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FACTOR MAP, DIAMOND AND DENSITY
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Abstract. Letting π : X → Y be a one-block factor map and Φ be an almost-
additive potential function on X, we prove that if π has diamond, then the
pressure P (X,Φ) is strictly larger than P (Y, πΦ). Furthermore, if we define the
ratio ρ(Φ) = P (X,Φ)/P (Y, πΦ), then ρ(Φ) > 1 and it can be proved that there

exists a family of pairs {(πi,Xi)}ki=1 such that πi : Xi → Y is a factor map
between Xi and Y , Xi ⊆ X is a subshift of finite type such that ρ(πi,Φ|Xi

)
(the ratio of the pressure function for P (Xi,Φ|Xi

) and P (Y, πΦ)) is dense in
[1, ρ(Φ)]. This extends the result of Quas and Trow for the entropy case.

1. Introduction

The present paper is devoted to studying the topic that for a given one-block
factor map, how the existence of diamond and different kinds of potential functions
affect the pressure function, and what is the density of the pressure. This is mainly
motivated by the related works concerning entropy [2] and the dense entropy prop-
erty [3]. Before formulating our results, we give some notation and background
first. Let π : X → Y be a 1-block factor map between two one-dimensional mixing
subshifts of finite type X and Y. Then the following result is well-known:

Theorem 1.1 (Theorem 4.1.7 of [4]). Suppose π : X → Y is a one-block factor
map between mixing subshifts of finite type (SFTs for short) and that X has positive
entropy. Then either

(1) π : X → Y is uniformly bounded-to-one,
(2) π has no diamond,
(3) htop(X) = htop(Y )
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3986 JUNG-CHAO BAN AND CHIH-HUNG CHANG

or

(4) π : X → Y is uncountable-to-one on some points,
(5) π has diamond,
(6) htop(X) > htop(Y ).

We remark here that Theorem 1.1 also holds for higher-dimensional SFTs (The-
orem 3.6 of [2]). However, unlike the one-dimensional case, some stronger specifi-
cation property is needed for the higher-dimensional case. Let Φ = (log φn)

∞
n=1 be

a real-valued potential function on X, i.e., log φn : X → R for all n ∈ N. We define
the push-forward potential in Y by

(1.1) πΦ(y) =

(
max

x∈X: π(x)=y
log πφn(x)

)∞

n=1

=

(
max

x∈X: π(x)=y
log φn ◦ π−1(x)

)∞

n=1

,

and define the pressure function on X by

(1.2) P (X,Φ) = lim
n→∞

1

n
log

∑
I∈Xn

sup
x∈[I]

φn(x)

whenever the limit exists and Xn stands for the collection of n-cylinders in X. It is
of interest to know whether Theorem 1.1 holds for the pressure function. Precisely,
we consider the following.

Problem 1.2. If π : X → Y is a one-block factor map with diamond between X
and Y , which potential functions Φ = (log φn)

∞
n=1 on X make P (X,Φ) > P (Y, πΦ)?

Problem 1.3. Under the same assumption of Problem 1.2, what is the difference
P (X,Φ)− P (Y, πΦ)?

In this investigation, we have the following results:

Theorem A. Let π : X → Y be a one-block factor map between two mixing shift
spaces X and Y . Assume Φ = (logφn) ∈ Caa(X,T ) (defined in (2.2)) and satisfies
the bounded distortion property (defined in (2.4)). Then either

(1) P (X,Φ) > P (Y, πΦ),
(2) π has diamonds,

or

(3) P (X,Φ) = P (Y, πΦ),
(4) π has no diamond.

For the case π has diamond, Theorem A shows that P (X,Φ)−P (Y, πΦ) > 0 if and
only if π has diamond. This extends Theorem 1.1 to pressure for Φ ∈ Caa(X,T ).
For the difference P (X,Φ)−P (Y, πΦ) of Problem 1.3, we have the following result.

Theorem B. Under the same assumption of Theorem A, let ν ∈ M(Y, S) be
the equilibrium measure on Y with respect to the push-forward potential πΦ(y) =
(maxx∈X: π(x)=y log φn ◦ π−1(x))∞n=1 and μ ∈ M(X,T ) be the conditional equilib-
rium state of Φ with respect to ν (see (2.13)) and Proposition 2.6). Then

(1.3) P (X,Φ)− P (Y, πΦ) = hμ(T )− hν(S).

