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PATTERNS GENERATION AND TRANSITION MATRICES IN
MULTI-DIMENSIONAL LATTICE MODELS

JUNG-CHAO BAN AND SONG-SUN LIN

ABSTRACT. This work develops a general approach for investigating pattern
generation problems in multi-dimensional lattice models. Let S be a set of p
symbols or colors, Z a fixed finite rectangular sublattice of Z%, d > 1 and N
a d-tuple of positive integers. Functions U : Z% — S and Uy : Zy — S are
called a global pattern and a local pattern on Zj, respectively. An ordering
matrix X is also introduced for ¥, the set of all local patterns on Zp. For
a larger finite lattice Z g, N > N, A recursion formula is derived to obtain
the ordering matrix X g of X5 from X . Additionaly, the transition matrix
TN (B) is defined for a given basic admissible local patterns set B C X . For
each N > N denoted by X 5 (B), the set of all local patterns can be generated
from B. The cardinal number of ¥ 5 (B) denotes the sum of entries of the
transition matrix T g (B) which can be obtained from T (B) recursively. The
spatial entropy h(B) can be obtained by computing the maximum eigenvalues
of a sequence of transition matrices Ty, (B). Results of this study can shed fur-
ther light on the set of global stationary solutions in various lattice dynamical
systems and cellular neural networks.

1. INTRODUCTION

Many systems have been adopted as models for spatial pattern formation in biol-
ogy, chemistry, engineering and physics. Lattices play important roles in modeling
underlying spatial structures. Notable examples include models arising from biol-
ogy|7, 8, 21, 22, 23, 32, 33, 34], chemical reaction and phase transitions [5, 6, 11,
12, 13, 14, 24, 40, 43], image processing and pattern recognition [11, 12, 15, 16, 17,
18, 19, 25, 39], as well as materials science[10, 20, 26]. Stationary patterns play a
critical role in investigating the long time behavior of related dynamical systems. In
general, multiple stationary patterns may induce complicated phenomena of such
systems.

In lattice dynamical systems(LDS), especially cellular neural networks (CNN),
the set of global stationary solutions (global patterns) has received considerable
attention in recent years (e.g.[1, 2, 3, 27, 28, 29, 30, 31, 35, 36]). When the
mutual interaction between states of a system is local, the state at each lattice point
is influenced only by its finitely many neighborhood states. The admissible ( or
allowable ) local patterns are introduced and defined on a certain finite lattice. The
admissible global patterns on the entire lattice space are then glued together from
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2 JUNG-CHAO BAN AND SONG-SUN LIN

those admissible local patterns. More precisely, let S be a finite set of p elements
(i.e.,symbols, colors or letters of an alphabet). Where Z¢ denotes the integer lattice
on R?% and d > 1 is a positive integer representing the lattice dimension. Then,
function U : Z? — S is called a global pattern. For each o € Z%, U(a) can be
written as u,. The set of all patterns U : Z¢ — S is denoted by

d _ oz°
Ep:S ,

where Eg is the set of all patterns with p different colors in d-dimensional lattice. As
for local patterns, i.e., functions defined on (finite) sublattices, for a given d-tuple
N = (N1, Ny, -+, Ny) of positive integers, let

Zy = {(a1, a2, -+ yaq) 1 1 < ap, < N, 1 <k < d}
be an Ny x Ng x --- Ny iinite Egct@ggularfvlattice. Denoted by N > N if m > Ng
for all 1 < k < d, where N = (N1, Na, ..., Ng) is a d-tuple positive integers. The set
of all local patterns defined on Zy is denoted by
Env=Xn,p,={Ulzy :U € EZ}.

Under many circumstances, only a(proper) subset B of ¥ is admissible (allowable
or feasible). In this case, local patterns in B are called basic patterns and B refers
to the basic set. In a one dimensional case, S consists of letters of an alphabet, and
B is also called a set of allowable words of length N.

Consider a fixed finite lattice Zy and a given basic set B C Xy. For a larger
finite lattice Z ¢ D Zy, the set of all local patterns on Z ¢ which can be generated
by B is denoted as X ¢ (B). Indeed, as in [41], ¥ ¢(B) can be characterized by

YeB) ={ UcXg:Usgn=Vy forany ac Z with Zgsn C Zg
and some Vy € B},

where
a+ N ={(ar+ B, i+ Ba): (B1, -, Ba) € N},
and
UatnN = VN means ua4p = vg for each B € Zy.
Similarly, the set of all global patterns which can be generated by B is denoted by
X(B)={U ¢ Ez :Ugin = Vi for any o € Z¢ with some Vi € B}.

The following questions arise :
(1) Can we systematically construct ¥ ¢(B) from B for

Ze DZN?
il
(2) What is the complexity (or spatial entropy) of {3 ¢(B)}esn ?

The spatial entropy h(B) of X(B) is defined as follows :

Let

(L.1) P (B) = card(S g (B)),

the number of distinct patterns in X ¢ (B). The spatial entropy h(B) is defined as

1
(1.2 (B)= Jim 08T (B)
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which is well-defined and exists (e.g. [13]). The spatial entropy, which is analo-
gous to topological entropy in dynamical system, has been used to measure the
complexity in LDS (e.g. [13], [42] ).

In a one dimensional case, the above two questions can be answered by using the
transition matrix. Indeed, for a given basic set B, the transition matrix T(B) can be
associated with to B. Nest, the spatial entropy h(B) = log A\, where ) is the largest
eigenvalue of T(B) (e.g. [29, 40]). On the other hand, for higher dimensional cases,
constructing ¥ g (B) systematically and computing I' ¢ (B) effectively for a large N
are extremely difficult.

In the two dimensional case, Chow et al. [13] estimated lower bounds of the
spatial entropy for some problems in LDS. Later, using a ”building block” approach,
Juang and Lin [29] studied the patterns generation and obtained lower bounds of the
spatial entropy for CNN with square-cross or diagonal-cross templates. For CNN
with general templates, Hsu et al [27] investigated the generation of admissible
local patterns and obtained the basic set for any parameter, i.e., the first step in
studying the patterns generation problem. Meanwhile, given a set of symbols S
and a pair consisting of a horizontal transition matrix H and a vertical transition
matrix V, Juang et al [30] defined m-th order transition matrices T]({m& and Tgn&

for each m > 1 ,thus obtaining the recursion formulae for both Tlgm& and T I({m)

Furthermore, they demonstrated that TI({m& and TI({m& have the same maximum

log Am
m

eigenvalue A, and spatial entropy h(H,V) = lim . For a certain class of
m— 00

H,V, the recursion formulae for T]({m& and Tl(im& yield recursion formulae for A,
explicitly and the exact entropy. On the other hand, for the patterns generation

problem, Lin and Yang [36] worked on the 3-cell L-shaped lattice, i.e., N= H] They
developed an algorithm to investigate how patterns are generated on larger lattices
from a smaller one. Their algorithm treated all patterns in ¥ ¢(B) as entries and
arranged them in a ”counting matrix” Mg (B). A good arrangement of M ¢(B)

implies an easier extension to M j%(B) for a larger lattice N O N and effective
counting of the number of elements in ¥ ¢(B). Upper and lower bounds of spatial
entropy have also been obtained. Furthermore, the patterns generation problem is
related to matrix shift [13], as discussed in detail in section 3.4.

Motivated by the counting matrix My (B) of [36] and the recursion formulae
for transition matrices in [30], this work introduces the ”ordering matrix” Xy for
Yorxoe to study the patterns generation and obtain recursion formulae for X,, for
Yorxne where £ > 1 is a fixed positive integer and n > 2. The recursion formulae
for X,, imply the recursion formula for the associated transition matrices T, (B)
of Yopxne(B), i.e., a generalization of the recursion formulae in [30]. Notably, a
different ordering matrix 5(2 for Yosxor induces different recursion formulae of )Nin
for Yopxne and 'f;(B) Among them, X, defined in (2.9) yields a simple recursion
formula (3.16) and rewriting rule (3.14), allowing us to compute the maximum
eigenvalue of T, effectively. The computations or estimates of A,, are interesting
problems in linear algebra and numerical linear algebra. Owing to the similarity
property of (3.16) or (3.14) of transition matrices {T, }22,, this work demonstrates
that for a certain class of B, A, satisfies certain recursion relations and h(B) can
be computed explicitly.
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The rest of this paper is organized as follows. Section 2 describes a two dimen-
sional case by thoroughly investigating Y45 and introducing the ordering matrix
X of patterns in Xoyo. The ordering matrix X,, on Yoy, is then constructed from
X recursively. Section 3 derives higher order transition matrices T,, from T3 and
computes A, explicitly for a certain type of T5. Finally, section 4 studies a three
dimensional case and explores in further detail the structure of the ordering matrix
on Yayoxo. A generalization is also made for higher dimensional cases.

2. TwWO DIMENSIONAL PATTERNS

This section describes generation of two dimensional patterns. For clarity, two
symbols, i.e., § = {0,1}, are studied first. An ordering of patterns for ¥, xm,
as lexicographical ordering for a one-dimensional case is then defined. On a fixed
finite lattice Zmm, xmy, & Ordering X = Xm, xmy O0 Zm, xm, 1S given by

(2.1) x((a1, a2)) = ma(on — 1) + a2,
ie.,
mo 2mo mims
(2.2) : : : :
1 mo + 1 (mp —1)mg +1

The ordering x of (2.1) on Z,,, xm, can now be passed to ¥, xm, . Indeed, for
each U = (Uay as) € Ly xmay, define

X(U) = Xmixma (U)

(2.3) my  my
= 14+ Z Z ua17a22m2(m17°‘1)+(m270‘2).
a;=1as=1

Obviously, there is an one-to-one correspondence between local patterns in ¥,,, xm,
and positive integers in the set Nomim, = {k € N : 1 < k < 2m1™2} ) where N
denotes the set of positive integers. Therefore, U is referred to herein as the x(U)-th
element in X,,, xm,. Identifying the pictorial patterns by numbers x(U) is a highly
effictive means of proving theorems since computations can now be performed on
x(U). In a two dimensional case, we will keep the ordering (2.1)~ (2.3) x on
Zy, xmy and Yo, xm,, Tespectively.

