£ £ £ s2 s1 £

s3 £ £ £ £ s4

0BBBBBBBB@

1CCCCCCCCA

and therefore hðYUÞ ¼ log 2. That means there is no diamond in this case.

Suppose G ¼ ðG;LÞ is the labeled graph derived from a two-layer cellular neural network. A graph diamond for L is a pair
of distinct paths in G having the same L-label, the same initial state, and the same terminal state. Moreover, G is called essen-
tial if for every vertex v there are edges e1; e2 such that iðe1Þ ¼ v and tðe2Þ ¼ v , where iðeÞ and tðeÞ indicate the initial and
terminal states of an edge e.

It is well-known that if G is essential, then / : Y! YU has a diamond if and only if L has a graph diamond. Moreover, the
transition matrix T gives a sufficient criterion for the existence of diamond.

Theorem 3.3. If / has a diamond, then there exists n 2 N such that Tnðk; kÞ > 2 for some k.
We point out that Theorem 3.3 can not be enhanced to be a necessary and sufficient condition for the existence of dia-

mond. An example is illustrated as follows.

Example 3.4. Suppose A ¼ f0;1g. Let X � AZ be the set of binary sequences so that between any two 1’s there are even
number of 0’s. A labeled graph representation G for X as follows.

The transition matrix for X is� �

T ¼

1 1
1 0

:

It is seen that T3ð1;1Þ ¼ 3. Nevertheless, G has no graph diamond since it is right-resolving.
3.2. Numerical results

Aside from theoretical investigation for topological entropy and the existence of diamond, there are some interesting
numerical results. First we consider one-layer cellular neural networks with input
dxi

dt
¼ �xi þ ayi þ a1yiþ1 þ bui þ b1uiþ1 þ z:
Let YU and Y be the output and projection spaces, respectively.

Question 1. Under which partition of the parameter space can we see diamonds, that is, hðYUÞ < hðYÞ? Suppose
hðYUÞ < hðYÞ, is there any relation between feedback and controlling templates?

We do not have a complete theoretical result for Question 1 but some partial results from numerical experiments. Table 1
lists the number of output space whose topological entropy hðYUÞ > 0 and the ratio of subregions that have diamond in every
partition. Some novel phenomena cause our interest.

Fact 1. Diamond occurs if jb1j > ja1j.



Table 1
The ratio of diamond. 1;2, and 3 stands for ja1j; jbj, and jb1j, respectively. The first column represents the sign of a1 ; b and b1, and m1 > m2 > m3 is the magnitude
of ja1j; jbj; jb1j in descending order. Numbers before and in the parentheses is the ratio of diamond and the number of output spaces YU with nonzero topological
entropies.

1 > 2 > 3 1 > 3 > 2 2 > 1 > 3 2 > 3 > 1 3 > 1 > 2 3 > 2 > 1

(a) m1 > m2 þm3

ðþ;þ;þÞ 0.313(16) 0.313(16) 0.182(33) 0.293(41) 0.250(36) 0.310(42)
ðþ;þ;�Þ 0.000(16) 0.000(16) 0.000(36) 0.250(48) 0.286(35) 0.444(45)
ðþ;�;þÞ 0.000(16) 0.000(16) 0.000(36) 0.250(48) 0.286(35) 0.444(45)
ðþ;�;�Þ 0.313(16) 0.313(16) 0.182(33) 0.293(41) 0.250(36) 0.310(42)
ð�;þ;þÞ 0.000(44) 0.000(44) 0.000(52) 0.083(48) 0.113(53) 0.275(51)
ð�;þ;�Þ 0.313(48) 0.313(48) 0.182(55) 0.364(55) 0.250(60) 0.417(60)
ð�;�;þÞ 0.313(48) 0.313(48) 0.182(55) 0.364(55) 0.250(60) 0.417(60)
ð�;�;�Þ 0.000(44) 0.000(44) 0.000(52) 0.083(48) 0.113(53) 0.275(51)

(b) m1 < m2 þm3

ðþ;þ;þÞ 0.480(25) 0.480(25) 0.394(33) 0.463(41) 0.444(36) 0.476(42)
ðþ;þ;�Þ 0.000(25) 0.000(25) 0.000(36) 0.250(48) 0.286(35) 0.444(45)
ðþ;�;þÞ 0.000(25) 0.000(25) 0.000(36) 0.250(48) 0.286(35) 0.444(45)
ðþ;�;�Þ 0.480(25) 0.480(25) 0.394(33) 0.463(41) 0.444(36) 0.476(42)
ð�;þ;þÞ 0.000(49) 0.000(47) 0.000(52) 0.083(48) 0.082(49) 0.245(49)
ð�;þ;�Þ 0.509(55) 0.509(55) 0.418(55) 0.564(55) 0.467(60) 0.600(60)
ð�;�;þÞ 0.509(55) 0.509(55) 0.418(55) 0.564(55) 0.467(60) 0.600(60)
ð�;�;�Þ 0.000(49) 0.000(47) 0.000(52) 0.083(48) 0.082(49) 0.245(49)
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Fact 2. Suppose ja1j > jb1j. Then the necessary and sufficient condition for no diamond is a1bb1 < 0.
Fact 3. Suppose the signs of a1; b; b1 and the magnitude of ja1j; jbj; jb1j are fixed. Then the parameters satisfy m1 < m2 þm3

