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PATTERNS GENERATION AND TRANSITION MATRICES IN
MULTI-DIMENSIONAL LATTICE MODELS

JUNG-CHAO BAN AND SONG-SUN LIN

Abstract. This work develops a general approach for investigating pattern
generation problems in multi-dimensional lattice models. Let S be a set of p
symbols or colors, ZN a fixed finite rectangular sublattice of Zd, d ≥ 1 and N
a d-tuple of positive integers. Functions U : Zd → S and UN : ZN → S are
called a global pattern and a local pattern on ZN , respectively. An ordering
matrix XN is also introduced for ΣN , the set of all local patterns on ZN . For
a larger finite lattice ZÑ , Ñ ≥ N , A recursion formula is derived to obtain
the ordering matrix XÑ of ΣÑ from XN . Additionaly, the transition matrix
TN (B) is defined for a given basic admissible local patterns set B ⊂ ΣN . For

each Ñ ≥ N denoted by ΣÑ (B), the set of all local patterns can be generated
from B. The cardinal number of ΣÑ (B) denotes the sum of entries of the
transition matrix TÑ (B) which can be obtained from TN (B) recursively. The
spatial entropy h(B) can be obtained by computing the maximum eigenvalues
of a sequence of transition matrices Tn(B). Results of this study can shed fur-
ther light on the set of global stationary solutions in various lattice dynamical
systems and cellular neural networks.

1. Introduction

Many systems have been adopted as models for spatial pattern formation in biol-
ogy, chemistry, engineering and physics. Lattices play important roles in modeling
underlying spatial structures. Notable examples include models arising from biol-
ogy[7, 8, 21, 22, 23, 32, 33, 34], chemical reaction and phase transitions [5, 6, 11,
12, 13, 14, 24, 40, 43], image processing and pattern recognition [11, 12, 15, 16, 17,
18, 19, 25, 39], as well as materials science[10, 20, 26]. Stationary patterns play a
critical role in investigating the long time behavior of related dynamical systems. In
general, multiple stationary patterns may induce complicated phenomena of such
systems.

In lattice dynamical systems(LDS), especially cellular neural networks (CNN),
the set of global stationary solutions (global patterns) has received considerable
attention in recent years (e.g.[1, 2, 3, 27, 28, 29, 30, 31, 35, 36]). When the
mutual interaction between states of a system is local, the state at each lattice point
is influenced only by its finitely many neighborhood states. The admissible ( or
allowable ) local patterns are introduced and defined on a certain finite lattice. The
admissible global patterns on the entire lattice space are then glued together from
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2 JUNG-CHAO BAN AND SONG-SUN LIN

those admissible local patterns. More precisely, let S be a finite set of p elements
(i.e.,symbols, colors or letters of an alphabet). Where Zd denotes the integer lattice
on Rd, and d ≥ 1 is a positive integer representing the lattice dimension. Then,
function U : Zd → S is called a global pattern. For each α ∈ Zd, U(α) can be
written as uα. The set of all patterns U : Zd → S is denoted by

Σd
p ≡ SZd

,

where Σd
p is the set of all patterns with p different colors in d-dimensional lattice. As

for local patterns, i.e., functions defined on (finite) sublattices, for a given d-tuple
N = (N1, N2, · · · , Nd) of positive integers, let

ZN = {(α1, α2, · · · , αd) : 1 ≤ αk ≤ Nk, 1 ≤ k ≤ d}
be an N1 ×N2 × · · ·Nd finite rectangular lattice. Denoted by Ñ ≥ N if Ñk ≥ Nk

for all 1 ≤ k ≤ d, where Ñ = (Ñ1, Ñ2, ..., Ñd) is a d-tuple positive integers. The set
of all local patterns defined on ZN is denoted by

ΣN ≡ ΣN,p ≡ {U |ZN
: U ∈ Σd

p}.
Under many circumstances, only a(proper) subset B of ΣN is admissible (allowable
or feasible). In this case, local patterns in B are called basic patterns and B refers
to the basic set. In a one dimensional case, S consists of letters of an alphabet, and
B is also called a set of allowable words of length N.

Consider a fixed finite lattice ZN and a given basic set B ⊂ ΣN . For a larger
finite lattice Z eN ⊃ ZN , the set of all local patterns on Z eN which can be generated
by B is denoted as Σ eN (B). Indeed, as in [41], Σ eN (B) can be characterized by

Σ eN (B) = { U ∈ Σ eN : Uα+N = VN for any α ∈ Zd with Zα+N ⊂ Z eN
and some VN ∈ B},

where
α + N = {(α1 + β1, · · · , αd + βd) : (β1, · · · , βd) ∈ N},

and
Uα+N = VN means uα+β = vβ for each β ∈ ZN .

Similarly, the set of all global patterns which can be generated by B is denoted by

Σ(B) = {U ∈ Σd
p : Uα+N = VN for any α ∈ Zd with some VN ∈ B}.

The following questions arise :

(1) Can we systematically construct Σ eN (B) from B for
Z eN ⊃ ZN?

(2) What is the complexity (or spatial entropy) of {∑ eN (B)} eN≥N ?

The spatial entropy h(B) of Σ(B) is defined as follows :
Let

Γ eN (B) = card(Σ eN (B)),(1.1)

the number of distinct patterns in Σ eN (B). The spatial entropy h(B) is defined as

h(B) = lim
eN→∞

1

Ñ1 · · · Ñd

log Γ eN (B),(1.2)
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which is well-defined and exists (e.g. [13]). The spatial entropy, which is analo-
gous to topological entropy in dynamical system, has been used to measure the
complexity in LDS (e.g. [13], [42] ).

In a one dimensional case, the above two questions can be answered by using the
transition matrix. Indeed, for a given basic set B, the transition matrix T(B) can be
associated with to B. Nest, the spatial entropy h(B) = log λ, where λ is the largest
eigenvalue of T(B) (e.g. [29, 40]). On the other hand, for higher dimensional cases,
constructing Σ eN (B) systematically and computing Γ eN (B) effectively for a large Ñ
are extremely difficult.

In the two dimensional case, Chow et al. [13] estimated lower bounds of the
spatial entropy for some problems in LDS. Later, using a ”building block” approach,
Juang and Lin [29] studied the patterns generation and obtained lower bounds of the
spatial entropy for CNN with square-cross or diagonal-cross templates. For CNN
with general templates, Hsu et al [27] investigated the generation of admissible
local patterns and obtained the basic set for any parameter, i.e., the first step in
studying the patterns generation problem. Meanwhile, given a set of symbols S
and a pair consisting of a horizontal transition matrix H and a vertical transition
matrix V, Juang et al [30] defined m-th order transition matrices T

(m)
H,V and T̄

(m)
H,V

for each m ≥ 1 ,thus obtaining the recursion formulae for both T
(m)
H,V and T̄

(m)
H,V .

Furthermore, they demonstrated that T
(m)
H,V and T̄

(m)
H,V have the same maximum

eigenvalue λm and spatial entropy h(H, V ) = lim
m→∞

log λm

m . For a certain class of

H,V, the recursion formulae for T
(m)
H,V and T̄

(m)
H,V yield recursion formulae for λm

explicitly and the exact entropy. On the other hand, for the patterns generation
problem, Lin and Yang [36] worked on the 3-cell L-shaped lattice, i.e., N= . They
developed an algorithm to investigate how patterns are generated on larger lattices
from a smaller one. Their algorithm treated all patterns in Σ eN (B) as entries and
arranged them in a ”counting matrix” M eN (B). A good arrangement of M eN (B)

implies an easier extension to MeeN (B) for a larger lattice ˜̃
N ⊃ Ñ and effective

counting of the number of elements in Σ eN (B). Upper and lower bounds of spatial
entropy have also been obtained. Furthermore, the patterns generation problem is
related to matrix shift [13], as discussed in detail in section 3.4.

Motivated by the counting matrix MN (B) of [36] and the recursion formulae
for transition matrices in [30], this work introduces the ”ordering matrix” X2 for
Σ2`×2` to study the patterns generation and obtain recursion formulae for Xn for
Σ2`×n` where ` ≥ 1 is a fixed positive integer and n ≥ 2. The recursion formulae
for Xn imply the recursion formula for the associated transition matrices Tn(B)
of Σ2`×n`(B), i.e., a generalization of the recursion formulae in [30]. Notably, a
different ordering matrix X̃2 for Σ2`×2` induces different recursion formulae of X̃n

for Σ2`×n` and T̃n(B). Among them, X2 defined in (2.9) yields a simple recursion
formula (3.16) and rewriting rule (3.14), allowing us to compute the maximum
eigenvalue of Tn effectively. The computations or estimates of λn are interesting
problems in linear algebra and numerical linear algebra. Owing to the similarity
property of (3.16) or (3.14) of transition matrices {Tn}∞n=2, this work demonstrates
that for a certain class of B, λn satisfies certain recursion relations and h(B) can
be computed explicitly.
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The rest of this paper is organized as follows. Section 2 describes a two dimen-
sional case by thoroughly investigating Σ2×2 and introducing the ordering matrix
X2 of patterns in Σ2×2. The ordering matrix Xn on Σ2×n is then constructed from
X2 recursively. Section 3 derives higher order transition matrices Tn from T2 and
computes λn explicitly for a certain type of T2. Finally, section 4 studies a three
dimensional case and explores in further detail the structure of the ordering matrix
on Σ2×2×2. A generalization is also made for higher dimensional cases.

2. Two Dimensional Patterns

This section describes generation of two dimensional patterns. For clarity, two
symbols, i.e., S = {0, 1}, are studied first. An ordering of patterns for Σm1×m2

as lexicographical ordering for a one-dimensional case is then defined. On a fixed
finite lattice Zm1×m2 , a ordering χ = χm1×m2 on Zm1×m2 is given by

χ((α1, α2)) = m2(α1 − 1) + α2 ,(2.1)

i.e.,

m2 2m2 m1m2

...
...

...
...

1 m2 + 1 (m1 − 1)m2 + 1

.(2.2)

The ordering χ of (2.1) on Zm1×m2 can now be passed to Σm1×m2 . Indeed, for
each U = (uα1,α2) ∈ Σm1×m2 , define

χ(U) ≡ χm1×m2(U)

= 1 +
m1∑

α1=1

m2∑
α2=1

uα1,α22
m2(m1−α1)+(m2−α2).

(2.3)

Obviously, there is an one-to-one correspondence between local patterns in Σm1×m2

and positive integers in the set N2m1m2 = {k ∈ N : 1 ≤ k ≤ 2m1,m2}, where N
denotes the set of positive integers. Therefore, U is referred to herein as the χ(U)-th
element in Σm1×m2 . Identifying the pictorial patterns by numbers χ(U) is a highly
effictive means of proving theorems since computations can now be performed on
χ(U). In a two dimensional case, we will keep the ordering (2.1)∼ (2.3) χ on
Zm1×m2 and Σm1×m2 , respectively.