2.1. Ordering Matrices. For 1 x n pattern U = (ug),1 < k < n in Xj4,, as in
(2.3), U is assigned the number

(2.4) =X (U) =143 w2 b,
k=1
As denoted by the 1 x n column pattern z,,;,
Up, Up,
(2.5) Tpg= | ! or
Uy U1

In particular, when n = 2, as denoted by x; = x4,

Z:1+2’U41+U2
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and

(2.6) ;= { 2 ] or |2

Uy Uy

A 2 x 2 pattern U = (uq, a,) can now be obtained by a horizontal direct sum of
two 1 x 2 patterns, i.e.,

Tivis = Tiy D i,

2.7)
= |

Uy,2 U222 Uy 2 | U2,2
or
Uil U2,1 Uil | U2,1

where
(28) =1+ 2uk71 + Uk, 25 1<k<2.

Therefore, the complete set of all 16(= 22%2) 2 x 2 patterns in Ya«2 can be listed
by a 4 x 4 matrix X = [x;, ;,] with 2 x 2 pattern x;, 4, as its entries in

0 ofo 0[1 0]0 0[1
0 00 00 01 01
1] 1]0 1]1 1/0 1)1
(29 |o] 0/0 0|0 01 01
0 0lo 0[1 0]0 0[1
1 10 10 1)1 11
1] 1/0 1)1 1]0 1)1
1] 1/0 10 1)1 1)1

It is easy to verify that

(210) X(xil’iz) = 4(21 — 1) + 19,

i.e, we are counting local patterns in 5.9 by going through each row successively
in Table (2.9). Correspondingly, Xs can be referred to as an ordering matrix for
Yoxa2. Similarly, a 2 x 2 pattern can also be viewed as a vertical direct sum of two
2 x 1 patterns, i.e,

(211) Yji1.g2 = Yjix D Yjas

where

yi = [wa wze ] or [ung Juse ],

and

(2.12) Ji =1+ 2u1y + uay,
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1 <1<2. A4x4matrix Yo = [y;, ;,] can also be obtained for Xox». i.e., we have

ofo] [o[1]  [1]0]

o
o
o
=
=
o
[ERN
[

0|0 00 0|0 0/0

o
o
o
=
=
o
[ERN
[

(2.13) 01 01 0|1 01

0|0 01 10 11
110 110 1|0 1/0

0|0 01 10 11
1)1 1)1 11 11

The relation between X3 and Yo must be explored. Indeed, from (2.12), uy; can
be solved in terms of jj, i.e., we have

jp— 1
(2.14) ury = [ 5
and
, Ji—1
(2.15) uzy = i — 1= 25—,
where [ ] is the Gauss symbol, i.e., [r] is the largest integer which is equal to or

less than r. From (2.8), (2.12), (2.14) and (2.15), we have the following relations
between indices i1, 73 and ji, ja.

2 .
. i — 1 _
(2.16) =14y 2,
k=1
2 i — 1
(2.17) =1+ {ig—1-2[E—]}227F
k=1
and
2 1
(2.18) n=1+Y [”T] 92-L.
=1
: -1
(2.19) i2=1+Z{jz—1—2[‘”T]}22—l.
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From (2.16) and (2.17), (2.9) or X can also be represented by y;, j, as

Y11 Y2 Y21 Y22
(2.20) X, = Y1,3 Y4 Y23 Y24
Y31 Y32 Ya1 Ya2
Y33 Y34 Y43 Ya4

In (2.20), the indices j1, jo are arranged by two Z-maps successively as

1 — 2

(2.21) /
3 — 4

i.e., the path from 1 to 4 in (2.21) is Z shaped and is then called a Z-map. More
precisely, X5 can be decomposed by

Yo Yoo |
2.22 X5 = ' '
( ) 2 L }/2;3 )/2;4 ]
and
[ Ye,1  Yk,2 ]
2.23 Yo, = ’ ’
( ) 2k | Yk,3 Yka |

Where X is arranged by a Z-map (Y2) in (2.22) and each Ya, is also arranged
by a Z-map (yx;) in (2.23). Therefore, the indices of y in (2.20) consist of two
Z-maps.

The expression (2.20) of all local patterns in ¥ox2 by y can be extended to all
patterns in Yoy, for any n > 3. Indeed, a local pattern U in Y54, can be viewed
as the horizontal direct sum of two 1 x n local patterns, i.e., U; and Us, and also
the vertical direct sums of n many 2 x 1 local patterns. As in (2.9), all patterns in
Yoxn can be arranged by the ordering matrix

(2.24) X = [ Tnsiyin |5

a 2" x 2™ matrix with entry ., i, = Tnyi; BTnsi,, where x(Ur) =41 and x(Us) = iz
as in (2.4) and (2.5), 1 < 41,i3 < 2. On the other hand, the two 2 x 2 patterns
Yi1.4, and yj, ;. can be combined to become a 2 x 3 pattern y;, ;, js, since the second
row in yj;, j, and the first row of y;, j, are identical, i.e.,

Yjrgads = Yirge & Yja,ia
(2.25)
= Y OYj D Yjss
Herein, a wedge direct sum & is used for 2 x 2 patterns whenever they can be

combined. In this way, a 2 X n pattern y;, ... ;. is obtained from n — 1 many 2 x 2
Patterns yj, o, Yjn,jss * " Yin-1.dn by

n

Yjign = Yjr,ge é Yia.js @ T @ Yjn_1,4n
(2.26)
= Y DY, D DYy,
where 1 < jr < 4, and 1 < k < n. Now, X,, in y expression can be obtained as
follows.
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Theorem 2.1. For any n > 2, Yoy, = {Yj, - j. }, where y;, ... ;. is given in
(2.26). Furthermore, the ordering matriz X,, can be decomposed by n Z-maps
successively as

(227) Xn _ |: Yn;l Yn;2 :| ,

Yn;3 Yn;4

(2.28) Y,

301 Jk

_ { Yoign, gl Yo, de.2 ]
b
Yosjn,ednsd Yngi,o j.a
for1<k<n-—2, and
1 dnol Yjnse gno1,2
(2.29) Yoiji e g = [ yj,h ’J, " yj,l ] ' :| :
y.]17..'7]7L7173 y.]17..'7.77l7174

Proof. From (2.12), (2.14) and (2.15), we have following table:

7 1 2 3 4

U1, 0 0 1 1

Uz, 0 1 0 1
Table 2.1

For any n > 2, by (2.12),(2.14) and (2.15), it is easy to generalize (2.18) and (2.19)
to

. - - jl -1 n—l
(230) i1 = 1+ Z [T]Z ’
1=1
and
(2.31) ine =1+ Zn: {ji—1- 2[E]}2n—l.
7 1=1 2
From (2.30) and (2.31), we have
-1

(2.32) Int1;1 = 2ipg — 1+ [%]7
and

. . ) jne1 — 1
(2.33) ini12 = 2ing — 1+ {np1 — 1 — 2[%}}.
Next, by induction on n, the theorem follows from last two formulae and the Table
2.1. The proof is complete. [ |

Remark 2.2. The ordering matrix on ¥,,x, can also be introduced accordingly.
Section 4 provides further details. However, when spatial entropy h(B) of %(B)
is computed, only )\, the largest eigenvalue of T, (B), must be known. Section 3
provides further details.
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2.2. More Symbols on Larger Lattices. Consider the number of symbols is
larger than two on Zsxo, ie., S = {0,1,2,--- ,p — 1}, p > 3. Formulae in the
last subsection can be modified from 2 to p appropriately and similar results can
be obtained. Here, only some key formulae are mentioned. Additionally, (2.8) and
(2.12) are replaced by

(2.34) i =1+ pur1 + up 2,
(235) js =1+ pui,s + U2, s,

1<d,, jo<p? r=12ands=1,2.
Now, the ordering matrices Xo = [z;,,] and Y2 = [y;, j,] are both p* x p?
matrices. If we express Xs by y, then we have

Y, Y,
0 ‘< Y,,:+1 Y?p |
Y(p—'l)p+1 Yi'”Q PXPp
with
Yji,1 o Yhnp
(237 T
Yiso-1p+1 = Yinp? 1pup

The higher ordering matrices X,, can also be expressed in y as in Theorem 2.1.
Details are provided later.

