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This work investigates the monotonicity of topological entropy for one-dimensional multilayer
cellular neural networks. The interacting radius and number of layers are treated as parameters.
Fix either one of them; the set of topological entropies grows as a strictly nested sequence
with respect to one another. Apart from the comparison of the set of topological entropies,
maximal and minimal templates are indicators of a dynamical system. Our results demonstrate
that maximal and minimal templates of larger interacting radius (respectively number of layers)
dominate those of smaller one. To be precise, the strict monotonicity of topological entropy is
demonstrated through the comparison of the maximal and minimal templates as the parameters
are varied.

Keywords : Cellular neural networks; sofic shift; topological entropy; forcing relation; maximal
template; minimal template.

1. Introduction

Multilayer cellular neural networks (MCNNs) are
known as locally connected networks given by

dx
(�)
i

dt
= −x

(�)
i +

∑
|k|≤d

(a(�)
k y

(�)
i+k+b

(�)
k u

(�)
i+k)+z(�), (1)

for d ∈ N, i ∈ Z, 1 ≤ � ≤ n, z(�), u
(1)
i ∈ R and

u
(�+1)
i = y

(�)
i = f(x(�)

i ) =
1
2
(|x(�)

i + 1| − |x(�)
i − 1|).

(2)

The piecewise linear function f : R → R is called
the output function, u

(�)
i is called the input term

and d and n is the interacting radius and num-
ber of layers, respectively. Cellular neural networks
(CNNs) have been widely applied in studying the
signal propagation between neurons, image pro-
cessing, information technology and VLSI since it
was introduced [Chua, 1998; Chua & Yang, 1988a,
1988b; Crounse et al., 1993; Lee & Pineda de Gyvez,
1996]. The study of equilibrium solution of (1)
is essential for the understanding of CNNs (see
[Chow et al., 1996; Mallet-Paret & Chow, 1995] and
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references therein for more details). This gives rise
to the elucidation of the following equation,

x
(�)
i =

∑
|k|≤d

(a(�)
k f(x(�)

i+k) + b
(�)
k f(x(�−1)

i+k )) + z(�),

2 ≤ � ≤ n

x
(1)
i =

∑
|k|≤d

(a(1)
k f(x(1)

i+k) + b
(1)
k ui+k) + z(1).

(3)

A solution x = {x(�)
i } of (3) is called mosaic

provided |x(�)
i | > 1 for all i ∈ Z, 1 ≤ � ≤ n. A

so-called mosaic pattern is an image of a mosaic
solution under f(x). The output space, denoted by

O = {y = {f(x(n)
i )} : {x(n)

i } ∈ x for some x}, (4)

has been intensively investigated and many phe-
nomena are observed [Ban et al., 2009; Hsu et al.,
2000; Juang & Lin, 2000]. One of the indicators for
the study of O is topological entropy which mea-
sures the capacity of output space. This quantity
is important because of its invariance, and positive
topological entropy means such a system is com-
plex enough and possesses exponential growth rate
of number of output patterns.

Set P = {(A(1), . . . , A(n), B(1), . . . , B(n), z(1),
. . . , z(n))} ⊆ R(4d+3)n the parameter space of
(3), where A(�) = (a(�)

−d, . . . , a
(�)
d ) and B(�) =

(b(�)
−d, . . . , b

(�)
d ) for 1 ≤ � ≤ n. Ban et al. [2009]

demonstrated that P can be partitioned into finite
regions such that there is a one-to-one correspon-
dence between the partitions of the parameter space
and the family of basic sets of feasible local pat-
terns. Since (3) is locally coupled and is spatially
homogeneous, O is completely determined by feasi-
ble local patterns [Ban et al., 2009]. For P1, P2 ∈ P
such that P1 �= P2, denote by P1 ∼ P2 if they admit
the same set of feasible local patterns, i.e. P1 and P2

are in the same partition. It can be easily checked
that ∼ is an equivalence relation. In the forth-
coming, a presentation parameter P (A,B, z) =
(A(1), . . . , A(n), B(1), . . . , B(n), z(1), . . . , z(n)) ∈ P∼
is used to indicate its corresponding mosaic
patterns for clarification. P = P (A,B, z) ∈
P∼ is called a template and the set of feasi-
ble local patterns admitted by P is written by
B = B(P ).

Let h(P ) denote the topological entropy of out-
put space induced by template P , it is obvious that
0 ≤ h(P ) ≤ log 2 for all P ∈ P∼. (The reader may
refer to [Ban et al., 2009; Juang & Lin, 2000] for
more details.) Set E = {P ∈ P∼ : h(P ) �= 0, log 2},

a template P ∈ E is called maximal (respectively
minimal) if h(P ) ≥ h(Q) (respectively h(P ) ≤
h(Q)) for all Q ∈ E . Two natural questions then
arise.

Problem 1. Fix the number of layers as n. Let Pd

denote the parameter space of (3) for d ∈ N.

(i) Let H(d) = {h(P ) : P ∈ Pd} be the collec-
tion of all possible topological entropies of O
possessed by Pd. Is {H(d)} a strictly nested
sequence of sets, i.e. H(1) � H(2) � · · · �
H(d) � · · ·?

(ii) Does H(d2) dominate H(d1) for d1 < d2? More
precisely, let Pd1 and Pd2 (respectively pd1 and
pd2) be maximal (respectively minimal) tem-
plates of Pd1 and Pd2 , respectively, is h(Pd1) �
h(Pd2) (respectively h(pd1) � h(pd2))?

The establishment of strict monotonicity indi-
cates that the increase in coupled cells does enhance
the capacity of MCNNs. This motivates the eluci-
dation of this work. It is easy to see that {H(d)}
is monotone, but the strict monotonicity fails in
general. A well-known fact is the Feigenbaum con-
stant, which is a universal constant for functions
approaching chaos via period doubling [Feigen-
baum, 1979]. Another interesting phenomenon is
the discovery of window in unimodal map 1 − µx2

and logistic map νx(1 − x) [May, 1976]. When
the parameter µ (or ν) is varied in the window,
the entropy function is a constant. For example,
fν(x) = νx(1 − x) has only periodic orbits with
period 2k for some k ∈ N as 0 ≤ ν ≤ 3.6, thus
h(fν) = 0 for 0 ≤ ν ≤ 3.6 [Bowen & Frank, 1976;
Misiurewicz & Szlenk, 1980].

Similarly, if interacting radius d is fixed, it
is then interesting to investigate the following
problem.

Problem 2. Let Pn denote the parameter space of
(3) for n ∈ N.

(i) Is {H(n)} a strictly nested sequence of sets?
(ii) Does H(n2) dominate H(n1) for n1 < n2?

The main difficulty of Problems 1 and 2 comes
from the constraint of basic set of feasible local pat-
terns. Hsu et al. [2000] showed that the basic set
of feasible local patterns exhibited by CNN with-
out input is constrained by separation property (see
Appendix B for more details). This leads to the
study of geometrical structure of O.
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Problem 3. Is the set of feasible local patterns of
O, denoted by BO, constrained by separation prop-
erty whenever MCNNs with input are considered
in general? Moreover, is there any correspondence
between the output patterns of MCNNs with input
and CNNs without input?

