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This paper studies one-dimensional permutive cellular automata
in two aspects: Ergodic and topological behavior. Through in-
vestigating measure-theoretic entropy and topological pressure,
we show taht Parry measure is the unique equilibrium measure
whenever the potential function depends on one coordinate. In
other words, permutive cellular automata exhibit no phase tran-
sition. Furthermore, the existence of snap-back repellers for a
cellular automaton infers Li-Yorke chaos and bipermutive cellu-
lar automata guarantee the subsistence of snap-back repellers.
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1 INTRODUCTION

Cellular automaton (CA), introduced by Ulam [18] and Neumann [19] as a
model for self-production, is a particular class of dynamical systems which is
defined by a local rule acting on a discrete space and is widely studied in a
variety of contexts in physics, biology and computer science [3, 4, 6, 9, 8, 10,
15, 17, 21].
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The present paper devotes to study the complexity of permutive CA (de-
fined later) in two aspects, say, the viewpoints of thermodynamics and topo-
logical behaviors.

Let (X,µ) be a measurable space and let T : X → X be a continuous
transformation. Given a potential function φ : X → R, the pressure function
P (T, φ) of T with respect to φ indicates the energy of the system. Varia-
tional principle stands that P (T, φ) = sup{h(µ) +

∫
φdµ}, where h(µ) is

the measure-theoretic entropy and the supremum is taken for ergodic mea-
sures. A measure that attains the supremum is called an equilibrium measure.
The uniqueness of equilibrium measure asserts that there exists no phase tran-
sition in this system while the existence of two or more equilibrium measures
implies phase transition may occur.

Investigating the formula of topological pressure and measure-theoretic
entropy help for the determination of number of equilibrium measures. In
other words, we want to answer whether permutive CA exhibit phase transi-
tion or not.

We demonstrate the formulae of measure-theoretic entropy (Theorem 3.1)
and topological pressure (Theorem 3.4). The measure-theoretic entropy of
permutive CA is also elucidated in [16]. This thesis gives it an alternative
proof. Moreover, consider µ = (p0, . . . , pr−1) a Bernoulli measure and the
potential function φ is given by φ(x) = log px0 for x ∈ Ω, where r is the
number of alphabet S and Ω = SZ is the space of bi-infinite sequence. The
permutivity of CA asserts that Parry measure is the unique equilibrium mea-
sure, thus there is no phase transition in such system (Corollary 3.6).

The second part studies the complexity of the topological behavior ex-
hibited by permutive CA. Li and Yorke [12] discover that, if a first-order
difference equation

xi+1 = f(xi), i ∈ Z+,

where xi ∈ R and f : R → R is continuous, admits a 3-cycle, then there
exist many complex behavior: The lack of global stability and the existence
of an uncountable set of orbits which do not approach any periodic path.
Those systems assert such phenomena are called Li-Yorke chaos hereafter.
Marotto demonstrates the existence of a snap-back repeller implements Li-
Yorke chaos [13, 14]. Garcı́a also shows the existence of snap-back repeller
admits positive topological entropy, which is a sufficient condition for Li-
Yorke chaos [7, 2].

This is a motivation that, in CA, does the existence of snap-back repeller
also implements Li-Yorke chaos? The answer is affirmative (Theorem 4.1).
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Notably, the dynamical system considered in [13] is differentiable. CA, how-
ever, is only a continuous system. Furthermore, each bipermutive CA exhibits
a snap-back repeller (Proposition 4.3) and there is an example that permutive
but not bipermutive CA is not Li-Yorke chaotic.

The rest of this elucidation is organized as follows. Section 2 gives some
notations and definitions. Section 3 studies the ergodic properties of per-
mutive CA while Section 4 investigates the existence of snap-back repeller
implies Li-Yorke chaos and bipermutive CA is a collection which exhibits
snap-back repeller.