Next, as we encounter in CNN;, the system is often given by a 3 x 3 (or m x m
with m > 3) template (e.g.[15, 16, 17, 18, 19, 29]). Here, local patterns ,,xm
must be studied, where m > 3. The concept introduced in the last section can be
generalized to cover this situation. Here, a case is first treated when m is even.
Indeed, assume that m = 2¢, £ > 2 and S contains p elements. Then, 2¢ x 2/
lattice Zigsxor can be viewed as two ¢ x 2/ lattices Zyxor and two 2¢ x ¢ lattices
Zsyw¢. Furthermore, Zyyop and Zosx ¢ can be viewed as two £ x £ lattices Zyw, glued
together vertically and horizontally, rekiiesiyalspligatherftdlowing, £ x £ lattice Zyy

is taken as a basic unit. 90
20
2/
PSf 1 t 4 !
rag replacements ‘ / c £
20 11
20 12 |
b 2£a d e 2€ q\
¢ 7 b e
PSfrag replacements ’ A
2/ 11 ? |

2£ a 7;2 - b . - o . E a
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PSfrag replacements Q22
¢! ¢!
| f h ‘fa| g h
a £y
i . €¢
21,1 Ji1
il,zb € g Jj1,2b e f
i2,1J/ g2

i2,2 -~ c = = d — j2’2 = Cc —= d —

Now, the ordering matrices Xy = [z;, 4,] and Yo = [y, ;,] are introduced to Xosxae
as follows. Given a U = (Uq,,0,) € L2ex2¢, define

0 l
(238) iﬁﬂ‘z = Z Z udl:’dz:pf(f—ozl)-i-@—(m’

OL1:1 a2:1

(2.39) a; = (r —Dl+ a1, as = (rg — 1)+ ag,
and
(2.40) ik =14 qiga +ig,2,

here, r1, ro, k=1,2, and

£ £
) = 3 3 e

a1:1 a2:1

(242) 6[\1 = (52 - 1)4 + aq, 6[\2 = (51 — l)é + Qag,
and
(2.43) Ji=1+qu1+Ji2

here, s1, s9, Il = 1,2, and
(2.44) qg=p".
From (2.38)~ (2.44), (2.18) and (2.19) are replaced by

(2.45) =1+ (2 g,
q q
and
2 . 1
(2.46) =1+ (- 1- q[“T‘}}qH.
k=1

From (2.45) and (2.46), X, can be expressed by y;,;, as in (2.36) and (2.37) by
replacing p with ¢, i.e.,

Y; Y, Y,

(2.47) - Yo Yoo e Yo
. 2 = . . . . )

Y(q—l)q+1 Y(q—l)q+2 T Yq2

axq
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with
Yji

Yji,q+1
(2.48) o

Yj1,(¢—1)q+1

11

Yij1,q
Yj1,2q

yjlng qxq

Now, recursion formulae can be stated for a higher ordering matrix X,, =

[Znsiy in]qnxqn as follows.

Theorem 2.3. Assume that we have p symbols, p > 2 and let ¢ = pﬂ, {>2. For
any n = 2, Yooxne = {Yj1jasee ju }o WRETE Yjiy o G = Yja o DYa ja D+ BYjy s
1< < q2 and 1 < k < n. Furthermore, the ordering matriz X,, can be decom-

posed by n Z-maps successively as

Yn;l Yn;2 Yn;q
Yoiq+1 Yoiq+2 Yii2q
(2.49) X, = , ) :
Yn;(qfl)qﬂ Yn;(qfl)q+2 Yn;q2
Yoiju,gn =
(2.50) Yoijnse sl Yoijn e ns2 Yosjee inoa
: Yoijn, o na+l Yoijn e nia+2 Yoiji, k2
Yoijsodmo(a=1a+1 Yoy, e, (g—1)g+2 Yosn, o vinra?
for1<k<n-2,
KL;jl?“‘ 7]”71 =
251 Yji, gn-1,1 Yji, - gn-1,2 Yjv, - dn-1,9
(2.51) Uiy Yoo dnorsgt?

WJn—1,9+1

Yjv,e dn-1,(g—1)g+1

2Jn—

yjl s dn—1,(g—1)q+2

Y1, in—1,2q

Yjr,e dn-1,q2

Proof. By taking Z,., as a basic unit, 2n Zyxy in Zoyxn¢ can be ordered by

n| 2n

: : and
2 | n+2

1| n+l

for x and y, respectively. Now, (2.30) and

(2.52)

2n-1 | 2n
4
1 2

(2.31) are replaced by

. n -1 o
inl = 1+ Z[Ji]q
s=1 q
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and

. - . ‘S -1 n—s
(2.53) i = 14 3 (s = 1= [P

s=1

(2.32) and (2.33) are replaced by

. . ‘n -1
(2.54) int1:1 = Qingt — (¢ — 1) + [j%]a
and
. . . jn+1 -1
(2.55) int12 = Qin2 — (¢ — 1) + {jns1 — 1 —q[———]}.
Table 2.1 is replaced by
j 12 - q q+1 g+2 -~ 2¢ - ¢—q+1
[ 7 ] 0 0 0 1 1 1 q—1
j—l—q[%} 01 -+ gl 0 1 e B 0
Table 2.2
By induction on n as in proving Theorem 2.1, the results follow. [

Next, the local m; X my patterns are first extended to even 2¢ x 2¢ patterns,
where 2¢ is the smallest positive integer which is greater than m; and msy. The
study of Yopx2¢ is then proceeded with as in the previous paragraphs.

Obviously, the situation becomes more complex when a given larger lattice
Z., «mcontains many symbols. However, the above theory can also be applied to
derive recursion formulae for higher ordering matrices X,, from X5, n > 3.

3. TRANSITION MATRICES

This section derives the transition matrices T, for a given basic set . For sim-
plicity, the study of two symbols S = {0, 1} on 2 x 2 lattice Zyxo in two dimensional
lattice space Z? is of particular focus. The results can be extended to general cases.

3.1. 2x 2 systems. Given a basic set B C Yoo, horizontal and vertical transition
matrices Ho and V5 can be defined by

(3.1) Hy = [hi, 3,] and Va = [vj, 5,]

, two 4 X 4 matrices with entries either 0 or 1 , according to following rules:

hil,iz = 1 Zf Tiyin € B,
(32) { =0 if T4y iy € Mox2 — B,
and

vi, s =1 if vy, €B
3.3 J1:32 . J1,72 ’
( ) { =0 Zf Yi1,jo S EQXQ - B.
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Obviously, hi, i, = vy, j,, where (i1,i2) and (j1, j2) are related according to (2.16)~(2.19).
Now, the transition matrix T for B can be defined by

TQ = TQ (B)

Vi1 V1,2 V2,1 V22
(34) 3 5 3 3
V1,3 V14 V23 V24
V31 V32 Vg1 Vg2
V33 U344 Vg3 Vg4
Define

(3.5) Vjs oy vin = Vjnrja * Vjads * " Vjn_1,jns
and

Tn = [/Uj17j27'“7jn}7
then the transition matrix T,, for B defined on Zoy, is a 2™ x 2™ matrix with entries
Vj, - 4n, Which are either 1 or 0, by substituting y;, ... ;. by v; ... ;, in X, see
(2.27)~(2.29).
In the following, we give some interpretations for T, one from an algebraic per-
spective and the other from Lindenmayer system (details can be found in Remark
3.2 ). For clarity, T3 can be written in a complete form as

V1,101,1 V1,1V1,2 V1.2V21 V12VU22 U21V11 V2,1V1,2 V22VU21 U22U22
V1,1V1,3 V1,1V1,4 V1,2V23 V12VU24 VU21V13 V2,1V1,4 UV22V23 U22U24
V1,3U3,1 V1,3U3,2 V1,4V4,1 UV1,4V42 V23V31 V23V32 V24V41 V24042
V1,3V3,3 V1,3U34 UV1,4V43 V14V4,4 V23U33 VU23VU34 U24VUq3 V24V44
U3,1V1,1 U3,1V1,2 U3,2V2,1 U32VU22 Vg 1V11 V41V12 V42V21 V42022
U3,1V1,3 VU3,1V1,4 U32V23 U32U24 V41V13 V4,1V1,4 U42VU23 V42024
V3,3U31 VU33VU32 U34V41 U34Vs2 V43V31 V43VU32 UgqU41 V44042
V3,3V3,3 U3,3U34 U34V43 U34V44 Vg3VU33 Vs3VU34 V44V43 V44044

From an algebraic perspective, T3 can be defined through the classical Kronecker
product (or tensor product) ® and Hadamard product ®, (e.g. [9]). Indeed, for any
two matrices A = (a; ;) and B = (bg,), the Kronecker product (tensor product) of
A ® B is defined by

On the other hand, for any two n x n matrices
C= (CiJ') and D = (di,j)7

where ¢; ; and d; ; are numbers or matrices. Next, Hadamard product of C ® D is
defined by

(38) C ® D= (Ci,j . d@j),

where the product c; ; - d;; of ¢; ; and d; ; may be a multiplication of numbers,
numbers and matrices or matrices whenever it is well defined. For instance, ¢; ; is
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a number and d; ; is a matrix.

Denoted by
AL
(3.9) Ty = [ T, ] ,
where T}, is a 2 X 2 matrix with
Vg1 Vg2
3.10 T, = ’ ’ .
(8.10) ¥ [ Uk3  Uka }

Next, using Hadamard product, (3.6) can be written as

V1,1 V12 V21 V22 v Ty Ty Th
(3.11) Ts = V1,3 V14 V23 U4 o I3 Ty T3 T4

V3,1 U32 V41 V42 W T, T Ty |’

V33 V34 V43 Va4 T35 T, T3 T,

and can also be written by Kronecker product with Hadamard product as

1 1 T Ty
- (e |11 ]e[n 7]
where (T2)4x4 is interpreted as a 4 x4 matrix given as in (3.4). Hereinafter, (M) xk

is used as the k x k matrix; its entries may also be matrices.
Furthermore, by (3.9) and (3.12), T3 can also be written as

T, oTy To®Ts
T30Ty, Ty0Ty |-

(3.12)

(3.13) T; = [
Now, from the perspective of Lindenmayer system, (3.13) can be interpreted as a
rewriting rule as follows:

To construct T3 from Ty, simply replace T} in (3.9) by T) ® Ta, i.e,

vt vgoTo
3.14 T — T, © Ty = ’ ’ .
(3.14) F k 2 [ vE,3T3 vk aTy ]
Now, T3 can be written as
vi1Tr v12de vaTh v Th
v1,313 v1,4T4 va3T3 w2 4Ty
3.15 Ty = ’ ’ ’ ’
( ) 3 U3,1T1 03,2T2 U4,1T1 U4,2T2
v33Ts v3.4Ty w4375 w447y

Since vy ; is either 0 or 1, the entries of T3 in (3.15) are T}, i.e, T can be taken
as the ”basic element” in constructing T,, ,n > 3. As demonstrated later, (3.14) is
an effective means of constructing T, 7 from T,, for any n > 2.