In [Ban et al., 2009], the authors indicate that
the asymmetry of topological entropy of O is caused
by the input terms. The study of Problem 3 in some
sense gives it the most likely explanation.

In the rest of this paper, CNNs are used to men-
tion single layer cellular neural networks without
input while MCNNs is used for multilayer cellular
neural networks with input for clarification.

This elucidation is organized as follows. Sec-
tion 2 states the main theorems and some examples
are also given here. The proofs are demonstrated
in Sec. 3. Section 4 concludes the discussions of
this investigation and proposes two open problems.
Appendices A and B give supplementary materials
so that this paper is self-contained.

2. Main Results

First fix the number of layers n. Let Pd denote
the parameter space of (3) for d ∈ N and let
H(d) = {h(P ) : P ∈ Pd} be the collection of all
possible topological entropies of output spaces O
possessed by Pd. The following theorem gives an
affirmative answer for Problem 1.

Theorem 2.1. Let d1, d2 ∈ N with d1 < d2 and let
Pd1 , pd1 (respectively Pd2 , pd2) be maximal and min-
imal templates of Pd1 (respectively Pd2), then

(i) H(d1) � H(d2);
(ii) h(Pd1) < h(Pd2);
(iii) h(pd1) > h(pd2).

The following example asserts an intuitive
explanation for Theorem 2.1.

Example 2.1. Consider CNNs
dxi

dt
= −xi + ayi + aryi+1 + z, (D1)

and
dxi

dt
= −xi + ayi + a1yi+1 + a2yi+2 + z. (D2)

For clarification, denote the output patterns 1 and
−1 by + and − respectively. It can be verified
that B1 = {−−,−+,+−} is the set of feasible
local patterns of output space possessed by P1 =
(1.23,−0.40,−0.45) which is a maximal template

of (D1), and B2 = {− − −,− − +,− + +,+ −
−,+ − +,+ + −,+ + +} is the set of feasible
local patterns of output space possessed by P2 =
(3.30, 2.13,−1.12, 1.02) which is a maximal tem-
plate of (D2). Moreover, the topological entropies
of P1 and P2 are h(P1) = g

.= 1.61803, which is the
golden mean, and h(P2) = λ

.= 1.83928, which is
the maximal root of t3− t2− t−1 = 0, respectively.
For the details of correspondence between sets of
feasible local patterns and partitions, readers are
referred to [Juang & Lin, 2000].

Similarly, it can be seen that B1 =
{−−,−+,+−} is the set of feasible local pat-
terns of output space possessed by p1 =
(1.23,−0.40,−0.45), a minimal template of (D1),
and B2 = {− − +,− + −,− + +,+ − −,+ − +} is
the set of feasible local patterns of output space pos-
sessed by p2 = (2.14,−1.86,−0.51,−0.30), a mini-
mal template of (D2). The topological entropy of
p2, h(p2) = τ

.= 1.32472, is the maximal root of
t3 − t − 1 = 0.

Consider the number of layers being varied and
leaving the interacting radius as fixed. Denote by
Pd the parameter space of (3) for n ∈ N and let
H(n) = {h(P ) : P ∈ Pn} be the collection of all
possible topological entropies of output spaces O
possessed by Pn.

Theorem 2.2. Let n1, n2 ∈ N with n1 < n2 and let
Pn1 , pn1 (respectively Pn2 , pn2) be maximal and min-
imal templates of Pn1 (respectively Pn2), then

(i) {h(P ) : P ∈ Pn1} � {h(P ) : P ∈ Pn2};
(ii) h(Pn1) < h(Pn2);
(iii) h(pn1) > h(pn2).

Example 2.2. Consider the following two systems

dxi

dt
= −xi + ayi + aryi+1 + z, (N1)

and

dx
(2)
i

dt
= −x

(2)
i + a(2)y

(2)
i + a

(2)
1 y

(2)
i+1

+ by
(1)
i + b1y

(1)
i+1 + z(2),

dx
(1)
i

dt
= −x

(1)
i + a(1)y

(1)
i + a

(1)
1 y

(1)
i+1 + z(1).

(N2)

As discussed in Example 2.1, B1 = {−−,−+,+−}
is both the set of feasible local patterns of mini-
mal and maximal templates of (N1), denoted by
P1, with topological entropy h(P1) = g.
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To find a maximal template of (N2) out, con-
sider P2 = P (A,B, z), where

(A(1), z(1)) = (0.64,−1.20, 0.64),

(A(2), B, z(2)) = (5.17,−2.56, 1.44, 1.21,−1.52).

It is easily seen that B2 = {−−,−+,+−,++}
with B2;1 = {−+,+−} and B2;2 = {y1y2 � u1u2 :
yi, ui ∈ {−,+}}\{+ + � − −,+ + � − +}, herein
y1y2 �u1u2 means output pattern y1y2 coupled with
input pattern u1u2. Although the feasible local out-
put patterns consist of all possible choices, the
topological entropy of maximal template of (N2)
is h(P2)

.= 1.83928 which is the maximal root of
t3 − t2 − t − 1 = 0. An intuitive observation for
the computation of topological entropy of P2 is
that the permanent local pattern generated by P2 is
{−−−,−−+,−++,+−−,+−+,++−,+++}. For
the theoretical algorithm of topological entropy and
correspondence between sets of feasible local pat-
terns and partitions of parameter space, the reader
may refer to [Ban et al., 2009].

Let p2 be obtained from P2 by replacing
(A(2), B, z(2)) with (A′(2), B′, z′(2)) = (1.02,−0.36,
1.64, 1.06, 0.18), then B′

2 = {−−,−+,+−,++}
with

B′
2;2 =



−− � −−,−− � − +,− + � −−,

− + � − +,− + � + −,+ − � + +,

+ − � + −,+ + � + +,+ + � + −


 .

It can be easily verified that the topological entropy
of minimal template is h(p2)

.= 1.32472 which is the
maximal root of t3 − t− 1 = 0 since the permanent
local pattern generated by p2 is {−−+,−+−,−+
+,+ −−,+ − +}.

In [Hsu et al., 2000], the authors demonstrate
the necessary and sufficient condition whether a
given set of local patterns S is associated with a
CNN, i.e. S = B(P ) for some template P = P (A, z).
More precisely, if such a template P exists, then S
must satisfy separation property (see [Hsu et al.,
2000] for more details). Furthermore, Ban et al.
[2009] indicated that the symmetry of a family of
topological entropies of MCNNs does not hold as
that of CNNs and the asymmetry is caused by the
effect of input terms. The following theorem demon-
strates that the set of feasible local patterns of out-
put space induced by a MCNN is actually the one
possessed by a CNN. This supports the viewpoint
of [Ban et al., 2009].

Theorem 2.3. Given P = P (A,B, z) a template
of (3), then the set of feasible local patterns of

output space coincides with the set of feasible local
patterns of output space which is obtained from a
CNN. That is, there exists A′ ∈ R2d+1, z′ ∈ R
such that B(P ) = B(A′, z′). Moreover, A′ has only
one element different from A(n), i.e. a′i = a

(n)
i for

|i| ≤ d, i �= 0.