2 NOTATION AND DEFINITION

Let S = {0, 1, 2, . . . , r − 1} be a finite alphabet and let Ω = SZ be the space
of bi-infinite sequence x = (xn)∞−∞. Hedlund examines CA in the viewpoint
of symbolic dynamical systems [11]. He shows that F : Ω→ Ω is a CA if and
only if F can be represented as a sliding block code, i.e., there exists k ∈ Z+

and a block map f : S2k+1 → S such that F (x)i = f(xi−k, . . . , xi+k) for
x ∈ Ω and i ∈ Z. Such f is called the local rule of F . The study of the local
rule of a CA is essential for the understanding of this system.

A local rule f : S2k+1 → S is called leftmost (respectively rightmost)
permutive if there exists an integer i, −k ≤ i ≤ −1 (respectively 1 ≤ i ≤ k),
such that

(i) f is a permutation at xi whenever the other variables are fixed;

(ii) f does not depend on xj for j < i (respectively j > i).

f is called bipermutive provided f is both leftmost and rightmost permutive.
The family of permutive cellular automata consists of the following three
types of local rules.

1. f is leftmost permutive and does not depend on xi for i > 0;

2. f is rightmost permutive and does not depend on xi for i < 0;

3. f is bipermutive.

For reader’s convenience, we recall definitions of measure-theoretic en-
tropy, topological entropy, and topological pressures. Reader may refer to
[20] for more details.

3



Let µ be an invariant probability measure on (Ω, F ) and let α and β be
two finite measurable partitions of Ω. Define α

∨
β and Hµ(α) by

α
∨
β = {A

⋂
B : A ∈ α,B ∈ β}

and
Hµ(α) = −

∑
A∈α

µ(A) logµ(A),

respectively. The measure-theoretic entropy of F is defined by

hµ(F ) = sup

{
lim
n→∞

1
n
Hµ(

n−1∨
m=0

F−mα)

}
, (1)

where the supremum is taken over all finite measurable partitions α.
Define d : Ω× Ω→ R by

d(x, y) =
∞∑

i=−∞

|xi − yi|
r|i|

, x, y ∈ Ω. (2)

It is easy to verify that d is a metric and (Ω, d) is a compact metric space.
Moreover, let a[sa, . . . , sb]b = {x ∈ Ω : xa = sa, . . . , xb = sb} be a
cylinder in Ω, where a ≤ b, a, b ∈ Z. Then a[sa, . . . , sb]b is not only open
but close in Ω.

Let P be an open cover of Ω, denote by

H(P) = inf{log #P̂},

where the infimum is taken over the set of finite subcovers P̂ of P and #A
denotes the cardinality of A. The topological entropy of F is defined by

htop(F ) = sup

{
lim
n→∞

1
n
H(

n−1∨
m=0

F−mP)

}
, (3)

where the supremum is taken over all open covers P .
In addition, for α an open cover of Ω and φ ∈ C(Ω,R) a continuous

function from Ω to R, denote by

pn(F, φ, α) = inf

∑
B∈β

sup
x∈B

e(Snφ)(x) : β is a finite subcover of
n−1∨
m=0

F−mα

 ,

where n ∈ N and Snφ =
∑n−1
m=0 φ ◦ Fm. Define

P (F, φ) = lim sup
δ→0

{
lim
n→∞

1
n

log pn(F, φ, α) : diam(α) ≤ δ
}
. (4)
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The map P (F, ·) : C(Ω,R)→ R∪ {∞} is called the topological pressure of
F . It comes immediately that P (F, 0) = htop(F ).

Let X be a metric space and let T : X → X be continuous, a dynamical
system associated with xn = T (xn−1) for n ∈ Z+ is said to be chaotic in the
sense of Li-Yorke if and only if

1. there exists a positive integer N such that for each integer p ≥ N , T
has a point of period p;

2. there exists a scramble set S, i.e., an uncountable set containing no
periodic points such that

(a) T (S) ⊂ S;

(b) for every x, y ∈ S with x 6= y,

lim sup
m→∞

|Tm(x)−Tm(y)| > 0, lim inf
m→∞

|Tm(x)−Tm(y)| = 0;

(c) for every x ∈ S and y a periodic point of T ,

lim sup
m→∞

|Tm(x)− Tm(y)| > 0;

For F a cellular automaton, a point z ∈ Ω is called an expanding fixed
point of F if

1. z is a fixed point of F ;

2. there exists ε > 0 such that for all x ∈ Bε(z), x 6= z, |F (x)−F (z)| >
|x− z| and F−m(x)→ z as m→∞.