Now, by induction on n, the following properties of transition matrix T,, on
Zs, can be easily proven.

Theorem 3.1. Let Ty be a transition matrix given by (3.4). Then, for higher order
transition matrices T,,, n > 3, we have the following three equivalent expressions
(I) T,, can be decomposed into n successive 2 X 2matrices (or n-successive Z-maps)
as follows:
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T = { Tosjay gt T gns2 }
n391, 0 5Jk . . . . ’
Tn;]la"'a]h?’ Tn;]la"'a]k74
for1<k<n-—2and

T .. . _ | Y, el Vi gno1,2
M3iJ1y s Jn—1 — .

Uji,odn—-1,3  Uji, jn—1,4
Furthermore,
| vk Th—1 vk 2Th—1;2
(3.16) Ty = .
Vk,3Tn—1:3 VkaTn—1;4

(II) Starting from

(T T3
TQ_(T:s T4>’

Vg1 Vg2
Tk = )
Vg,3 Vka4a

where T, can be obtained from T,,_1 by replacing Ty by T, ®@Ta according to (3.14).

with

(117)

T, T
T, = (Tn_1)271,—1><2n71 O) ( Fon—2 ® ( T; Ti ) ) ,

where Eqr is the 2% x 28 matriz with 1 as its entries.

Proof.

(I)The proof is simply replaced Y;,.j, ... j, and yj, ... j. by Thj, ... j, and vj, .. 5.
in Theorem 2.1, respectively.

(IT) follow from (I) directly.

To Prove (III), from (I) we have

Tn'l Tn'2
I L
|: Tn;3 Tn;4 :|

Additionally, base on (3.16), following formula is derived.

V1,101 vi2Th2 v21Th1 v22Th:0
V1,300:3 vi4Tha v23Th3 v24Th4

T f—
" V31001 v32Th2 va1Th  v42T0:0
V33103 v34Tna v43Th3 V44104
T Ty
= (Tn_1)2n—1><2n71® Fon—2 ® T, T, .
The proof is complete. [ ]

Remark 3.2. While studying the growth processes of plants, Lindenmayer, e.g.[38],
derived a developmental algorithm, i.e., a set of rules which describes plant devel-
opment in time. Hereinafter, a system with a set of rewriting rules is referred to
as Lindenmayer system or L-system. From Theorem 3.1(III), the family of transi-
tion matrices {Ty},>2 is a two-dimensional L-system with a rewriting rule(3.16).
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Similar to many L-systems, our system T, also enjoys the simplicity of recursion
formulae and self-similarity.

As for spatial entropy h(B), we have the following theorem.

Theorem 3.3. Given a basic set B C Yoxo, let A, be the largest eigenvalue of the
associated transition matriz T, which is defined in Theorem 3.1. Then,

log A\,
(3.17) h(B) = lim —82%

n— 00 n

Proof. By the same arguments as in [13], the limit (1.2) is well-defined and exists.
From the construction of T,,, we observe that for m > 2,

Crocn(B) = 3 (TR i
(3.18) tshs2
= #(Tp ).

As in a one dimensional case, we have

log #(T' ")

lim = log An,
m—oo m
e.g. [42]. Therefore,
logT’
WB) = lim 08Tmxn(5)
m,n— o0 mn
1 logT,xn (B
T e G
. log)‘n
= lim .
n—oo n
The proof is complete. [ ]

3.2. Computation of Maximum Eigenvalues and Spatial Entropy. Given a
transition matrix Ta, for any n > 2, the characteristic polynomials |T,, — A| are of
degree 2". In general, computing or estimating the largest eigenvalue A\, = A\,,(T2)
of |T,, — A| for a large n is relatively difficult. However, in this section, we present
a class of Ty in which A, (T3) can be computed explicitly. Indeed, assume that T

has the form of [ g i } in (3.9), i.e,
_ _ o a a9
(3.19) Tl_T4_A_[a3 " }
and
(3.20) I, =T3=B= b b )
bs b

where a, as, as, b, by and bs are either 0 or 1.
We need the following lemma.
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Lemma 3.4. Let A and B be non-negative and non-zero m X m matrices, respec-
A aB
6B A

tively, and o and B are positive numbers. The mazimum eigenvalue of [

is then the mazximum eigenvalue of

A+ /apB.

Proof. Consider

A-X aB | _ 0
BB A-X| 7
For |A — A| # 0, the last equation is equivalent to

A=) B B
’ 0 (A—)) —aBB(A-)"'B ‘—0’
11— aB((A-X)""B) =o.

Then, we have

|[A++aBB—X=0 or |[A—+/aBB -\ =0.
Since A and B are non-negative and « and (3 are positive, verifying that the maxi-

62 ai } and A+ +/afB are equal is relatively easy. The

proof is complete. [ ]

mum eigenvalue A of [

Now, we can state our computation results for \,(T2) when T satisfies (3.19)
and (3.20).

Theorem 3.5. Assume that Ty = [ g i } and A = { ; 6;2 } and B =
3

[ bb3 bb2 } where a, b, az, as, by, bs € {0,1}. Forn > 2, let A\, be the largest eigen-
value of
T, — Al =0.
Then
(3.21) An = Qni + Brot,
where oy and By satisfy the following recursion relations:
(3.22) ap41 = aoy + G,
(3.23) Betr = /(azay + bafB)(asar + bsfr),
for k>0, and
(3.24) ag=F =1.

Furthermore, the spatial entropy h(Ts2) is equal to log&., where &, is the maximum
root of the following polynomials Q(€):
(I) ifa2 = asz = 1,

Q)= 48 —a)’+(v* —49)(§ —a)?

—72€% — 2v(2b — ay)€ — (2b — av)?,

(3.25)
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where

(3.26) v = by + bs and § = bobs.
(IT) if asaz =0 and azbs + azbs =1,

(3.27) Q) =& —a? — 66 +ad —b.

Moreover, if azas =0 and asbs + asbs = 0, then h(T2) = 0.

Proof. Owing to the special structure of T, it is easy to verify that for any k > 2,
we have

_ | Ax By
Tk - |: Bk Ak :| )
and
Ty = { Aps1 Bin ]
* Biy1 Apgr |’
here
o _ aAk agBk
(3.28) Ak+1 =T, 0 A= l: asBy  aAg :| ,
and
B | bAr beBy
(329) Bk+1 =T,6B= |: bsB. DA, R

Ay = A and By = B. Now by Lemma 3.4,

ITrt1 — Ang1| =0,
implies
(3.30) |An+1 + Bry1 — Ang1] =0.
Let

ap=1 and Gy=1.

By induction on k, 1 < k < n, and using (3.28),(3.29),(3.30) and Lemma 3.4, it is
straight forward to derive

(3.31) |k Ap—k+1 + BeBn—k+1 — Ant1] = 0,

where oy, and f, satisfy (3.22) and (3.23). In particular,

(3.32) an = acp_1+bB, -1,

(3.33) Bo = {(azan—1 +b2Bn-1)(azan_1 +b3fa_1)}?,
and

/\n+1 = ap + ﬁn

This proves the first part of the theorem.
The rest of the proof demonstrates that h(T2) = log A, where A, is the maximum
root of Q(A). From (3.33), we have

B2 =azaza?_; + (a2bs + asba)a,—18n-1
(3.34)
+ bebsB2_.
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Now, in (3.34), a,—1 is solved in terms of 3,_; and 3,. Next, a,_1 and «,, are
substituted into (3.32) to obtain difference equations involving (3,11, 8, and B,—_1.

There are two cases to be studied:

Case I. If ao = a3 = 1, then we have

1 1

(3.35) on—1 = S{=Bn-1 + (46, + (v* — 46)57_1)* }-
Substituting (3.35) into (3.32) yields

{45+ (P = 49)B3} = 7B+ (2= a7)fnr
(3.36)

+ a{4B] + (7 —46)5] ).
Now, let
Br

3.37 n = )
(3.37) =5

and after dividing (3.36) by 5,—_1, we have
(3.38)€n {46211 + (72 — 40)}2 =& + (20— a7) + a{4€2 + (47 — 40)} 2.

(3.38) can be written as the following iteration map:

(3.39) Enr1 = G1(&n),

where

(3.40) C1(€) = {45+ 299(6) + (O},

and

(3.41) 9(6) = (2~ )™ +afd+ (7 — 40)6 ).

According to our results, the fixed point &, of G1(§), i.e., & = G(&,), is a root of
Q(&). Indeed, by letting &, = &,41 = & in (3.38), we have

(6 — a)(4€2 + (4 — 40))% =76 + (2 — av),
which gives us Q(&.) = 0.

It can be proven that the maximum fixed point of G1(£) or the maximum root
&« of Q(&) = 0 satisfies 1 < &, < 2 and

(3.42) & — & as n — oo.

Details are omitted here for brevity. By (3.21), (3.35) and (3.37), we can also prove
that

An
(3.43) LN £ as m— oo.

n

Hence, h(T3) = log&..

Case II. If acas = 0 and asbs + azby =1,

then, from (3.33), we have

(3.44) On—1 = BaB Ly — 0Bu-1.

