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This investigation will describe the spatial disorder of one-dimensional Cellular Neural Net-
works (CNN). The steady state solutions of the one-dimensional CNN can be replaced as an
iteration map which is one dimensional under certain parameters. Then, the maps are chaotic
and the spatial entropy of the steady state solutions is a three-dimensional devil-staircase like
function.

1. Introduction

Following their introduction by Chua and Yang
[1988a, 1988b], Cellular Neural Networks have been
extensively studied and applied mainly in image
processing and pattern recognition [Thiran et al.,
1995; Chua & Roska, 1993]. An important class of
solutions of one-dimensional CNN

dxi
dt

= −xi + z + αf(xi−1) + af(xi) + βf(xi+1) ,

(1)

is the steady state solutions, thus necessitating
the study of the complexity of steady state solu-
tions of (1). Juang and Lin [1998, 2000] and Hsu
and Lin [1999a, 1999b, 2000] recently considered
some mathematical results about the complexity of
steady state solutions and multiplicity of traveling
wave solutions. Hsu and Lin [1999a] considered the

output function of (1) with

f(x) =


rx+ 1− r if x ≥ 1 ,

x if |x| ≤ 1 ,

rx+ r − 1 if x ≤ −1 .

(2)

They described the spatial entropy of steady state
solutions as a devil-staircase like function.

The investigation elucidates the complexity of
a set of bounded steady state solutions of (1).
Herein f(x) is a piecewise-linear output function
defined by

f(x) =


rx+m− r if x ≥ 1 ,

mx if |x| ≤ 1 ,

lx+ l −m if x ≤ −1 ,

(3)

where r, m, l ∈ R+ \ {0} are constants and the
quantity z is called threshold, which is related to
independent voltage sources in electric circuits. The
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2086 J.-C. Ban et al.

coefficients of f(x) are real constants and called the
space invariant A-template denoted by

A ≡ [α, a, β] . (4)

For simplicity, let m = 1 in (3). That is,

f(x) =


rx+ 1− r if x ≥ 1 ,

x if |x| ≤ 1 ,

lx+ l − 1 if x ≤ −1 .

(5)

Let output v = f(x) be taken as the unknown
variable, i.e.

vi = f(xi) , (6)

and let F be the inverse function of f . When α = 0,
β 6= 0, the steady state solutions of (1) can be writ-
ten as a one-dimensional iteration map:

T (v) =
1

β
(F (v) − z − av) . (7)

For this map, each bounded trajectory corresponds
to the outputs of bounded steady state solutions.
If the maps are chaotic, then the steady state solu-
tions of (1) are of spatial disorder. However, only
steady state solutions of (1) should be considered.
Therefore, in addition to considering the set of all
stable bounded orbits of T , the entropy h of T on
the set must be computed as well. If the entropy is
positive, then the steady state solutions of (1) are
of spatial disorder. In fact, we have the following
main theorem:

Main Theorem. Assume that α = 0, β > 0,
z = 0, a > β + 1 and h(r, l) is the entropy function

of T with F = f−1, r, l > 0. Denote

r∞ = l∞ =
a− β − 1

a(a− 1) + β(a− 2)
, (8)

then there exists strictly decreasing sequences {rp},
{lq}, p, q = 2, 3, . . . , with

lim
p→∞

rp = r∞ , (9)

lim
q→∞

lq = l∞ , (10)

such that

(i) If 0 < r ≤ r∞ and 0 < l ≤ l∞, then h(r, l) =
ln 2.

(ii) If rp ≤ r < rp−1 and lq ≤ l < lq−1, for
p, q = 3, 4, 5, . . . , then h(r, l) = lnλ(p,q), where
λ(p,q) is the maximum root of

xp+q−2 −
p−2∑
i=0

xi
q−2∑
j=0

xj = 0 . (11)

(iii) If r2 ≤ r < (1)/(a + β) and l2 ≤ l <
(1)/(a + β), then h(r, l) = 0.

A table can be constructed based on the re-
sults of the above theorem to contrast the entropy
between different r, l as in Fig. 1. Moreover, a
three-dimensional graph can be designed as shown
in Fig. 2.