Theorem B indicates that the difference of P (X,Φ)− P (Y, πΦ) equals hμ(T )−
hν(S), and it is useful for characterizing the positivity of P (X,Φ) − P (Y, πΦ) by
showing hμ(T ) > hν(S) (see Theorem 3.1).
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On the other hand, for a dynamical system (X,T ) , it is natural to ask what
are the subsystems of X and what are the possible values of the entropies (resp.
pressure) of the subsystems of X. If X is an n-dimensional SFT for n ∈ N, Quas

and Trow [3] show that for ε > 0, there exists a proper subshift X̂ of X which is
also an SFT with the property that

htop(X)− ε < htop(X̂) < htop(X).

If π : X → Y is a one-block factor map with diamond and Φ = (logφn)
∞
n=1 ∈

Caa(X,T ) with the bounded distortion property, we define the ratio of P (X,Φ)
and P (Y, πΦ) by

(1.4) ρ(π,Φ) = P (X,Φ)/P (Y, πΦ) if P (Y, πΦ) �= 0.

It follows from Theorem A that we have ρ(π,Φ) > 1.We ask the following questions:

Problem 1.4. Under the same assumptions of Theorem A, does there exist a
family πi : Xi → Y where Xi is a subsystem of X and πi = π|Xi

is a one-block
factor for all i ∈ N such that

ρ(πi,Φ|Xi
) = P (Xi,Φ|Xi

)/P (Y, πΦ)

is dense in [1, ρ (π,Φ)], where Φ|Xi
stands for the restriction of Φ to Xi?

For Problem 1.4, we have the following result.

Theorem C. Under the same assumptions of Theorem A, there exists a family of
pairs {(πi, Xi)}∞i=1 such that

(1) Xi is a subsystem of X, ∀i ∈ N;
(2) Xi is an SFT, ∀i ∈ N;
(3) πi : Xi → Y is a one-block factor map for all i ∈ N such that ρ(πi,Φ|Xi

) �= 0
are dense in [1, ρ(Φ)]. That is, for ε > 0, there exists an integer k = k(ε)

and a monotone decreasing sequence {P (Xi,Φ|Xi
)}ki=1 such that

P (Xi,Φ|Xi
)− P (Xi+1,Φ|Xi+1

) < ε,

and, for all p ∈ [P (Y, πΦ), P (X,Φ)], there exists a 1 ≤ j ≤ k with

P (Xj+1,Φ|Xj+1
) < p < P (Xj ,Φ|Xj

).

The content of this paper is the following. In Section 2, we introduce the so-
called a-weighted thermodynamic formalism developed recently by Barral and Feng
[1]. This tool is useful for the proofs of Theorem B and Theorem A, and we leave
their proofs to Section 3 and give the proof of Theorem C in Section 4.

2. Preliminaries and a-weighted thermodynamic formalism

For the reader’s convenience we recall some definitions and known results in this
section.

2.1. Sub-additive thermodynamic formalism. The following definitions and
notation come from the recent works of Barral and Feng [1].

Definition 2.1. (1) We say that Φ = (log φn)
∞
n=1 is sub-additive on X and write

Φ ∈ Cs(X,T ) if there exists C1 > 0 such that

(2.1) φn+m(x) ≤ C1φn(x)φm(Tnx) ∀x ∈ X and n,m ∈ N.
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(2) We say that Φ = (log φn)
∞
n=1 is asymptotically sub-additive on X and write

Φ ∈ Cass(X,T ) if for any ε > 0 there exists a sub-additive potential Ψ =
(logψn(x))

∞
n=1 on X such that

(2.2) lim sup
n→∞

1

n
sup
x∈X

|log φn(x)− logψn(x)| ≤ ε.

(3) Φ = (log φn)
∞
n=1 is called almost additive on X and we write Φ ∈ Caa(X,T )

if φn is positive and continuous on X for all n ∈ N and there exists C2 > 0
such that

(2.3) C−1
2 φn(x)φm(Tn(x)) ≤ φn+m(x) ≤ C2φn(x)φm(Tn(x)),

∀x ∈ X and n,m ∈ N.
(4) Φ = (log φn)

∞
n=1 is called the bounded distortion property if there exists a

constant C3 > 0 such that

(2.4) C−1
3 φn(y) ≤ φn(x) ≤ C3φn(y) ∀x, y ∈ I ∈ Xn.

We introduce the following result of the variational principle for the asymptotic
sub-additive potential Φ on X.