produce more output spaces with positive topological entropies and higher ratio of diamonds than those satisfy
m1 > m2 þm3, where m1 > m2 > m3 is the magnitude of ja1j; jbj; jb1j in descending order.

For either Table 1(a) or (b) we can barely see diamonds in four specific rows, even though most parameters A;B; z in that
partition make the output spaces with positive topological entropies. For example, consider the partition that A;B; z satisfy
b < a1 < b1 < 0. There are total 52-subregions parameters that contribute positive topological entropies, and there is no dia-
mond in any of them.

Consider the following cellular neural networks with input
Fig. 3.
is label
dxi

dt
¼ �xi þ

Xn

k¼0

aiþkyiþk þ
Xn

k¼0

biþkuiþk þ z; k 2 N: ð9Þ
Denote by YU and Y the output and projection spaces, respectively. Below is our conjecture to generalize Facts 1 and 2.

Conjecture 1. Suppose ak and bk are nonzero for k ¼ 1; . . . ;n.

(a) If hðYUÞ < hðYÞ, then mink>0fjbkjg > maxk>0fjakjg.
(b) If mink>0fjakjg > maxk>0fjbkjg, then
hðYUÞ ¼ hðYÞ ()
Y

ak

� � Y
bk

� �
< 0:
Labeled graph representation of all admissible local output patterns for one-layer cellular neural networks with input. Those edges in the same color
ed by the same symbol. Edges which are colored by blue, purple, black and red are labeled by – –, – +, + – and ++, respectively.



Fig. 4. The entropy diagram for one-layer cellular neural network satisfying b > �a1 > �b1 > 0 and b < �(a1 + b1). Those subregions with zero entropy are
omitted and k1 � log 1:3247; k2 ¼ log g; k3 � log 1:8393; k2 ¼ log 2, where g is the golden mean.

Table 2
Diamonds that caused by different sets of local input from Fig. 4.

Input Subregions with diamond hðYUÞ

�� ½7;4�; ½8;4�; ½4;5�; ½4;6�; ½4;7�; ½4;8� log g
þþ ½5;4�; ½6;4�; ½7;4�; ½8;4�; ½4;7�; ½4;8� log g
��;þþ ½5;4�; ½6;4�; ½7;4�; ½8;4�; ½4;5�; ½4;6�; ½4;7�; ½4;8� log g
��;þ�;þþ ½5;4�; ½6;4�; ½7;4�; ½8;4�; ½4;5�; ½4;6�; ½4;7�; ½4;8� log g
��;�þ;þþ ½5;4�; ½6;4�; ½7;4�; ½8;4�; ½4;5�; ½4;6�; ½4;7�; ½4;8� log g
�þ;þ� ½8;3�; ½4;8� log 1:4142
��;�þ;þ� ½5;3�; ½6;3�; ½4;4�; ½5;4�; ½6;4� log 1:3247
��;�þ;þ� ½7;4�; ½8;4� log g
�þ;þ�;þþ ½4;4�; ½3;5�; ½4;5�; ½3;6�; ½4;6� log 1:3247
�þ;þ�;þþ ½4;7�; ½4;8� log g
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The dynamics of output space YU become more complicated when considering multi-layer cellular neural networks. Here
we elucidating the following two-layer cellular neural network
dxð2Þi

dt
¼ �xð2Þi þ að2Þyð2Þi þ að2Þ1 yð2Þiþ1 þ bð2Þuð2Þi þ bð2Þ1 uð2Þiþ1 þ zð2Þ; ð10Þ

dxð1Þi

dt
¼ �xð1Þi þ að1Þyð1Þi þ að1Þ1 yð1Þiþ1 þ zð1Þ; ð11Þ
where uð2Þi ¼ yð1Þi for i 2 Z. Suppose the parameters aðkÞ; aðkÞ1 ; zðkÞ and bðkÞ; bðkÞ1 are given for k ¼ 1;2, where bð1Þ ¼ bð1Þ1 ¼ 0. Let Bð1Þ
and Bð2Þ be the set of admissible local patterns induced from (11) and (10), respectively. Without ambiguity we still denote
the output space by YU.
YU ¼ fðyjÞj2Z : 9 bjbjþ1 2 Bð1Þsuch thatyjyjþ1}bjbjþ1 2 Bð2Þ8j 2 Zg:
Question 2. Under which partition of the parameter space can we see the diamond? Is Bð1Þ and Bð2Þ related whenever there
is diamond?