Again, substituting (3.44) into (3.32) and letting (3.37) lead to
(3.45) &1 — aky — 06, +ad —b =0,
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ie.,
€n+1 = G2(§n);
where
(3.46) Go(6) = {at + 6+ (b—ad)e )2,

The maximum fixed point &, of (3.46) is the maximum root of Q(£) = 0 in (3.27).
It can also be proven that (3.42) and (3.43) holds in this case.

Finally, if acas = 0 and asbs + azbs = 0, then (3, are all equal for n > 1. Hence,
oy, is at most linear growth in n, implying that h(T2) = 0. The proof is thus
complete. [

For completeness, we list all Ty which satisfy (3.19) and (3.20) and have positive
entropy h(Ts). The table is arranged based on the magnitude of h(7T3). The
polynomial Q(.) in either (3.25) or (3.27) has been simplified to its proper factor
whenever possible.

A 5 o |
o i ] R
@ | (1] [ea]er V] e
@@ | o 11y 11 At
@ | 0] 5 1) 2t
@a | [ )] [11] XAl | g
T N Y I ) (R R
i 0]
@ loolelto] 10 oAt
o I R PRI [
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(i) A, = 1.75488
(i) A, = 1.46557
(i) A, = 1.32472
(iv) A, = 1.22074

where, g = 1.61803, is the golden mean, a root of A> — X — 1 = 0.

Table 3.1

The recursion formulae for \,, are

(1) A =27,

(2) Ani1 = Ao+ (Andno1)3,

(3) (@) A1 =An+ Mn(dn = An1))2,
(B) Ang1=An + A1,

(7) )\n—i-l = )\n + /\n—h

(4) /\n+1 = /\n + ()\n—l()\n - )\n—l))%a
(5) )\nJrl - ()\nﬁnfl)% +/8n713
where Gh,_1 =X — A1 + -+ (=17,
(6) >\n+1 == )\n + (/\nﬂn—2)% - ﬂn—Q-
Table 3.2

Remark 3.6.

(i) According to Table 3.2, for cases (1)~(4), An+1 depends only on two preceding
terms, A\, and \,_1. However, in (5) and (6), A,,+1 depends on all of their preceding
terms Mg, -, Ap.

(ii) From Lemma 3.4 and Theorem 3.5, in addition to the maximum eigenvalue,
we can obtain a complete set of eigenvalues of T, explicitly.

(iii) In Theorem 3.5, polynomial Q(&) given in (3.25) or (3.27) is the limiting

1
equation for A . Identifying whether any limiting equation ia available for general
T,, is a worthwhile task.

Remark 3.7. Similar to the concept in Theorem 3.5, if Ty does not satisfy (3.19) and
(3.20), another special structure can allow us to obtain explicit recursion formulae
of A\, and compute its spatial entropy h(Ts) explicitly. Table 3.3 provides some
examples.
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An A
(1) T2_[j ﬁ],
A:“ HOT[? H Ay = 2671 g
@ =4 5]
i [a=]] 1] WD ?
i |a=|1 ¢ M=ot ’
@ =[5 4]
St O Ee i Y B B e v B
was[4 4] 2]
n Tz—{g j] Autt = A+ v/ Aadat g
A“ HBH (1)] Q) =N =232+ -1 (13;1321231
Table 3.3

3.3. 2¢ x 2¢ Systems. Results in the last two subsections can be generalized to p-
symbols on Zypxo¢. Given a basic set B C Yopx9¢, horizontal and vertical transition
matrices Hy = [R4, i]q2xq2 and Va = [}, j,],2x42 can be defined according the rules
(3.2) and (3.3) by replacing Yoo with 3osyos, respectively. Then, the transition
matrix To(B) for B can be defined by

Vi Vo Y,
V. 1 V. +2 e ‘/2
(3.47) Ty = To(B) = " ’ o

V(qfl)qul V(qfl)q+2 e Ve
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where
Um,1 Um,2 vm,q
Um,(g+1) U, q+2 Um,2q
Um,(q—1)q+1  Um,(q—1)q+2 Um,q2

1 < m < ¢* The higher order transition matrix T,, = [vj, j,.... ;] for B defined on
Zoosne is a ¢ X ¢™ matrix, where vj, 4, ... ;. is given by (3.5) which are either 1 or
0, by substituting y;, ... ;. by vj, ... ;. in X, see (2.49)~(2.51). For completeness,
we state the following theorem for T,, and omit the proof for brevity.

Theorem 3.8. Let Ty be a transition matriz given by (3.47) and (3.48). Then, for
higher order transition matrices T,,, n > 3, we have the following three equivalent
expressions

(I) T, can be decomposed into n successive ¢ X q matrices as follows:

T T
Tn;q-i-l Tn;2q
Tn = . .
Tn;(qfl)tﬁ1 T2
Ty gt Ty
Tnijigeatt o Tngiy gi2g
Tn;jly--- Jk .
Thpjy oo k> (g—1)g+1 Toiji e jna®
for1<k<n-—2and
Ujla"' 1jn—171 vjla"' 7jn—17q
Ujr, dn—1,q+1 Vg1, dn—1,2q
Tn;jh“' Jn—1 — . .
V1, dn—1,(qg—1)g+1 Vi1, dn—1,q2
Furthermore,
’Uk,lTnfl;l Uk,anfl;q
Vk,g+1Tn—1;0+1 Vk,2¢Tn—1;2¢
Tn'k: = . .

3

Vk,(q—1)g+1Ln—1;(g—1)g+1

(IT) Starting from

T

Tyt

T,

T(g—1)q+1

Uk,q2 £ n—1;q2



24 JUNG-CHAO BAN AND SONG-SUN LIN

with
/l)k’l .« .. Uk’q
Vk,q+1 T Vg2
Tk = )
L Yk,(¢—1)g+1 " Uk,q?

T,, can be obtained from T, _1 by replacing Ty, by Ty, ® T2 according to

vk Ty e Ukgdy
Uk,q—i—qu—Q—l e Uk,2qT2q

Ty — T, ©Ty = . .
L Uk a-Dgr1Tlg-1g+1 o Vg2 Ty

(I11)
T?’L - (Tn_l)qnfl an—l @ (Eqnf2 ® TQ).
For the spatial entropy h(B), we have a similar result as in Theorem 3.3.

Theorem 3.9. Given a basic set B C Xy, xm,, let £ be the smallest integer such
that 20 > mq and 20 > ma, and let B = Yopxoe(B). Assume that A, is the largest
eigenvalue of the associated transition matriz T,,, which is defined in Theorem 3.8.
Then

. 1ogAn,
h(B) =4 lim =9ont
n—oo

Proof.
As in Theorem 3.3,

h(B) — lim logrmlxné(B)

m,n— o0 mb X nf

m—1
B RS W (7 s (5,
62 n—oo 1N, m-—oo m

)

1 1 lo )\Zfl
= g Jm (lim o)

l Ii log}\n;é
02 oo n

The proof is complete. [ ]

3.4. Relation with Matrix Shifts. Under many circumstances, we are given a
pair of horizontal transition matrix H = (h; ;)pxp and vertical transition matrix
V = (vij)pxp, Where h; ; and v; ; € {0,1}, e.g. [13, 29, 30]. Now, the sets of all
admissible patterns which can be generated by H and V on Z,, xm, and Z? are
denoted by X, xm, (H; V) and 3(H; V), respectively. Furthermore, ¥y, sm, (H; V)
and 3X(H; V) can be characterized by
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(3.49)

Yoy xmy (H; V) ={U € Enyscmap * Mg iy, = 1 and Vugupie, = 1y

where €1 = (170)a €2 = (071)a o = (0517052), ﬁ: (ﬁlaﬁ?)
withl <oy <my—1,1<ay<mgand 1 < B <my,1< Gy <mg—1}

and
(3.50)

S(H; V) ={U € 22 : hup oo, =1 and vy uy,,, = 1for al o, € Z%}.

Literature often refers to X(H; V') as Matrix shift, Markov shift or subshift of finite
types, e.g. [13, 30, 37]

As mentioned earlier, constructing 3,,, xm, (H; V) is of priority concern. Accord-
ing to our results, the established theories can be applied to answer this question.
Indeed, we introduce & = {0,1,2,--- ,p — 1}. On Zsy2, consider local pattern
U = (Uay,a,) With ua, o, € S. Define the ordering matrices Xo = [2;, i,]p2xp2 and
Yo = [Yj, jalp2xp2 for Yaxo as in (2.36) and (2.37). Now, the basic set B(H;V)
determined by H and V can be expressed as

(3.51)

B(H7V) = {U = (u0¢170t2) € E2><2 : hu1‘1,u2,1hu1,27u2,21}u1,17u1,2UU2,1771‘2‘2 = 1}

Therefore, the transition matrix Ty = To(H; V') can be expressed as Ty =[t;, j,]p2 xp2
with ¢;, j, = 1 if and only if y;, ;, € B(H;V), i.e., t;, j, = 1 if and only if

1,J2 1,J2

(352) hu1,17u2,1hu1,27uz‘2vu1,17U1‘2vu2,17uz‘2 =1,
where j; is related to uq, o, according to (2.35)

Now, T,, = T,,(H; V) can be constructed recursively from Ts(H; V') by Theorem
3.8. Then, A, and spatial entropy h(H; V') can be studied by Theorem 3.9. Notably,
verifying that T, (H;V) = T;Z)V, the transition matrix obtained by Juang et al in

[30],is relatively easy. Furthermore, TI({nz/ in [30] can also be obtained by deleting

the rows and columns formed by zeros in T,,(H; V).