2.1. Ordering Matrices. For 1 × n pattern U = (uk), 1 ≤ k ≤ n in Σ1×n, as in
(2.3), U is assigned the number

i = χ(U) = 1 +
n∑

k=1

uk2(n−k).(2.4)

As denoted by the 1× n column pattern xn;i,

xn;i =




un

...
u1


 or

un

...
u1

.(2.5)

In particular, when n = 2, as denoted by xi = x2;i,

i = 1 + 2u1 + u2
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and

xi =
[

u2

u1

]
or

u2

u1
.(2.6)

A 2 × 2 pattern U = (uα1,α2) can now be obtained by a horizontal direct sum of
two 1× 2 patterns, i.e.,

xi1,i2 ≡ xi1 ⊕ xi2

≡
[

u1,2 u2,2

u1,1 u2,1

]
or

u1,2 u2,2

u1,1 u2,1
,

(2.7)

where

ik = 1 + 2uk,1 + uk,2, 1 ≤ k ≤ 2.(2.8)

Therefore, the complete set of all 16(= 22×2) 2 × 2 patterns in Σ2×2 can be listed
by a 4× 4 matrix X2 = [xi1,i2 ] with 2× 2 pattern xi1,i2 as its entries in

0
0 0

0 0
0

10

0

0

1
0

1 1
01

1

0

0
1

0

1

0

0

0
1

00

1

111

1 1 00
1

1
1

1

0

01

0

0
0

0

1

0

1

1

1

0

0
1

1

1
0

1

10

1

1
1

0
0

1
0

1
1

0
1

1
1

0
1

1
0

0
0

(2.9)

It is easy to verify that

χ(xi1,i2) = 4(i1 − 1) + i2,(2.10)

i.e, we are counting local patterns in Σ2×2 by going through each row successively
in Table (2.9). Correspondingly, X2 can be referred to as an ordering matrix for
Σ2×2. Similarly, a 2× 2 pattern can also be viewed as a vertical direct sum of two
2× 1 patterns, i.e,

yj1,j2 = yj1 ⊕ yj2 ,(2.11)

where

yjl
=

[
u1,l u2,l

]
or u1,l u2,l ,

and

jl = 1 + 2u1,l + u2,l,(2.12)



6 JUNG-CHAO BAN AND SONG-SUN LIN

1 ≤ l ≤ 2. A 4× 4 matrix Y2 = [yj1,j2 ] can also be obtained for Σ2×2. i.e., we have

1

00
0
0 0

0 0
0

00

0

1

0

1

1

0

0 0

0

1

1

1
0

0
1

1

0

1

01

0

1

1

0
1

1

1

0

0

0
0

00

1

111

1 1 11
1

1
1

1

0

00

0

1
0

0

1

0

0

1

1

0

1
0

0

1
0

1

11

1

1
1

(2.13)

The relation between X2 and Y2 must be explored. Indeed, from (2.12), uk,l can
be solved in terms of jl, i.e., we have

u1,l = [
jl − 1

2
](2.14)

and

u2,l = jl − 1− 2[
jl − 1

2
],(2.15)

where [ ] is the Gauss symbol, i.e., [r] is the largest integer which is equal to or
less than r. From (2.8), (2.12), (2.14) and (2.15), we have the following relations
between indices i1, i2 and j1, j2.

j1 = 1 +
2∑

k=1

[
ik − 1

2
] 22−k,(2.16)

j2 = 1 +
2∑

k=1

{ ik − 1− 2 [
ik − 1

2
] } 22−k,(2.17)

and

i1 = 1 +
2∑

l=1

[
jl − 1

2
] 22−l,(2.18)

i2 = 1 +
2∑

l=1

{ jl − 1− 2 [
jl − 1

2
] } 22−l.(2.19)
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From (2.16) and (2.17), (2.9) or X2 can also be represented by yj1,j2 as

X2 =




y1,1 y1,2 y2,1 y2,2

y1,3 y1,4 y2,3 y2,4

y3,1 y3,2 y4,1 y4,2

y3,3 y3,4 y4,3 y4,4


 .(2.20)

In (2.20), the indices j1, j2 are arranged by two Z-maps successively as



1 −→ 2
↙

3 −→ 4


(2.21)

i.e., the path from 1 to 4 in (2.21) is Z shaped and is then called a Z-map. More
precisely, X2 can be decomposed by

X2 =
[

Y2;1 Y2;2

Y2;3 Y2;4

]
(2.22)

and

Y2;k =
[

yk,1 yk,2

yk,3 yk,4

]
.(2.23)

Where X2 is arranged by a Z-map (Y2;k) in (2.22) and each Y2;k is also arranged
by a Z-map (yk,l) in (2.23). Therefore, the indices of y in (2.20) consist of two
Z-maps.

The expression (2.20) of all local patterns in Σ2×2 by y can be extended to all
patterns in Σ2×n for any n ≥ 3. Indeed, a local pattern U in Σ2×n can be viewed
as the horizontal direct sum of two 1 × n local patterns, i.e., U1 and U2, and also
the vertical direct sums of n many 2× 1 local patterns. As in (2.9), all patterns in
Σ2×n can be arranged by the ordering matrix

Xn =
[

xn;i1,i2

]
,(2.24)

a 2n×2n matrix with entry xn;i1,i2 = xn;i1⊕xn;i2 , where χ(U1) = i1 and χ(U2) = i2
as in (2.4) and (2.5), 1 ≤ i1, i2 ≤ 2n. On the other hand, the two 2 × 2 patterns
yj1,j2 and yj2,j3 can be combined to become a 2×3 pattern yj1,j2,j3 , since the second
row in yj1,j2 and the first row of yj2,j3 are identical, i.e.,

yj1,j2,j3 ≡ yj1,j2 ⊕̂ yj2,j3

≡ yj1 ⊕ yj2 ⊕ yj3 ,
(2.25)

Herein, a wedge direct sum ⊕̂ is used for 2 × 2 patterns whenever they can be
combined. In this way, a 2× n pattern yj1,··· ,jn is obtained from n− 1 many 2× 2
patterns yj1,j2 , yj2,j3 , · · · , yjn−1,jn by

yj1,··· ,jn ≡ yj1,j2 ⊕̂ yj2,j3 ⊕̂ · · · ⊕̂ yjn−1,jn

≡ yj1 ⊕ yj2 ⊕ · · · ⊕ yjn ,
(2.26)

where 1 ≤ jk ≤ 4, and 1 ≤ k ≤ n. Now, Xn in y expression can be obtained as
follows.
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Theorem 2.1. For any n ≥ 2, Σ2×n = {yj1,··· ,jn}, where yj1,··· ,jn is given in
(2.26). Furthermore, the ordering matrix Xn can be decomposed by n Z-maps
successively as

Xn =
[

Yn;1 Yn;2

Yn;3 Yn;4

]
,(2.27)

Yn;j1,··· ,jk
=

[
Yn;j1,··· ,jk,1 Yn;j1,··· ,jk,2

Yn;j1,··· ,jk,3 Yn;j1,··· ,jk,4

]
,(2.28)

for 1 ≤ k ≤ n− 2, and

Yn;j1,··· ,jn−1 =
[

yj1,··· ,jn−1,1 yj1,··· ,jn−1,2

yj1,··· ,jn−1,3 yj1,··· ,jn−1,4

]
.(2.29)

Proof. From (2.12), (2.14) and (2.15), we have following table:

jl 1 2 3 4

u1,l 0 0 1 1

u2,l 0 1 0 1

Table 2.1
For any n ≥ 2, by (2.12),(2.14) and (2.15), it is easy to generalize (2.18) and (2.19)
to

in;1 = 1 +
n∑

l=1

[
jl − 1

2
]2n−l,(2.30)

and

in;2 = 1 +
n∑

l=1

{jl − 1− 2[
jl − 1

2
]}2n−l.(2.31)

From (2.30) and (2.31), we have

in+1;1 = 2in;1 − 1 + [
jn+1 − 1

2
],(2.32)

and

in+1;2 = 2in;2 − 1 + {jn+1 − 1− 2[
jn+1 − 1

2
]}.(2.33)

Next, by induction on n, the theorem follows from last two formulae and the Table
2.1. The proof is complete.

Remark 2.2. The ordering matrix on Σm×n can also be introduced accordingly.
Section 4 provides further details. However, when spatial entropy h(B) of Σ(B)
is computed, only λn, the largest eigenvalue of Tn(B), must be known. Section 3
provides further details.
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2.2. More Symbols on Larger Lattices. Consider the number of symbols is
larger than two on Z2×2, i.e., S = {0, 1, 2, · · · , p − 1}, p ≥ 3. Formulae in the
last subsection can be modified from 2 to p appropriately and similar results can
be obtained. Here, only some key formulae are mentioned. Additionally, (2.8) and
(2.12) are replaced by

ir = 1 + pur,1 + ur,2,(2.34)
js = 1 + pu1,s + u2,s,(2.35)

1 ≤ ir, js ≤ p2, r = 1, 2 and s = 1, 2.
Now, the ordering matrices X2 = [xi1,i2 ] and Y2 = [yj1,j2 ] are both p2 × p2

matrices. If we express X2 by y, then we have

X2 =




Y1 · · · Yp

Yp+1 · · · Y2p

...
. . .

...
Y(p−1)p+1 · · · Yp2




p×p

,(2.36)

with

Yj1 =




yj1,1 · · · yj1,p

yj1,(p+1) · · · yj1,2p

...
. . .

...
yj1,(p−1)p+1 · · · yj1,p2




p×p

.(2.37)

The higher ordering matrices Xn can also be expressed in y as in Theorem 2.1.
Details are provided later.

Next, as we encounter in CNN, the system is often given by a 3× 3 (or m×m
with m ≥ 3) template (e.g.[15, 16, 17, 18, 19, 29]). Here, local patterns Σm×m

must be studied, where m ≥ 3. The concept introduced in the last section can be
generalized to cover this situation. Here, a case is first treated when m is even.
Indeed, assume that m = 2`, ` ≥ 2 and S contains p elements. Then, 2` × 2`
lattice Z2`×2` can be viewed as two ` × 2` lattices Z`×2` and two 2` × ` lattices
Z2`×`. Furthermore, Z`×2` and Z2`×` can be viewed as two `×` lattices Z`×` glued
together vertically and horizontally, respectively. In the following, `×` lattice Z`×`

is taken as a basic unit.

a

b

PSfrag replacements

2`
2`

a

b c

d e

PSfrag replacements

2`
2`
2`
`
`

i1
i2

f

b

c

a

e

PSfrag replacements

2`
2`
2`
`
`

i1
i2
2`
j1
j2
`
`
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h

b

a

c d

e

f

g

PSfrag replacements

`
`
`
`

i1,1

i1,2

i2,1

i2,2

ha

b

c d

e f

g

PSfrag replacements

`
`
`
`

i1,1

i1,2

i2,1

i2,2

`
`
`
`

j1,1

j1,2

j2,1

j2,2

Now, the ordering matrices X2 = [xi1,i2 ] and Y2 = [yj1,j2 ] are introduced to Σ2`×2`

as follows. Given a U = (uα1,α2) ∈ Σ2`×2`, define

ir1,r2 =
∑̀

α1=1

∑̀
α2=1

ufα1,fα2p
`(`−α1)+`−α2 ,(2.38)

α̃1 = (r1 − 1)` + α1, α̃2 = (r2 − 1)` + α2,(2.39)

and

ik = 1 + qik,1 + ik,2,(2.40)

here, r1, r2, k = 1, 2, and

js1,s2 =
∑̀

α1=1

∑̀
α2=1

ucα1,cα2p
`(`−α1)+`−α2 ,(2.41)

α̂1 = (s2 − 1)` + α1, α̂2 = (s1 − 1)` + α2,(2.42)

and

jl = 1 + qjl,1 + jl,2,(2.43)

here, s1, s2, l = 1, 2, and

q = p`2 .(2.44)

From (2.38)∼ (2.44), (2.18) and (2.19) are replaced by

i1 = 1 + [
j2 − 1

q
] + q[

j1 − 1
q

],(2.45)

and

i2 = 1 +
2∑

k=1

{jk − 1− q[
jk − 1

q
]}q2−k.(2.46)

From (2.45) and (2.46), X2 can be expressed by yj1j2 as in (2.36) and (2.37) by
replacing p with q, i.e.,

X2 =




Y1 Y2 · · · Yq

Yq+1 Yq+2 · · · Y2q

...
...