The paper is organized as follows. In Sec. 2, we
will consider the basic propositions of T and study
the steady state solutions of (1) for some range of
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Fig. 2. r1 = l1 = (1)/(α+ β).

parameters. Section 3 will prove the main theorem
and construct the table in Fig. 1.

2. Iteration Map

This section considers the one-dimensional map (7).
If α = 0, a > 1, β > 0, z = 0 and m = 1, then
according to (5), the inverse function F of f is

F (v) =



1

r
v − 1

r
+ 1 if v ≥ 1 ,

v if |v| ≤ 1 ,

1

l
v − 1 +

1

l
if v ≤ −1 ,

(12)

and, according to (7), the map T is

T (v) =



1

β

(
1

r
v − 1

r
+ 1− av

)
if v ≥ 1 ,

1

β
(1− a)v if |v| ≤ 1 ,

1

β

(
1

l
v − 1 +

1

l
− av

)
if v ≤ −1 .

(13)

By elementary computation, the fixed points of T
are

A = (A1, A2) =

(
1− r

1− r(a+ β)
,

1− r
1− r(a+ β)

)
,

O = (O1, O2) = (0, 0) ,

D = (D1, D2) =

(
l − 1

1− l(a+ β)
,

l − 1

1− l(a+ β)

)
.

(14)

Let B and C be the points (1, T (1)), (−1, T (−1)),
i.e.

B = (B1, B2) =

(
1,

1− a
β

)
, (15)

C = (C1, C2) =

(
−1,

a− 1

β

)
. (16)

Therefore, some graphs of T are shown in the
following figures.

Now, we define the interval L by

L ≡
{
v ∈ R| l − 1

1− l(a+ β)
≤ v ≤ 1− r

1− r(a+ β)

}
.

(17)
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2088 J.-C. Ban et al.

(I) 1 < a < β + 1

v

T(v) v=T(v)

O

A

B

C

      D

1

Fig. 3. Graph of T .

(II) a = β + 1

v

T(v) v=T(v)

A

B

  C

 D

O

1

Fig. 4. Graph of T .

It is easy to see the stability of the fixed points of
T as follows.

Proposition 2.1

(1) If a ≥ 1 with (1− r)/(1− r(a+ β)) ≥
(a− 1)/β and (l − 1)/(1− l(a+ β)) ≤
(1− a)/β then Ω ≡ {(s, t) ∈ R2|s ∈ L and
t ∈ L} is an invariant region of T .

(2) If 1 < a < β + 1, then both A and D are unsta-
ble, but O is stable.

(3) If a = β+ 1, then every point in L is eventually
periodic with period 2 except for the fixed points.

(4) If a > β + 1, then O, A, D are all unstable.

By applying Proposition 2.1, the chaotic behavior
of trajectories of T only occurs when a > β + 1.
Next, the stability results of steady state solutions
of (1) are studied.

(III) a > β + 1

    v=T(v)
   T(v)

v

A

D

C

B

O

  1

Fig. 5. r > r∞ and l > l∞.

      T(v) v=T(v)

v

A

  B

  C

            D

O

1

Fig. 6. r > r∞ and 0 < l < l∞.

    v=T(v)T(v)

v

  A

  B

O

1

      C

  D

Fig. 7. Graph of T with 0 < r < r∞ and 0 < l < l∞.

Definition 2.2. By letting v = {vi}i=∞i=−∞ be the
steady state solutions of (1), the linearized opera-
tor at v is defined by

(L(v)ζ)i = −ζi + af
′
(vi)ζi

+ βf
′
(vi+1)ζi+1 for ζ ∈ `2. (18)
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Spatial Disorder of CNN 2089

v is called stable if all real parts of eigenvalues of
L are negative with eigenvectors in `2 and unstable
otherwise.

Since the function f is not differentiable at
|vi| = 1, (18) may not be well defined. There-
fore, only |vi| 6= 1 is considered herein, subsequently
leading to the following stability results.

Proposition 2.3. Let v = {vi}i=∞i=−∞ be the steady
state solutions of (1). Assuming that a > 1, α = 0
and β > 0 leads to

(i) If |vi| < 1 for some i ∈ Z, then v is unstable.
(ii) If r(a + β) < 1, l(a + β) < 1 and |vi| > 1 for

all i ∈ Z, then v is stable.