On the other hand, given a basic set B C Xaxa, (0r Yoixarp), in general there
is no horizontal transition matrix H = (h; j)pxp and vertical transition matrix
V = (vi,j)pxp such that B = B(H;V) given by (3.51). Indeed, the number of
subsets of Yy, is 27" and the number of B(H; V) is at most 22" and 227" < 20"
for any p > 2. However, as mentioned in p.468[37], any shift of finite type can be
recorded to a matrix subshift. For completeness, a recoding method is described as
follows.

Here, patterns in B C Xg;x2;,, are taken as new symbols, i.e.,

(3.53) Sp=B={U1, - ,Un},
where m is the number of patterns in B. Now, with Si, the horizontal transition
matrix H = H(B) = (R4, ,ip)mxm and the vertical transition matrix V = V(B) =
(V4 ja )mxm for B can be defined as follows.
hivi, = 1if and only if
(354) Uil (Oll,Olz) = Ui2 (0[1 - ]., 0[2)
forall2<a; <2land 1< ay <2/,
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Vi, 5, = 1 if and only if
(355) Uj, (a17a2) =Uj, (ala Q2 — 1)
foralll1<a; <20and 2 < as <2/,

i.e.,, U;; and U;, can be glued together horizontally and become a (2¢ 4 1) x 2¢
admissible pattern if and only if h;, ;, = 1. Similarly, U;, and Uj,can be glued
together and become a 2¢ x (2¢ 4+ 1) admissible pattern if and only if v, ;, = 1.
Therefore, the pattern generation problems of B C Yo;«o; are equivalent to the
problem of a given pair of horizontal matrix H(B) and vertical transition matrix
V(B) defined by (3.54) and (3.55) with m symbols Sg = B.

Notably, the n-th order transition matrix T,,(B) is a ¢" X ¢" matrix with ¢ = pé2
and the n-th order transition matrix T, (H (B); V(B))) generated by To(H (B); V(B)))

is a m™ x m™ matrix. Consequently, if m = #B is smaller than ¢ = pl2, the eigen-

value problems of T,,(H(B);V(B)) can be studied. Clearly, a small m generates
less admissible patterns and a subsequently smaller entropy. For B with positive en-
tropy h(B) as in Table 3.1 and Table 3.3 , #8 is much larger than ¢ = 2. Therefore,
working on T,,(B) is generally better than doing so on T,,(H (B);V(B))).

4. HIGHER DIMENSIONAL CASES

This section extends the results of a two dimensional case to higher dimensions.
For clarity, a three dimension case is first examined by studying Yoy oxo with two
symbols § = {0, 1}.

On X, xmsxmgs €ach pattern U = (Uq, ,a4,05) 1S again assigned by

X(U) = thmz,ms(U)
(41) mi m2 m3
= 1+ Z Z Z uahaz,azx;lnlf%f%y
a1:1a2:1a3:1
here
(4.2) X%i’%;oﬁls — gmama(mi—ai)+mg(me—az)+(mz—asz)

In general, given one to one and onto mapping ¥ from X, xmy xmy 0 Nomimams =
{neN:1<n<2mmms} [ js referred to herein as the ¢ (U)-th element in
Yy xmaxm, and the ordering matrix X, is defined with respect to 1. Obviously,
both x o 1~ and 9 o x~! are one to one and onto on Ngmymsms. The ordering
matrices and the associated transition matrices with respect to x and v are similar
for all 7. In this section, x given in (4.1) and (4.2) is used for Yoy, x2 and ¥ (which
will be defined in (4.17))is used for ¥oxmxn for n > 3. The choices of x and x
allow us to derive simple recursion formulae for generating ordering matrices and
then transition matrices.

4.1. Ordering Matrices. With ordering rule (4.1), the ordering matrix Xsyxo =
[mi17i2] of ¥oyxax2 can be expressed as

2 2
(4.3) e =14 > Y Ukiaa, 2072027,

az=1az=1

1<ip<16and k=1,2.
Define

(4.4) B=2(z2—1)+as,
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i.e, in the y-z plane, Zyyo is given an order

as in (2.1) and (2.2). Next, define
(46) gﬁ =1+ 2“1,&2,&3 + U2, g, 0035
1</¢3<4. From (4.4) and (4.6), we have the following diagram

27

Y4
u1,1,2 u1,2,2
I2 | M/
4 111 u1,2,1
Uiz | U2z 11 |
3
. X
pin | Upat
From (4.4) and (4.6), it is easy to verify that ©a, as,as can be written in terms of
{3 by
lg—1
(4.7) Uoges = [Tl
g —1
(4.8) Wasay = bp—1-2L—].
Furthermore, the relation between i, and 3 can also be derived as
) -1 by —1 l3—1 ly—1
4.9 = 1+23[——]+2? 2
9 o= 12 R [,
ip = 14+23{0 —1— 2821} +22{0, — 1 — 2[2 |} +
(4'10) 5371 2 4471 2
2{ls — 1 —2[==]} + {ls — 1 — 2[5~}
and
i1 — 1 o — 1
(4.11) o= 1+t ]+ 2
i1 — 1 77— 1 10 — 1 10 — 1
4.12 l 142 —4 -2
@12) 6 = 1+t g (o2,
11— 1 11— 1 19— 1 10 — 1
4.1 = 142 —4 -2
(13 6 = 14 g (2 o2,
i1 — 1 o — 1
(4.14) 0 142001 — 1) — 4[2 2]+ (i — 1) — 2[2—2).
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Denoted by

Wey g 5,04 = Tiy igs

where i, and {3 are related to each other in (4.9)~(4.14), leading to

(419) x(un i) = 1+ DT 1 g -1 22 L

B=1
and the ordering matrix Xox2 can be represented in wy, ¢, ¢5,0, by 4 Z-maps suc-
cessively as in Theorem 2.1, i.e ,

Wy W-
X2><2 = < W;, Wz ) )
W Weo
W — 1, 1, ,
f < Wes Wi )
Weiten1 Weies2
W — 1,£2, 1,£2, ,
bt < Weite3 Wit >

and

w w
W, 4005 = ( £1,02,43,1 £1,£2,43,2 > )

Wey o ,65,3 Wiy ,05,03,4

For instance, w234 and wy 3,21 can be identified in the following diagram.

PSfrag replacements

PSfrag replacements

W1,2,3,4
w4321

The rest of this subsection is devoted to constructing X,,x, from Xso by the
following three steps :
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Step I : Define y-ordering on Z,,x2 by

2 4 2k 2m-2| 2m
(4.16)
1 3 ves 2k-1 2m-3|2m-1
and introduce ordering matrix X, x2 for Xoxmxo-
Step II : Convert y-ordering into x-ordering on Z,,x2 by
m+l | m+2| === | m+k e 2m
(4.17)
1 2 . k . m
and introduce ordering matrix meg for Yoymxa-
Step III : Define x-ordering on Z,,x, by
(n-)m+1 | (n-1)m+2 . nm-1 nm
(4.18)
m+1 m+2 . 2m-1| 2m
1 2 . m-1| m

and introduce ordering matrix X, xn for Xoxmxn-

To introduce X, x2, define

Wey o, Lam = Wiy 05,0504

(4.19)

0<k<m-—2.

D Wy, 04,0506 D -

D Weopy1,2n42,L2k+3,L2k+4 SRR

D Weyp 5, lam—2Lam—1,lam >

29
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Then
(4.20)

- {3
X(Wey 0, 05,,) = 1+ 2{227" J+{ts—1—2[-L— ]}}227" c.

From (4.16), (4.19) and (4.20)7 x-ordering on Z,, x is obviously one dimensional. It
grows in m (y-direction). Therefore, by a similar argument as in proving Theorem
2.1, we have the following result for X, «2.

Theorem 4.1. For any m > 2, Yoxmxz = {We 05, £5,, }, WheTe We, gy 05, 1S
given in (4.17). Furthermore, the ordering matriz X,,x2 = [We, 05, 05, ] Which is
a 22 x 22™ matriz can be decomposed into 2m Z-maps successively as

X _ Wy Ws
mx2 Wz Wy )’
W, o = Wy en Wiy 2
pre Wfl;'”,fk,?) Wfl,“"fk#l ’
for1 <k <2m -2,
W, ' — Wey o lom—1,1 Wy, Loy 1,2
prremet Wey o lom—1,3 Wy, Lo 1,4

Proof. From (4.7) and (4.8), we have following table.

lg 1 2 3 4
U1, 0,03 0 0 1 1
U2, cp, 003 0 1 0 1

Table 4.1

For any m > 2, by (4.6),(4.7) and (4 8), it is easy to generalize (4.9) and (4.10) to
Zml—l"l‘z lﬁ 22m6

and

by,

zm271+z {lg—1—2[2—
g=1
From above formulae, we have
b1 = 2%0m1 + 201 11 + Ulmp12 + (1 —22),

and

. 2 2
Imt1:2 = 2%0m;2 + 2U2 my1,1 + Uz me1,2 + (1 —2%).
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Now, by induction on m, the theorem follows from last two formulae and Table 4.1.
The proof is complete. [ ]

Next, x-ordering is converted into x-ordering for Z,,xo.

Since Zymxa = {(a2,a3) : 1 < as <m,1 < az < 2}, the position (ag,ag) is the
(-th in (4.16), where 8 = 2(as — 1) + a3 given in (4.4). In (4.17), the position of
(g, a3) is the S-th, where
(4.21) B=mas—1)+ as.

It is easy to verify

R B—1

(4.22) B=mp+(1=2m)——]+(1-m),
or

B=k if B=2k—1,
and

B=m+k if =2k,
1<k<m.

Now, the ordering X in (4.17) on Z,,x2 can be extended to Z,x, by (4.18).