Theorem 2.2 (Feng and Huang, [9]). Let Φ ∈ Cass(X,T ) and T : X → X be a
mixing continuous transformation. Then

(2.5) P (X,Φ) = sup {hη(T ) + Φ∗(η) : η ∈ M(X,T )} ,
where M(X,T ) denotes the collection of T -invariant probability measures on X
endowed with the weak-star topology, hη(T ) denote the measure-theoretic entropies
of η and Φ∗(η) is given by

(2.6) Φ∗(η) = lim
n→∞

1

n

∫
log φn(x)dη(x).

A measure μ ∈ M(X,T ) attaining the supremum of (2.5) is called the equilibrium
measure of Φ. A measure μ ∈ M(X,T ) is called a Gibbs measure with respect to
Φ if there exists a Q1 > 0 such that

(2.7) Q−1
1 ≤ μ([I])

exp(−nP (X,Φ))φn([I])
≤ Q1, ∀I ∈ Xn, n ∈ N,

where

(2.8) φn([I]) = sup
x∈[I]

φn(x).

It follows from Theorem 2.2 that we can construct the variational principle for
P (X,Φ) and P (Y, πΦ) .

Proposition 2.3. Let Φ ∈ Cass(X,T ) and let πΦ be defined as in (1.1) on Y.
Then:

(1) πΦ ∈ Cass(Y, S).
(2) The two variational principles hold:

P (X,Φ) = sup {hη(S) + Φ∗(η) : η ∈ M(X,T )} ,(2.9)

P (Y, πΦ) = sup {hξ(S) + (πΦ)∗ (ξ) : ξ ∈ M(Y, S)} .(2.10)

Furthermore, if we assume Φ ∈ Caa(X,T ) and satisfies the bounded distortion
property, then

(3) πΦ ∈ Caa(Y, S).
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(4) There exist unique equilibrium measures μ ∈ M(X,T ), ν ∈ M(Y, S) at-
taining the supremums of (2.9) and (2.10) respectively.

(5) Both μ and ν satisfy the Gibbs property; i.e., (2.7) holds for μ and ν.

2.2. a-weighted thermodynamic formalism. Let (X,T ) and (Y, S) be mixing
shift spaces. Assume Φ ∈ Cass(X,T ) and a = (a, b) ∈ R

2 so that a > 0 and b ≥ 0.
Barral and Feng [1] introduce the a-weighted topological pressure of Φ:

(2.11) P a(X,Φ) = sup
{
Φ∗(η) + ahη(T ) + bhη◦π−1(S) : η ∈ M(X,T )

}
.

A measure μ ∈ M(X,T ) attaining the supremum of (2.11) is called the a-weighted
equilibrium state of Φ. Let Φ = (log φn)

∞
n=1 ∈ Cass(X,T ), define a sequence Ψ =

(logψn)
∞
n=1 of potentials on Y by

(2.12) ψn(y) =
∑

I∈Xn: [I]∩π−1(y) �=∅
sup

x∈[I]∩π−1(y)

φn(x)
1
a , y ∈ Y,

and set a
a+bΨ = (log

(
ψ

a
a+b
n

)
)∞n=1. For ν ∈ M(Y, S), a measure μ ∈ M(X,T ) is

called a conditional equilibrium state of Φ with respect to ν if μ ◦ π−1 = ν and
(2.13)
Φ∗(μ)+hμ(T )−hν(S) = sup

{
Φ∗(η) + hη(T )− hν(S) : η ∈ M(X,T ), η ◦ π−1 = ν

}
.

Barral and Feng [1] developed the following results.

Theorem 2.4. Let a = (a, b) ∈ R
2 so that a > 0 and b ≥ 0. If Φ ∈ Cass(X,T )

(resp. Φ ∈ Caa(X,T )), then

(1) Ψ and a
a+bΨ ∈ Cass(X,T ) (resp. Ψ and a

a+bΨ ∈ Caa(X,T ));

(2) P a(X,Φ) = (a+ b)P (Y, a
a+bΨ) (P (Y,Ψ) is defined in (1.2));

(3) μ is an a-weighted equilibrium state of Φ iff ν = μ ◦ π−1 is an equilibrium
state of a

a+bΨ and μ is a conditional equilibrium state of 1
aΦ with respect

to ν, where 1
aΦ = (log(φ

1
a
n ))∞n=1.

Letting a = (a, b) ∈ R
2 so that a > 0 and b ≥ 0, a measure μ ∈ M(X,T ) is

called an a-weighted Gibbs measure if there exists Q2 > 0 such that

(2.14) Q−1
2 ≤ μ([I])ψn(π [I])

b
a+b

exp(− n
a+bP

a(X,Φ))φn(I)
1
a

≤ Q2,

where

(2.15) ψ(J) =
∑

I∈Xn: πI=J

φn([I])
1
a , ∀J ∈ Yn.