Proof. The assertion holds by Definition 2.2 di-
rectly. For details, see [Juang & Lin, 2000; Hsu
& Lin, 1999a]. �

3. Proof of Main Theorem

According to Propositions 2.1 and 2.3, we only have
to consider {T i(v)}i=∞i=−∞ for some v ∈ L that satisfy

T i(v) ∈ L and |T i(v)| > 1, for all i ∈ Z. (19)

The entropy function h can be computed to express
whether the map has chaotic behavior. In particu-
lar, if the entropy is positive, then the map is called
chaotic. Therefore, in this section, we attempt to
compute the entropy of T at the set of all bounded
stable orbits and see how the entropy h of T varies
as r, l change.

We recall some definitions and some results of
entropy for a dynamical system.

Definition 3.1. [Robinson, 1995]

(i) Let H : X → X be a continuous map on the
space X with metric d. A set S ⊂ X is called
(n, ε)-separated for H for a positive integer n
and ε > 0 provided for every pair of distinct
points x, y ∈ S, there is at least one k with
0 ≤ k < n such that d(Hk(x),Hk(y)) > ε.

(ii) The number of different orbits of length n (as
measured by ε) is defined by

γ(n, ε, H) = max{](S)|S ⊂ X is (n, ε)

— separated set for H} (20)

where ](S) is the number of elements in S.

(iii) The topological entropy of H is defined as

(H) = lim
ε→0,ε>0

lim sup
n→∞

ln γ(n, ε, H)

n
. (21)

(iv) An interval J1 H-covers an interval J2 provided
that H(J1) ⊃ J2. We write J1 → J2.

Proposition 3.2. [Robinson, 1995]. Let A be a
transition matrix on N symbols. Let H : X → X
be a continuous map on the space X with metric d
and σA : ΣA → ΣA be a subshift of finite type. If H
is topologically conjugate to σA, then the entropy of
H is equal to

h(H) = lnλ1 (22)

where λ1 is the real eigenvalue of A such that λ1 ≥
|λj | for all other eigenvalues λj of A.

Proposition 3.2 indicates that a subshift of fi-
nite type can be found such that T is topologically
conjugate to the subshift. The subshift can be con-
structed by finding some subintervals of L\(−1, 1)
with covering relation as in the proof of the main
theorem later.

Proof of main theorem. Assume that β = 1 and
the general cases can be similarly discussed. If
0 < r ≤ r∞ and 0 < l ≤ l∞, then C and B are not in
L. Under these circumstances, the behavior of map
T resembles that of the logistic map. Therefore,
there exists an invariant Cantor set in L such that
T is topologically conjugate to a one-side Bernoulli
shift of two symbols. The entropy of the one-side
Bernoulli shift of two symbols is ln 2, according to
why the entropy of the map T is ln 2. That is, if
0 < r ≤ r∞ and 0 < l ≤ l∞ then h(r, l) = ln 2.

To prove the case r > r∞ and l > l∞. Let
R+(r) = (R+

1 (r), R+
2 (r)) and R−(r) = (R−1 (r),

R−2 (r)) be the intersecting points of AB with
T (v) = 1 and T (v) = −1, respectively. Let
L+(l) = (L+

1 (l), L+
2 (l)) and L−(l) = (L−1 (l), L−2 (l))

be the intersecting points of CD with T (v) = 1 and
T (v) = −1, respectively. By simple computation,
we have

R+
1 (r) =

1

1− ra,R
−
1 (r) =

1− 2r

1− ra , (23)

L+
1 (l) =

2l − 1

1− la and L−1 (l) =
−1

1− la . (24)
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2090 J.-C. Ban et al.

Then, the continuity of T (v; r, l) with respect to r,
l makes it easy to prove that for any positive inte-
gers p, q with p ≥ 2, q ≥ 2, there exists an unique
rp > 0 and lq > 0 such that {T i(a− 1; rp, lq)}i=∞−i=∞
is a p+ q periodic orbit.

