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Abstract—This study investigates the complexity of the global
set of output patterns for one-dimensional multi-layer cellular
neural networks with input. Applying labeling to the output
space produces a sofic shift space. Two invariants, namely spatial
entropy and dynamical zeta function, can be exactly computed
by studying the induced sofic shift space. This study gives sofic
shift a realization through a realistic model. Furthermore, a new
phenomenon, the broken of symmetry of entropy, is discovered
in multi-layer cellular neural networks with input.

I. INTRODUCTION

The cellular neural network (CNN) proposed by Chua and
Yang is a large aggregate of analogue circuits [1], [2]. The
system presents itself as an array of identical cells which are
all locally coupled. Many such systems have been studied as
models for spatial pattern formation in biology [3], [4], [5], [6],
[7], chemistry [8], physics [9], image processing and pattern
recognition [10].

The complexity of the set of global patterns for one- or
two-dimensional cellular neural networks has been widely
discussed [11], [12], [13], [14], [15], [16], [17], [18]. How-
ever, this study is the first to explore the complexity for
one-dimensional multi-layer CNN. The two-dimensional sofic
and two-dimensional multi-layer CNN are discussed in other
papers.

A one-dimensional multi-layer CNN system with input is
realized as the following form,
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and
y = f(x) =

1
2
(|x + 1| − |x− 1|) (3)

is the output function. For 1 ≤ n ≤ N , parameter A(n) =
(a(n)
−d , · · · , a

(n)
d ) is called the feedback template; B(n) =

(b(n)
−d , · · · , b

(n)
d ) is called the controlling template, and z(n)

is the threshold. The quantity x
(n)
i denotes the state of a cell

Ci in the nth layer. The stationary solutions x̄ = (x̄(n)
i ) of (1)

are essential for understanding the system, and their outputs
ȳ
(n)
i = f(x̄(n)

i ) are called patterns. A mosaic solution (x̄(n)
i )

satisfies |x̄(n)
i | > 1 for all i, n. Hence the investigation of

stationary solution of N -layer CNN is to study a N -coupled
map lattice.
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One-layer CNN with input is first considered. Let

Pn+2 = {(A,B, z) : A,B ∈M1×(2d+1)(R), z ∈ R}, (5)

where n = 4d + 1. The parameter space Pn+2 can be
partitioned into finite sub-regions, such that each region has
the same mosaic patterns. Once the region of the parameters
space is chosen, the basic set of admissible local patterns
B ⊆ {+,−}Z3×2 is then determined. The ordering matrix of all
local patterns in {+,−}Z3×2 is defined. For a given basic set B,
the transition matrix T(B) is then obtained, and a shift space is
induced. For simplicity, considering the case d = 1, i.e., each
cell can only interact with their nearest neighbors. In one-
dimensional one-layer CNN without input, every partition is
associated with a unique set of admissible patterns B = B3×1

and the transition matrix T = T(B3×1) [17]. Let

Y = {(yi)i∈Z| yi−1yiyi+1 ∈ B for all i ∈ Z}, (6)

then Y is a shift of finite type (SOFT). The number of
global admissible patterns with length n and the number
of periodic patterns with period m can then be formulated
from the transition matrix T. However, this can not be done
when the basic set of admissible local patterns B = B3×2 is
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derived from the one-layer CNN with input. More precisely,
each pattern that is produced from the system is a coupled
pattern y1y2y3

u1u2u3
, where y1y2y3 denotes the output pattern, and

u1u2u3 denotes the input pattern. For simplicity, rewriting the
coupled pattern as y1y2y3 ¦ u1u2u3. The output space YU is
the collection of (· · · y−1y0y1 · · · ) ∈ {+,−}Z that there exists
(· · ·u−1u0u1 · · · ) ∈ {+,−}Z such that (· · · y−1y0y1 · · · ¦
· · ·u−1u0u1 · · · ) ∈ Σ(B), where Σ(B) ⊆ {+,−}Z∞×2 is
a subshift space generated by B ⊆ {+,−}Z3×2 . Analytical
results indicate that YU is not a SOFT, but a sofic shift.
Under this situation, the formula of spatial entropy (entropy)
h(B) and dynamical zeta function (zeta function) ζσ(t) can be
computed. Therefore, the dynamics of the mosaic solutions of
multi-layer CNN are understood. Conversely, the sofic shift is
realized through a realistic model.