The following theorem was also proved in [1]. It shows that the a-weighted Gibbs
measure exists uniquely for Φ ∈ Caa(X,T ) with the bounded distortion property.

Theorem 2.5. Let π : X → Y be a one-block factor. Let a = (a, b) ∈ R
2 so that

a > 0 and b ≥ 0. Let Φ ∈ Caa(X,T ) and satisfy the bounded distortion property.
Then

(1) Φ has a unique a-weighted equilibrium measure, say μ;
(2) μ is also the unique a-weighted Gibbs measure of Φ;
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(3) if we define ν = μ ◦ π−1, then there exists Q3 and Q4 > 0 such that for all
J ∈ Yn, n ∈ N and I = π(J),

(2.16) Q−1
3 ≤ ν ([J ])

exp(− n
a+bP

a(X,Φ))ψn([J ])
a

a+b
≤ Q3

and

(2.17) Q−1
4 ≤ μ ([I])a ν (π [J ])b

exp(−nP a(X,Φ))φn ([I])
≤ Q4.

Combining Theorem 2.4 and Theorem 2.5 we have the following.

Proposition 2.6. Let Φ ∈ Caa(X,T ) and satisfy the bounded distortion property
and let ν ∈ M(Y, S) be the Gibbs measure of Ψ = (logψn)

∞
n=1 as defined in (2.22);

it is thus an equilibrium measure of Ψ. Then Φ has a unique conditional equilibrium
measure μ with respect to ν and there exists a constant C4 > 0 such that

(2.18) C−1
4 ≤ μ ([I])ψn (π ([I]))

ν (π ([I]))φn([I])
≤ C4 ∀I ∈ Xn and n ∈ N,

where ψ(J) =
∑

I∈Xn:π(I)=J φn ([I]) and φn ([I]) is defined in (2.8)).

Next we show that P (X,Φ) = P (Y,Ψ).

Proposition 2.7. Let π : X → Y be a one-block factor map and Φ ∈ Cass(X,T ).
Let Ψ ∈ Cass(Y, S) be defined in (2.22). Then

(2.19) P (X,Φ) = P (Y,Ψ).

Proof. Taking a = (1, 0) ∈ R
2, it follows from (2.11) and Theorem 2.4 that

P a(X,Φ) = sup {Φ∗(η) + hη(T ) : η ∈ M(X,T )}
= P (Y,Ψ).(2.20)

Combining (2.20) and Theorem 2.2 with the fact that Φ ∈ Cass(X,T ) yields

P (X,Φ) = P a(X,Φ) = sup {Φ∗(η) + hη(T ) : η ∈ M(X,T )} = P (Y,Ψ).

This completes the proof. �

We end this subsection by introducing the relativised variational principle, which
was developed by Ledrappier, Walters, Cao, Zhao, Feng and Huang (cf. [5], [8], [9]
and [1]). This will be useful in the study of the relationship between P (X,Φ) and
P (Y, πΦ).

Proposition 2.8 (Lemma 3.1 of [1]). Let Φ ∈ Caa(X,T ) and satisfy the bounded
distortion property. If ν ∈ M(Y, S), then:

(1) The relativised variational principle holds:

(2.21)

∫
Y

P (X,Φ, π−1(y))dν(y) = sup {hμ(T )− hν(S) + Φ∗(μ)} ,

where the supremum is taken over all μ ∈ M(X,T ) with μ ◦ π−1 = ν ∈
M(Y, S).
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FACTOR MAP, DIAMOND AND DENSITY OF PRESSURE FUNCTIONS 3991

(2) Define Ψ = (logψn)
∞
n=1 on Y, where

(2.22) ψn(y) =
∑

I∈Xn: [I]∩π−1(y) �=∅
sup

x∈[I]∩π−1(y)

φn(x).

Then∫
Y

P (X,Φ, π−1(y))dν(y) = sup {hμ(T )− hν(S) + Φ∗(μ)}

= Ψ∗(ν),

where the supremum is taken over all μ ∈ M(X,T ) with μ ◦ π−1 = ν ∈
M(Y, S) and Ψ∗(ν) is defined in (2.6).

3. Proofs of Theorem A and Theorem B

In this subsection we give the proofs of Theorem B and Theorem A. In the
following, we assume Ψ = (logψn)

∞
n=1, as defined in (2.22).