Example 2.3. Consider

dx
(2)
i

dt
= −x

(2)
i + 1.02y(2)

i − 0.36y(2)
i+1 + 1.64y(1)

i

+ 1.06y(1)
i+1 + 0.18,

dx
(1)
i

dt
= −x

(1)
i + 0.64y(1)

i − 1.2y(1)
i+1 + 0.64.

(P2)

The discussion in Example 2.2 indicates that
the feasible local pattern of (P2) is B =
{−−,−+,+−,++} which coincides with the fol-
lowing system:

dxi

dt
= −xi + 2.56yi − 0.36yi+1 + 1.06. (P1)

3. Proof of Theorems

Once a specified template P = P (A,B, z) is given,
a set of feasible local patterns, denoted by B =
B(P ), is determined such that if x is a mosaic solu-
tion of (3) with its corresponding pattern y, then
y ∈ B locally.

Denote the parameter space P of (3) by
Pn,d for clarification. Two templates P1 =
P (A1,B1, z1), P2 = P (A2,B2, z2) are said to be
P1 ∼ P2 if and only if B(P1) = B(P2). Then ∼ is an
equivalence relation [Ban et al., 2009]. For simplic-
ity, denote Pn,d;∼ by Pn,d. For each P ∈ Pn,d, there
exists a unique P -graph, say G, up to the labeling of
edges. The study of output space exhibited by B(P )
is equivalent to the study of the symbolic dynami-
cal system induced by G. We refer readers to [Ban
et al., 2009; Lind & Marcus, 1995] for details.

3.1. Proof of Theorem 2.1

First, elucidate the effect of the parameter d in (3)
and leave the number of layers n as fixed. For sim-
plicity, the proof for n = 1 and B = 0 is given. The
general case can be processed via the same method,
thus is skipped.

Rewrite (3) in the following form,

xi = z +
∑
|k|≤d

akf(xi+k), (5)
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where i ∈ Z and d ∈ N. Denote by

Pd = {(Ad, z) : Ad ∈ R2d+1, z ∈ R}, (6)

the parameter space with respect to d ∈ N, where
Ad = (a−d, . . . , ad). For a given template P =
P (Ad, z), the set of feasible local patterns B = B(P )
consists of those patterns with size nd × 1, where
nd = 2d + 1.

Let X = {1,−1} and let σ : XZ → XZ be the
shift map, the projection map πr : XZ → XZr×1 is
defined by πr(x) = x0x1 · · · xr−1, where x = (xi)i∈Z.
For simplicity, a projection map from XZm×1 to
XZr×1 is also denoted by πr and is defined by
πr(y) = y1y2 · · · yr, where y = (yi)mi=1 and m ≥ r.
The proof of Theorem 2.1 is divided into two parts.
Before giving the proof of the first statement, some
definitions should be stated first.

Definition 3.1. For d ∈ N, U ⊆ XZnd×1 , the shift
space induced by U is defined by

XU = {x ∈ XZ : πnd
(σi(x)) ∈ U for all i ∈ Z}. (7)

Furthermore, denoting Σm(XU ) the set of (m× 1)-
blocks in XU by

Σm(XU ) = {v ∈ XZm×1 : there exists x ∈ XU
such that πm(x) = v}. (8)

Definition 3.2. For d1, d2 ∈ N such that d1 < d2,
let Udi

⊆ X
Zndi

×1 for i = 1, 2.

(i) Define φ : Ud2 → Ud1 by obtaining φ(u) from
u ∈ Ud2 by deleting the rightmost and the left-
most (d2 − d1) elements. That is, φ(u) deletes
the boundary of u with size (d2 − d1).

(ii) For m ∈ N, defining φm : Σm(XUd2
) →

Σm−2(d2−d1)(XUd1
) by obtaining φm(v) from

v ∈ Σm(XUd2
) by deleting the boundary of v

with size (d2 − d1).

For simplicity, denote φm by φ. In other words,
φ presents the map deleting the boundary with size
d2−d1 once d1, d2 are given. A lemma then follows.

Lemma 3.3. Consider d1 < d2, Ud1 ⊆ X
Znd1

×1 .
Let Ud2 = φ−1(Ud1) ⊆ X

Znd2
×1, then h(XUd1

) =
h(XUd2

).

Proof. It is easy to see that Gd2 forces Gd1 , where
Gdi

is the graph representation of Udi
for i = 1, 2,

hence h(XUd1
) ≤ h(XUd2

) by Theorem A.8. It
remains to show that h(XUd1

) ≥ h(XUd2
).

First claim that φ−1(Σnd1
+k(XUd1

)) = Σnd2
+k

(XUd2
) for k ∈ N. For µ ∈ Σnd2

+k(XUd2
),

πnd2
(σrµ) ∈ Ud2 for 0 ≤ r ≤ k. Hence,

φ(πnd2
(σrµ)) ∈ Ud1 for 0 ≤ r ≤ k. Moreover,

it is easy to check that φ ◦ πnd2
= πnd1

◦ φ and
φ ◦ σr = σr ◦ φ. This implies

πnd1
(σr(φ(µ))) ∈ Ud1 , for 1 ≤ r ≤ k. (9)

Thus, φ(µ) ∈ Σnd1
+k(XUd1

).
Conversely, if µ ∈ φ−1(Σnd1

+k(XUd1
)), then

φ(µ) ∈ Σnd1
+k(XUd1

). Moreover, πnd1
(σr(φ(µ))) ∈

Und1
for 1 ≤ r ≤ k. This deduces πnd2

(σr(µ)) ∈ Und2

for 1 ≤ r ≤ k. Thus µ ∈ Σnd2
+k(XUd2

). This com-
pletes the proof of the claim.

Since φ−1(Σnd1
+k(XUd1

)) = Σnd2
+k(XUd2

) for
k ∈ N,

Γnd2
+k(XUd2

) = 2nd2
−nd1Γnd1

+k(XUd1
), (10)

where Γr(X) is the cardinality of Σr(X). It can be
easily checked that h(XUd1

) ≥ h(XUd2
), this com-

pletes the proof. �

Next, demonstrate the strict monotonicity of
entropy on d. The following lemma comes imme-
diately from [Hsu et al., 2000], thus the proof is
omitted.

Lemma 3.4. Given d ∈ N, consider Ud ⊆ XZnd×1

with cardinality |Ud| = 2nd−1, then there exists
(Ad, z) ∈ Pd such that B(Ad, z) = Ud.

Lemma 3.5. Consider d1 < d2, Udi
⊆ XZndi

×1

with Udi
= X

Zndi
×1 \ {1}Zndi

×1 for i = 1, 2, then
h(XUd1

) < h(XUd2
).

Proof. It can be checked without difficulty that Gd2

forces Gd1 , this implies h(XUd1
) ≤ h(XUd2

) by The-
orem A.8.