The radius ε such that each x 6= z is expanding in Bε(z) is called expanding
radius.

Definition 2.1. A point z ∈ Ω is called a snap-back repeller if

1. z is an expanding fixed point of F for some expanding radius ε;

2. there exists a point x0 ∈ Bε(z), x0 6= z, such that FM (x0) = z for
some positive integer M .

3 EQUILIBRIUM MEASURES OF PERMUTIVE CELLULAR AU-
TOMATA

This section investigates equilibrium measures of permutive CA through study-
ing the measure-theoretic entropy and topological pressure. Ban and Chang
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[1] show that, if the potential function depends on one coordinate, uniform
Bernouli measure is an equilibrium measure for linear CA with prime-state.
We extends their result to permutive CA.

In the rest of this investigation, local rule f is permutive and depends on
xi, . . . , xj , where i ≤ j and i, j ∈ Z.

3.1 Measure-theoretic entropy
Let B be a Borel σ-algebra on Ω, µ = (p0, p1, . . . , pr−1) be an F -invariant
Bernoulli measure, i.e.,

µ(a[sa, . . . , sb]b) = psa · · · psb
, for a[sa, . . . , sb]b ⊂ Ω.

Denote by î = −min{i, 0} and ĵ = max{j, 0}. The following theorem is
also demonstrated in [16]. Here we give an alternative proof.

Theorem 3.1. If f is permutive, then

hµ(F ) = −(̂i+ ĵ)
r−1∑
m=0

pm log pm.

Before giving proof, we introduce a lemma. For ` ∈ N, denote by ξ` =
{−`[s−`, . . . , s`]` : s−`, . . . , s` ∈ S} a measurable partition of Ω.

Lemma 3.2. If f is permutive, then

n−1∨
m=0

F−mξ` = ξ(−`− (n− 1)̂i, `+ (n− 1)ĵ)

provided ` large enough, where ξ(a, b) = {a[xa, . . . , xb]b : xa, . . . , xb ∈ S}.

Proof. We discuss the case that f is permutive of type 1, i.e., î = −i > 0
and ĵ = 0, the other cases can be done via analogous argument. First observe
that for each z = (za, . . . , zb) ∈ Sb−a+1, f−1

b−a+iz ∈ Sb−a−i+1, where
fm : S−i+m+1 → Sm+1 is defined by

fm(xi−m, . . . , x0) = (f(xi−m, . . . , x−m), . . . , f(xi, . . . , x0)), for m ∈ N,

and f0 = f . Denote fb−a+i by f without ambiguity. For sb+i+1, . . . , sb ∈
S, the leftmost permutivity of f at xi implies there admits a unique z̃b+i
such that f(z̃b+i, sb+i+1, . . . , sb+j) = zb. Repeating this process there are
uniquely determined z̃b+i−1, . . . , z̃a+i ∈ S such that

f(z̃) = z, where z̃ = (z̃a+i, . . . , z̃b+i, sb+i+1, . . . , sb) ∈ Sb−a−i+1.
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Denote by ξ` = {Al}r
2`+1

l=1 , above discussion and induction asserts that

F−mAn1

⋂
F−mAn2 = ∅, for n1 6= n2,m ∈ Z+.

Furthermore, if ` is chosen such that ` ≥ [i/2], where [x] is the greatest
integer that is less than or equal to x. Then ξ`

∨
F−1ξ` = ξ(−` + i, `).

Inductively,
∨n−1
m=0 F

−mξ` = ξ(−`+(n−1)i, `). This asserts the lemma.