The analysis gets more complicated in N -layer CNN, N ≥
2. However, once recognizing the elaborate content of one-
layer CNN with input, all results for one-layer CNN with input
can be extended to general case with analogous method. We
like to emphasize that each layer induces a sofic shift and the
N -layer coupled system induces the convolution of N -many
independent sofic shifts.

The dynamics of multi-layer CNN with input produce a
phenomenon that is never seen in one-layer CNN without
input. The entropy of the one-layer CNN without input has
a “symmetry” about the parameters. More precisely, consider
the one-dimensional CNN,

dxi

dt
= −xi + alyi−1 + ayi + aryi+1 + z, (7)

and select one of the partitions of parameter space {(al, ar) :
al, ar ∈ R} = R2. The parameters a and z thus have 25
subregions, each with the same entropy. Furthermore,

h(B([m, n])) = h(B([n,m])), for 0 ≤ m,n ≤ 4. (8)

The details as in [17]. However, when considering multi-layer
CNN with input, not only the entropy and zeta function are
varied, but the symmetry of the entropy is broken even for the
simplest case one-layer CNN with input. Hence, input adding
for a CNN system is the main mechanism that breaks the
symmetry of entropy.
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II. MULTI-LAYER CELLULAR NEURAL NETWORKS

As in (1), an N -layer CNN system with input is of the form,
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The feedback and controlling templates of each layer are

A(n) = (a(n)
−d , a

(n)
−d+1, · · · , a

(n)
d )

and
B(n) = (b(n)

−d , b
(n)
−d+1, · · · , b

(n)
d ),

where 1 ≤ n ≤ N . The parameter space and the ad-
missible local patterns of each layer can be represented
by P(n) = {(A(n), B(n), z(n))} and B(n)(A(n), B(n), z(n)),
where 1 ≤ n ≤ N . Let A = (A(1), A(2), · · · , A(N)),
B = (B(1), B(2), · · · , B(N)), z = (z(1), z(2), · · · , z(N)),
Pm = (P(1),P(2), · · · ,P(N)), where m = N(2d + 1) − 1,
Y (n) = y

(n)
−d y

(n)
−d+1 · · · y(n)

d , where 1 ≤ n ≤ N , and U =
u−du−d+1 · · ·ud, then B(A,B, z) consists of Y (N)¦Y (N−1)¦
· · · ¦ Y (1) ¦U that Y (n) ¦ Y (n−1) ∈ B(n) for 2 ≤ n ≤ N , and
Y (1) ¦ U ∈ B(1), where ¦ is defined by

y−d · · · y · · · yd ¦ u−d · · ·u · · ·ud = y−d · · · y · · · yd
u−d · · ·u · · ·ud

(3)

The partition theorem of N -layer CNN then follows.
Theorem 2.1: There exists K(m) ∈ N and unique collec-

tion of open subsets {Pk}K(m)
k=1 of Pm such that

(i) Pm =
K(m)⋃

k=1

P̄k.

(ii) Pk

⋂
Pj = ∅ for k 6= j.

(iii) B(A,B, z) = B(Ã, B̃, z̃) ⇔ (A,B, z), (Ã, B̃, z̃) ∈
Pk for some k.

A. Ordering Matrix

The ordering matrix X3×N of all possible local patterns in
{+,−}Z3×N is defined recursively as

X3×N =




X11 X12 ∅ ∅
∅ ∅ X23 X24

X31 X32 ∅ ∅
∅ ∅ X43 X44


 , (4)

where

Xi1j1 =




Xi1j1;11 Xi1j1;12 ∅ ∅
∅ ∅ Xi1j1;23 Xi1j1;24

Xi1j1;31 Xi1j1;32 ∅ ∅
∅ ∅ Xi1j1;43 Xi1j1;44


 , (5)

where 1 ≤ ik, jk ≤ 4, and 1 ≤ k ≤ N . The con-
struction contains a self-similarity property in X3×N . Herein
xi1j1;i2j2;··· ;iN−1jN−1;iN jN means the pattern

(ar11r12ar′12r13) ¦ (ar21r22ar′22r23) ¦ · · · ¦ (arN1rN2ar′
N2rN3)

in {+,−}Z3×N , where ark1rk2ar′
k2rk3 is defined by

ai1i2ai′2i3 = ∅⇔ i2 6= i′2, (6)

and

rk1 =
[
ik − 1

2

]
, rk2 = ik − 1− 2rk1,

r′k2 =
[
jk − 1

2

]
, rk3 = jk − 1− 2r′k2.