. . .
...

Y(q−1)q+1 Y(q−1)q+2 · · · Yq2




q×q

,(2.47)
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with

Yj1 =




yj1,1 · · · yj1,q

yj1,q+1 · · · yj1,2q

...
. . .

...
yj1,(q−1)q+1 · · · yj1,q2




q×q

.(2.48)

Now, recursion formulae can be stated for a higher ordering matrix Xn =
[xn;i1,i2 ]qn×qn as follows.

Theorem 2.3. Assume that we have p symbols, p ≥ 2 and let q = p`2 , ` ≥ 2. For
any n ≥ 2, Σ2`×n` = {yj1,j2,··· ,jn

}, where yj1,j2,··· ,jn
≡ yj1,j2⊕̂yj2,j3⊕̂ · · · ⊕̂yjn−1,jn

,
1 ≤ jk ≤ q2 and 1 ≤ k ≤ n. Furthermore, the ordering matrix Xn can be decom-
posed by n Z-maps successively as

Xn =




Yn;1 Yn;2 · · · Yn;q

Yn;q+1 Yn;q+2 · · · Yn;2q

...
...

. . .
...

Yn;(q−1)q+1 Yn;(q−1)q+2 · · · Yn;q2


(2.49)

Yn;j1,··· ,jk
=




Yn;j1,··· ,jk,1 Yn;j1,··· ,jk,2 · · · Yn;j1,··· ,jk,q

Yn;j1,··· ,jk,q+1 Yn;j1,··· ,jk,q+2 · · · Yn;j1,··· ,jk,2q

...
...

. . .
...

Yn;j1,··· ,jk,(q−1)q+1 Yn;j1,··· ,jk,(q−1)q+2 · · · Yn;j1,··· ,jk,q2




(2.50)

for 1 ≤ k ≤ n− 2,

Yn;j1,··· ,jn−1 =




yj1,··· ,jn−1,1 yj1,··· ,jn−1,2 · · · yj1,··· ,jn−1,q

yj1,··· ,jn−1,q+1 yj1,··· ,jn−1,q+2 · · · yj1,··· ,jn−1,2q

...
...

. . .
...

yj1,··· ,jn−1,(q−1)q+1 yj1,··· ,jn−1,(q−1)q+2 · · · yj1,··· ,jn−1,q2




(2.51)

Proof. By taking Z`×` as a basic unit, 2n Z`×` in Z2`×n` can be ordered by

n 2n
...

...
2 n+2
1 n+1

and

2n-1 2n
...

...
3 4
1 2

for x and y, respectively. Now, (2.30) and (2.31) are replaced by

in;1 = 1 +
n∑

s=1

[
js − 1

q
]qn−s(2.52)
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and

in;2 = 1 +
n∑

s=1

{js − 1− q[
js − 1

q
]}qn−s.(2.53)

(2.32) and (2.33) are replaced by

in+1;1 = qin;1 − (q − 1) + [
jn+1 − 1

q
],(2.54)

and

in+1;2 = qin;2 − (q − 1) + {jn+1 − 1− q[
jn+1 − 1

q
]}.(2.55)

Table 2.1 is replaced by

j 1 2 · · · q q + 1 q + 2 · · · 2q · · · q2 − q + 1 · · · q2

[ j−1
q ] 0 0 · · · 0 1 1 · · · 1 · · · q − 1 · · · q − 1

j − 1− q[ j−1
q ] 0 1 · · · q-1 0 1 · · · q-1 · · · 0 · · · q − 1

Table 2.2

By induction on n as in proving Theorem 2.1, the results follow.

Next, the local m1 × m2 patterns are first extended to even 2` × 2` patterns,
where 2` is the smallest positive integer which is greater than m1 and m2. The
study of Σ2`×2` is then proceeded with as in the previous paragraphs.

Obviously, the situation becomes more complex when a given larger lattice
Zm×mcontains many symbols. However, the above theory can also be applied to
derive recursion formulae for higher ordering matrices Xn from X2, n ≥ 3.

3. Transition matrices

This section derives the transition matrices Tn for a given basic set B. For sim-
plicity, the study of two symbols S = {0, 1} on 2×2 lattice Z2×2 in two dimensional
lattice space Z2 is of particular focus. The results can be extended to general cases.

3.1. 2× 2 systems. Given a basic set B ⊂ Σ2×2, horizontal and vertical transition
matrices H2 and V2 can be defined by

H2 = [hi1,i2 ] and V2 = [vj1,j2 ](3.1)

, two 4× 4 matrices with entries either 0 or 1 , according to following rules:
{

hi1,i2 = 1 if xi1,i2 ∈ B,
= 0 if xi1,i2 ∈ Σ2×2 − B,

(3.2)

and {
vj1,j2 = 1 if yj1,j2 ∈ B,

= 0 if yj1,j2 ∈ Σ2×2 − B.
(3.3)
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Obviously, hi1,i2 = vj1,j2 , where (i1, i2) and (j1, j2) are related according to (2.16)∼(2.19).
Now, the transition matrix T2 for B can be defined by

T2 ≡ T2(B)

=




v1,1 v1,2 v2,1 v2,2

v1,3 v1,4 v2,3 v2,4

v3,1 v3,2 v4,1 v4,2

v3,3 v3,4 v4,3 v4,4


 .

(3.4)

Define

vj1,j2,··· ,jn = vj1,j2 · vj2,j3 · · · vjn−1,jn ,(3.5)

and

Tn = [vj1,j2,··· ,jn ],

then the transition matrix Tn for B defined on Z2×n is a 2n×2n matrix with entries
vj1,··· ,jn

, which are either 1 or 0, by substituting yj1,··· ,jn
by vj1,··· ,jn

in Xn, see
(2.27)∼(2.29).

In the following, we give some interpretations for Tn, one from an algebraic per-
spective and the other from Lindenmayer system (details can be found in Remark
3.2 ). For clarity, T3 can be written in a complete form as

(3.6)



v1,1v1,1 v1,1v1,2 v1,2v2,1 v1,2v2,2 v2,1v1,1 v2,1v1,2 v2,2v2,1 v2,2v2,2

v1,1v1,3 v1,1v1,4 v1,2v2,3 v1,2v2,4 v2,1v1,3 v2,1v1,4 v2,2v2,3 v2,2v2,4

v1,3v3,1 v1,3v3,2 v1,4v4,1 v1,4v4,2 v2,3v3,1 v2,3v3,2 v2,4v4,1 v2,4v4,2

v1,3v3,3 v1,3v3,4 v1,4v4,3 v1,4v4,4 v2,3v3,3 v2,3v3,4 v2,4v4,3 v2,4v4,4

v3,1v1,1 v3,1v1,2 v3,2v2,1 v3,2v2,2 v4,1v1,1 v4,1v1,2 v4,2v2,1 v4,2v2,2

v3,1v1,3 v3,1v1,4 v3,2v2,3 v3,2v2,4 v4,1v1,3 v4,1v1,4 v4,2v2,3 v4,2v2,4

v3,3v3,1 v3,3v3,2 v3,4v4,1 v3,4v4,2 v4,3v3,1 v4,3v3,2 v4,4v4,1 v4,4v4,2

v3,3v3,3 v3,3v3,4 v3,4v4,3 v3,4v4,4 v4,3v3,3 v4,3v3,4 v4,4v4,3 v4,4v4,4




From an algebraic perspective, T3 can be defined through the classical Kronecker
product (or tensor product) ⊗ and Hadamard product ¯, (e.g. [9]). Indeed, for any
two matrices A = (ai,j) and B = (bk,l), the Kronecker product (tensor product) of
A⊗B is defined by

A⊗B = (ai,jB).(3.7)

On the other hand, for any two n× n matrices

C = (ci,j) and D = (di,j),

where ci,j and di,j are numbers or matrices. Next, Hadamard product of C ¯D is
defined by

C ¯D = (ci,j · di,j),(3.8)

where the product ci,j · di,j of ci,j and di,j may be a multiplication of numbers,
numbers and matrices or matrices whenever it is well defined. For instance, ci,j is
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a number and di,j is a matrix.
Denoted by

T2 =
[

T1 T2

T3 T4

]
,(3.9)

where Tk is a 2× 2 matrix with

Tk =
[

vk,1 vk,2

vk,3 vk,4

]
.(3.10)

Next, using Hadamard product, (3.6) can be written as

T3 =




v1,1 v1,2 v2,1 v2,2

v1,3 v1,4 v2,3 v2,4

v3,1 v3,2 v4,1 v4,2

v3,3 v3,4 v4,3 v4,4


 ¯




T1 T2 T1 T2

T3 T4 T3 T4

T1 T2 T1 T2

T3 T4 T3 T4


 ,(3.11)

and can also be written by Kronecker product with Hadamard product as

T3 =
(

T2

)
4×4

¯
[ [

1 1
1 1

]
⊗

[
T1 T2

T3 T4

] ]
,(3.12)

where (T2)4×4 is interpreted as a 4×4 matrix given as in (3.4). Hereinafter, (M)k×k

is used as the k × k matrix; its entries may also be matrices.
Furthermore, by (3.9) and (3.12), T3 can also be written as

T3 =
[

T1 ¯T2 T2 ¯T2

T3 ¯T2 T4 ¯T2

]
.(3.13)

Now, from the perspective of Lindenmayer system, (3.13) can be interpreted as a
rewriting rule as follows:

To construct T3 from T2, simply replace Tk in (3.9) by Tk ¯T2, i.e,

Tk 7−→ Tk ¯T2 =
[

vk,1T1 vk,2T2

vk,3T3 vk,4T4

]
.(3.14)

Now, T3 can be written as

T3 =




v1,1T1 v1,2T2 v2,1T1 v2,2T2

v1,3T3 v1,4T4 v2,3T3 v2,4T4

v3,1T1 v3,2T2 v4,1T1 v4,2T2

v3,3T3 v3,4T4 v4,3T3 v4,4T4


 .(3.15)

Since vk,j is either 0 or 1, the entries of T3 in (3.15) are Tk, i.e, Tk can be taken
as the ”basic element” in constructing Tn , n ≥ 3. As demonstrated later, (3.14) is
an effective means of constructing Tn+1 from Tn for any n ≥ 2.

Now, by induction on n, the following properties of transition matrix Tn on
Z2×n can be easily proven.

Theorem 3.1. Let T2 be a transition matrix given by (3.4). Then, for higher order
transition matrices Tn, n ≥ 3, we have the following three equivalent expressions
(I) Tn can be decomposed into n successive 2×2matrices (or n-successive Z-maps)
as follows:

Tn =
[

Tn;1 Tn;2

Tn;3 Tn;4

]
,
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Tn;j1,··· ,jk
=

[
Tn;j1,··· ,jk,1 Tn;j1,··· ,jk,2

Tn;j1,··· ,jk,3 Tn;j1,··· ,jk,4

]
,

for 1 ≤ k ≤ n− 2 and

Tn;j1,··· ,jn−1 =
[

vj1,··· ,jn−1,1 vj1,··· ,jn−1,2

vj1,··· ,jn−1,3 vj1,··· ,jn−1,4

]
.

Furthermore,

Tn;k =
[

vk,1Tn−1;1 vk,2Tn−1;2

vk,3Tn−1;3 vk,4Tn−1;4

]
.(3.16)

(II) Starting from

T2 =
(

T1 T2

T3 T4

)
,

with

Tk =
(

vk,1 vk,2

vk,3 vk,4

)
,

where Tn can be obtained from Tn−1 by replacing Tk by Tk¯T2 according to (3.14).