Moreover, Gd2 is irreducible since Ud2 =
X

Znd2
×1\{1}Znd2

×1. The fact that card V (Gd2) �
card V (Gd1) demonstrates that Gd1 is isomorphic
to a proper subgraph of Gd2 . In other words, XUd1

is
a proper subshift of an irreducible shift space XUd2

.
Thus, h(XUd1

) < h(XUd2
) by Theorem A.10 and the

proof is completed. �

Proof of Theorem 2.1. Consider B(Ad1 , z1) ⊆
X

Znd1
×1 the set of feasible local patterns induced

by some (Ad1 , z1) ∈ Pd1 , it is easily seen that
there exists (Ad2 , z2) ∈ Pd2 such that B(Ad2 , z2) =
φ−1(B(Ad1 , z1)) ⊆ X

Znd2
×1 . By Lemma 3.3,
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h(XB(Ad1
,z1)) = h(XB(Ad2

,z2)). Thus {h(P ) : P ∈
Pd1} ⊆ {h(P ) : P ∈ Pd2}.

Lemma 3.4 shows that there exists Pi =
P (Adi

, zi) ∈ Pdi
such that the cardinality of B(Pi)

is 2ndi
−1, for i = 1, 2. It can be easily checked that

h(XB(Pi)) < log 2, thus is a maximal template of
Pdi

, for i = 1, 2. Lemma 3.5 demonstrates that
h(XB(Ad1

,z1)) < h(XB(Ad2
,z2)). This completes the

proof of (ii).
The proof of (iii) can be done analogously, thus

is omitted. �

3.2. Proof of Theorem 2.2

Denote by Pn the parameter space of (3) with d ∈ N
being fixed. For each P = P (A,B, z) ∈ Pn, the out-
put space XB is a sofic shift rather than a subshift
of finite type, where B = B(A,B, z) is the set of
feasible local patterns induced by P . Moreover, the
topological entropy h(XB) can be exactly formu-
lated [Ban et al., 2009].

Proof of Theorem 2.2. For simplicity, we consider the
case where n1 = 1, n2 = 2 and d = 1 is proved.
The general case can be done via analogous method,
thus is omitted.

Given a set of feasible local patterns B(A,B, z)
produced by (3) with n = 1, let (A(2), B(2), z(2)) =
(A,B, z) be the template of the second layer.
The template (A(1), B(1), z(1)) is chosen so that
B(A(1), B(1), z(1)) consists of all possible pat-
terns and the set of input patterns is assigned
by U = XZ3×1 . It can be easily seen that
h(XB(A,B,z)) = h(XB(A,B,z)), where E =
(E(1), E(2)) for E ∈ {A,B, z}. This shows that
H(n1) ⊆ H(n2).

To elucidate the inequality, it suffices to show
that (iii) is true. (ii) can be done in an anal-
ogous method, thus is omitted. Consider p1 =
P (A,B, z) is a minimal template for n = 1. Hence,
h(P (A′, B′, z′)) ≥ h(p1) for all P (A′, B′, z′) so
that h(P (A′, B′, z′)) �= 0. Decompose XB into
irreducible components XB1 ,XB2 , . . . ,XBk

, where
B = B(p1). Without loss of generality, assume that
h(XB1) = h(p1). Similarly as above, the template
for second layer is set up as (A(2), B(2), z(2)) =
(A,B, z). It remains to decide the parameters for
the first layer.

Denote by τl the back projection defined by

τl(x) = (xn−l+1, xn−l+2, . . . , xn) ∈ Rl,

where x = (x1, x2, . . . , xn) ∈ Rn. (11)

Let B′ = τ3(B), without loss of generality, assume
that B′ is exhibited by Ã = (ã(1)

l , ã(1), ã
(1)
r ) and

z̃(1) for some template (Ã, z̃(1)). Consider B(1) =
(b(1)

l , b(1), b
(1)
r ) satisfying the following conditions:

(i) b(1) > b
(1)
l > b

(1)
r > 0 and b(1) > b

(1)
l + b

(1)
r ;

(ii) b
(1)
l + b(1) + b

(1)
r < min{|ã(1)

l |, |ã(1)|, |ã(1)
r |}.

Let y+ = (y+
1 , y+

2 ), y− = (y−1 , y−2 ) ∈ X2 satisfy

(y+
1 , 1, y+

2 ) ∈ B′, y+ · α < y · α for all y

= (y1, y2) ∈ X2 so that (y1, 1, y2) ∈ B′,

and

(y−1 ,−1, y−2 ) ∈ B′, y− · α > y · α for all y

= (y1, y2) ∈ X2 so that (y1,−1, y2) ∈ B′,

respectively, where α = (ã(1)
l , ã

(1)
r ). Denote � =

b(1) − b
(1)
l , let

a′ = 1 + � − 1
2
(y+ − y−) · α,

z′ = −1
2
(y+ + y−) · α,

and A(1) = (ã(1)
l , a′, ã(1)

r ).

It could be foreseen from the above data that

π3(B(A(1), B(1), z′)) = B′ and τ3(B(A(1), B(1), z′))
= XZ3×1 .

If, furthermore, the set of input patterns is assigned
by U = {(−1, 1,−1), (1,−1, 1)}, then it is easy
to check that, in such an event, h(XB(A,B,z;U)) =
h(XB) and the decomposition of B(A,B, z;U),
denoted by B̂1, B̂2, . . . , B̂k, are also irreducible. More
precisely, B(A(1), B(1), z′;U) = {(y, u) ∈ X3 × X3 :
y ∈ B, u ∈ U} and h(XB̂1

) = h(XB(A,B,z;U)) > 0.

Consider A(1)′ = (ã(1)
l , â, ã

(1)
r ), where â = 1 +

1/4(3� − b
(1)
r ) − 1/2(y+ − y−) · α. Let ẑ = 1/4(� +

b
(1)
r ) − 1/2(y+ + y−) · α, then

B(A(1)′ , B(1), ẑ) = B(A(1), B(1), z′)
−{((y−1 ,−1, y−2 ;−1, 1,−1))}.

Theorem A.10 shows that h(XB(A′,B,z′;U)) <
h(XB(A,B,z;U)) since XB(A′,B,z′;U) is a proper sub-
shift of XB(A,B,z;U), where A′ = (A(1)′ , A(2)), z′ =
(ẑ, z(2)). The discussion of h(XB(A′,B,z′;U)) > 0 is
essentially the same as above.

This completes the proof. �
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3.3. Proof of Theorem 2.3

First consider the effect of the input term for n = 1.
For n = 1 and B = 0, when a template (A, z) is
given, the set of feasible local patterns with “1” in
the center is defined by

B(+, A, z)
= {y ∈ X2d : α · y + a + z − 1 > 0}, (12)

where α = (a−d, . . . , a−1, a1, . . . , ad) represents the
parameters in A without the center. Moreover, the
basic set of admissible output patterns with “−1”
in the center is defined by

B(−, A, z)
= {y ∈ X2d : α · y − a + z + 1 < 0}. (13)

The set of all feasible output patterns exhib-
ited by (A, z) is then defined by B(A, z) =
(B(+, A, z),B(−, A, z)).

Furthermore, considering B �= 0, when (A,B,
z) is given, let B̃(+, A,B, z) and B̃(−, A,B, z)
be defined in (B.16) and (B.17), B(∗, A,B, z) =
πn(B̃(∗, A,B, z)) for ∗ ∈ {+,−}. The set of all fea-
sible output patterns induced by (A,B, z) is defined
by B(A,B, z) = (B(+, A,B, z),B(−, A,B, z)).