Proof of Theorem 3.1. The case that f is permutive of type 1 is proved, the
other cases can be done similarly. Consider {ξ`}∞`=1 a sequence of finite

partitions of Ω, it is easy to see that ξ1
◦
⊂ ξ2

◦
⊂ · · · and

∨∞
`=1 ξ` $ B, where

A
◦
⊂ B (respectively A $ B) means the σ-algebra generated by A is a subset

of (respectively coincides with) that generated by B up to a measure zero set.
For each ` ∈ N, observe that

Hµ(ξ`) = −
∑
A∈ξ`

µ(A) logµ(A)

= −
∑

s−`,...,s`−1

ps−`
· · · ps`−1

∑
s`

ps`
log ps−`

· · · ps`

= −(2`+ 1)
r−1∑
m=0

pm log pm.

Applying Lemma 3.2 and mathematical induction,

Hµ(
n−1∨
m=0

F−mξ`) = −(2`− (n− 1)i+ 1)
r−1∑
m=0

pm log pm

whenever ` is large enough. Hence

hµ(F ) = lim
`→∞

hµ(F, ξ`) = i

r−1∑
m=0

pm log pm.

This completes the proof.

Example 3.3. Let S = {0, 1, 2, 3} and let f : S5 → S be defined by

f(x0, x1, x2, x3, x4) = 2x0 + x3x0 + x2
1 + 3x4 mod 4,

then f is permutive of type 2 and î = 0, ĵ = 4. Theorem 3.1 shows that

hµ(F ) = −4(p0 log p0 + p1 log p1 + p2 log p2 + p3 log p3).
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3.2 Topological pressure
Let φk : Sk → R be given and let φ : Ω → R be defined by φ(x) =
φk(x0 · · ·xk−1). Set ξ ≡ ξ(0, k − 1) a measurable partition of Ω. Define
transition matrix Tφ,F = (tmn)1≤m,n≤rk with respect to φ by

tmn = dmn expφ(x), x ∈ Cm, (5)

where Cm = [c0, . . . , ck−1] ∈ ξ,m = 1 +
∑k−1
`=0 c` · rk−`−1 and

dmn =
{

1, Cm ∩ F−1Cn 6= ∅;
0, otherwise.

We have the following theorem.

Theorem 3.4. If f is permutive, then the topological pressure P (F, φ) =
s log r + log ρ, where ρ is the spectral radius of Tφ,F and s = max{0, î +
ĵ − k}.

Proof. The case f is permutive of type 1 is considered while the other cases
can be proved similarly.

Without loss of generality we may assume k = 2. Let apq ∈ R, 0 ≤
p, q ≤ r − 1, be given and let φ : Ω → R be defined by φ(x) = ax0x1 .
Set ξ = {0[pq]1 : 0 ≤ p, q ≤ r − 1} ≡ {C1, . . . , Cr2}. Define T̃φ,F =
(tmn)1≤m,n≤r2 , where tmn = (smn exp apq), m = pr + q + 1 and

smn =
{
rs, Cm ∩ F−1Cn 6= ∅;
0, otherwise.

Let Dp = #{q : Cp ∩ F−1Cq 6= ∅}. Then Dp = Dq for 1 ≤ p, q ≤ r2 and
thus can be denoted by a constant D. Observe that

p1(F, φ, ξ) =
∑

i1,i2∈S
exp(ai1i2) = |T̃φ,F |/(D · rs),

where |A| =
∑
amn is the 1-norm for nonnegative matrix A. Moreover,

p2(F, φ, ξ) =
∑

m1,m2∈S2

∑
Am1;m2 6=∅

exp(φ(x)+φ(F (x))) = |T̃2
φ,F |/(D ·rs),

where the summation is taken for all connectedAm1;m2 ∈ [m1]∩F−1[m2]. It
comes from induction that pn(F, φ, ξ) = |T̃n

φ,F |/(D · rs) for n ∈ N, Perron-
Frobenius theorem demonstrates that P (F, φ, ξ) = log ρ̃ = s log r + log ρ,
where ρ̃ is the spectral radius of T̃φ,F and ρ is the spectral radius of Tφ,F .
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FixN ∈ N and set ξN = ξ(−N,N). It can be verified that p1(F, φ, ξN ) =
r2(N−1)(D · rs)−1|T̃φ,F | and pn(F, φ, ξN ) = r2(N−1)(D · rs)−1|T̃n

φ,F | for
n ∈ N. This infers that P (F, φ, ξN ) = log ρ̃ = s log r + log ρ for all N ∈ N.
The proof is done by letting N tend to infinity.