Proof of Theorem B. Take a = (1, 0) ∈ R
2. It follows from Theorem 2.4 and Propo-

sition 2.3 that we have πΦ, Ψ ∈ Caa(Y, S). Define the partition functions

(3.1) Zn(X,Φ) =
∑
I∈Xn

φn(I), Zn(Y,Ψ) =
∑
J∈Yn

ψn(J),

and

(3.2) Zn(Y, πΦ) =
∑
J∈Yn

(πφ)n (J).

One can easily check that (logZn(X,Φ))∞n=1 ∈ Cass(X,T ), and (logZn(Y,Ψ))∞n=1,
(logZn(Y, πΦ))

∞
n=1 ∈ Cass(Y, S). By the standard argument, we conclude that

P (X,Φ), P (Y,Ψ) and P (Y, πΦ) exist. Since P (X,Φ) = P (Y,Ψ) (Proposition 2.7),
for ε > 0 there exists N1 ∈ N such that if n ≥ N1 we have

(3.3) exp(−nε) ≤ Zn(X,Φ)

Zn(Y,Ψ)
≤ exp(nε).

Let ν ∈ M(Y, S) be the Gibbs measure of Ψ as in Proposition 2.3 and μ ∈ M(X,T )
be its unique conditional equilibrium measure according to Proposition 2.6. Then
there exist Q3 and Q4 > 0 such that for all I ∈ Xn and J = πI ∈ Yn with n ∈ N,

(3.4) Q−1
3 exp(−nP (X,Φ))φn([I]) ≤ μ([I]) ≤ Q3 exp(−nP (X,Φ))φn([I])

and

(3.5) Q−1
4 exp(−nP (Y,Ψ))ψn([J ]) ≤ ν ([J ]) ≤ Q4 exp(−nP (Y,Ψ))ψn([J ]).

Since μ and ν are Gibbs on X and Y, they are also ergodic. It follows from the
Shannon-McMillian-Brieman Theorem, for ε > 0 there exists N2 > 0 such that if
n ≥ N2 and μ-a.e. I ∈ Xn with J = π([I]) ∈ Yn,

(3.6) exp(−n(hμ(T ) + ε)) ≤ μ ([I]) ≤ exp(−n(hμ(T )− ε))

and

(3.7) exp(−n(hν(S) + ε)) ≤ ν ([J ]) ≤ exp(−n(hν(S)− ε)).
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Let n ≥ max {N1, N2}. Combining (3.3), (3.4), (3.5), (3.6) and (3.7) with the fact
that P (Y,Ψ) = P (X,Φ) we have

Zn(X,Φ) ≤ Zn(Y,Ψ) exp(nε)

= exp(nε)
∑
J∈Yn

ψn ([J ]) = exp(nε)
∑
J∈Yn

ψn ([J ])φn ([I])
−1

(πφ)n ([J ])

≤Q3Q4 exp(nε) exp(n(P (Y,Ψ)−P (X,Φ)))
∑
J∈Yn

ν([J ])μ−1 ([I]) (πφ)n ([J ])

≤ Q3Q4 exp(n(hμ(T )− hν(S) + 3ε))
∑
J∈Yn

(πφ)n ([J ]) .(3.8)

For the opposite inequality, we have

Zn(X,Φ) ≥ exp(−nε)Zn(Y,Ψ) = exp(−nε)
∑
J∈Yn

ψn ([J ])φn ([I])
−1

(πφ)n ([J ])

≥ Q−1
3 Q−1

4 exp(−nε) exp(n(P (Y,Ψ)− P (X,Φ)))

×
∑
J∈Yn

ν([J ])μ−1 ([I]) (πφ)n ([J ])

≥ Q−1
3 Q−1

4 exp(n(hμ(T )− hν(S)− 3ε))
∑
J∈Yn

(πφ)n ([J ]) .(3.9)

Then (1.3) follows by dividing both sides of (3.8) and (3.9) with n and taking n to
infinity. This completes the proof of Theorem B. �

For the proof of Theorem A, we need the following results. They show that under
the same assumption of Theorem A with the fact that π has diamond, P (X,Φ) is
strictly larger than P (Y, πΦ).

Theorem 3.1. Let π : X → Y be a one-block factor with diamond. Let Φ ∈
Caa(X,T ) and satisfy the bounded distortion property. If ν ∈ M(Y, S) is the
equilibrium state Ψ = (logψn)

∞
n=1 as defined in (2.22) and μ is the conditional

equilibrium state of Φ with respect to ν, then

(3.10) hμ(T ) > hν(S).

Furthermore, P (X,Φ) > P (Y, πΦ).