For a fixed m, x-ordering on Z,,x, is obviously one dimensional; it grows in
n (z-direction). With ordering (4.18) on Z,,xn, for U = (Ua,.as,05) € Z2xmxn,
denoted by
(423) je=1+ Z Z uk’az’a32m(n—a3)+(m_a2)’

as=1az=1

k=1,2. Then, we obtain
(4.24) X(U) =2""(j1 = 1) + jo.
Now, let &, j, = U = (Ua,.ap.a5), then we have new ordering matrix X,,xo =
(£, o) for Bosmxo. The relationship between X,,y2 and X, is established
before constructing Xonscn from X« for n > 3.

Here, a conversion sequence of orderings is first established from (4.16) to (4.17).
Where P, denotes the permutation of Ng, = {1,2,---,2m} such that P,(k+1) =
k,Py(k) = k41 and the other numbers are fixed. Where Py is denoted here as the

permutation on Z,,x2 such that it exchanges k and k+1 and maintains the other
positions fixed, i.e,

E+1] -1 -1r[-] [k
—

(4.25) . e

Obviously,(4.16) can be converted into (4.17) in many ways by using a sequence
of Px. A systematic approach is presented as follows.

Lemma 4.2. For m > 2, (4.16) can be converted into (4.17) by the following

-1
sequences of %

permutations succesively
(PoPy- - Popy2)(P3Ps -+ Poyy3) -+

(PiPito Pom—k) -+ (Pn—1Ppmt1) P,
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Proof. When m = 2 and 3, verifying that (4.26) can convert (4.16) into (4.17) is
relatively easy.
When m > 4, and for any 2 < k < m, applying

(4.27) (PoPy- - Popy2)(P3Ps - Popy_3) -+ (P Prga- - Pom—y)

to (4.16), then there are two intermediate cases:
(i) when 2 < k <[], then we have

k+1 k+3 e | 3kl L] see | wwn |3K-1420 | ewn | 2mk-1 | 2mektl | ewe | 2m-1 2m

(4.28)

1 2 s k k+2 k+4 wen| k2| |uen ee P2m-3k+l) eww | 2m-k-2 | 2mek

where 0 < ¢ < m — 2k.
(ii) when [%] +1 < k < m — 1, then we have

k+1 wun | 2m-k-1 | 2m-k+1 | 2m-k+2 (RN e LN 2m-1 2m

(4.29)
1 2 k-1 k k+2 ans | 2m-k

When k=m in (4.29), we have (4.17). We prove (4.28) and (4.29) by mathematical
induction on k. When k=2, it is relatively easy to verify that (4.16) is converted
into

3 5 nnn an 2m-3 2m-1 2m

1 2 4 . . Kk k+2

by PPy -+ Pop—a, i.e., (4.28) holds for k=2. Next, assume that (4.28) holds for
k < [%]. Then, by applying Pri1Pyi2- - Pam—p—1 to (4.28), it can be verified that
(4.28) holds for k41 when k+1 <[] or becomes (4.29) when k41 > [}]. When
k> [%]+1, we apply Ppi1Prio--- Po—g—1 to (4.29). It can also be verified that
(4.29) holds for k+1. Finally, we conclude that (4.27) holds for k¥ = m. The proof

is thus complete. ]

By using Lemma 4.2, X,,,«x2 can be converted into meg by the following con-
struction. Let

(4.30) P =

oS o o
o= OO
o O = O
_— o o o

and for 2 < j7 < 2m — 2, as denoted by
(4.31) Pgm;j = IQj—l QRP® .[22m—j—1,
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where I, is the k x k identity matrix. Furthermore, let

Pm><2 = (P2m;2p2m;4 e P2m;2m—2) e (PQm;k: e P2m;2m—k)
e P2m;m>

(4.32)

2 < k < m. Then, we have the following theorem.
Theorem 4.3. For any m > 2,
(4.33) Xmxz =Pl o XmxoPmxa.

Proof. From Theorem 4.1, we have X, x2 = (W, 05, 05, |22mx22m. It is easy to
verify that for any 1 < k < 2m — 1,

(4.34)  Pypplwe, by 5 tusr o | Pomik = (W0, 05 04 e )

J.e., Py exchanges ¢ and {41 in X, 2. Therefore, from (4.32), (4.34) and

Lemma 4.2, (4.33) follows. [ ]
Now, in Theorem 4.3, as denoted by
(4.35) me2 = [Wry 1y, g s

1 <r; <4, by (4.16) and (4.19), we have
(436) wﬁﬂ“zw“ ram = Wbyt 02 lmg2, e Ll lm o lam

The x-expression X,xo = [Wry rg, e ram] TOT asmxo enables us to construct Xonsen
for Xoxmxn. Indeed, from (4.22), for fixed m > 2 and n > 2, let

Wry,ra, e P — Qf)rly"' STmsTmAg 1, 3T2m®wrm+lv'“ T2msT2m g1, ,T3m® T
(437) e?wTkarh“' ST (k1) moT (k+1)m41s"" 1T(k+2)1n@ T
®wr(n72)vn+17“' yT(n—1)msT(n—1)m+15"""Tnm?

0 < k < n — 2. Therefore, by a similar argument as in proving Theorem 2.1
and Theorem 4.1, we have the following theorem for X, «,. The detailed proof is
omitted here for brevity.

Theorem 4.4. By fizing m > 2 and for any n > 2, the ordering matriz Xonsn
with respect to x ordering can be expressed as

(4.38) Xmxn = [Wry,ra, rmnls
is given by (4.36) and (4.37).

where Wy, ry.... r

mn

4.2. Transition matrices. With the ordering matrices Xan for Yo xmxn having
been defined, higher order transition matrices T, xn can now be derived from Toyo.
As in the two dimensional case, assume that we have basic set B C Xaoy2x2. Define
the transition matrix Taxo = Tayx2(B) by

(439) T2><2 = [tfl,f2,£3,€4]24><247
where
(440) bov s ls = 1 Zf Wey ,02,65,04 € B,
= 0 Z.f Wey 45,035,064 € 2]2><2><2 - B.

Then, the transition matrix T,,x2 for B defined on Zoyxmxa is a 22™ x 22™ matrix
with entries t¢, ¢,.... ¢,,,, Where
m—2

(4'41) ey g, o = H Chori1 lonra ona bonia
k=0
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Based on Theorem 4.1, we can obtain results for T,,x2 as T, in Theorem 3.1 in
the two dimensional case. Indeed, we have

Theorem 4.5. Let Tayo be a transition matriz given by (4.39) and (4.40). Then,
for higher order transition matrices Tp,x2, m > 3, we have the following three
equivalent expressions:

(I) T.ux2 can be decomposed into 2m successive 2 X 2 matrices

T 9 _ T2m;1 T2m;2
mX -
Tomz Tomua
T = | B et Tomggiee 2
2miji, gk T To . Ty .. ) ’
2mig, k3 2mig1,ee gk 4

1<k<2m -2, and
T . . _ Liryo dzme1,l Ljie jom—1,2
2m;g1, e s j2m—1 - .

Uity dzm—1,3  Ljiyee jom—1,4

(II) Starting from

Toxo = [T 60)404

and

Tél;‘€2 = [t@17@27537é4]4><4 )

Jorm > 3, Tpxa can be obtained from T (,,_1yx2 by replacing Ty, ¢, with

(4.42) (T, 05)axa @ (Tax2)axa.
(III) For m > 3,
(4.43) Trxz = (Tin-1)x2)am—1xam-1 O (Egm-2 @ Taxa).

Now, with respect to ordering matrix meg, meg and T,,«2 are similar. Ad-
ditionally, by using Theorem 4.3, we have

Theorem 4.6.
(444) me? = 1:)fn><2’I‘7n><2:Pm><2-

By applying Theorem 4.4, transition matrix Tan can be obtained from meg
as was done in Theorem 3.1 and Theorem 4.5. Indeed, we have

Theorem 4.7. Let Toxo = [fr) ryrs.ra)24x24
(I) Trixn can be decomposed into mn Z-maps with successive 2 X 2 matrices:

T _ Tmn;l Tmn;2
mxn - T T
mn;3 mnid | oyo

mn;ry,ra, Tk -

Tm77f§7'17T2>“'7Tk73 Tmn;ﬁarzwwrk,‘l 2%2

1<k<mn-2
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tmn;hﬂ“z,“' JTmn—1,1 tmn;rhrz,“' Tmn—1,2

Tongryraye i = i
MN;TL,72,0 ,Tmn—1,3 MN;TL,72,0 0, Pmn—1,4 2% 2

(II) Let me2 = [T2m57"177"277“3»"' ,rmbm x2m where T2m§7”177"27"' Tm [thﬂ"z,"' ST TmA1, 7T2m]2m><2m .
Then, for anyn > 3, Tyuxn can be obtained from Ty, (n—1y by replacing Tom:r, vy s, -
with

(445) (T%n;rl s 72,73, ,Tm, )27” X 2m O] (T77L><2)2m xX2m .

(III) Furthermore, for n > 3 we have

5Tm

T =
4.46 mxn -
( ) (me(n_l))Qm(nfl)><27n.(n71) O] (E277L(7L72) & Tm><2)21n(n—1)><27n.(n71)~
Details of the proof are omitted here for brevity.
Finally, the spatial entropy h(B) can be computed through the maximum eigen-

value A, ,, of Tonscn- Indeed, we have

Theorem 4.8. Let A\, ,, be the mazimum eigenvalue of men, then

log Amn
(4.47) h(B) = lim —8imn
m,n— o0 mn
The proof closely resembles that when proving Theorem 3.3. Details are omitted
here for brevity.