Theorem 3.6. Given templates A,B and threshold
z, there exists threshold z′ such that

B(A,B, z) = B(A, z′). (14)

Proof. Let u+, u− ∈ X2d+1 satisfy

β · u+ > β · u, β · u− < β · u,

for all u ∈ X2d+1, (15)

respectively, where β = (b−d, . . . , b−1, b, b1, . . . , bd)
represents the parameters in B. It can be easily
checked that u+ + u− = 0. Denote by k = β · u+ =
−β · u− and z′ = z + k.

If y ∈ B(+, A,B, z), then (y, u+) ∈
B̃(+, A,B, z). Moreover,

a − 1 + z > −(α · y + β · u+),
for all y ∈ B(+, A,B, z), (16)

and

a − 1 + z < −(α · y + β · u+),
for all y /∈ B(+, A,B, z). (17)

In other words,

a − 1 + z′ > −α · y ⇔ y ∈ B(+, A, z′). (18)

Thus,

B(+, A,B, z) = B(+, A, z′). (19)

Similarly, y ∈ B̃(−, A,B, z) if and only if

a− 1− z > α · y + β · u−,

for all y ∈ B(−, A,B, z), (20)

and

a − 1 − z < −α · y + β · u−,

for all y /∈ B(−, A,B, z). (21)

This is equivalent to

a − 1 − z′ > α · y ⇔ y ∈ B(−, A, z′), (22)

and deducing that

B(−, A,B, z) = B(−, A, z′). (23)

This completes the proof. �

The proof of Theorem 2.3 can be done via the
same idea.

Proof of Theorem 2.3. For simplicity, the case for n =
2 is proved. The general case for n ∈ N can be done
by mathematical induction.

Theorem 3.6 shows the existence of z̃ such
that B(A(1), z̃) = B(A(1), B(1), z(1)). Therefore, for
y ∈ B(A,B, z), there exists u ∈ B(A(1), z̃) such that
(y, u) ∈ B̃(A(2), B(2), z(2)). Without loss of general-
ity, assume that |B(A(1), z̃)| = k and

β(2) · ui > β(2) · uj, for 1 ≤ i < j ≤ k. (24)

Then y ∈ B(∗, A,B, z) if and only if (y, ui) ∈
B̃(∗, A(2), B(2), z(2)) for some 1 ≤ i ≤ k, ∗ ∈ {+,−}.
Let {y+

i }22d

i=1, {y−j }22d

j=1 be the set of all possible out-
put patterns with 1 and −1 in the center, respec-
tively, and

α(2) · y+
i > α(2) · y+

j , for 1 ≤ i < j ≤ 22d, (25)

α(2) · y−k < α(2) · y−� , for 1 ≤ k < � ≤ 22d. (26)

Hence, y+
i ∈ B(+, A,B, z) for 1 ≤ i ≤ �, and

y−j ∈ B(−, A,B, z) for 1 ≤ j ≤ m, where � =
|B(+, A,B, z)|, m = |B(−, A,B, z)|.

Moreover, consider u+, u− ∈ X2d+1 satisfying

β(2) · u+ > β(2) · u, β(2) · u− < β(2) · u,

for all u ∈ X2d+1, (27)
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respectively. Again, u+ + u− = 0. Let

a′ =
1
4
α(2) · (y−m + y−m+1 − y+

� − y+
�+1)

+ β(2) · u− + 1, (28)

z′ = −1
4
α(2) · (y−m + y−m+1 + y+

� + y+
�+1), (29)

then

a′ − 1 + z′ > −(α(2) · y + β(2) · u+),
for all y ∈ B(+, A,B, z), (30)

and

a′ − 1 + z′ < −(α(2) · y + β(2) · u+),
for all y /∈ B(+, A,B, z). (31)

Similarly,

a′ − 1 − z′ > α(2) · y + β(2) · u−,

for all y ∈ B(−, A,B, z), (32)

and

a′ − 1 − z′ < α(2) · y + β(2) · u−,

for all y /∈ B(−, A,B, z). (33)

Let A(2)′ be the template obtained from A(2)

by replacing the center element by a′, then
B(∗, A,B, z) = B(∗, A(2)′ , z′) for ∗ ∈ {+,−}. This
completes the proof. �

4. Discussion and Conclusion

This work demonstrates the following facts:

(a) The entropy set for multilayer cellular neural
networks is strictly nested with respect to inter-
acting radius (respectively number of layers)
when the number of layers (respectively inter-
acting radius) is fixed. More precisely, denote
by H(d, n) the collection of those topological
entropies derived from (3), then H(d, n) is a
strictly nested sequence of sets whenever either
d or n is fixed.

(b) The maximal and minimal templates of Pd,n

satisfy a forcing relation. If n ∈ N is fixed, let
Pd and pd be maximal and minimal templates
of Pd,n, respectively. Then h(Pd1) � h(Pd2)
(respectively h(pd1) � h(pd2)) for d1 < d2.
The same result holds for n as d ∈ N is fixed.
We emphasize that it gets much more complex
when n varies since this relates to the convolu-
tion of sofic shifts.

(c) The set of feasible local patterns exhibited by a
multilayer cellular neural network can be real-
ized via a single layer cellular neural network
without input. Ban et al. [2009] indicated that
these two systems do not possess the same set
of topological entropies and such a difference
is caused by input terms. Our result gives it a
positive support.

Due to the constraint of separation property,
the set of feasible local patterns cannot be arbitrary.
The strict monotonicity of topological entropy on
interacting radius and the number of layers inspire
the elucidation of the following two open problems.

Problem 4. Fix n ∈ N in (3) and ε > 0. For any
0 ≤ κ ≤ log 2, does there exist d ∈ N and Pε,κ ∈ Pd

such that |h(Pε,κ) − κ| < ε?

Problem 5. Fix d ∈ N in (3) and ε > 0. For any
0 ≤ κ ≤ log 2, does there exist n ∈ N and Pε,κ ∈ Pn

such that |h(Pε,κ) − κ| < ε?

Our conjecture is: The answers for Problems 4
and 5 are both positive, i.e. the topological entropy
set of (3) is dense in the interval [0, log 2].
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Appendix A

Entropy of Cycles, Patterns and
Forcing Relation

In this section, some useful lemmas and theorems
for the topological entropy of one-dimensional inter-
val maps are recalled. A suggested reference is
[Alsedà et al., 2000].

Let X be a topological space and let X be the
collection of all continuous maps from X to X. A
cycle (C,φ) consists of a finite subset C ⊆ X and
a permutation φ : C → C. For abbreviation, the
cycle (C,φ) is identified with C itself. For g ∈ X
and C a cycle, C is said to be a cycle of g or, in
other words, g has a cycle C if g|C is a permuta-
tion. Two cycles (C1, φ1) and (C2, φ2) are denoted
by (C1, φ1) ∼ (C2, φ2) if and only if there exists
a homeomorphism τ : conv(C1) → conv(C2) such
that τ ◦ φ1 = φ2 ◦ τ , where conv(S) is the convex
hull of S. The following property is easy to check,
thus the proof is omitted.

Proposition A.1. ∼ is an equivalence relation.