(III)

Tn = (Tn−1)2n−1×2n−1 ¯
(

E2n−2 ⊗
(

T1 T2

T3 T4

) )
,

where E2k is the 2k × 2k matrix with 1 as its entries.

Proof.
(I)The proof is simply replaced Yn;j1,··· ,jk

and yj1,··· ,jn by Tn;j1,··· ,jk
and vj1,··· ,jn

in Theorem 2.1, respectively.
(II) follow from (I) directly.
To Prove (III), from (I) we have

Tn =
[

Tn;1 Tn;2

Tn;3 Tn;4

]
.

Additionally, base on (3.16), following formula is derived.

Tn =




v1,1Tn;1 v1,2Tn;2 v2,1Tn;1 v2,2Tn;2

v1,3Tn;3 v1,4Tn;4 v2,3Tn;3 v2,4Tn;4

v3,1Tn;1 v3,2Tn;2 v4,1Tn;1 v4,2Tn;2

v3,3Tn;3 v3,4Tn;4 v4,3Tn;3 v4,4Tn;4




= (Tn−1)2n−1×2n−1 ¯
(

E2n−2 ⊗
(

T1 T2

T3 T4

) )
.

The proof is complete.

Remark 3.2. While studying the growth processes of plants, Lindenmayer, e.g.[38],
derived a developmental algorithm, i.e., a set of rules which describes plant devel-
opment in time. Hereinafter, a system with a set of rewriting rules is referred to
as Lindenmayer system or L-system. From Theorem 3.1(III), the family of transi-
tion matrices {Tn}n≥2 is a two-dimensional L-system with a rewriting rule(3.16).
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Similar to many L-systems, our system Tn also enjoys the simplicity of recursion
formulae and self-similarity.

As for spatial entropy h(B), we have the following theorem.

Theorem 3.3. Given a basic set B ⊂ Σ2×2, let λn be the largest eigenvalue of the
associated transition matrix Tn which is defined in Theorem 3.1. Then,

h(B) = lim
n→∞

log λn

n
.(3.17)

Proof. By the same arguments as in [13], the limit (1.2) is well-defined and exists.
From the construction of Tn, we observe that for m ≥ 2,

Γm×n(B) =
∑

1≤i,j≤2n

(Tm−1
n )i,j

≡ #(Tm−1
n ).

(3.18)

As in a one dimensional case, we have

lim
m→∞

log #(Tm−1
n )

m
= log λn,

e.g. [42]. Therefore,

h(B) = lim
m,n→∞

log Γm×n(B)
mn

= lim
n→∞

1
n

( lim
m→∞

log Γm×n(B)
m

)

= lim
n→∞

log λn

n
.

The proof is complete.

3.2. Computation of Maximum Eigenvalues and Spatial Entropy. Given a
transition matrix T2, for any n ≥ 2, the characteristic polynomials |Tn − λ| are of
degree 2n. In general, computing or estimating the largest eigenvalue λn = λn(T2)
of |Tn − λ| for a large n is relatively difficult. However, in this section, we present
a class of T2 in which λn(T2) can be computed explicitly. Indeed, assume that T2

has the form of
[

A B
B A

]
in (3.9), i.e.,

T1 = T4 = A =
[

a a2

a3 a

]
,(3.19)

and

T2 = T3 = B =
[

b b2

b3 b

]
,(3.20)

where a, a2, a3, b, b2 and b3 are either 0 or 1.
We need the following lemma.
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Lemma 3.4. Let A and B be non-negative and non-zero m×m matrices, respec-

tively, and α and β are positive numbers. The maximum eigenvalue of
[

A αB
βB A

]

is then the maximum eigenvalue of

A +
√

αβB.

Proof. Consider ∣∣∣∣
A− λ αB
βB A− λ

∣∣∣∣ = 0.

For |A− λ| 6= 0, the last equation is equivalent to∣∣∣∣
A− λ B

0 (A− λ)− αβB(A− λ)−1B

∣∣∣∣ = 0,

or

|I − αβ((A− λ)−1B)2| = 0.

Then, we have

|A +
√

αβB − λ| = 0 or |A−
√

αβB − λ| = 0.

Since A and B are non-negative and α and β are positive, verifying that the maxi-

mum eigenvalue λ of
[

A αB
βB A

]
and A+

√
αβB are equal is relatively easy. The

proof is complete.

Now, we can state our computation results for λn(T2) when T2 satisfies (3.19)
and (3.20).

Theorem 3.5. Assume that T2 =
[

A B
B A

]
and A =

[
a a2

a3 a

]
and B =

[
b b2

b3 b

]
where a, b, a2, a3, b2, b3 ∈ {0, 1}. For n ≥ 2, let λn be the largest eigen-

value of

|Tn − λ| = 0.

Then

λn = αn−1 + βn−1,(3.21)

where αk and βk satisfy the following recursion relations:

αk+1 = aαk + bβk,(3.22)

βk+1 =
√

(a2αk + b2βk)(a3αk + b3βk),(3.23)

for k ≥ 0, and

α0 = β0 = 1.(3.24)

Furthermore, the spatial entropy h(T2) is equal to log ξ∗, where ξ∗ is the maximum
root of the following polynomials Q(ξ):
(I) if a2 = a3 = 1,

Q(ξ) ≡ 4ξ2(ξ − a)2 + (γ2 − 4δ)(ξ − a)2

−γ2ξ2 − 2γ(2b− aγ)ξ − (2b− aγ)2,
(3.25)
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where

γ = b2 + b3 and δ = b2b3.(3.26)

(II) if a2a3 = 0 and a2b3 + a3b2 = 1,

Q(ξ) ≡ ξ3 − aξ2 − δξ + aδ − b.(3.27)

Moreover, if a2a3 = 0 and a2b3 + a3b2 = 0, then h(T2) = 0.

Proof. Owing to the special structure of T2, it is easy to verify that for any k ≥ 2,
we have

Tk =
[

Ak Bk

Bk Ak

]
,

and

Tk+1 =
[

Ak+1 Bk+1

Bk+1 Ak+1

]
,

here

Ak+1 = Tk ¯A =
[

aAk a2Bk

a3Bk aAk

]
,(3.28)

and

Bk+1 = Tk ¯B =
[

bAk b2Bk

b3Bk bAk

]
,(3.29)

A2 = A and B2 = B. Now by Lemma 3.4,

|Tn+1 − λn+1| = 0,

implies

|An+1 + Bn+1 − λn+1| = 0.(3.30)

Let

α0 = 1 and β0 = 1.

By induction on k, 1 ≤ k ≤ n, and using (3.28),(3.29),(3.30) and Lemma 3.4, it is
straight forward to derive

|αkAn−k+1 + βkBn−k+1 − λn+1| = 0,(3.31)

where αk and βk satisfy (3.22) and (3.23). In particular,

αn = aαn−1 + bβn−1,(3.32)

βn = {(a2αn−1 + b2βn−1)(a3αn−1 + b3βn−1)} 1
2 ,(3.33)

and

λn+1 = αn + βn.

This proves the first part of the theorem.
The rest of the proof demonstrates that h(T2) = log λ∗ where λ∗ is the maximum
root of Q(λ). From (3.33), we have

β2
n = a2a3α

2
n−1 + (a2b3 + a3b2)αn−1βn−1

+ b2b3β
2
n−1.

(3.34)
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Now, in (3.34), αn−1 is solved in terms of βn−1 and βn. Next, αn−1 and αn are
substituted into (3.32) to obtain difference equations involving βn+1, βn and βn−1.
There are two cases to be studied:

Case I. If a2 = a3 = 1, then we have

αn−1 =
1
2
{−γβn−1 + (4β2

n + (γ2 − 4δ)β2
n−1)

1
2 }.(3.35)

Substituting (3.35) into (3.32) yields

{4β2
n+1 + (γ2 − 4δ)β2

n}
1
2 = γβn + (2b− aγ)βn−1

+ a{4β2
n + (γ2 − 4δ)β2

n−1}
1
2 .

(3.36)

Now, let

ξn =
βn

βn−1
,(3.37)

and after dividing (3.36) by βn−1, we have

ξn{4ξ2
n+1 + (γ2 − 4δ)} 1

2 = γξn + (2b− aγ) + a{4ξ2
n + (γ2 − 4δ)} 1

2 .(3.38)

(3.38) can be written as the following iteration map:

ξn+1 = G1(ξn),(3.39)

where

G1(ξ) =
1
2
{4δ + 2γg(ξ) + g2(ξ)} 1

2 ,(3.40)

and

g(ξ) = (2b− aγ)ξ−1 + a{4 + (γ2 − 4δ)ξ−2} 1
2 .(3.41)

According to our results, the fixed point ξ∗ of G1(ξ), i.e., ξ∗ = G(ξ∗), is a root of
Q(ξ). Indeed, by letting ξn = ξn+1 = ξ∗ in (3.38), we have

(ξ∗ − a)(4ξ2
∗ + (γ2 − 4δ))

1
2 = γξ∗ + (2b− aγ),

which gives us Q(ξ∗) = 0.
It can be proven that the maximum fixed point of G1(ξ) or the maximum root

ξ∗ of Q(ξ) = 0 satisfies 1 ≤ ξ∗ ≤ 2 and

ξn → ξ∗ as n →∞.(3.42)

Details are omitted here for brevity. By (3.21), (3.35) and (3.37), we can also prove
that

λn+1

λn
→ ξ∗ as n →∞.(3.43)

Hence, h(T2) = log ξ∗.

Case II. If a2a3 = 0 and a2b3 + a3b2 = 1,
then, from (3.33), we have

αn−1 = β2
nβ−1

n−1 − δβn−1.(3.44)

Again, substituting (3.44) into (3.32) and letting (3.37) lead to

ξ2
n+1ξn − aξ2

n − δξn + aδ − b = 0,(3.45)
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i.e.,

ξn+1 = G2(ξn),

where

G2(ξ) = {aξ + δ + (b− aδ)ξ−1} 1
2 .(3.46)

The maximum fixed point ξ∗ of (3.46) is the maximum root of Q(ξ) = 0 in (3.27).
It can also be proven that (3.42) and (3.43) holds in this case.

Finally, if a2a3 = 0 and a2b3 + a3b2 = 0, then βn are all equal for n ≥ 1. Hence,
αn is at most linear growth in n, implying that h(T2) = 0. The proof is thus
complete.

For completeness, we list all T2 which satisfy (3.19) and (3.20) and have positive
entropy h(T2). The table is arranged based on the magnitude of h(T2). The
polynomial Q(.) in either (3.25) or (3.27) has been simplified to its proper factor
whenever possible.

A B Q(λ) λ∗

(1)
[

1 1
1 1

] [
1 1
1 1

]
λ− 2 2

(2)
[

1 1
1 1

] [
1 1
0 1

]
or

[
1 0
1 1

]
λ3 − 2λ2 + λ− 1 (i)

(3)(α)
[

1 1
0 1

]
or

[
1 0
1 1

] [
1 1
1 1

]
λ2 − λ− 1 g

(3)(β)
[

1 1
1 1

] [
1 0
0 1

]
λ2 − λ− 1 g

(3)(γ)
[

0 1
1 0

] [
1 1
1 1

]
λ2 − λ− 1 g

(4)
[

1 1
0 1

] [
1 0
1 1

]
λ3 − λ2 − 1 (ii)

[
1 0
1 1

] [
1 1
0 1

]

(5)
[

0 1
0 0

]
or

[
0 0
1 0

] [
1 1
1 1

]
λ3 − λ− 1 (iii)

(6)
[

0 1
1 0

] [
1 1
0 1

]
or

[
1 0
1 1

]
λ4 − λ− 1 (iv)
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(i) λ∗
.= 1.75488

(ii) λ∗
.= 1.46557

(iii) λ∗
.= 1.32472

(iv) λ∗
.= 1.22074

where, g
.= 1.61803, is the golden mean, a root of λ2 − λ− 1 = 0.