The pattern is ∅ if ark1rk2ar′
k2rk3 = ∅ for some 1 ≤ k ≤ N .

Otherwise, it is denoted by the pattern

(ar11ar12ar13) ¦ (ar21ar22ar23) ¦ · · · ¦ (arN1arN2arN3)



Xi1j1;i2j2;··· ;ikjk
=




Xi1j1;i2j2;··· ;ikjk;11 Xi1j1;i2j2;··· ;ikjk;12 ∅ ∅
∅ ∅ Xi1j1;i2j2;··· ;ikjk;23 Xi1j1;i2j2;··· ;ikjk;24

Xi1j1;i2j2;··· ;ikjk;31 Xi1j1;i2j2;··· ;ikjk;32 ∅ ∅
∅ ∅ Xi1j1;i2j2;··· ;ikjk;43 Xi1j1;i2j2;··· ;ikjk;44




for 1 ≤ k ≤ N − 2, and

Xi1j1;i2j2;··· ;iN−1jN−1 =




xi1j1;··· ;iN−1jN−1;11 xi1j1;··· ;iN−1jN−1;12 ∅ ∅
∅ ∅ xi1j1;··· ;iN−1jN−1;23 xi1j1;··· ;iN−1jN−1;24

xi1j1;··· ;iN−1jN−1;31 xi1j1;··· ;iN−1jN−1;32 ∅ ∅
∅ ∅ xi1j1;··· ;iN−1jN−1;43 xi1j1;··· ;iN−1jN−1;44


 ,

in {+,−}Z3×∞ .
As long as the basic set of the admissible local patterns B ⊆

{+,−}Z3×(N+1) is given, Σm(B) denotes the collection of all
m-blocks generated by B. The subshift space YU of {+,−}Z is
then defined by the collection of Y (N) = (y(N)

i )i∈Z that there
exist U, Y (1), Y (2), · · · , Y (N−1) such that Y (N) ¦ Y (N−1) ¦
· · · ¦ Y (1) ¦ U ∈ Σ(B), where Σ(B) ⊆ {+,−}Z∞×(N+1) is
generated by B ⊆ {+,−}Z3×(N+1) .

B. Transition Matrix

The basic set of admissible local patterns B = B(A, B, z)
can be determined from the N -layer CNN parameters
(A,B, z). Denote by Tn the transition matrix induced by
B(n) ⊆ {+,−}Z3×2 , where B(n) is the basic set of admissible
local patterns in the nth layer, and 1 ≤ n ≤ N . Let
T̂N = T(B;U) be the transition matrix induced by B with
the set of input patterns U . The following theorem is then
obtained.

Theorem 2.2:

T̂N = (TN⊗E4N−1)◦(E4⊗TN−1) ∈M4n+1×4n+1(R), (7)

where

Tn = (Tn ⊗E4n−1) ◦ (E4 ⊗Tn−1) ∈M4n+1×4n+1(R), (8)

for 2 ≤ n ≤ N − 1, and

T1 = T1 ◦ (E4 ⊗U) ∈M16×16(R), (9)

U is the transition matrix of U .
In particular, if N = 2,

T̂2 = (T2 ⊗ E4) ◦ (E4 ⊗ (T1 ◦ (E4 ⊗U))). (10)

C. Entropy and Zeta Function

This subsection introduces the formula for calculating
entropy and zeta function of N -layer CNN. Let S(n) =
{s(n)

ij }1≤i,j≤4 be the alphabets, and let Sn and S be the
symbolic transition matrices of Tn over S(n) and T̂N for
1 ≤ n ≤ N . Then XGSn

is a sofic shift induced by B(n), where
GSn is the labeled graph representation of the nth layer. For
the concept of shift spaces and labeled graphs, the reader is
referred to [19]. Furthermore, YU is the output space induced
by the N -layer CNN.