Suppose the parameters of (10) satisfy
bð2Þ > �að2Þ1 > �bð2Þ1 > 0; bð2Þ < �ðað2Þ1 þ bð2Þ1 Þ:
Fig. 4 are topological entropy diagrams which lists all subregions with positive topological entropies. The below diagram
is obtained from the above diagram by assigning input patterns f��;�þ;þ�g. We notice that the diagram with assigned
input patterns no longer maintain above diagram’s symmetrical structure. Moreover, the topological entropies changes on
some subregions. With appropriate choice of parameters in (11) we have the output local patterns of first layer (i.e., the as-
signed input local patterns) is f��;�þ;þ�g. One can see that the output space YU is capable of 4 different topological entro-
pies either larger or less than the topological entropy log g of input space (the space generated by local input patterns).

Table 1 shows that, in Fig. 4, there are total 23-subregions inducing diamonds. Table 2 lists all subregions in these 23-sub-
regions that caused diamonds again by different sets of local input. It is remarkable that only the last three sets of input pat-
terns induce shift spaces with positive topological entropies themselves. Note that the first 5 sets of input patterns can only
be induced when að1Þ1 > 0 while the last 5 sets can only be induced when að1Þ1 < 0.

Fact 4. fhðYUÞ : að1Þ1 < 0g � fhðYUÞ : að1Þ1 > 0g.

Proposition 2.1 indicates that að1Þ1 < 0 implies rich dynamics of the system. Fact 4 shows complicated input patterns in-
duce rich phenomena for the output space.

In general, for two-layer cellular neural networks
dxð2Þ
i

dt ¼ �xð2Þi þ
Xn

k¼0

að2Þk yð2Þiþk þ
Xn

k¼0

bð2Þk uð2Þiþk þ zð2Þ;

dxð1Þ
i

dt ¼ �xð1Þi þ
Xn

k¼0

að1Þk yð1Þiþk þ zð1Þ;

ð12Þ
where uð2Þi ¼ yð1Þi for i 2 Z. Let B be the collection of sets of admissible local input of (12) except trivial input, that is, B consists
of sets of admissible local patterns induced by one-layer cellular neural networks without input and f�;þgZðnþ1Þ�1 R B. Write
B ¼ [kBk, where Bk is the collection of sets of admissible local patterns with #fað1Þj : að1Þj < 0; j > 0g ¼ k. Note that Bk \ B‘ may
not be empty. Denote by YUðBð1ÞÞ the output space of (12) with admissible input patterns Bð1Þ 2 B. We conjecture that

Conjecture 2. If k > ‘, then
fhðYUðBð1ÞÞÞ : Bð1Þ 2 Bkg � fhðYUðBð1ÞÞÞ : Bð1Þ 2 B‘g:
4. Proof of Theorems

Proof of Proposition 2.1. Suppose that a1 > 0. Since the set of admissible local patterns B of output space X is a subset of
f�;þgZ2�1 ;X is a one-step subshift of finite type. That is, there exists a graph representation G such that G completely realizes
the dynamics of X. Let V and E be the set of vertices and edges of G, respectively. Then V ¼ f�;þg and jEj ¼ mþ n 6 4, here m
and n stands for the number of edges starting from þ and �, respectively.

Since the set of admissible local patterns is determined by
a� z� 1 > a1yiþ1 and aþ z� 1 > �a1yiþ1;
every admissible local pattern has its priority once yi 2 f1;�1g and a1 are fixed. a1 > 0 means that if X is not full shift then
either the edge from þ to � or the edge from � to þ is not in E. This implies the transition matrix T of G satisfies
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T 6
1 1
0 1

� �
or T 6

1 0
1 1

� �
: ð13Þ
Hence mþ n 6 3 if and only if (13) holds. In other words, mþ n 6 3 if and only if hðXÞ ¼ 0.
If a1 < 0, analogous argument indicates mþ n P 3 if and only if
T P
1 1
1 0

� �
or T P

0 1
1 1

� �
:

For either case, the spectral radius of T is greater than or equal to golden mean. It is easily seen that replacing any nonzero
element by 0 in either matrix makes spectral radius be less than or equal to 1. Therefore, hðXÞ > 0 if and only if mþ n P 3.