4.3. Computation of )\,,, and entropies. From the last two subsections, we
obtain a systematic means of writing down Tan from Toy2. As in a two dimen-
sional case, recursion formulae for A, , can be obtained when Tgy2 has a special
structure. To demonstrate the methods developed in the last subsection, we provide
an illustrative example in which men and A, can be derived explicitly. More
complete results will appear later.

Denoted by
1 1 11
(4.48) G—[l O}andE—Eg—[l 1},
and let
2
Toxe = ®(GRE),
(4.49)

= (GOE)®(G®E).
Proposition 4.9. Let Tyys be in (4.48) and (4.49). Then,
(4.50) (i) Toxe = (G@E),
(451) (i) Tomxe = (& G)® (5 E),

R m(n—1) m
(452) (iii) Tow =( ®  G)@(® E).
Furthermore, for the maximum eigenvalue A, ,, of Tan, we have the following

recursion formulae:

(4.53) At = 29" Nnn
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and

(4.54) Amnt1 = 9" Amn
for m,n > 2 with

(4.55) Aoz = (29)%.
The topological entropy is

(4.56) h(T2x2) = g,

1+
2

1S

where g =

Proof. The proof is only described briefly, and the details are omitted for brevity.
(i) can be proved by Theorem 4.5 and induction on m. Indeed, by (4.43), we have

Tsxo = (Tax2)axa © (F1® Taxa)axa
= GOERGOE1xiO0(EE®(GRE®G® E))ix
(GOE)®(EOE)® (GO G)® (Bax2 ®(E®G® E))axa

3
- ®(GRE).

m—1
Assume that T(,,_1)x2 = ® (G ® E). Then by (4.43) again, we have

2(m—2)
Timxz = (Ti-nx2) ©(( @ FE)® Taxa))
m—1 m—2 2
= (B (CE B0 (8 B)® (B (€ E))amsans
m—2 m—2

(
= (© (GRE)®(GRE))im—2xam—20 (@ (EQE)®(GRE)Q (GO E))ym—2yqm—2

= ® [(GOE)Q(EOE)|®(GoOR)@(Fo0(E®G®E))
- & (GeE) ®(GoE) e (GeE)

— ®(GRE).

N

(ii) The following property for matrices is needed and the detailed proof omitted:
For any two 2 x 2 matrices A and B, we have

(4.57) P(A® B)P = B® A,

where P is given in (4.30). We also prove in (4.51) by induction on m. When m=2,
by Theorem 4.6,

Toxo = P oTouoPoyo

(P12)'Tox2Pyo
(LePRL)(GRE)®(GRE))(I:® P I))
Go(P(E®G)P)®E

= GRGRERFE

by (4.57).
Now, assume that (4.51) holds for m-1, i.e.

~ m—1 m—1

T(m71)><2:( ® G)@( ® E)
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Then
Tm><2 = Pt ><2Tm><2Pm><2
= [(P2m72P2m,4 P2m;2m—2)(P2m;3P2m;5 e PQm;2m—3) e (PZm;m)}t
TmXZ[(PQm;2P2m;4 e P2m;2m72)(P2m;3P2m;5 tee P2m;2m73) tee (P2m,m)]
= (P2m;m) o (P2m;3P2m;5 t P2m;2m73)

(P2m;2P2m;4 e P2m;2m72)(® (G & E))(PZm;ZPZm;4 e P2m;2m72)]
P2m;3P2m;5 o P2m;2m73) e (P2m;m)
PQm;m) T (P2m;3P2m;5 e P2m;2m—3)

m—1
Go(® (GRE))®E
P2m;3P2m;5 o P2m;2m73) e (P2m;m)
@ {(Po(m—-1);m—1) " (Pagm-1);2Po(m—1):4 " - Pa(m—-1);2(m—-1)—2)
-1

[ ® (G® E)(Papm-1)2Potm—1)4 - Papm-1)2(m—-1)—2) - ** (P2m—1:m—1)

}®FE
= G ® ( (m— 1)><2T(m71)><2P(m71)><2) ®F
= GOTu-1nx2®F

m—1 m—1

= Ge(® G)e(® E)®E
= (®G)®(®E).

(iii) For a fixed m, we prove the results by induction on n > 2. Assume that (4.52)
holds for n — 1, i.e.,

S~ o~ —

I
: Qg

~ m(n—2)
Thoxm-n=( ® G)® (® E).

Then, by (4.46), we have

Trxn = Toxmo1 © ((m ® ’ E) ® Tpixa)

- ("o o("E  pe® o e @)
"S5 e B e ® )
- "5V e@n.

As for maximum eigenvalue A, ,, verifying (4.55) is easy. To show (4.53) for
fixed n, by using (4.52), we have

. (m+1)(n—1) m+1
n—1 m(n—1) m
= (® )e( ® GR®E)®FE
n—1

which implies
)\m—i-l,n = an_l)\m,n,

see [8].
Similarly, for a fixed m, to prove (4.54), by using (4.52) again, we have

me(nﬂ) = (® G)®(Q? El))
m(n—

®0)®( ® G)®(®E)
(® G) ® T,
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which implies

>\m,71+1 = gm>\m,n

Finally, (4.56) follows from (4.53), (4.54) and Theorem 4.8. The proof is thus com-
plete. |

4.4. Higher Dimensional Cases. For completeness, this subsection, discusses
how to generalize the theory developed previously to higher dimensions, i.e., di-
mension > 4. We summarize the methods, outline the procedures and highlight
key points, as well as omit the details which will appear in [4]. We begin by intro-
ducing orderings on sublattices Z,, x...xm, C Z%. The associated ordering matrices
Xkﬁlx,,,xmd on Xoxm, x---xmy, are then defined. Finally, the transition matrices for
a given basic B C Yox...x2 are derived.
Given a finite lattice Z,,, x...xmy, C Z¢, denoted by

(458) Nd =mq X -+ X Mg.

We introduce d-many orderings on Zy4. Indeed, define

d
(4.59) Mo = [ ma.
i=1
and for any j, 1 < j < d—1, define
d
(4.60) M=M= T mi & M} =1
i=j+1
Next, forany 2 < k<d—1and 1 <j <d—1, define
d
(4.61) M= I m & MPP=1
itk i=j+1

when j # k, and

d
(4.62) P =TI m.
i=1,i2k
Finally, for 1 < j < d — 2, define
d—1
(4.63) M= 1] m & M =1
i=j+1
and
d—1
(4.64) My =TT ma
i=1

The underlying notion behind these M Jm is that d-many orderings [k], 1 < k < d,
are introduced to the set positive integers Ng = {1,2,--- ,d} by
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1] : 1>=2%--->d,
[l'{:]: k=1=2%--->=k—1>k+1>--->4d,
[c.l]: d=1=2».--=d—1.
Therefore, for any (aq,- -+ ,aq) € Zy,, we define
(4.65) X (- aq)) =1 +§:M}k](aj —1),
=1
i.e., we count the index (o, - ,aq) in ZN: as the x/*((ay, - -+, ag))-th position in

x*! ordering. When d=2, x!!l = y and x[? = ¥, see (4.16), (4.17) and (4.24).
As done previously, assume that S = {0,1}. Consider all patterns U = (tag,a,,.a4) €
Youn, on Zoyy, C Z¥HL. Then, we can define

4.66 2. M mgq .
60 s 3 B 3 e e (@0 01, )
Oé[):]. 041:1 ak:1 Oéd::l
where
log{X[k] (Oé(), Qq,- - 7ad)} =
4.67 d
(4.67) (Mo(2 = ag) + 3> M¥(m; — a;)} og2.
=1
Denoted by
(4.68) Nog=2x---%X2,
—_——
d—times
and
(4.69) Np=mq X - Xmp X2X-X2,
—_——
d—k times

for 1 < k < d, and d+1 numbers ng = 2%, ng = mqy---mp2% %, 1 < k < d. Here
ordering matrices XE@ are introduced to Xax n,. Indeed, in the first step, X[I\l,}o is
introduced to ¥axn, With respect to x!M. Then, by proceeding as in Theorem 4.1,
we obtain XR,]l on Xoxn, -

Next, a sequence of permutations can be obtained as in Lemma 4.2, which can
convert x[! ordering on Zy, into x[? ordering on Zy,. Therefore, after appropri-

ately modifying Lemma 4.2 and Theorem 4.3, there is a 2™ x 2™ matrix, Pg\l,}l such
that

2 1 1 1
(4.70) X3, = (Pi) XN, PR,

as in Theorem 4.3 for d=2. Now, as in Theorem 4.4, we can construct XE%,]Z on

Yox N, from XE\Z,]l In this procedure, in k-step, we have X[I@l on Yoxn,. Next,
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XE’GL is converted into X[I’;:I] as in Theorem 4.3 and X[I]f,:l] is extended to XB@:}
as in Theorem 4.4. Finally, we have X%}d on the whole lattice Zyx ,. Notably, the

. k41 k+1] . . . . . . . .
extension of X[ +1] to X[ +1] is one dimensional, i.e., it grows in aj4; direction
N Ni41 ) )

only.
As for transition matrices, assume that we are given a basic set B C Xaxn,, and
Xg\l,]o can be used to introduce the transition matrix TE\I,]O, ie.,

i _
TNO - [tfly"wa]Qd*ledJrl

D =241 1< ¢; < 4, where ty, ... ¢, = 1 if and only if the associated pattern

lies in B. By proceeding as in Theorems 4.5 ~ 4.7, we can obtain T%L on ZoxNg-

After the maximum eigenvalue Ay, of T%]d is computed, the entropy h(B) can be

obtained as

log A
(4.71) h(B) = lim ——22Nd
Nd—oo MMy -+ - My

Remark 4.10. For B C Xogx...x2¢,p, the theories applied and detailed discussion
will appear in [4].
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