Theorem 2.3: YU is conjugate to XGS
.

Definition 2.4: Let X,Y be two shift spaces with graph
representation GX = (VX, EX), GY = (VY, EY), resp., then
the convolution of X,Y, denoted by X∗Y, is the shift space
with underlying graph GX∗Y = (VX∗Y, EX∗Y), where

VX∗Y = {f(x) ∈ EY| x ∈ VX} (11)

for some f : VX → EY.
Theorem 2.5: Let XGS

be the sofic shift induced by B, then

XGS
= XGSN

∗ · · · ∗XGS2
∗XGS1

(12)

is the convolution of XGS1
, · · · ,XGSN

,

ŜN = (SN ⊗ E4N−1) ◦ (E4 ⊗ SN−1), (13)

where

Sn = (Sn⊗E4n−1) ◦ (E4⊗Sn−1) ∈M4n+1×4n+1(R), (14)

for 2 ≤ n ≤ N − 1, and

S1 = S1 ◦ (E4 ⊗U) ∈M16(R). (15)

Theorem 2.6: For a given B ⊆ {+,−}Z3×(N+1) , let YU ≡
YU (B) be the shift space induced by B. Then there exists a
labeled graph representation H = (H,L′) such that

h(YU ) = h(XH) = log ρ(H), (16)

and

ζσ(t) =
r∏

k=1

det(I − tHk)(−1)k

, (17)

where Hk is the kth signed subset matrix of H, and r is the
cardinal number of the underlying graph H .

An example for 2-layer CNN is illustrated here.
Example 2.7: Consider (A,B, z) with A(1) = A(2) ≡ Ā,

B(1) = B(2) ≡ B̄, z(1) = z(2) ≡ z̄, and Ā, B̄ and z̄ satisfy the
same condition described in Example ??. Moreover, the set of
input patterns is given by U = {−+−,−++, +−+}. Then
B(1) = B(A(1), B(1), z(1);U) is consisting of the following
patterns.

−−ª¢ −− −−ª¢ −+ −
+
ª̄ −

+
−−ª¢ +−

−−ª¢ +
+

−
+
ª̄+

+
+−ª¢ −− +−ª¢ −+

+
+
⊕̄+

+
+−⊕¢ +

+
+−⊕¢ +− +

+
⊕̄ −

+
+−⊕¢ −+ +−⊕¢ −− −

+
⊕̄+

+
−−⊕¢ +

+



Denote U2 the output patterns of B(1), i.e.,

U2 = {− −−,−−+, +−−, + + +,+ +−,−+ +}.

Then B(2) = B(A(2), B(2), z(2);U2) is consisting of the
following patterns.

+
+
⊕
¢

+
+

+
+
⊕
¢

+− +
+
⊕̄+− +

+
⊕
¢
−
+

+
+
⊕
¢
−− +−⊕¢ +

+
+
+
⊕̄ −− −

+
⊕
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+
+

+− ⊕̄+
+

−
+
⊕
¢

+− +− ⊕̄+− +−⊕¢ −+
−
+
⊕̄+− −

+
⊕
¢
−
+

+− ⊕̄ −+ −
+
⊕
¢
−−

+− ⊕̄ −− −−⊕¢ +
+

−− ª̄ −− −− ª̄ −+
−−ª¢ −+ −− ª̄+− −− ª̄+

+
−
+
ª̄ −−

−−ª¢ +
+

+− ª̄ −− −
+
ª
¢
−− +− ª̄ −+

−
+
ª
¢
−
+

−
+
ª̄+− +−ª¢−+

The transition matrix T̂ = T((A,B, z);U) is then

T̂ =




T̂11 T̂12 0 0
0 0 T̂23 T̂24

T̂31 0 0 0
0 0 T̂43 T̂44


 , (18)

where

T̂11 = T̂43 = T̂44 =




T1 T1 0 0
0 0 0 T3

T2 0 0 0
0 0 T1 T1


 ,

T̂12 =




T1 T1 0 0
0 0 0 T3

T2 0 0 0
0 0 0 0


 , T̂23 =




0 0 0 0
0 0 0 0
0 0 0 0
0 0 T1 T1


 ,

T̂24 =




0 0 0 0
0 0 0 T3

T2 0 0 0
0 0 T1 T1


 , T̂31 =




T1 T1 0 0
0 0 0 T3

0 0 0 0
0 0 0 0


 ,

and

T1 =




0 0 0 0
0 0 1 1
0 1 0 0
0 0 0 0


 , T2 =




0 0 0 0
0 0 1 1
0 0 0 0
0 0 0 0


 ,

T3 =




0 0 0 0
0 0 0 1
0 1 0 0
0 0 0 0


 .