Let X = I or R and let C ⊆ X be a finite
subset, where I is a closed finite interval in R. The
quasipartition of X by C is the set C of all maxi-

mal proper closed intervals J such that
◦
J

⋂
C = ∅,

where
◦
J is the interior of J . It is remarkable that

if K �= J ∈ C, then
◦
K

⋂ ◦
J = ∅. The elements of

C
⋂

conv(C) are called C-basic intervals. g ∈ X is
named by C-monotone if g is constant for each con-
nected component of X\conv(C) and g is monotone
on each C-basic interval.

Let g ∈ X and let K,J ⊆ X be two inter-
vals. Then K g-covers J whenever g(K) ⊇ J . Given
C ⊆ X a finite subset, a g-graph of C, denoted by
G = (V,E), is a directed graph consisting of the
following:

(a) The vertices set V = {all C-basic intervals}.
(b) For K,J ∈ V , if K g-covers J m times, then

there are m edges from K to J .

Remark A.2. The g-graph of C is unique up to label-
ing of E.

Denote by C the set of cycles. P ∈ C∼ is called
a pattern. For any pattern P ∈ C∼, a cycle (C,φ) ∈
P is said to have a pattern P . If a map g has a
cycle C with pattern P , then it is remarked that g
exhibits P .

Let P1, P2 ∈ C∼, P1 is said to force P2 and
denoted by P1 ⇒ P2 if and only if for every g ∈ X
which has a cycle from P1 has a cycle from P2.

Let X be a compact topological space, g ∈ X
and let A be an open cover of X . Define An =
{⋂n−1

i=0 g−iAki
: Aki

∈ A}, then the limit

h(g,A) = lim
n→∞

1
n

logN (An) (A.1)

exists and is called the topological entropy of g on
the cover A, herein N (U) is the minimal possible
cardinality of a subcover chosen from U . The topo-
logical entropy of g is defined by

h(g) = suph(g,A), (A.2)

where supremum is taken over all open cover of X .
The entropy of a cycle C ∈ C is defined by

h(C) = inf{h(g) : g ∈ I has the cycle C}.
Since topological entropy is an invariant, any two
cycles having the same pattern admit exactly one
entropy. This makes the discussion of entropy of a
pattern P comprehensible and is denoted by h(P ).
Note that instead of the cycles in C the same idea
can be extended to a general notion, namely finite
invariant sets.

Considering g ∈ I, C is a finite g-invariant set
with g-graph G. Define its corresponding matrix
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M = (mij) in the following way.

mij =




1, if there is an edge from the ith
vertex to the jth one;

0, otherwise.

Theorem A.3 [Alsedà et al., 2000]. Let C be a
finite invariant set for g. If M is the matrix
of g-graph and g is C-monotone, then h(g) =
max{0, log ρ(M)}, where ρ(M) is the spectral radius
of M .

A corollary follows immediately.

Corollary A.4. Under the assumption of the above
theorem, h(g) = log ρ(M) if and only if M is not
nilpotent.

Remark A.5. If log(x) is extensively defined by log :
R+

⋃{0} → R with log 0 = 0, then Theorem A.3
can be reformulated as h(g) = log ρ(M) by Perron–
Frobenius theorem.

Lemma A.6 [Alsedà et al., 2000]. If P1, P2 are
two distinct patterns such that P1 forces P2, then
h(P1) ≥ h(P2).

Theorem A.7 [Alsedà et al., 2000]. For any
pattern P,

(a) h(P ) = sup{h(Q) : P ⇒ Q and P �= Q}.
(b) If g is C-monotone and M is the matrix repre-

sentation of g-graph, then h(P ) = log ρ(M).

Given two graphs G and H, G is said to force H
(denoted by G ⇒ H) if and only if XH is topological
conjugate to a subshift of XG. From Lemma A.6
and Theorems A.3 and A.7, the following theorem
comes immediately. The proof is omitted.

Theorem A.8. Given two distinct graphs G1 and
G2. If G1 ⇒ G2, then h(G1) ≥ h(G2), where
h(G) = log ρ(M) and M is the matrix representa-
tion corresponding to G. Moreover, if there exist two
distinct patterns P1, P2 where P1 forces P2 such that
G1, G2 are g1- and g2-graphs, respectively, where gi

has Pi for i = 1, 2. Then the following statements
are satisfied:

(i) h(G) = sup{h(H) : G ⇒ H}.
(ii) If gi are Pi-monotone for i = 1, 2, then

ρ(M1) ≥ ρ(M2). Herein Mi is the matrix rep-
resentation of gi-graph of Pi for i = 1, 2.

It is natural to study under what kind of condi-
tion the equality does not hold anymore. If h(P1) �
h(P2), then P1 is said to strongly force P2.

A graph G is said to be irreducible if there exists
a path for any two vertices of G. A shift space XG

is irreducible if and only if its underlying graph is
irreducible.

Lemma A.9 [Lind & Marcus, 1995]. Given a sofic
shift X with transition matrix T, there exists
X1, . . . ,Xk so that Xi is an irreducible sofic sub-
shift of X for each i and

T =



T1 0 0 0
∗ T2 0 0

∗ ∗ . . . 0
∗ ∗ ∗ Tk


 ,

where Ti is the transition matrix corresponding
to Xi for 1 ≤ i ≤ k. Moreover, h(X) =
max1≤i≤k h(Xi).

Theorem A.10 [Lind & Marcus, 1995]. If X is an
irreducible sofic shift and Y is a proper subshift of
X, then h(Y) < h(X).

Remark A.11. It is also shown in [Lind & Marcus,
1995] that Lemma A.9 and Theorem A.10 remain
true for subshift of finite type.

Appendix B

Separation Property

This section studies the separation property of n-
dimensional convex hull in Rn, where R is the set
of real numbers. One of its applications is the con-
straint of local patterns produced by n-dimensional
MCNNs.

B.1. Separation property of convex
hull in Rn

In this subsection, the separation property of n-
dimensional convex hull will be introduced. The
discussion below will focus mainly on those convex
hulls with lattice vertex sets for simplicity.

Definition B.1. Denote X = {1,−1}. U ⊆ Xn is
called separable if there is a hyperplane H in Rn

such that conv(U) and conv(Uc) can be separated
by H, where Uc = Xn\U and conv(E) is the convex
hull of E for E ⊆ Zn.

A necessary condition for separability of U is
then easy to check.

Remark B.2. If U ⊆ Xn is separable and U , Uc both
contain at least two points, then for each u ∈ U
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(respectively Uc), there exists u′ ∈ U (respectively
Uc) such that ‖u − u′‖ = 2, where ‖ · ‖ is the sup-
norm. In other words, there is no isolated point in
a separable set.

Definition B.3. Denote Sn,l ⊆ Xn by

Sn,l = {x = (x1, . . . , xn) ∈ Xn : xk = −1
for all l + 1 ≤ k ≤ n} (B.1)

for 1 ≤ l ≤ n − 1, and Sn,n = Xn. Sn,l is called the
l-dimensional subcube (i-subcube, for abbreviation)
in Rn.

Lemma B.4. Sn,l is separable in Rn for all l ≤ n.
Furthermore, S̃n,l ≡ (Sn,l, Sn,l) ⊆ X2n is also
separable.