Table 3.1

The recursion formulae for λn are

(1) λn = 2n,

(2) λn+1 = λn + (λnλn−1)
1
2 ,

(3) (α) λn+1 = λn + (λn(λn − λn−1))
1
2 ,

(β) λn+1 = λn + λn−1,

(γ) λn+1 = λn + λn−1,

(4) λn+1 = λn + (λn−1(λn − λn−1))
1
2 ,

(5) λn+1 = (λnβn−1)
1
2 + βn−1,

where βn−1 = λn − λn−1 + · · ·+ (−1)n,

(6) λn+1 = λn + (λnβn−2)
1
2 − βn−2.

Table 3.2

Remark 3.6.
(i) According to Table 3.2, for cases (1)∼(4), λn+1 depends only on two preceding
terms, λn and λn−1. However, in (5) and (6), λn+1 depends on all of their preceding
terms λ1, · · · , λn.
(ii) From Lemma 3.4 and Theorem 3.5, in addition to the maximum eigenvalue,
we can obtain a complete set of eigenvalues of Tn explicitly.
(iii) In Theorem 3.5, polynomial Q(ξ) given in (3.25) or (3.27) is the limiting

equation for λ
1
n
n . Identifying whether any limiting equation ia available for general

Tn is a worthwhile task.

Remark 3.7. Similar to the concept in Theorem 3.5, if T2 does not satisfy (3.19) and
(3.20), another special structure can allow us to obtain explicit recursion formulae
of λn and compute its spatial entropy h(T2) explicitly. Table 3.3 provides some
examples.
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λn λ∗

(1) T2 =
[

A A
A A

]
,

A =
[

1 1
1 0

]
or

[
0 1
1 1

]
λn = 2gn−1 g

(2) T2 =
[

A A
A 0

]

(i) A =
[

1 1
1 1

]
λn+1 = gλn

λ2 = 2g
g

(ii) A =
[

1 1
1 0

]
λn = gn g

(3) T2 =
[

A B
B A

]

A =
[

1 1
1 0

]
, B =

[
0 1
1 1

]
λn+1 = λn+√

λn−1 · (λn − λn−1)
g

or A =
[

0 1
1 1

]
, B =

[
1 1
1 0

]

(4) T2 =
[

A A
B A

]
λn+1 = λn +

√
λnλn−1 g

A =
[

1 1
1 1

]
, B =

[
1 0
0 1

]
Q(λ) = λ3 − 2λ2 + λ− 1

(i) in
Table 3.1

Table 3.3

3.3. 2`× 2` Systems. Results in the last two subsections can be generalized to p-
symbols on Z2`×2`. Given a basic set B ⊂ Σ2`×2`, horizontal and vertical transition
matrices H2 = [hi1,i2 ]q2×q2 and V2 = [vj1,j2 ]q2×q2 can be defined according the rules
(3.2) and (3.3) by replacing Σ2×2 with Σ2`×2`, respectively. Then, the transition
matrix T2(B) for B can be defined by

T2 = T2(B) =




V1 V2 · · · Vq

Vq+1 Vq+2 · · · V2q

...
...

. . .
...

V(q−1)q+1 V(q−1)q+2 · · · Vq2


(3.47)
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where

Vm =




vm,1 vm,2 · · · vm,q

vm,(q+1) vm,q+2 · · · vm,2q

...
...

. . .
...

vm,(q−1)q+1 vm,(q−1)q+2 · · · vm,q2


 ,(3.48)

1 ≤ m ≤ q2. The higher order transition matrix Tn = [vj1,j2,··· ,jn
] for B defined on

Z2`×n` is a qn× qm matrix, where vj1,j2,··· ,jn
is given by (3.5) which are either 1 or

0, by substituting yj1,··· ,jnby vj1,··· ,jn in Xn, see (2.49)∼(2.51). For completeness,
we state the following theorem for Tn and omit the proof for brevity.

Theorem 3.8. Let T2 be a transition matrix given by (3.47) and (3.48). Then, for
higher order transition matrices Tn, n ≥ 3, we have the following three equivalent
expressions

(I) Tn can be decomposed into n successive q × q matrices as follows:

Tn =




Tn;1 · · · Tn;q

Tn;q+1 · · · Tn;2q

...
. . .

...
Tn;(q−1)q+1 · · · Tn;q2




Tn;j1,··· ,jk
=




Tn;j1,··· ,jk,1 · · · Tn;j1,··· ,jk,q

Tn;j1,··· ,jk,q+1 · · · Tn;j1,··· ,jk,2q

...
. . .

...
Tn;j1,··· ,jk,(q−1)q+1 · · · Tn;j1,··· ,jk,q2




for 1 ≤ k ≤ n− 2 and

Tn;j1,··· ,jn−1 =




vj1,··· ,jn−1,1 · · · vj1,··· ,jn−1,q

vj1,··· ,jn−1,q+1 · · · vj1,··· ,jn−1,2q

...
. . .

...
vj1,··· ,jn−1,(q−1)q+1 · · · vj1,··· ,jn−1,q2


 .

Furthermore,

Tn;k =




vk,1Tn−1;1 · · · vk,qTn−1;q

vk,q+1Tn−1;q+1 · · · vk,2qTn−1;2q

...
. . .

...
vk,(q−1)q+1Tn−1;(q−1)q+1 · · · vk,q2Tn−1;q2




(II) Starting from

T2 =




T1 · · · Tq

Tq+1 · · · T2q

...
. . .

...
T(q−1)q+1 · · · Tq2


 ,
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with

Tk =




vk,1 · · · vk,q

vk,q+1 · · · vk,2q

...
. . .

...
vk,(q−1)q+1 · · · vk,q2


 ,

Tn can be obtained from Tn−1 by replacing Tk by Tk ¯T2 according to

Tk 7→ Tk ¯T2 =




vk,1T1 · · · vk,qTq

vk,q+1Tq+1 · · · vk,2qT2q

...
. . .

...
vk,(q−1)q+1T(q−1)q+1 · · · vk,q2Tq2




(III)

Tn = (Tn−1)qn−1×qn−1 ¯ (Eqn−2 ⊗T2).

For the spatial entropy h(B), we have a similar result as in Theorem 3.3.

Theorem 3.9. Given a basic set B ⊂ Σm1×m2 , let ` be the smallest integer such
that 2` ≥ m1 and 2` ≥ m2, and let B̃ = Σ2`×2`(B). Assume that λn;` is the largest
eigenvalue of the associated transition matrix Tn, which is defined in Theorem 3.8.
Then

h(B) = 1
`2 lim

n→∞
logλn;`

n

Proof.
As in Theorem 3.3,

h(B) = lim
m,n→∞

logΓm`×n`(B̃)
m`× n`

=
1
`2

lim
n→∞

1
n

( lim
m→∞

log#(Tm−1
n (B̃))
m

)

=
1
`2

lim
n→∞

1
n

( lim
m→∞

logλm−1
n;`

m
)

=
1
`2

lim
n→∞

logλn;`

n
.

The proof is complete.

3.4. Relation with Matrix Shifts. Under many circumstances, we are given a
pair of horizontal transition matrix H = (hi,j)p×p and vertical transition matrix
V = (vi,j)p×p, where hi,j and vi,j ∈ {0, 1}, e.g. [13, 29, 30]. Now, the sets of all
admissible patterns which can be generated by H and V on Zm1×m2 and Z2 are
denoted by Σm1×m2(H; V ) and Σ(H;V ), respectively. Furthermore, Σm1×m2(H; V )
and Σ(H; V ) can be characterized by
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(3.49)

Σm1×m2(H; V ) = {U ∈ Σm1×m2,p : huα,uα+e1
= 1 and vuβ ,uβ+e2

= 1,
where e1 = (1, 0), e2 = (0, 1), α = (α1, α2), β = (β1, β2)
with 1 ≤ α1 ≤ m1 − 1 , 1 ≤ α2 ≤ m2 and 1 ≤ β1 ≤ m1 , 1 ≤ β2 ≤ m2 − 1}

and

(3.50)

Σ(H;V ) = {U ∈ Σ2
p : huα,uα+e1

= 1 and vuβ ,uβ+e2
= 1for all α, β ∈ Z2}.

Literature often refers to Σ(H; V ) as Matrix shift, Markov shift or subshift of finite
types, e.g. [13, 30, 37]

As mentioned earlier, constructing Σm1×m2(H; V ) is of priority concern. Accord-
ing to our results, the established theories can be applied to answer this question.
Indeed, we introduce S = {0, 1, 2, · · · , p − 1}. On Z2×2, consider local pattern
U = (uα1,α2) with uα1,α2 ∈ S. Define the ordering matrices X2 = [xi1,i2 ]p2×p2 and
Y2 = [yj1,j2 ]p2×p2 for Σ2×2 as in (2.36) and (2.37). Now, the basic set B(H; V )
determined by H and V can be expressed as

(3.51)

B(H; V ) = {U = (uα1,α2) ∈ Σ2×2 : hu1,1,u2,1hu1,2,u2,2vu1,1,u1,2vu2,1,u2,2 = 1}.
Therefore, the transition matrix T2 = T2(H; V ) can be expressed as T2 =[tj1,j2 ]p2×p2

with tj1,j2 = 1 if and only if yj1,j2 ∈ B(H; V ), i.e., tj1,j2 = 1 if and only if

hu1,1,u2,1hu1,2,u2,2vu1,1,u1,2vu2,1,u2,2 = 1,(3.52)

where jl is related to uα1,α2 according to (2.35)
Now, Tn = Tn(H; V ) can be constructed recursively from T2(H; V ) by Theorem

3.8. Then, λn and spatial entropy h(H; V ) can be studied by Theorem 3.9. Notably,
verifying that Tn(H; V ) = T

(n)

H,V , the transition matrix obtained by Juang et al in

[30],is relatively easy. Furthermore, T
(n)
H,V in [30] can also be obtained by deleting

the rows and columns formed by zeros in Tn(H; V ).
On the other hand, given a basic set B ⊂ Σ2×2,p (or Σ2l×2l,p), in general there

is no horizontal transition matrix H = (hi,j)p×p and vertical transition matrix
V = (vi,j)p×p such that B = B(H; V ) given by (3.51). Indeed, the number of
subsets of Σ2×2,p is 2p4

and the number of B(H; V ) is at most 22p2
and 22p2

< 2p4

for any p ≥ 2. However, as mentioned in p.468[37], any shift of finite type can be
recorded to a matrix subshift. For completeness, a recoding method is described as
follows.

Here, patterns in B ⊂ Σ2l×2l,p are taken as new symbols, i.e.,

SB ≡ B ≡ {U1, · · · , Um},(3.53)

where m is the number of patterns in B. Now, with SB, the horizontal transition
matrix H = H(B) = (hi1,i2)m×m and the vertical transition matrix V = V (B) =
(vj1,j2)m×m for B can be defined as follows.

hi1,i2 = 1 if and only if
Ui1(α1, α2) = Ui2(α1 − 1, α2)
for all 2 ≤ α1 ≤ 2` and 1 ≤ α2 ≤ 2`,

(3.54)
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vj1,j2 = 1 if and only if
Uj1(α1, α2) = Uj2(α1, α2 − 1)
for all 1 ≤ α1 ≤ 2` and 2 ≤ α2 ≤ 2`,

(3.55)

i.e., Ui1 and Ui2 can be glued together horizontally and become a (2` + 1) × 2`
admissible pattern if and only if hi1,i2 = 1. Similarly, Uj1 and Uj2can be glued
together and become a 2` × (2` + 1) admissible pattern if and only if vj1,j2 = 1.
Therefore, the pattern generation problems of B ⊂ Σ2l×2l are equivalent to the
problem of a given pair of horizontal matrix H(B) and vertical transition matrix
V (B) defined by (3.54) and (3.55) with m symbols SB = B.