Let S = {s11, s12, s23, s24, s31, s43, s44}, the symbolic transi-
tion matrix is

S =




s11T̂11 s12T̂12 0 0
0 0 s23T̂23 s24T̂24

s31T̂31 0 0 0
0 0 s43T̂43 s44T̂44


 , (19)

which is not right-resolving. Using subset construc-
tion method, the spatial entropy then can be found,
h((A,B, z);U) = log λ, where λ

.= 1.49676 is a root of
f(t) = t8− 2t6 + t4− 3t2− 1. Moreover, the zeta function is

ζσ(t) =
(1 + t + t3)(1 + t− t3)
1− 2t2 + t4 − 3t6 − t8

.

D. The Broken of Symmetry

The basic set of admissible local patterns B can be de-
termined from (A, B, z). The entropy of each partition is
symmetrical in one-dimensional CNN without input, i.e.,
where B ≡ 0 [17]. For example, if (A, z) is picked such
that al > ar > 0, then parameters a and z have 25 regions.
Clearly,

h(B([m,n])) = h(B([n,m])), for 1 ≤ m,n ≤ 4. (20)

The symmetry is broken for the one-layer CNN with input,
as shown below with an example.

Consider
dxi

dt
= −xi+alyi−1+ayi+aryi+1+blui−1+bui+brui+1+z,

(21)
where bl = 0, then the symmetry of entropy is broken, as
revealed in Figure 1.

Some maximal eigenvalues produced in one-layer CNN with input.
maximal eigenvalue characteristic polynomial

λ1 = 2 t− 2
λ2

.
= 1.9479 t5 − 2t4 + t3 − 2t2 + t− 1

λ3
.
= 1.8832 t4 − 2t3 + t2 − 2t + 1

λ4
.
= 1.8393 t3 − t2 − t + 1

λ5
.
= 1.7549 t3 − 2t2 + t− 1

λ6
.
= 1.7417 t8 − 2t7 + t6 − t5 + t4 − 2t3 + t2 − 1

λ7
.
= 1.6992 t5 − 2t4 + t3 − 2t + 1

λ8 = g
.
= 1.618 t2 − t− 1

λ9
.
= 1.5618 t6 − 2t5 + t4 − t2 + t− 1

λ10
.
= 1.5289 t5 − 2t4 + t3 − 1

III. CONCLUSION

This investigation elucidates multi-layer cellular neural net-
works with inputs systematically. Once the mosaic solution is
considered, the output space of the given system is topological
conjugate to a sofic shift whenever the number of the layers
of the system is greater than or equal to 2 or a set of input
patterns is added. We develop algorithms for the calculation
of two invariants, say topological entropy and dynamical zeta
function. This study also gives sofic shifts realistic models.

It is well-known that the set of topological entropies of
single-layer cellular neural networks without input is sym-
metric for each partition of parameter space. However, the
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Fig. 1. The effect of input patterns. The parameters al, ar, b, br are
considered as follows. (i) al > ar > b > br > 0, (ii) al < b + br ,
(iii) al + br < ar + b. Subfigure (a) lists regions that produce positive
entropy. Those regions with positive entropy are symmetric, i.e., h([m, n]) =
h([n, m]). However, such property would be destroyed when input patterns
are given. Subfigure (b) lists the same regions as in (a) but the input patterns
U = {−−,−+, +−} are considered. It is seen that the symmetry is no
longer hold. Herein, ki = log λi for 1 ≤ i ≤ 10 are listed in Table II-D.

symmetry is broken in multi-layer cellular neural networks
with input. In other words, the dynamical behavior of a given
system is much more complicated whenever input patterns are
considered.
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