If potential function φ depends on only one coordinate, that is, without
loss of generality we may assume φ : Ω → R is defined by φ(x) = ax0 ,
where a0, a1, . . . , ar−1 ∈ R are given. Theorem 3.4 can be expressed in an
explicit form.

Corollary 3.5. Let a0, a1, . . . , ar−1 ∈ R be given and let φ : Ω → R be
defined by φ(x) = ax0 . If f is permutive, then P (F, φ) = (̂i+ ĵ − 1) log r+
log(ea0 + ea1 + · · ·+ ear−1).

Proof. Let ξ = {[0], . . . , [r − 1]} be the standard measurable partition of Ω.
Permutivity of f asserts î+ ĵ ≥ 1 and thus the kth row of the transition matrix
Tφ,F ∈ Mr(R) is eak−1(1 1 · · · 1) for 1 ≤ k ≤ r. Applying Theorem 3.4
derives the desired result.

If X is a compact metric space and T : X → X is a continuous trans-
formation, variational principle for topological pressure says that, for ψ ∈
C(X,R),

P (T, ψ) = sup{hν(T ) +
∫
X

ψ dν : ν is an ergodic measure}. (6)

A measure ν is called an equilibrium measure provided P (T, ψ) = hν(T ) +∫
X
ψ dν. Theorems 3.1 and 3.4 help for the determination of equilibrium

measures of permutive CA.

Corollary 3.6. If f is permutive and potential function φ is given as in Corol-
lary 3.5, then Parry measure is the unique equilibrium measure. In other
word, such cellular automaton possesses no phase transition.

Proof. If f is permutive and î+ ĵ = 1, then P (F, φ) = log(ea0 +ea1 + · · ·+
ear−1). Moreover,

hµ(F )+
∫

Ω

φ dµ = −
r−1∑
m=0

pm log pm+
r−1∑
m=0

am·pm =
r−1∑
m=0

pm(am−log pm).

To determine whether µ is an equilibrium measure, define Φ : [0,∞) → R
by

Φ(x) =
{

0, x = 0;
x log x, otherwise.
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Then Φ is convex and Φ ∈ C1((0,∞),R). Moreover,

Φ(
n∑

m=1

αmxm) ≤
n∑

m=1

αmΦ(xm), for
n∑

m=1

αm = 1, αm ≥ 0, xm ∈ R.

Let αm = eam/λ and xm = (pmλ)/eam for 0 ≤ m ≤ r − 1, where
λ =

∑r−1
m=0 e

am .

0 = Φ(1) = Φ(
r−1∑
m=0

αmxm)

≤
r−1∑
m=0

eam

λ
· pmλ
eam

log
pmλ

eam
=

r−1∑
m=0

pm log
pmλ

eam

= log(ea0 + ea1 + · · ·+ ear−1)−
r−1∑
m=0

pm(am − log pm).

The equality holds if and only if (pmλ)/eam = 1 for 0 ≤ m ≤ r − 1,
i.e., µ is an equilibrium measure if and only if pk = eak/

∑r−1
m=0 e

am for
0 ≤ k ≤ r − 1.

When î + ĵ ≥ 2, then P (F, φ) = (̂i + ĵ − 1) log r + log
∑
eam and

hµ(F ) = −(̂i + ĵ)
∑
pm log pm. The fact

∑
pm log p−1

m ≤ log r and the
equality holds if and only if pk = p` for k 6= ` implements that

−(̂i+ ĵ)
∑

pm log pm +
∑

pmam ≤ (̂i+ ĵ) log r + log
∑

eam .

Moreover, the equality holds if and only if

pk =
eak∑
eam

and pk = p`, for 0 ≤ k, ` ≤ r − 1.

The proof is complete.