Notably, the n-th order transition matrix Tn(B) is a qn×qn matrix with q = p`2

and the n-th order transition matrix Tn(H(B); V (B))) generated by T2(H(B); V (B)))
is a mn ×mn matrix. Consequently, if m = #B is smaller than q = pl2 , the eigen-
value problems of Tn(H(B); V (B)) can be studied. Clearly, a small m generates
less admissible patterns and a subsequently smaller entropy. For B with positive en-
tropy h(B) as in Table 3.1 and Table 3.3 , #B is much larger than q = 2. Therefore,
working on Tn(B) is generally better than doing so on Tn(H(B); V (B))).

4. Higher dimensional cases

This section extends the results of a two dimensional case to higher dimensions.
For clarity, a three dimension case is first examined by studying Σ2×2×2 with two
symbols S = {0, 1}.

On Σm1×m2×m3 , each pattern U = (uα1,α2,α3) is again assigned by

χ(U) ≡ χm1,m2,m3(U)

= 1 +
m1∑

α1=1

m2∑
α2=1

m3∑
α3=1

uα1,α2,α3χ
α1,α2,α3
m1,m2,m3

,
(4.1)

here

χα1,α2,α3
m1,m2,m3

= 2m3m2(m1−α1)+m3(m2−α2)+(m3−α3).(4.2)

In general, given one to one and onto mapping ψ from Σm1×m2×m2 to N2m1m2m3 =
{n ∈ N : 1 ≤ n ≤ 2m1m2m3}, U is referred to herein as the ψ(U)-th element in
Σm1×m2×m2 and the ordering matrix Xψ is defined with respect to ψ. Obviously,
both χ ◦ ψ−1 and ψ ◦ χ−1 are one to one and onto on N2m1m2m3 . The ordering
matrices and the associated transition matrices with respect to χ and ψ are similar
for all ψ. In this section, χ given in (4.1) and (4.2) is used for Σ2×m×2 and χ̂ (which
will be defined in (4.17))is used for Σ2×m×n for n ≥ 3. The choices of χ and χ̂
allow us to derive simple recursion formulae for generating ordering matrices and
then transition matrices.

4.1. Ordering Matrices. With ordering rule (4.1), the ordering matrix X2×2 =
[xi1,i2 ] of Σ2×2×2 can be expressed as

ik = 1 +
2∑

α2=1

2∑
α3=1

uk,α2,α32
6−2α2−α3 ,(4.3)

1 ≤ ik ≤ 16 and k = 1, 2.
Define

β = 2(α2 − 1) + α3,(4.4)
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i.e, in the y-z plane, Z2×2 is given an order

2 4

1 3

.

(4.5)

as in (2.1) and (2.2). Next, define

`β = 1 + 2u1,α2,α3 + u2,α2,α3 ,(4.6)

1 ≤ `β ≤ 4 . From (4.4) and (4.6), we have the following diagram

u

1,1,1

u

uu

u

u u

u

1,2,21,1,2

1,2,1

2,2,2

2,2,1

2,1,2

2,1,1

l

l

l

l

1

2

3

4

x

y

z

.
From (4.4) and (4.6), it is easy to verify that uα1,α2,α3 can be written in terms of
`β by

u1,α2,α3 = [
`β − 1

2
],(4.7)

u2,α2,α3 = `β − 1− 2[
`β − 1

2
].(4.8)

Furthermore, the relation between ik and `β can also be derived as

i1 = 1 + 23[
`1 − 1

2
] + 22[

`2 − 1
2

] + 2[
`3 − 1

2
] + [

`4 − 1
2

],(4.9)

i2 = 1 + 23{`1 − 1− 2[ `1−1
2 ]}+ 22{`2 − 1− 2[ `2−1

2 ]}+
2{`3 − 1− 2[ `3−1

2 ]}+ {`4 − 1− 2[ `4−1
2 ]}(4.10)

and

`1 = 1 + 2[
i1 − 1

8
] + [

i2 − 1
8

],(4.11)

`2 = 1 + 2[
i1 − 1

4
]− 4[

i1 − 1
8

] + [
i2 − 1

4
]− 2[

i2 − 1
8

],(4.12)

`3 = 1 + 2[
i1 − 1

2
]− 4[

i1 − 1
4

] + [
i2 − 1

2
]− 2[

i2 − 1
4

],(4.13)

`4 = 1 + 2(i1 − 1)− 4[
i1 − 1

2
] + (i2 − 1)− 2[

i2 − 1
2

].(4.14)
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Denoted by

w`1,`2,`3,`4 = xi1,i2 ,

where ik and `β are related to each other in (4.9)∼(4.14), leading to

χ(w`1,`2,`3,`4) = 1 +
4∑

β=1

{24[
`β − 1

2
] + {`β − 1− 2[

`β − 1
2

]}}24−β(4.15)

and the ordering matrix X2×2 can be represented in w`1,`2,`3,`4 by 4 Z-maps suc-
cessively as in Theorem 2.1, i.e ,

X2×2 =
(

W1 W2

W3 W4

)
,

W`1 =
(

W`1,1 W`1,2

W`1,3 W`1,4

)
,

W`1,`2 =
(

W`1,`2,1 W`1,`2,2

W`1,`2,3 W`1,`2,4

)
,

and

W`1,`2,`3 =
(

w`1,`2,`3,1 w`1,`2,`3,2

w`1,`2,`3,3 w`1,`2,`3,4

)
.

For instance, w1,2,3,4 and w4,3,2,1 can be identified in the following diagram.

a b c d

PSfrag replacements
`1
`2
`3
`4 .

w1

w2

PSfrag replacements
ω1,2,3,4
ω4,3,2,1 .

The rest of this subsection is devoted to constructing Xm×n from X2×2 by the
following three steps :
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Step I : Define χ-ordering on Zm×2 by

2 4

1 3

2m-2

2m-3 2m-1

2m2k

2k-1

...

...

...

...
(4.16)

and introduce ordering matrix Xm×2 for Σ2×m×2.

Step II : Convert χ-ordering into χ̂-ordering on Zm×2 by

m+1 m+2

1 2

2m

mk

m+k...

...

...

...
(4.17)

and introduce ordering matrix X̂m×2 for Σ2×m×2.

Step III : Define χ̂-ordering on Zm×n by

(n-1)m+1 (n-1)m+2 nm

m+1 m+2

1 2

2m-1

m-1

2m

m

nm-1...
...

...

...

.

.

.

.

.

.

.

.

.

.

.

.(4.18)

and introduce ordering matrix X̂m×n for Σ2×m×n.
To introduce Xm×2, define

w`1,`2,··· ,`2m = w`1,`2,`3,`4 ⊕̂ w`3,`4,`5,`6 ⊕̂ · · ·

⊕̂ w`2k+1,`2k+2,`2k+3,`2k+4 ⊕̂ · · ·

⊕̂ w`2m−3,`2m−2,`2m−1,`2m ,

(4.19)

0 ≤ k ≤ m− 2.
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Then

(4.20)

χ(w`1,`2,··· ,`2m) = 1 +
2m∑

β=1

{22m[
`β − 1

2
] + {`β − 1− 2[

`β − 1
2

]}}22m−β .

From (4.16), (4.19) and (4.20), χ-ordering on Zm×2 is obviously one dimensional. It
grows in m (y-direction). Therefore, by a similar argument as in proving Theorem
2.1, we have the following result for Xm×2.

Theorem 4.1. For any m ≥ 2, Σ2×m×2 = {w`1,`2,··· ,`2m}, where w`1,`2,··· ,`2m is
given in (4.17). Furthermore, the ordering matrix Xm×2 = [w`1,`2,··· ,`2m

] which is
a 22m × 22m matrix can be decomposed into 2m Z-maps successively as

Xm×2 =
(

W1 W2

W3 W4

)
,

W`1,··· ,`k
=

(
W`1,··· ,`k,1 W`1,··· ,`k,2

W`1,··· ,`k,3 W`1,··· ,`k,4

)
,

for 1 ≤ k ≤ 2m− 2,

W`1,··· ,`2m−1 =
(

w`1,··· ,`2m−1,1 w`1,··· ,`2m−1,2

w`1,··· ,`2m−1,3 w`1,··· ,`2m−1,4

)
.

Proof. From (4.7) and (4.8), we have following table.

lβ 1 2 3 4

u1,α2,α3 0 0 1 1

u2,α2,α3 0 1 0 1

Table 4.1
For any m ≥ 2, by (4.6),(4.7) and (4.8), it is easy to generalize (4.9) and (4.10) to

im;1 = 1 +
2m∑

β=1

[
lβ − 1

2
]22m−β ,

and

im;2 = 1 +
2m∑

β=1

{lβ − 1− 2[
lβ − 1

2
]}22m−β .

From above formulae, we have

im+1;1 = 22im;1 + 2u1,m+1,1 + u1,m+1,2 + (1− 22),

and

im+1;2 = 22im;2 + 2u2,m+1,1 + u2,m+1,2 + (1− 22).



PATTERNS GENERATION AND TRANSITION MATRICES 31

Now, by induction on m, the theorem follows from last two formulae and Table 4.1.
The proof is complete.

Next, χ-ordering is converted into χ̂-ordering for Zm×2.
Since Zm×2 = {(α2, α3) : 1 ≤ α2 ≤ m, 1 ≤ α3 ≤ 2}, the position (α2, α3) is the

β-th in (4.16), where β = 2(α2 − 1) + α3 given in (4.4). In (4.17), the position of
(α2, α3) is the β̂-th, where

β̂ = m(α3 − 1) + α2.(4.21)

It is easy to verify

β̂ = mβ + (1− 2m)[
β − 1

2
] + (1−m),(4.22)

or

β̂ = k if β = 2k − 1,

and

β̂ = m + k if β = 2k,

1 ≤ k ≤ m.

Now, the ordering χ̂ in (4.17) on Zm×2 can be extended to Zm×n by (4.18).
For a fixed m, χ̂-ordering on Zm×n is obviously one dimensional; it grows in

n (z-direction). With ordering (4.18) on Zm×n, for U = (uα1,α2,α3) ∈ Σ2×m×n,
denoted by

jk = 1 +
m∑

α2=1

n∑
α3=1

uk,α2,α32
m(n−α3)+(m−α2),(4.23)

k=1,2. Then, we obtain

χ̂(U) = 2mn(j1 − 1) + j2.(4.24)

Now, let x̂j1,j2 = U = (uα1,α2,α3), then we have new ordering matrix X̂m×2 =
[x̂j1,j2 ] for Σ2×m×2. The relationship between Xm×2 and X̂m×2 is established
before constructing X̂m×n from X̂m×2 for n ≥ 3.

Here, a conversion sequence of orderings is first established from (4.16) to (4.17).
Where Pk denotes the permutation of N2m = {1, 2, · · · , 2m} such that Pk(k +1) =
k,Pk(k) = k + 1 and the other numbers are fixed. Where Pk is denoted here as the
permutation on Zm×2 such that it exchanges k and k+1 and maintains the other
positions fixed, i.e,

· k + 1 · ·
· · k ·

Pk−→ · k · ·
· · k + 1 ·(4.25)

Obviously,(4.16) can be converted into (4.17) in many ways by using a sequence
of Pk. A systematic approach is presented as follows.