Proof. To show that Sn,i is separable, defining the
linear functional g : Rn → R to be

g(x) =
n∑

i=l+1

xi for all x = (xi)ni=l ∈ Rn. (B.2)

Let h(x) = g(x) + (n− l− 1). Then it can be easily
checked that h(x) < 0 for all x ∈ Sn,l, and h(x) >
0 for all x ∈ Sc

n,l. That is, Sn,l and Sc
n,l can be

separated by the hyperplane

H = {x ∈ Rn : g(x) = l − n + 1}. (B.3)

Similarly, consider the linear functional ĝ :
R2n → R defined by ĝ(z) = g(z1) + g(z2), where
z = (z1, z2) ∈ R2n and zi ∈ Rn for i = 1, 2. Then
H̃ = {z ∈ R2n : ĝ(z) = 2l − 2n + 1} is the desired
separating hyperplane in R2n for S̃n,l and S̃c

n,l. This
completes the proof. �

Remark B.5. In general, the separability of U ⊆
Xn does not imply the separability of Ũ ≡
(U ,U) ⊆ X2n. For instance, consider U =
{(−1,−1), (−1, 1), (1,−1)} ⊆ X2. It is easy to check
that U is separable; however, Ũ is not separable.

Conversely, the projection of a separable set is
still separable.

Definition B.6. Given n, k, l ∈ N, k, l < n. Define
the front projection πk : Rn → Rk as

πk(x) = (x1, x2, . . . , xk) ∈ Rk, where
x = (x1, x2, . . . , xn) ∈ Rn. (B.4)

Moreover, the back projection τl : Rn → Rl is
defined by

τl(x) = (xn−l+1, xn−l+2, . . . , xn) ∈ Rl, where
x = (x1, x2, . . . , xn) ∈ Rn. (B.5)

Lemma B.7. Given U ⊆ Xn, let Uk ≡ πk(U) and
Ul ≡ τl(U), 1 ≤ k, l ≤ n. Then Uk and Ul are both
separable if U is separable.

Proof. For simplicity, it suffices to show that Uk

is separable. The separability of Ul can be done
analogously.

If Uk is not separable, then conv(Uk) ∩
conv(Uc

k) �= ∅. That is, there exist x1, x2, . . . , xj ∈
Uk and 0 < t1, t2, . . . , tj < 1, t1 + t2 + · · · + tj = 1
such that t1x1 + t2x2 + · · ·+ tjxj ∈ conv(Uc

k). More-
over, there exist w1, w2, . . . , wj ∈ Xn−k such that
(xi, wi) ∈ U for 1 ≤ i ≤ j, and (y,wi) ∈ Uc for all
y ∈ Uc

k, 1 ≤ i ≤ j. Since conv(Uc) is the convex hull
generated by Uc,

(y, s1w1 + s2w2 + · · · + sjwj) ∈ conv(Uc),
for all y ∈ conv(Uc

k), (B.6)

0 ≤ s1, s2, . . . , sj ≤ 1, and s1 + s2 + · · ·+ sj = 1. In
other words,

(t1x1 + t2x2 + · · · + tjxj , t1w1 + t2w2 + · · · + tjwj)
∈ conv(Uc). (B.7)

However, conv(U) is the convex hull generated
by U , that means

(t1x1 + t2x2 + · · · + tjxj , t1w1 + t2w2 + · · · + tjwj)
∈ conv(U). (B.8)

Thus, conv(U)∩ conv(Uc) �= ∅. This is a contradic-
tion, and the proof is completed. �

Instead of projection, Lemma B.7 can be gen-
eralized to an abstract form.

Theorem B.8. Let U ⊆ Xn+m be separable, V ⊆
Xm. Define Ũ as

Ũ ≡ {u ∈ Xn : There exists v

∈ V such that (u, v) ∈ U}. (B.9)

Then Ũ is separable.

Proof. Using Lemma B.7, it suffices to show that
V � Um, where Um = τm(U).

If Ũ is not separable, then conv(Ũ)∩conv(Ũc) �=
∅. That is, there exist x1, x2, . . . , xk ∈ Ũ and 0 <
t1, t2, . . . , tk < 1, t1 + t2 + · · · + tk = 1 such that
t1x1 + t2x2 + · · ·+ tkxk ∈ conv(Ũc). Moreover, there
exist w1, w2, . . . , wk ∈ V such that xiwi ∈ U for
1 ≤ i ≤ k, and ywi ∈ Uc for all y ∈ Ũc, 1 ≤ i ≤ k.
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Since conv(Uc) is the convex hull generated by Uc,

(y, s1w1 + s2w2 + · · · + skwk) ∈ conv(Uc),
for all y ∈ conv(Ũc), (B.10)

0 ≤ s1, s2, . . . , sk ≤ 1, and s1 + s2 + · · ·+ sk = 1. In
other words,

(t1x1 + t2x2 + · · · + tkxk, t1w1 + t2w2 + · · · + tkwk)
∈ conv(Uc). (B.11)

However, conv(U) is the convex hull generated
by U , that means

(t1x1 + t2x2 + · · · + tkxk, t1w1 + t2w2 + · · · + tkwk)
∈ conv(U). (B.12)

Thus, conv(U)∩ conv(Uc) �= ∅. This is a contradic-
tion, and the proof is completed. �

Next subsection introduces an application of
separation property of n-dimensional convex hull
to n-dimensional MCNNs, where n ∈ N. For sim-
plicity, the theorems will be given for the one-
dimensional case. The general case can be done
analogously.

B.2. An application to multilayer
cellular neural networks

B.2.1. Cellular neural networks with input

One-dimensional CNN with input is of the form,

dxi

dt
= −xi + z +

∑
|k|≤d

akf(xi+k) +
∑
|k|≤d

bkui+k,

(B.13)

for i ∈ Z, d ∈ N, f(x) is a piecewise-linear output
function defined by

y = f(x) =
1
2
(|x + 1| − |x − 1|).

Herein, A = [a−d, . . . , ad] and B = [b−d, . . . , bd] are
called feedback and controlling templates, respec-
tively; z is called a biased term or threshold. The
quantity xi denotes the state at cell Ci, and yi

denotes the output at Ci.
As generally known, stationary solutions x =

(xi) are essential for understanding CNN, in which
their output is called patterns. x is called a mosaic
solution if |xi| > 1 for all i ∈ Z. For a given mosaic

solution x, the output pattern of cell Ci is +, i.e.
xi > 1, if and only if∑

|k|≤d,k �=0

aky i+k +
∑
|k|≤d

bkui+k + a + z − 1 > 0.

(B.14)

Similarly, the output pattern of cell Ci is −, i.e.
xi < −1, if and only if∑

|k|≤d,k �=0

aky i+k +
∑
|k|≤d

bkui+k − a + z + 1 < 0.