Indeed, rp and lq satisfy

T p−1(a− 1; rp, lq) = 1 , (25)

T p+q−1(a− 1; rp, lq) = −1 . (26)

Restated, (v, T (v; rp, lq)) maps C to B after p it-
erations; (v, T (v; rp, lq)) maps B to C after q iter-
ations. When p = ∞, (v, T (v; r∞, lq)) maps C to
A. When q = ∞, (v, T (v; rp, l∞)) maps B to D,
where r∞ and l∞ are given by (8), i.e. A2 = C2 and
B2 = D2. Since

{T (v) = C2 = a− 1} ∩AB

= (
ra− 2r − 1

1− ra , a− 1) ,

and

{T (v) = B2 = 1− a} ∩ CD

=

(
2l − la− 1

1− la , 1 − a
)
,

denote Ωr,l by

Ωr,l = {(v, T (v))|2l − la− 1

1− la ≤ v

≤ ra− 2r − 1

1− ra and |T (v)| ≤ a− 1} . (27)

Obviously, Ωr,l ⊂ Ω. By Proposition 2.1, every tra-
jectory of T on Ω\Ωr,l will tend to A or D back-
wards. Therefore, trajectories are all that need to
be considered of T on Ωr,l. Figure 8 illustrates the
5-periodic orbit of T (v; r3, l2). The 2p-periodic or-
bit of T (v; rp, lp) with p ≥ 2 is given in [Hsu & Lin,
1999a].

  I5I4    I3  I2
    I1

    B

D

-1

O v

      T(v)

   A

      v=T(v)

   C

Fig. 8. Graph of T (a− 1; r3, l2) and its stable subintervals.
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Spatial Disorder of CNN 2091

Since the characteristic polynomial of the tran-
sition matrix A(p, q) with q < p and p < q are the
same, assume that q < p in the following process.

We define the (p + q)-stable subintervals with
p, q ≥ 3, p > q and r = rp, l = lq by

Iq = [−1, L+
1 ], Iq−k1 = [T−k1−1(L+

2 ), T−k1(L−2 )]

for k1 = 1, 2, . . . , q − 1 ,

Iq+1 = [−1, R−1 ], Iq+k2 = [T−k2+1(R+
2 ), T−k2(R−2 )]

for k2 = 2, 3, . . . , p.

Obviously, the (p + q)-stable subintervals have the
following covering relation:

I1 → I2 → I3 · · · → Iq ,

Iq → Iq+k̂1
for k̂1 = 1, . . . , p− 1 ,

Iq+1 → Iq−k̂2
for k̂2 = 0, 1, . . . , q − 2

Ip+q → Ip+q−1 → · · · → Ip → Ip−1 → · · · → Iq+1 .

Therefore, the transition matrix A(p, q) of the
stable subintervals is given by

A(p, q = [aij(p, q)] =



0 1 0 0 · · · · · · · · · 0 0 0 0

0 0 1 0 · · · · · · · · · 0 0 0 0
...

...

0 0 0 0 · · · 0 1 0 0 · · · 0 0 0 0

0 0 0 0 · · · 0 0 1 1 · · · 1 1 1 0

0 1 1 1 · · · 1 1 0 0 . . . 0 0 0 0

0 0 0 0 · · · 0 0 1 0 . . . 0 0 0 0
...

...

0 0 0 0 · · · · · · · · · 0 1 0 0

0 0 0 0 · · · · · · · · · 0 0 1 0



(28)

Lemma 3.3. If rp < r < rp−1 and lq < l < lq−1,
then the corresponding transition matrix is the same
as (28).

Proof. Pulling back from B and C to find other

points C
′

and B
′
, see Fig. 9. T will map CC

′ and

BB
′ into {v| |T i(v)| < 1 for some i ∈ Z}, so CC

′

and BB
′ are not considered. Then the subinter-

vals have the same covering relations as rp and lq.
Therefore, the corresponding transition matrix is
the same as (28). The proof is complete. �

This study defines spaces Σp+q and ΣA by

Σp+q = {1, 2, . . . , q, q + 1, . . . , p+ q}N , (29)

ΣA = {s ∈ Σp+q|asksk+1
= 1

for k = 0, 1, 2, . . .} (30)

with a metric Σp+q by

d(s, t) =
∞∑
k=0

δ(sk, tk)