Lemma 4.2. For m ≥ 2, (4.16) can be converted into (4.17) by the following
sequences of m(m−1)

2 permutations succesively

(P2P4 · · ·P2m−2)(P3P5 · · ·P2m−3) · · ·
(PkPk+2 · · ·P2m−k) · · · (Pm−1Pm+1)Pm,

(4.26)

2 ≤ k ≤ m.
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Proof. When m = 2 and 3, verifying that (4.26) can convert (4.16) into (4.17) is
relatively easy.

When m ≥ 4, and for any 2 ≤ k ≤ m, applying

(P2P4 · · ·P2m−2)(P3P5 · · ·P2m−3) · · · (PkPk+2 · · ·P2m−k)(4.27)

to (4.16), then there are two intermediate cases:
(i) when 2 ≤ k ≤ [m

2 ], then we have

...k+1 2m-1

k+2

3k-1k+3 ... ...2m-k+1 2m

1 k2 ... ...

...

2m-3k+1

2m-k-1...

k+4 ... ... 2m-k-2 2m-k...

...3k-1+2l

k+2l

(4.28)

where 0 ≤ ` ≤ m− 2k.
(ii) when [m

2 ] + 1 ≤ k ≤ m− 1, then we have

...k+1 2m-1

k+2

...

...

2m-k+2 2m

1 k2 ...

...2m-k+1

k-1...

2m-k-1

2m-k...

...
(4.29)

When k=m in (4.29), we have (4.17). We prove (4.28) and (4.29) by mathematical
induction on k. When k=2, it is relatively easy to verify that (4.16) is converted
into

...3 2m-1

k+2

2m

1 k2

...5

...4 ...

2m-3

by P2P4 · · ·P2m−2, i.e., (4.28) holds for k=2. Next, assume that (4.28) holds for
k ≤ [m

2 ]. Then, by applying Pk+1Pk+2 · · ·P2m−k−1 to (4.28), it can be verified that
(4.28) holds for k +1 when k +1 ≤ [m

2 ] or becomes (4.29) when k +1 ≥ [m
2 ]. When

k ≥ [m
2 ] + 1, we apply Pk+1Pk+2 · · ·P2m−k−1 to (4.29). It can also be verified that

(4.29) holds for k+1. Finally, we conclude that (4.27) holds for k = m. The proof
is thus complete.

By using Lemma 4.2, Xm×2 can be converted into X̂m×2 by the following con-
struction. Let

P =




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


 ,(4.30)

and for 2 ≤ j ≤ 2m− 2, as denoted by

P2m;j = I2j−1 ⊗ P ⊗ I22m−j−1 ,(4.31)



PATTERNS GENERATION AND TRANSITION MATRICES 33

where Ik is the k × k identity matrix. Furthermore, let

Pm×2 = (P2m;2P2m;4 · · ·P2m;2m−2) · · · (P2m;k · · ·P2m;2m−k)
· · ·P2m;m,

(4.32)

2 ≤ k ≤ m. Then, we have the following theorem.

Theorem 4.3. For any m ≥ 2,

X̂m×2 = Pt
m×2Xm×2Pm×2.(4.33)

Proof. From Theorem 4.1, we have Xm×2 = [w`1,`2,··· ,`2m
]22m×22m . It is easy to

verify that for any 1 ≤ k ≤ 2m− 1,

P t
2m;k[w`1,`2,··· ,`k,`k+1,··· ,`2m

]P2m;k = [w`1,`2,··· ,`k+1,`k,··· ,`2m
](4.34)

,i.e., P2m;k exchanges `k and `k+1 in Xm×2. Therefore, from (4.32), (4.34) and
Lemma 4.2, (4.33) follows.

Now, in Theorem 4.3, as denoted by

X̂m×2 = [ŵr1,r2,··· ,r2m
],(4.35)

1 ≤ rj ≤ 4, by (4.16) and (4.19), we have

ŵr1,r2,··· ,r2m = w`1,`m+1,`2,`m+2,··· ,`k,`m+k,··· ,`m,`2m .(4.36)

The χ̂-expression X̂m×2 = [ŵr1,r2,··· ,r2m ] for Σ2×m×2 enables us to construct X̂m×n

for Σ2×m×n. Indeed, from (4.22), for fixed m ≥ 2 and n ≥ 2, let

ŵr1,r2,··· ,rmn = ŵr1,··· ,rm,rm+1,··· ,r2m
⊕̂ŵrm+1,··· ,r2m,r2m+1,··· ,r3m

⊕̂ · · ·
⊕̂ŵrkm+1,··· ,r(k+1)m,r(k+1)m+1,··· ,r(k+2)m

⊕̂ · · ·
⊕̂ŵr(n−2)m+1,··· ,r(n−1)m,r(n−1)m+1,··· ,rnm ,

(4.37)

0 ≤ k ≤ n − 2. Therefore, by a similar argument as in proving Theorem 2.1
and Theorem 4.1, we have the following theorem for X̂m×n. The detailed proof is
omitted here for brevity.

Theorem 4.4. By fixing m ≥ 2 and for any n ≥ 2, the ordering matrix X̂m×n

with respect to χ̂ ordering can be expressed as

X̂m×n = [ŵr1,r2,··· ,rmn ],(4.38)

where ŵr1,r2,··· ,rmn is given by (4.36) and (4.37).

4.2. Transition matrices. With the ordering matrices X̂m×n for Σ2×m×n having
been defined, higher order transition matrices T̂m×n can now be derived from T2×2.
As in the two dimensional case, assume that we have basic set B ⊂ Σ2×2×2. Define
the transition matrix T2×2 = T2×2(B) by

T2×2 = [t`1,`2,`3,`4 ]24×24 ,(4.39)

where
t`1,`2,`3,`4 = 1 if w`1,`2,`3,`4 ∈ B,

= 0 if w`1,`2,`3,`4 ∈ Σ2×2×2 − B.
(4.40)

Then, the transition matrix Tm×2 for B defined on Z2×m×2 is a 22m × 22m matrix
with entries t`1,`2,··· ,`2m , where

t`1,`2,··· ,`2m =
m−2∏

k=0

t`2k+1,`2k+2,`2k+3,`2k+4 .(4.41)
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Based on Theorem 4.1, we can obtain results for Tm×2 as Tn in Theorem 3.1 in
the two dimensional case. Indeed, we have

Theorem 4.5. Let T2×2 be a transition matrix given by (4.39) and (4.40). Then,
for higher order transition matrices Tm×2, m ≥ 3, we have the following three
equivalent expressions:
(I) Tm×2 can be decomposed into 2m successive 2× 2 matrices

Tm×2 =
[

T2m;1 T2m;2

T2m;3 T2m;4

]
,

T2m;j1,··· ,jk
=

[
T2m;j1,··· ,jk,1 T2m;j1,··· ,jk,2

T2m;j1,··· ,jk,3 T2m;j1,··· ,jk,4

]
,

1 ≤ k ≤ 2m− 2, and

T2m;j1,··· ,j2m−1 =
[

tj1,··· ,j2m−1,1 tj1,··· ,j2m−1,2

tj1,··· ,j2m−1,3 tj1,··· ,j2m−1,4

]
.

(II) Starting from

T2×2 = [T`1,`2 ]4×4

and

T`1,`2 = [t`1,`2,`3,`4 ]4×4 ,

for m ≥ 3,Tm×2 can be obtained from T(m−1)×2 by replacing T`1,`2 with

(T`1,`2)4×4 ¯ (T2×2)4×4.(4.42)

(III) For m ≥ 3,

Tm×2 = (T(m−1)×2)4m−1×4m−1 ¯ (E4m−2 ⊗T2×2).(4.43)

Now, with respect to ordering matrix X̂m×2, T̂m×2 and Tm×2 are similar. Ad-
ditionally, by using Theorem 4.3, we have

Theorem 4.6.

T̂m×2 = Pt
m×2Tm×2Pm×2.(4.44)

By applying Theorem 4.4, transition matrix T̂m×n can be obtained from T̂m×2

as was done in Theorem 3.1 and Theorem 4.5. Indeed, we have

Theorem 4.7. Let T̂2×2 = [t̂r1,r2,r3,r4 ]24×24

(I) T̂m×n can be decomposed into mn Z-maps with successive 2× 2 matrices:

T̂m×n =
[

T̃mn;1 T̃mn;2

T̃mn;3 T̃mn;4

]

2×2

T̃mn;r1,r2,··· ,rk
=

[
T̃mn;r1,r2,··· ,rk,1 T̃mn;r1,r2,··· ,rk,2

T̃mn;r1,r2,··· ,rk,3 T̃mn;r1,r2,··· ,rk,4

]

2×2

1 ≤ k ≤ mn− 2
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T̃mn;r1,r2,··· ,rmn−1 =
[

t̂mn;r1,r2,··· ,rmn−1,1 t̂mn;r1,r2,··· ,rmn−1,2

t̂mn;r1,r2,··· ,rmn−1,3 t̂mn;r1,r2,··· ,rmn−1,4

]

2×2

.

(II) Let T̂m×2 = [T̂2m;r1,r2,r3,··· ,rm
]2m×2m where T̂2m;r1,r2,··· ,rm

= [t̂r1,r2,··· ,rm,rm+1,··· ,r2m
]2m×2m .

Then, for any n ≥ 3, T̂m×n can be obtained from T̂m×(n−1) by replacing T̂2m;r1,r2,r3,··· ,rm

with

(T̂2m;r1,r2,r3,··· ,rm
)2m×2m ¯ (T̂m×2)2m×2m .(4.45)

(III) Furthermore, for n ≥ 3 we have

T̂m×n =
(T̂m×(n−1))2m(n−1)×2m(n−1) ¯ (E2m(n−2) ⊗ T̂m×2)2m(n−1)×2m(n−1) .

(4.46)

Details of the proof are omitted here for brevity.
Finally, the spatial entropy h(B) can be computed through the maximum eigen-

value λm,n of T̂m×n. Indeed, we have

Theorem 4.8. Let λm,n be the maximum eigenvalue of T̂m×n, then

h(B) = lim
m,n→∞

log λm,n

mn
.(4.47)

The proof closely resembles that when proving Theorem 3.3. Details are omitted
here for brevity.

4.3. Computation of λm,n and entropies. From the last two subsections, we
obtain a systematic means of writing down T̂m×n from T2×2. As in a two dimen-
sional case, recursion formulae for λm,n can be obtained when T2×2 has a special
structure. To demonstrate the methods developed in the last subsection, we provide
an illustrative example in which T̂m×n and λm,n can be derived explicitly. More
complete results will appear later.

Denoted by

G =
[

1 1
1 0

]
and E = E2 =

[
1 1
1 1

]
,(4.48)

and let

T2×2 =
2⊗ (G⊗ E),

= (G⊗ E)⊗ (G⊗ E).
(4.49)

Proposition 4.9. Let T2×2 be in (4.48) and (4.49). Then,

(i) Tm×2 =
m⊗ (G⊗ E),(4.50)

(ii) T̂m×2 = (
m⊗ G)⊗ (

m⊗ E),(4.51)

(iii) T̂m×n = (
m(n−1)
⊗ G)⊗ (

m⊗ E).(4.52)

Furthermore, for the maximum eigenvalue λm,n of T̂m×n, we have the following
recursion formulae:

λm+1,n = 2gn−1λm,n(4.53)
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and

λm,n+1 = gmλm,n(4.54)

for m,n ≥ 2 with

λ2,2 = (2g)2.(4.55)

The topological entropy is

h(T2×2) = g,(4.56)

where g = 1+
√

5
2 .

