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THE DIMENSIONS OF

A NON-CONFORMAL REPELLER

AND AN AVERAGE CONFORMAL REPELLER

JUNGCHAO BAN, YONGLUO CAO, AND HUYI HU

Abstract. In this paper, using thermodynamic formalism for the sub-additive
potential, upper bounds for the Hausdorff dimension and the box dimension of
non-conformal repellers are obtained as the sub-additive Bowen equation. The
map f only needs to be C1, without additional conditions. We also prove that
all the upper bounds for the Hausdorff dimension obtained in earlier papers
coincide. This unifies their results. Furthermore we define an average con-
formal repeller and prove that the dimension of an average conformal repeller
equals the unique root of the sub-additive Bowen equation.

1. Introduction

In the dimension theory of dynamical systems, it is a very interesting topic to
study the Hausdorff dimension of invariant sets of hyperbolic dynamics. Bowen [3]
was the first to express the Hausdorff dimension of an invariant set as a solution
of an equation involving topological pressure. Ruelle [13] refined Bowen’s method
and obtained the following result. Assume that f is a C1+γ conformal expanding
map, Λ is an isolated compact invariant set and f |Λ is topologically mixing. Then
the Hausdorff dimension of Λ, dimH Λ, is given by the unique solution α of the
equation

(1.1) P (f |Λ,−α log ‖Dxf‖) = 0,

where P (f |Λ, ·) is the topological pressure functional. The smoothness C1+γ was
recently relaxed to C1 [9].

An estimate from above for the Hausdorff dimension of compact invariant sets
for differentiable maps has been given by A. Douady and J. Oesterlé [5], and by
Ledrappier [11]. For non-conformal dynamical systems there exist only partial
results. For example, the Hausdorff dimension of hyperbolic invariant sets was only
computed in some special cases. Hu [10] gave an estimate of the dimension of
the non-conformal repeller for a C2 map. Falconer [6, 7] computed the Hausdorff
dimension of a class of non-conformal repellers. Related ideas were applied by Simon
and Solomyak [16] to compute the Hausdorff dimension of a class of non-conformal
horseshoes in R3.
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For C1 non-conformal repellers, in [18], Zhang uses singular values of the de-
rivative Dxf

n for all n ∈ Z+ to define a new equation which involves the limit
of a sequence of topological pressure. Then he shows that the unique solution of
the equation is an upper bound for the Hausdorff dimension of the repeller. In [1],
the same problem is considered. Barreira bases his estimates on the non-additive
thermodynamic formalism which was introduced in [2] and the singular value of
the derivative Dxf

n for all n ∈ Z+, and gives an upper bound for the box dimen-
sion of the repeller under the additional assumptions for which the map is C1+γ

and γ-bunched. This automatically implies that for Hausdorff dimension. In [8],
Falconer defines topological pressure of sub-additive potential under the condition
‖(Dxf)

−1‖2‖Dxf‖ < 1, which means that f is 1-bunched. They also obtain an up-
per bound for the Hausdorff dimension of the repeller. The questions are whether
the three bounds as above are the same and whether the upper bounds of the box
dimension hold true for a C1 non-conformal repeller.

In this paper, the first, using thermodynamic formalism for sub-additive poten-
tial defined in [4], we can obtain upper bounds for the Hausdorff dimension and the
box dimension of non-conformal repellers. The map f only needs to be C1, with-
out additional conditions. In fact, we prove that the upper bound of the Hausdorff
dimension of non-conformal repellers in [18] is the unique root of the generalized
Bowen equation which relates to sub-additive thermodynamic formalism. Further-
more, we proved all the upper bounds in [1, 18, 8] and ours are the same and we
can prove that topological pressure in [4] is the same as in [1, 8] in which they need
that f is C1+γ and γ-bunched. Our result also gives an affirmative answer to a
problem posed by K. Simon in [15] concerning an upper bound without assuming
the 1-bunched property.

Then we introduce the notion of an average conformal repeller. Using thermody-
namic formalism for sub-additive potential, we prove that the Hausdorff dimension
and the box dimension of average conformal repellers equal the unique root of the
Bowen equation for sub-additive topological pressure. The map f only needs to
be C1, without additional conditions. Meanwhile, we introduce super-additive po-
tential topological pressure and prove that for special potentials, sub-additive and
super-additive topological pressures are the same. In [2], Barreira introduces the
concept of a quasi-conformal repeller by using Markov construction and proves that
its dimension is the unique root of the equation obtained by non-additive topologi-
cal pressure. In [12] is introduced the concept of a weakly conformal repeller and its
dimension using the Bowen equation is obtained. It is obvious that for C1 maps,
quasi-conformal and weakly conformal repellers are average conformal repellers,
but the reverse is not true. Therefore our result is a generalization of the results in
[2, 12].