Proof. Since π has diamond, then by Theorem 3.6 of [2] there exists y ∈ Y, C5 > 0
and C6 > 1 such that

(3.11) #
{
I ∈ Xn : I ∩ π−1(y) �= ∅

}
≥ C5C

n
6 .

It follows from Proposition 2.6 that there exists C4 > 0 such that ∀I ∈ Xn and
J = π ([I]) ∈ Yn,

(3.12) C−1
4

φn([I])

ψn([J ])
≤ μ([I])

ν ([J ])
≤ C4

φn([I])

ψn([J ])
.
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For μ-a.e. I ∈ Xn with y ∈ J = π(I), it follows from (3.11), (3.12) and the
Shannon-McMillian-Brieman Theorem that

hμ(T ) = lim
n→∞

−1

n
log μ([I])

≥ lim
n→∞

logC4

n
+ lim

n→∞

−1

n
log

{
φn([I])

ψn([J ])
ν ([J ])

}
(by (3.12))

= lim
n→∞

−1

n

[
log

φn([I])

ψn([J ])

]
− 1

n
log ν ([J ])

= lim
n→∞

1

n

⎡
⎣log ∑

I∈Xn:I∩π−1(y) �=∅
φn([I])− log φn([I])

⎤
⎦+ lim

n→∞

−1

n
log ν ([J ])

≥ lim
n→∞

1

n

[
logC−1

3 C5C
n
6 φn ([I])− log φn(I)

]
+ lim

n→∞

−1

n
log ν ([J ])

= logC6 + hν(S).

The constant C3 comes from the bounded distortion property for Φ ((2.4) in Def-
inition 2.1). Since C6 > 1, we have hμ (T ) > hν (S) . Combining Theorem B and
(3.10) we have P (X,Φ) > P (Y, πΦ), and the proof is completed. �

We continue the proof of Theorem A.

Proof of Theorem A. By the variational principle of P (X,Φ) and P (Y, πΦ) and
Theorem 3.1, we only need to show that if P (X,Φ) > P (Y, πΦ), then π has dia-
mond. Assume π has no diamond. Then by Theorem 3.6 of [2], htop(X) = htop(Y ).
Then π : X → Y is almost everywhere bounded-to-one. Using the identical argu-
ment of Theorem 3.1, we can also derive that P (X,Φ) = P (Y, πΦ), a contradiction.
This completes the proof of Theorem A �

4. Proof of Theorem C

Let ρ(π,Φ) be as defined in (1.4). It follows from Theorem A that we have

Proposition 4.1. Under the same assumptions of Theorem A:

(1) If π has no diamond, then ρ (π,Φ) = 1.
(2) If π has diamond, then ρ (π,Φ) > 1.

We are ready to give the proof of Theorem C. Some auxiliary results are needed.
First we define X\I = X\

⋃
i∈N

T−i(I). The following result comes from [3].

Theorem 4.2 (Theorem 2.9 of [3]). Let X be an SFT with positive topological
entropy and let μ ∈ M(X,T ) be the measure of maximal entropy. Then for all
ε > 0 there exists N ∈ N such that if n ≥ N and I ∈ Xn, then

(4.1) hμ(X)− ε ≤ hμ(X\I) ≤ hμ(X).

Remark 4.3. We remark here that in [3], Quas and Trow derived that

htop(X)− ε ≤ htop(X\I) ≤ htop(X).

It is not hard to extend this result to (4.1) for μ is Gibbs for some potential Φ from
their proof.

We now deduce the pressure from Theorem 4.2.
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Theorem 4.4. Let X be a mixing SFT, and let Φ ∈ Caa(X,T ) and satisfy the
bounded distortion property. For ε > 0, there exists an N ∈ N such that if n ≥ N
and for all I ∈ Xn where X\I is mixing, we have

P (X,Φ)− ε ≤ P (X\I,Φ|X\I) < P (X,Φ).

Proof. Since Φ ∈ Caa(X,T ) and satisfies the bounded distortion property, it follows
from Proposition 2.3 that we may assume μ is the Gibbs measure for Φ on X. Let
ε
2 > 0 and I1 ∈ Xn. According to the variational principle and Theorem 4.2,

(4.2) P (X,Φ)− Φ∗(μ)− ε/2 = hμ(X)− ε/2 ≤ hμ(X\I1).
This shows that

(4.3) P (X,Φ)− ε/2 ≤ hμ(X\I1) + Φ∗(μ).