3k
(31)

for s = (s0, s1, s2, . . .) and t = (t0, t1, t2, . . .),
where

δ(i, j) =

{
0 if i = j ,

1 if i 6= j .
(32)

Define a subshift map on ΣA by σA(s) = t, where
tk = sk+1, i.e. σA(s0, s1, . . .) = (s1, s2, . . .). Then,
by Proposition 3.2, we have

Lemma 3.4. If rp ≤ r < rp−1 and lq ≤ l < lq−1,
then there exists an invariant set Λp+q ⊆ Ωr,l such
that T is topologically conjugate to the subshift of
p + q symbols with transition matrix as in (28).
Restated, T is topologically conjugate to the space
(ΣA, σA).

Lemma 3.5. The characteristic polynomial P (x;
p, q) of the transition matrix A(p, q) is

P (x; p, q) = xp+q−2 −
p−2∑
i=0

xi
q−2∑
j=0

xj. (33)
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     T(v)

  v=T(v)

AC

     C'

1

O

-1

 B   B'

v

D

    I1
    I2      I 3      I 4

     I 5
   I6

Fig. 9. r3 < r < r2 and l3 < l < l2.

Proof. Only the special case is computed when (p, q) = (6, 4). For other p, q, P (x; p, q) can be computed
by induction.

det[A(6, 4)] =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−x 1 0 0 0 0 0 0 0 0

0 −x 1 0 0 0 0 0 0 0

0 0 −x 1 0 0 0 0 0 0

0 0 0 −x 1 1 1 1 1 0

0 1 1 1 −x 0 0 0 0 0

0 0 0 0 1 −x 0 0 0 0

0 0 0 0 0 1 −x 0 0 0

0 0 0 0 0 0 1 −x 0 0
0 0 0 0 0 0 0 1 −x 0

0 0 0 0 0 0 0 0 1 −x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(34)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−x 1 0 0 0 0 0 0 0 0

0 −x 1 0 0 0 0 0 0 0

0 0 −x 1 0 0 0 0 0 0

0 0 0 −x 1 1 1 1 0 x

0 1 1 1 −x 0 0 0 0 0

0 0 0 0 1 −x 0 0 0 0

0 0 0 0 0 1 −x 0 0 0

0 0 0 0 0 0 1 −x 0 0

0 0 0 0 0 0 0 1 −x 0

0 0 0 0 0 0 0 0 1 −x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(35)
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= −xP (5, 4) + x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−x 1 0 0 0 0 0 0 0

0 −x 1 0 0 0 0 0 0

0 0 −x 1 0 0 0 0 0

0 1 1 1 −x 0 0 0 0

0 0 0 0 1 −x 0 0 0

0 0 0 0 0 1 −x 0 0

0 0 0 0 0 0 1 −x 0

0 0 0 0 0 0 0 1 −x
0 0 0 0 0 0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(36)

= −xP (5, 4) + x(−x)

∣∣∣∣∣∣∣
−x 1 0

0 −x 1

1 1 1

∣∣∣∣∣∣∣ (37)

Let

M4 =

∣∣∣∣∣∣∣
−x 1 0

0 −x 1

1 1 1

∣∣∣∣∣∣∣ = x2 + x+ 1 ,

then (36) is

P (x; 6, 4) = xP (x; 5, 4) + x2|M4| . (38)

Repeat the same process from (34) to (37). It
is easy to see that P (x; 5, 4) = det[A(5, 4)] =
−xP (x; 4, 4) + x2|M4|. Hence,

P (x; 6, 4) = x2P (x; 4, 4)− (x3 + x2)|M4| . (39)

Induction produces

P (x; p, 4) = xp−4P (x; 4, 4)−
p−3∑
i=2

xi|M4| . (40)

Again, by induction

P (x; p, q) = xp−qP (x; q, q)−
p−q+1∑
i=2

xi|Mq| , (41)

where Mq = (−1)q
∑q−2
j=0 x

j . By [Hsu & Lin, 1999a],

P (x; q, q) = x2q−2−(
∑q−2
i=0 x

i)2, then by elementary
computation (33) is proven. �

By Proposition 3.2, the entropy of T is
h(rp, lq) = lnλ(p,q), where λ(p,q) is the maximum
root of P (x; p, q).