The proof is complete. h
Proof of Proposition 2.2. Let G½m;n� ¼ ðV½m;n�; E½m;n�Þ and G½n;m� ¼ ðV½n;m�; E½n;m�Þ be the graph representation of XBð½m;n�Þ and XBð½n;m�Þ,
respectively. The proof of Proposition 2.1 shows that m and n are the numbers of edges starting from þ to � and from � to þ,
respectively. Note that herein
V½m;n�;V½n;m� #
�
�
;
�
þ
;
þ
�
;
þ
þ

� �
	 fv1;v2; v3;v4g:
See Fig. 3. Define U : GBð½m;n�Þ ! GBð½n;mÞ by
Uðv iÞ ¼ v5�i; Uððv i;v jÞÞ ¼ ðv5�i; v5�jÞ:
It is easily seen that

(1) v i 2 V½m;n� implies v5�i 2 V½n;m�, and
(2) ðv i;v jÞ 2 E½m;n� implies ðv5�i;v5�jÞ 2 E½n;m�.

Thus U is well-defined and is a graph isomorphism. The isomorphism of G½m;n� and G½n;m� implements XBð½m;n�Þ is topological
conjugate to XBð½n;m�Þ. This completes the proof. h

Before proving Theorem 3.1, we define a partial order for symbolic matrix. Let A be a finite set of alphabet containing
empty symbol £ and let A ¼ ðA;þÞ be an abelian additive group with identity element £. For M;N 2 MnðAÞ, we define
M P N if and only if there exists sij 2 A such that mij ¼ nij þ sij for 1 6 i; j 6 n. Moreover, M > N if M P N and M–N.

Example 4.1. Suppose A ¼ f£; p; qg. Then A consists of elements of the form npþmq for n;m 2 Z, and £þ a ¼ aþ£ ¼ a
for a 2 A.

Suppose M;N 2 M2ðAÞ such that
M ¼
p p

q £

� �
; N ¼

p £

q £

� �
:� �
Then M > N and M þ N ¼ 2p p
2q £

.

Proof of Theorem 3.1. For simplicity, we only give the proof when b and b1 are positive and the projection space Y is a full
shift. #Iðy0y1ÞP 2 for each y0y1 2 eBðA;B; zÞ asserts the symbolic transition matrix T for the labeled graph representation of
YU satisfies
T P

s1 s1 s2 s2

£ £ £ £

£ £ £ £

s3 s3 s4 s4

0BBB@
1CCCA 	 H:
The symbolic transition matrices eT and eH, obtained by applying subset construction on T and H respectively, satisfy
eT P eH ¼
£ £ £ £ s1 s2

£ £ £ £ £ £

£ £ £ £ £ £

£ £ £ £ s3 s4

£ £ £ £ s1 s2

£ £ £ £ s3 s4

0BBBBBBBB@

1CCCCCCCCA
:

Since the incidence matrix of eH has spectral radius q ¼ 2;hðYUÞP log q ¼ log 2. Moreover,
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hðYÞ ¼ log 2 P hðYUÞP log 2:
This completes the proof. h

Proof of Theorem 3.3. Without loss of generality, we may assume that G is irreducible. Since G is essential, / has a diamond
indicates that there are two paths x, s in G with the same initial and terminate vertices such that LðxÞ ¼ LðsÞ. The
irreducibility of G asserts a path t in G with iðtÞ ¼ tðxÞ and tðtÞ ¼ iðxÞ. Moreover, xt; st are two loops in G implies
Tjxtjð1þ iðxÞ;1þ iðxÞÞP 2. This completes the proof. h
5. Conclusion and discussion

In this paper we investigate and give necessary and sufficient conditions whether a two-layer cellular neural network has
a diamond, respectively. Throughout the elucidation we focus on the case that each cell is only coupled with its righthand
cell and the output patterns of the first layer are taken as input of the second layer. We have the following results.

(a) For one-layer cellular neural networks (4). Suppose a1; b; b1 are fixed. The symmetry of the entropy diagram in ða; zÞ-
plane comes from the topological conjugacy of two systems. The asymmetry of two-layer cases indicates that the
topological conjugacy no longer holds (cf. Fig. 4). In other words, the structure of the output spaces for one- and
two- layer cellular neural networks are essentially different.

(b) A system has a diamond means the loss of information during the transfer. A necessary condition for diamond (D) is
given and is checkable. We also demonstrate a checkable sufficient condition for the existence of diamond
(Theorem 3.3).

(c) If the coefficients a1; b1 in (4) satisfies b1 > a1, then the system is likely to have a diamond.
(d) A two-layer cellular neural network (10) and (11) with að1Þ1 < 0 exhibits richer phenomena than að1Þ1 > 0 does. This is

because the first layer is capable of more sets of output patterns when að1Þ1 < 0.

We propose two conjectures for cellular neural networks (9), (12) that each cell is only coupled with its right-hand side
cells. Above results remain true if we consider (1) with d ¼ 1 and a�1; b�1–0. The case that a�1; b�1–0 increases the complex-
ity of partition of parameter space. Hence we only illustrate (4), (11) and (10) to clarify our argument.
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