4 TOPOLOGICAL PROPERTIES OF PERMUTIVE CELLULAR AU-
TOMATA

This section studies permutive cellular automata in the viewpoint of topologi-
cal aspects. A dynamical system is said to be chaotic in the sense of Li-Yorke
provided the existence of periodic points with period larger than some given
integer and there exists an uncountable set such that any two distinct orbits of
it would be arbitrary close but never merge together.

We show that, for a cellular automaton, the existence of snap-back repeller
implies the exhibition of Li-Yorke chaos and bipermutive cellular automata
possesses a snap-back repeller.
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Theorem 4.1. If F is a cellular automaton that possesses a snap-back re-
peller, then F is chaotic in the sense of Li-Yorke.

Instead of giving a theoretical proof, an example is investigated to assert
Theorem 4.1 since the proof is similar as the argument given in [13, 14].

Example 4.2. Consider F Wolfram’s rule 102 on Σ+
2 = {x = (xi)i≥0 :

xi ∈ {0, 1} for all i}, where the local rules f : {0, 1}3 → {0, 1} is defined
by f(x−1, x0, x1) = x0 + x1 mod 2 and the metric d on Σ+

2 is defined by

d(x, y) =
∞∑
i=0

|xi − yi|
2i

. (7)

Let z = 0∞ and ε = 1/2, then z is a fixed point. For each x ∈ Bε(z),
x0 = x1 = 0. It is easily seen that

(1) d(F102(x), z) > d(x, z) for all x ∈ Bε(z);

(2) F−k102(x)→ z as k →∞ for all x ∈ Bε(z);

(3) let y = (0011001100110011 . . .), then y ∈ Bε(z), F102(y) /∈ Bε(z)
and F 3

102(y) = z.

That is, z is a snap-back repeller.
To show that F is Li-Yorke chaotic, we need to find N ∈ N such that, for

n ≥ N , F exhibits an n-periodic orbit and show the existence of scramble
set S.

Let ς = 2−4. It is easily verified F |Bς(z) is well-defined and Bς(z) =
0[00000]4. Set G = F−3|Bς(z) and Q = G(Bς(z)), then Q, F (Q) and
F 2(Q) are compact subsets of the complement ofBε(z) and F−3(x) ∈ Bς(z)
for all x ∈ Q. More than that, F−kQ ⊂ Bς(z) for all k ≥ 3. Notably,
Q = G(Bς(z)) = F−3(Bς(z)) and

F−k ◦G : Bς(z)→ Bς(z), for k ≥ 3. (8)

Brouwer’s fixed point theorem asserts that there exists yk ∈ Bς(z) such that
(F−k ◦G)(yk) = yk, i.e., F k+3(yk) = yk, for all k ≥ 3.

It remains to show that yk is actually of period k + 3.
Since F k(yk) = G(yk) ∈ Q, F is expanding in Bς(z) indicates that

Fn(yk) 6= yk, for 1 ≤ n ≤ k.

Also, F (Q), F 2(Q) ⊂ Bε(z)c implies Fn(yk) 6= yk for n = k + 1, k + 2.
Hence, yk is of period k + 3.
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As a conclusion, let N = 6. For all n ≥ N , there exists yn ∈ Bς(z) such
that Fn(yn) = yn and F k(yn) 6= yn for 1 ≤ k ≤ n− 1.

The construction of the scramble set is similar as the method in [12], thus
is skipped.

This completes the example.

Proposition 4.3. Each bipermutive cellular automaton exhibits a snap-back
repeller.

Proof. Fagnani and Margara indicate that a bipermutive CA is topological
conjugate to a one-sided shift [5]. It is easy to verify that it exhibits a snap-
back repeller.

The proof is complete.

Notably that bipermutivity is optimized for the exhibition of snap-back re-
pellers when two-sided CA is considered. The following is a counterexample.

Example 4.4. Wolfram’s rule 102 exhibits no snap-back repellers on Σ2 =
{x = (xi)i∈Z : xi ∈ {0, 1} for all i}.

Proof. For n ∈ N and y ∈ Σ2 satisfies F 2n

(y) = y. It is easily seen that
y = 0∞, which is a fixed point. This means F has no period 2n points for all
n ∈ N. Hence F can never exhibit a snap-back repeller.
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