Remark 3.6. Adjusting r when rp ≤ r < rp−1 but

0 < l ≤ l∞ such that T maps C to B
′

after p itera-
tion. Then, new subintervals with special covering

relations and transition matrix can be found. Sim-
ilar to Lemmas 3.4 and 3.5, the entropy function
h can be computed. It can be discussed similarly
when 0 < r ≤ r∞ but lq ≤ l < lq−1.

Corollary 3.7. Let p, q ≥ 2 and p1, q1 ≥ 2
then:

(1) If p + q = p1 + q1 and p − q < p1 − q1 then
h(rp, lq) > h(rp1 , lq1).

(2) If p − q = p1 − q1 and p + q > p1 + q1 then
h(rp, lq) > h(rp1 , lq1).

(3) If q = q1 and p > p1 then h(rp, lq) > h(rp1 , lq1).

Proof

(1) We may assume (p − q) + 2 = p1 − q1, then
q − q1 = 1 and

P (x; p, q) = xp−qP (x; q, q)−
p−q+1∑
i=2

xi|M1|

= xp1−q1−2P (x; q, q)

−
p1−q1−1∑
i=2

xi|Mq| .

Similar to the process from (34) to (37) and by
induction, we have

P (x; q, q) = x2P (x; q − 1, q − 1)

− (x2 + 2x3 + · · ·+ 2xq) . (42)
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Then, by elementary computation

P (x; p, q) = P (x; p1, q1)−
n∑
i=q

xi .

Obviously, P (λ(p1,q1); p, q) < 0, so λ(p,q) >
λ(p1,q1). Hence h(rp, lq) > h(rp1 , lq1).

(2) By assuming that q1 = q−1 and p1−q1 = p−q,
then

P (x; p, q) = xp−qP (x; q, q)−
p−q+1∑
i=2

xi|Mq| .

By (42) and elementary computation

P (x; p, q) = xp−qP (x; p1, q1)

−
p∑
i=q

xi − x2|Mq1 |(1 + x) .

Obviously, P (λ(p1,q1); p, q) < 0, so λ(p,q) >
λ(p1,q1). Hence h(rp, lq) > h(rp1 , lq1).

(3) By assuming that p1 = p − 1 and q = q1 leads
to

p(x; p, q) = xp−qP (x; q, q)−
p−q+1∑
i=2

xi|Mq|

= xP (x; p1, q1)−
q∑
i=2

xi .

Obviously, P (λ(p1,q1); p, q) < 0, so λ(p,q) >
λ(p1,q1). Hence h(rp, lq) > h(rp1 , lq1).

According to Corollary 3.7, a table can be
constructed as shown in Fig. 1 to contrast the en-
tropy between different p, q. The proof of the main
theorem is complete. �
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Appendix

This study demonstrates that {rp} and {lq} are de-
creasing sequences in p and q, respectively.

Figure 10 reveals that d = a − 2. Since d =
R+

1 − 1, then

r2

1− r2a
= a− 2, i.e. r2(a2 − a) = a− 2 .

On the other hand, Fig. 11 reveals that d(1 + r3) =
a− 2, hence

r3

1− r3a
(1 + r3) = a− 2 ,

i.e. r2
3a+ r3(a2 − a) = a− 2 .

By induction, we have

a

p−1∑
i=2

rip + rp(a
2 − a) = a− 2 ,
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d2

T(v)v =

d

Fig. 10. T (v) with slope 1/r2 − a.

T(v)v =

2-ad2

d

dr3

Fig. 11. T (v) with slope 1/r3 − a.

and

a

p∑
i=2

rip+1 + rp+1(a2 − a) = a− 2

= a

p−1∑
i=2

riP + rp(a
2 − a) .

Therefore,

rpp+1a+ [rp+1 − rp]a · η(rp+1, rp) = 0 ,

where

η(rp+1, rp) =
p−1∑
i=2

i−1∑
j=0

rjp+1r
i−j−1
p

+ a− 1 .

Since rpp+1 > 0 and η(rp+1, rp) > 0, so rp+1−rp < 0.
That is, rp+1 < rp for all p ≥ 2. Similarly, lq+1 < lq
for all q ≥ 2. The proof is complete. �
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