(B.15)

Denote by n = 2d. For a given pair of template
A and threshold z, the basic set of admissible local
patterns with “+” state and “−” state in the center
are defined by

B̃(+, A,B, z) = {(y, u) ∈ Xn × Xn+1 : α · y
+ β · u + a + z − 1 > 0}, (B.16)

and

B̃(−, A,B, z) = {(y, u) ∈ Xn × Xn+1 : α · y
+ β · u − a + z + 1 < 0}, (B.17)

respectively, where α = (a−d, . . . , ad), β = (b−d,
. . . , bd), y = (y1, . . . , yn) and u = (u1, . . . , un+1) is
obtained from

[y1, . . . , yd, yi, yd+1, . . . , yn] = [yi−d, . . . , yi, . . . , yi+d]

and

[u1, . . . , ud, . . . , un+1] = [ui−d, . . . , ui, . . . , ui+d],

respectively. In other words, B̃(+, A,B, z) and
B̃(−, A,B, z) represent the sets of output patterns
coupled with input patterns with “+” and “−”
in the center of output patterns, respectively. Let
B(+, A,B, z) = πn(B̃(+, A,B, z)) be the set of
output patterns with “+” in the center and let
B(−, A,B, z) = πn(B̃(−, A,B, z)) be the set of out-
put patterns with “−” in the center. The separation
property of one-layer CNN with input is indicated
in [Ban et al., 2009].

Theorem B.9 [Ban et al., 2009]. Given U ⊆
Xn × Xn+1, there exists (A,B, z) such that U =
B̃(∗, A,B, z) for some ∗ ∈ {+,−} if and only if U
is separable.

The following theorem shows the separation
property of the feasible output local patterns pro-
duced by one-layer CNN with input.

Theorem B.10. Given U ⊆ Xn, there exists
(A,B, z) such that U = B(∗, A,B, z) for some ∗ ∈
{+,−} if and only if U is separable.
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Proof. Without loss of generality, it suffices to show
that the theorem holds for the case ∗ is +. Another
case can be done analogously.

If there exists (A,B, z) such that U =
B(+, A,B, z), then there exists Ũ ⊆ Xn×Xn+1 such
that B̃(+, A,B, z) = Ũ . Thus B̃(+, A,B, z) is sep-
arable by Theorem B.9, the separability of U then
follows from Lemma B.7.

Conversely, construct Ũ from U by

Ũ = {(y, u) : y ∈ U , u = {1}Z(n+1)×(n+1)}.

Then Ũ is separable. By Theorem B.9, there exists
(A,B, z) such that

B̃(+, A,B, z) = Ũ .

This implies B(+, A,B, z) = U , and the proof is
completed. �

B.2.2. Multilayer cellular neural networks

In this subsection, the separation property of
MCNNs is investigated. MCNN is of the form,

dx
(�)
i

dt
= −x

(�)
i + z(�) +

∑
|k|≤d

a
(�)
k f(x(�)

i+k)

+
∑
|k|≤d

b
(�)
k u

(�)
i+k, (B.18)

for some d ∈ N, 1 ≤ � ≤ N ∈ N, i ∈ Z, where

u
(�)
i = y

(�−1)
i , 2 ≤ � ≤ N, (B.19)

u
(1)
i = ui. (B.20)

For simplicity, restrict the discussion for the
case N = 2. The general case N ≥ 2 can be done
via analogous method and mathematical induction.

Two-layer CNN with input can be realized as
the following.

dx
(2)
i

dt
= −x

(2)
i +

∑
|k|≤d

a
(2)
k y

(2)
i+k

+
∑
|k|≤d

b
(2)
k u

(2)
i+k + z(2),

dx
(1)
i

dt
= −x

(1)
i +

∑
|k|≤d

a
(1)
k y

(1)
i+k

+
∑
|k|≤d

b
(1)
k u

(1)
i+k + z(1),

(B.21)

for some d ∈ N, i ∈ Z, where

u
(2)
i = y

(1)
i , u

(1)
i = ui. (B.22)

The feedback templates and controlling templates
of each layer are A(�) and B(�) for � ∈ {1, 2}, and
the threshold of each layer is z(�), � ∈ {1, 2}. Denote
by A = (A(1), A(2)),B = (B(1), B(2)) and z =
(z(1), z(2)). For � ∈ {1, 2}, if (A(�), B(�), z(�)) is given,
then the basic set of admissible local patterns,

B̃(�)(+, A(�), B(�), z(�))

=

{
(y(�), u(�)) ∈ Xn × Xn+1 :

α(�) · y(�) + β(�) · u(�) + a(�) + z(�) − 1 > 0

}
,

and

B̃(�)(−, A(�), B(�), z(�))

=
{

(y(�), u(�)) ∈ Xn × Xn+1 :
α(�) · y(�) + β(�) · u(�) − a(�) + z(�) + 1 < 0

}
,

are determined. As defined in the last section, α(�)

represents the surrounding template of A(�) without
center, β(�) represents template B(�), and y(�), u(�)

represent the output and input patterns of cell C
(�)
i

in �th layer.
Furthermore, let B(+,A,B, z) ⊆ Xn be defined

by y ∈ B(+,A,B, z) if and only if

(a) There exists u ∈ Xn+1 such that (y, u) ∈
B̃(2)(+, A(2), B(2), z(2)).

(b) There exists v ∈ Xn+1 such that (u′, v) ∈
B̃(1)(∗, A(1), B(1), z(1)) for some ∗ ∈ {+,−},
where u′ ∈ Xn is obtained from u by deleting
the entry in the center.

In other words, B(+,A,B, z) consists of the feasi-
ble output patterns of the 2-layer CNN system with
“+” in the center. Similarly, the basic set of admissi-
ble output patterns with “−” in the center, denoted
by B(−,A,B, z) ⊆ Xn, is y ∈ B(−,A,B, z) if and
only if

(a) There exists u ∈ Xn+1 such that (y, u) ∈
B̃(2)(−, A(2), B(2), z(2)).
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(b) There exists v ∈ Xn+1 such that (u′, v) ∈
B̃(1)(∗, A(1), B(1), z(1)) for some ∗ ∈ {+,−}.
The separation property theorem for 2-layer

CNN then follows.

Theorem B.11. Given U ⊆ Xn, there exists
(A,B, z) such that U = B(∗,A,B, z) for some
∗ ∈ {+,−} if and only if U is separable.

Proof. The proof will be given for the case that ∗ is
+, another case can be considered in an analogous
way. For simplicity, denote B(+,A,B, z) = B, and
B̃(�)(+, A(�), B(�), z(�)) = B̃(�) for � = 1, 2.

If there exists (A,B, z) such that U = B, then
B̃(1), B̃(2) are both separable. Let B̂ ⊆ Xn+1 be

defined by

B̂ = {u : u′ ∈ πn(B̃(1))}, (B.23)

where u′ is obtained from u by deleting the
entry in the center. Then B = {y : ∃ u ∈
B̂ such that (y, u) ∈ B̃(2)}. The separability of B
follows by Theorem B.8.

Conversely, if U is separable. Let v =
{1}Z(n+1)×1 , then U2 = {(u, v) : u ∈ U} is separable.
Thus, there exists (A(2), B(2), z(2)) such that B̃(2) =
U2. Similarly, U1 = {(v′, v)} is also separable, there
exists (A(1), B(1), z(1)) such that B̃(1) = U1. Let
A = (A(1), A(2)), B = (B(1), B(2)), z = (z(1), z(2)),
then B = U . This completes the proof. �
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