We claim that Φ∗(μ) ≤
(
Φ|X\I1

)
∗ (μ) + ε/2. Indeed, since Φ ∈ Caa(X,T ) we have

Φ∗ (μ) = lim
n→∞

∫
X

1

n
log φn(x)dμ(x) ≤

∫
X

1

n
log φn(x)dμ(x)

≤
∑
I∈Xn

∫
I

1

n
log φn(x)dμ(x) ≤

∑
I∈Xn

1

n
log φn ([I])μ ([I])

≤
∑

I∈(X\I1)n

1

n
log φn ([I])μ ([I]) +

1

n
log φn ([I1])μ ([I1])

≤
(
Φ|X\I1

)
∗ (μ) + Φ∗ (μ)μ ([I1]) + δ,

for some small δ > 0. We note here that the 4th inequality follows from the Birkhoff
ergodic theorem and the fact that Φ ∈ Caa(X,T ). Then the claim follows by taking
μ ([I1]) small enough and the fact that δ → 0 as n → ∞. Therefore, it follows from
(4.3) that we have

P (X,Φ) ≤ hμ(X\I1) + Φ∗(μ) + ε/2

≤ hμ(X\I1) +
(
Φ|X\I1

)
∗ (μ) + ε.

≤ P (X\I1,Φ|X\I1) + ε.

This completes the proof. �

Lemma 4.5. Under the same assumptions of Theorem A, Theorem C holds if and

only if for all ε > 0 there exists a family of pairs {(πi, Xi)}ki=1 such that

(1) Xi is a subsystem of X, ∀i = 1, · · · , k,
(2) Xi is an SFT, ∀i = 1, · · · , k, and
(3) {B(P (Xi,Φ|Xi

), ε)}ki=1 forms an ε-cover of [P (Y, πΦ), P (X,Φ)].

Proof. Let ρ ∈ [1, ρ(π,Φ)] and let P (Y, πΦ) = p > 0. For εp > 0 we assume that

there exists a family of pairs {(πi, Xi)}ki=1 where πi : Xi → Y is a factor map

and Xi is an SFT ∀i = 1, · · · , k, and {B(P (Ti,Φ|Xi
), εp)}ki=1 forms an εp-cover of

[P (Y, πΦ), P (X,Φ)]. Since ρ ∈ [1, ρ (π,Φ)] and

P (Y, πΦ) = p ≤ ρp ≤ ρ(π,Φ)P (Y, πΦ) = P (X,Φ),

i.e., ρp ∈ [P (Y, πΦ), P (X,Φ)], there exists an 1 ≤ i ≤ k such that ρp ∈
B(P (Xi,Φ|Xi

), εp), i.e.,

|ρp− P (Ti,Φ|Xi
)| ≤ εp.
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This means that |ρ− ρ(πi,Φ|Xi
)| ≤ ε. On the other hand, for ε > 0, take a sequence

1 ≤ ρ1 = 1, ρ2, · · · , ρk−1, ρk = ρ(π,Φ) ≤ ρ(π,Φ) with

(4.4)
ε

2p
≤ |ρi+1 − ρi| ≤

ε

p
for all i ∈ 1, · · · , k − 1.

Define Ii = [ρi, ρi+1] for i ∈ 1, · · · , k − 1. It follows from Theorem C that there

exists a sequence {(πi, Xi)}ki=1 where πi is a factor from Xi to Y , Xi ⊆ X is an
SFT and ρ(πi,Φ|Xi

) ∈ [ρi, ρi+1]. If i = k, P (Xk,Φ|Xk
) ≤ ρkP (Y, πΦ) = P (T,Φ),

and if i = 1, P (X1,Φ|X1
) ≥ ρ1P (Y, πΦ) = P (Y, πΦ). If P (Y, πΦ) ≤ q ≤ P (X,Φ),

then 1 ≤ q
p ≤ ρ (π,Φ); thus q

p ∈ Ii for some i. Therefore

∣∣∣∣qp − ρ(πi, Xi)

∣∣∣∣ ≤ ε.

This implies that |q − P (Xi,Φ|Xi
)| ≤ pε, and this means that {B(P (Xi,Φ|Xi

) ,

pε)}ki=1 forms a pε-cover of [P (Y, πΦ), P (XΦ)]. This completes the proof. �

Lemma 4.6. Let π : X → Y be a one-block factor with diamond. Then properties
(1), (2) and (3) of Lemma 4.5 hold.