Proof. The proof is only described briefly, and the details are omitted for brevity.
(i) can be proved by Theorem 4.5 and induction on m. Indeed, by (4.43), we have

T3×2 = (T2×2)4×4 ¯ (E4 ⊗T2×2)4×4

= (G⊗ E ⊗G⊗ E)4×4 ¯ (E ⊗ E ⊗ (G⊗ E ⊗G⊗ E))4×4

= (G¯ E)⊗ (E ¯ E)⊗ (G¯G)⊗ (E2×2 ¯ (E ⊗G⊗ E))2×2

=
3⊗ (G⊗ E).

Assume that T(m−1)×2 =
m−1⊗ (G⊗ E). Then by (4.43) again, we have

Tm×2 = (T(m−1)×2)¯ ((
2(m−2)
⊗ E)⊗T2×2))

= (
m−1⊗ (G⊗ E))4m−2×4m−2 ¯ ((

m−2⊗ E)⊗ (
2⊗ (G⊗ E)))4m−2×4m−2

= (
m−2⊗ (G⊗ E)⊗ (G⊗ E))4m−2×4m−2 ¯ (

m−2⊗ (E ⊗ E)⊗ (G⊗ E)⊗ (G⊗ E))4m−2×4m−2

=
m−2⊗ [(G¯ E)⊗ (E ¯ E)]⊗ (G¯G)⊗ (E ¯ (E ⊗G⊗ E))

=
m−2⊗ (G⊗ E)⊗ (G⊗ E)⊗ (G⊗ E)

=
m⊗ (G⊗ E).

(ii) The following property for matrices is needed and the detailed proof omitted:
For any two 2× 2 matrices A and B, we have

P (A⊗B)P = B ⊗A,(4.57)

where P is given in (4.30). We also prove in (4.51) by induction on m. When m=2,
by Theorem 4.6,

T̂2×2 = Pt
2×2T2×2P2×2

= (P4;2)tT2×2P4;2

= (I2 ⊗ P ⊗ I2)((G⊗ E)⊗ (G⊗ E))(I2 ⊗ P ⊗ I2)
= G⊗ (P (E ⊗G)P )⊗ E
= G⊗G⊗ E ⊗ E

by (4.57).
Now, assume that (4.51) holds for m-1, i.e.

T̂(m−1)×2 = (
m−1⊗ G)⊗ (

m−1⊗ E).
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Then

T̂m×2 = Pt
m×2Tm×2Pm×2

= [(P2m;2P2m;4 · · ·P2m;2m−2)(P2m;3P2m;5 · · ·P2m;2m−3) · · · (P2m;m)]t

Tm×2[(P2m;2P2m;4 · · ·P2m;2m−2)(P2m;3P2m;5 · · ·P2m;2m−3) · · · (P2m;m)]
= (P2m;m) · · · (P2m;3P2m;5 · · ·P2m;2m−3)

[(P2m;2P2m;4 · · ·P2m;2m−2)(
m⊗ (G⊗ E))(P2m;2P2m;4 · · ·P2m;2m−2)]

(P2m;3P2m;5 · · ·P2m;2m−3) · · · (P2m;m)
= (P2m;m) · · · (P2m;3P2m;5 · · ·P2m;2m−3)

[G⊗ (
m−1⊗ (G⊗ E))⊗ E]

(P2m;3P2m;5 · · ·P2m;2m−3) · · · (P2m;m)
= G⊗ {(P2(m−1);m−1) · · · (P2(m−1);2P2(m−1);4 · · ·P2(m−1);2(m−1)−2)

[
m−1⊗ (G⊗ E)](P2(m−1);2P2(m−1);4 · · ·P2(m−1);2(m−1)−2) · · · (P2m−1;m−1)
} ⊗ E

= G⊗ (Pt
(m−1)×2T(m−1)×2P(m−1)×2)⊗ E

= G⊗ T̂(m−1)×2 ⊗ E

= G⊗ ((
m−1⊗ G)⊗ (

m−1⊗ E))⊗ E

= (
m⊗ G)⊗ (

m⊗ E).

(iii) For a fixed m, we prove the results by induction on n ≥ 2. Assume that (4.52)
holds for n− 1, i.e.,

T̂m×(n−1) = (
m(n−2)
⊗ G)⊗ (

m⊗ E).

Then, by (4.46), we have

T̂m×n = T̂m×(n−1) ¯ ((
m(n−2)
⊗ E)⊗ T̂m×2)

= ((
m(n−2)
⊗ G)⊗ (

m⊗ E))¯ ((
m(n−2)
⊗ E)⊗ (

m⊗ G)⊗ (
m⊗ E))

= (
m(n−2)
⊗ G)⊗ (

m⊗ G)⊗ (
m⊗ E)

= (
m(n−1)
⊗ G)⊗ (

m⊗ E).

As for maximum eigenvalue λm,n, verifying (4.55) is easy. To show (4.53) for
fixed n, by using (4.52), we have

T̂(m+1)×n = (
(m+1)(n−1)

⊗ G)⊗ (
m+1⊗ E)

= (
n−1⊗ G)⊗ (

m(n−1)
⊗ G)⊗ (

m⊗ E)⊗ E

= (
n−1⊗ G)⊗ T̂m×n ⊗ E,

which implies

λm+1,n = 2gn−1λm,n,

see [8].
Similarly, for a fixed m, to prove (4.54), by using (4.52) again, we have

T̂m×(n+1) = (
mn⊗ G)⊗ (

m⊗ E)

= (
m⊗ G)⊗ (

m(n−1)
⊗ G)⊗ (

m⊗ E)

= (
m⊗ G)⊗ T̂m×n,
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which implies

λm,n+1 = gmλm,n.

Finally, (4.56) follows from (4.53), (4.54) and Theorem 4.8. The proof is thus com-
plete.

4.4. Higher Dimensional Cases. For completeness, this subsection, discusses
how to generalize the theory developed previously to higher dimensions, i.e., di-
mension ≥ 4. We summarize the methods, outline the procedures and highlight
key points, as well as omit the details which will appear in [4]. We begin by intro-
ducing orderings on sublattices Zm1×···×md

⊂ Zd. The associated ordering matrices
X[d]

m1×···×md
on Σ2×m1×···×md

are then defined. Finally, the transition matrices for
a given basic B ⊂ Σ2×···×2 are derived.

Given a finite lattice Zm1×···×md
⊂ Zd, denoted by

Nd = m1 × · · · ×md.(4.58)

We introduce d-many orderings on ZNd. Indeed, define

M0 =
d∏

i=1

mi,(4.59)

and for any j, 1 ≤ j ≤ d− 1, define

Mj ≡ M
[1]
j ≡

d∏

i=j+1

mi & M
[1]
d = 1.(4.60)

Next, for any 2 ≤ k ≤ d− 1 and 1 ≤ j ≤ d− 1, define

M
[k]
j =

d∏

i 6=k,i=j+1

mi & M
[k]
d = 1.(4.61)

when j 6= k, and

M
[k]
k =

d∏

i=1,i 6=k

mi.(4.62)

Finally, for 1 ≤ j ≤ d− 2, define

M
[d]
j =

d−1∏

i=j+1

mi & M
[d]
d−1 = 1.(4.63)

and

M
[d]
d =

d−1∏

i=1

mi.(4.64)

The underlying notion behind these M
[k]
j is that d-many orderings [k], 1 ≤ k ≤ d,

are introduced to the set positive integers Nd = {1, 2, · · · , d} by
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[1] : 1 Â 2 Â · · · Â d,

...
[k] : k Â 1 Â 2 Â · · · Â k − 1 Â k + 1 Â · · · Â d,

...
[d] : d Â 1 Â 2 Â · · · Â d− 1.

Therefore, for any (α1, · · · , αd) ∈ ZNd
, we define

χ[k]((α1, · · · , αd)) = 1 +
d∑

j=1

M
[k]
j (αj − 1),(4.65)

i.e., we count the index (α1, · · · , αd) in ZNd
as the χ[k]((α1, · · · , αd))-th position in

χ[k] ordering. When d=2, χ[1] = χ and χ[2] = χ̂, see (4.16), (4.17) and (4.24).
As done previously, assume that S = {0, 1}. Consider all patterns U = (uα0,α1,··· ,αd

) ∈
Σ2×Nd

on Z2×Nd
⊂ Zd+1. Then, we can define

χ[k]((uα0,α1,··· ,αd
)) =

1 +
2∑

α0=1

m1∑
α1=1

· · ·
mk∑

αk=1
· · ·

md∑
αd=1

uα0,α1,··· ,αd
χ̃[k]((α0, α1, · · · , αd))

(4.66)

where
log{χ̃[k](α0, α1, · · · , αd)} =

{M0(2− α0) +
d∑

j=1

M
[k]
j (mj − αj)} log 2.

(4.67)

Denoted by

N0 = 2× · · · × 2︸ ︷︷ ︸
d−times

,(4.68)

and

Nk = m1 × · · · ×mk × 2× · · · × 2︸ ︷︷ ︸
d−k times

,(4.69)

for 1 ≤ k ≤ d, and d+1 numbers n0 = 2d, nk = m1 · · ·mk2d−k, 1 ≤ k ≤ d. Here
ordering matrices X[k]

Nk
are introduced to Σ2×Nk

. Indeed, in the first step, X[1]
N0

is
introduced to Σ2×N0 with respect to χ[1]. Then, by proceeding as in Theorem 4.1,
we obtain X[1]

N1
on Σ2×N1 .

Next, a sequence of permutations can be obtained as in Lemma 4.2, which can
convert χ[1] ordering on ZN1 into χ[2] ordering on ZN1 . Therefore, after appropri-
ately modifying Lemma 4.2 and Theorem 4.3, there is a 2n1×2n1 matrix, P[1]

N1 such
that

X[2]
N1

= (P[1]
N1

)tX[1]
N1

P[1]
N1

(4.70)

as in Theorem 4.3 for d=2. Now, as in Theorem 4.4, we can construct X[2]
N2

on

Σ2×N2 from X[2]
N1

. In this procedure, in k-step, we have X[k]
Nk

on Σ2×Nk
. Next,
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X[k]
Nk

is converted into X[k+1]
Nk

as in Theorem 4.3 and X[k+1]
Nk

is extended to X[k+1]
Nk+1

as in Theorem 4.4. Finally, we have X[d]
Nd

on the whole lattice Z2×Nd
. Notably, the

extension of X[k+1]
Nk

to X[k+1]
Nk+1

is one dimensional, i.e., it grows in αk+1 direction
only.

As for transition matrices, assume that we are given a basic set B ⊂ Σ2×N0 , and
X[1]

N0
can be used to introduce the transition matrix T[1]

N0
, i.e.,

T[1]
N0

= [t`1,··· ,`D
]2d+1×2d+1

D = 2d+1, 1 ≤ `j ≤ 4, where t`1,··· ,`D = 1 if and only if the associated pattern
lies in B. By proceeding as in Theorems 4.5 ∼ 4.7, we can obtain T[d]

Nd
on Z2×Nd.

After the maximum eigenvalue λNd
of T[d]

Nd is computed, the entropy h(B) can be
obtained as

h(B) = lim
Nd→∞

log λNd

m1m2 · · ·md
.(4.71)

Remark 4.10. For B ⊂ Σ2`×···×2`,p, the theories applied and detailed discussion
will appear in [4].
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