Proof. Without loss of generality we assume that X is full shift. Since Φ ∈
Caa(X,T ), we conclude that Zn(X,Φ) =

∑
I∈Xn

φn([I]) is sub-additive. Then
we have

(4.5) P (X,Φ) ≤ 1

n
logZn(X,Φ), ∀n ∈ N,

and for ε > 0 there exists N1 ∈ N such that if n ≥ N1, then

(4.6) P (X,Φ) ≥ 1

n
logZn(X,Φ)− ε.

By Theorem 4.4 we choose N2 ∈ N such that if n ≥ N2 and for all I ∈ Xn, X\I is
mixing, we have

P (X,Φ)− ε ≤ P (X\I,Φ|X\I) < P (X,Φ).

Since π : X → Y has diamond, then for all J ∈ Yn with n ∈ N,

# {I ∈ Xn : π(I) = J} ≥ 1.

We define SJ = {I ∈ Xn : π(I) = J} and arrange {J : J ∈ Yn} in the lexicographic
order with J1 < J2 < · · · < Jm and define S1 = SJ1

, S2 = SJ2
, · · · , Sm = SJm

. We
also arrange Si in the lexicographic order, i.e.,

Si =
{
I
(i)
j

}|Si|

j=1
, for i = 1, . . . ,m,

where |A| denotes the number of elements of A. For all i, define

Ŝi = Si\I(i)1 ;

i.e., drop the first pattern in Si for all i = 1, · · · ,m. Therefore
∣∣∣Ŝi

∣∣∣ = |Si| − 1

for i = 1, . . . ,m. Letting
∣∣∣Ŝ1

∣∣∣ + ∣∣∣Ŝ2

∣∣∣ + · · · +
∣∣∣Ŝm

∣∣∣ = r(m), we put all elements of
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Ŝ1, · · · , Ŝm together in order and renumber all its elements by {Ij}r(m)
j=1 , i.e.,

{
Ŝ1, · · · , Ŝm

}
=

{{
I
(1)
2 , · · · , I(1)|Ŝ1|

}
, · · · ,

{
I
(1)
2 , · · · , I(1)|Ŝ1|

}}

=
{
I1, I2, · · · , Ir(m)

}
.

Define S =
{
I1, I2, · · · , Ir(m)

}
.We construct a family of subsystems ofX as follows:

(1) Let X0 = X and X1 = X\I1.
(2) Xj = Xj−1\Ij for all 1 ≤ j ≤ r(m).

(3) Finally, Xr(m) = X0\
⋃r(m)

j=1 Ij .

For 1 ≤ j ≤ r(m), define πi = π|Xi
: Xi → Y. According to the construction,

it can be easily checked that πi is a factor for all i ∈ [1, r(m)], and it follows from
Theorem 4.4 that

(4.7) P (X,Φ) > P (X1,Φ|X1
) > · · · > P (Xr(m),Φ|Xr(m)

)

and

(4.8) P (Xi+1,Φ|Xi+1
) ≥ P (Xi,Φ|Xi

)− ε for all i ∈ [1, r(m)− 1].

Finally, we claim that

(4.9) P (Xr(m),Φ|Xr(m)
) ≤ P (Y, πΦ) + ε.

Indeed, it follows from (4.6) and Proposition 2.7 that

(4.10) P (Y,Ψ) = P (X,Φ) ≥ 1

n
logZn(X,Φ)− ε.

Since

Zn(Y,Ψ) =
∑
J∈Yn

∑
I:π(I)=J

φn(I)

is also sub-additive, there exists N3 ∈ N such that if n ≥ N3, then

(4.11) P (Y,Ψ) ≥ 1

n
logZn(Y,Ψ)− ε.

By the construction of Xr(m), we have

(4.12) Zn(Y,Ψ) = Zn(Y, πΦ) = Zn(Xr(m),Φ),

Combining (4.11), (4.5) and (4.12) we have that if n ≥ max {N1, N2, N3}, then

P (Y, πΦ) ≥ 1

n
logZn(Y, πΦ)− ε =

1

n
logZn(Y,Ψ)− ε

=
1

n
logZn(Xr(m),Φ|Xr(m)

)− ε ≥ P (Xr(m),Φ|Xr(m)
)− ε.

Thus (4.9) holds, and it follows from (4.7), (4.8) and (4.9) that

r(m)⋃
i=1

B(P (Xi,Φ|Xi
), ε)

forms an ε-cover of [P (Y, πΦ), P (X,Φ)]. The proof is completed. �

Finally, we finish the proof of Theorem C.

Proof of Theorem C. The proof is obtained by combining Lemma 4.5 and Lem-
ma 4.6. The proof is completed. �
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