Next we recall some basic definitions and notation.
Let f : X → X be a continuous map. A set E ⊂ X is called an (n, ε)-separated

set with respect to f if whenever x, y ∈ E, then dn(x, y) = max0≤i≤n−1 d(f
ix, f iy)

> ε. For x ∈ X and r > 0, define

Bn(x, r) = {y ∈ X : f iy ∈ B(f ix, r), for all i = 0, . . . , n− 1}.
If φ is a real continuous function on X and n ∈ Z+, let

Snφ(x) =

n−1∑
i=0

φ(f i(x)).
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We define

Pn(φ, ε) = sup{
∑
x∈E

expSnφ(x) : E is an (n, ε)-separated subset of X}.

Then the topological pressure of φ is given by

P (f, φ) = lim
ε→0

lim sup
n→∞

1

n
logPn(φ, ε).

Next we give some properties of P (f, ·) : C(M,R) → R ∪ {∞}.

Proposition 1.1. Let f : M → M be a continuous transformation of a compact
metrisable space M . If ϕ1, ϕ2 ∈ C(X,R), then the following are true:

(1) P (f, 0) = htop(f).
(2) |P (f, ϕ1)− P (f, ϕ2)| ≤ ‖ϕ1 − ϕ2‖.
(3) ϕ1 ≤ ϕ2 implies that P (f, ϕ1) ≤ P (f, ϕ2).

Proof. See Walters’ book [17]. �

Corollary 1. Let f : M → M be a continuous transformation of a compact metris-
able space M . If ϕ ∈ C(M,R) and ϕ < 0, then the function P (α) = P (f, αϕ) is
continuous and strictly decreasing in α.

Proof. Let M = maxx∈M ϕ(x) and m = minx∈M ϕ(x). Then ϕ ∈ C(M,R) and
ϕ < 0 imply that m ≤ M < 0. If α1 < α2, then for all n ∈ N, we have

(α2 − α1)nm ≤ Sn(α2ϕ)(x)− Sn(α1ϕ)(x) = (α2 − α1)Snϕ(x) ≤ (α2 − α1)nM.

Thus for ∀ε > 0,

e(α2−α1)nm × Pn(α1ϕ, ε) ≤ Pn(α2ϕ, ε) ≤ Pn(α1ϕ, ε)× e(α2−α1)nM .

This implies that

(α2 − α1)m+ P (f, α1ϕ) ≤ P (f, α2ϕ) ≤ P (f, α1ϕ) + (α2 − α1)M.

Therefore P (f, αϕ) is continuous and strictly monotone decreasing on α. �

Another equivalent definition of topological pressure involves open covers.

Definition 1.1. If ϕ ∈ C(M,R), n ≥ 1 and U is an open cover of M put

pn(f, φ,U) = inf{
∑
β

sup
x∈B

eSnφ(x) | β is a finite subcover of

n−1∨
i=0

f−iU}.

It is proved [17] that the limit

lim
n→∞

1

n
log pn(f, φ,U)

exists and is equal to inf
n>0

{ 1
n log pn(f, ϕ,U)}.

We have the following lemma whose proof can be found in [17].

Lemma 1.1. If φ ∈ C(M,R), n ≥ 1 and U is an open cover of M , then

lim
diam(U)→0

lim
n→∞

1

n
log pn(f, φ,U) = P (f, φ).
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A linear map L : Rn → R
n is said to be expanding if ‖Lv‖ > ‖v‖ for all v ∈ R

n

and v 
= 0. Given an expanding linear map L : Rm → R
m, let λ1 ≥ λ2 ≥ · · · ≥

λm ≥ 0 be the logarithms of the singular values of L, which are eigenvalues of
(L∗L)

1
2 , counted with their multiplicities, where λm > 0 because of the expansion.

Following [5] we introduce the function

gα(L) =

m∑
i=m−[α]+1

λi + (α− [α])λm−[α],

for any α ∈ [0,m], where [α] is the largest integer ≤ α. gα(L) is continuous

and strictly increasing in α. g0(L) = 0 and gm(L) =
m∑
i=1

λi = log |Jac(L)|, where

Jac(L) is the Jacobian of L. The map gα has the following super-additive property.
If L : Rm → R

m and L′ : Rm → R
m are two expanding maps, then

(1.2) gα(L′L) ≥ gα(L′) + gα(L).

The paper is organized as follows. In Section 2, we develop the sub-additive ther-
modynamic formalism and prove that the upper bound of the Hausdorff dimension
of non-conformal repellers in [18] is exactly the unique root of the equation of
sub-additive topological pressure. In Section 3, we consider the relation between
sub-additive thermodynamic formalism defined in [4] and [2, 8], and we obtain for
a C1 non-conformal repeller Λ, that the upper box dimension is bounded by a value
which is the unique solution of the equation of sub-additive topological pressure.
This is a generalization of the result in [2]. In Section 4, we introduce the definition
of an average conformal repeller and give related results and the main theorem. In
Section 5, we develop super-additive thermodynamic formalism and the variational
principle for super-additive potential. In Section 6, we give the proof of the main
result.

2. A sub-additive thermodynamic formalism

Let f : X → X be a continuous map. A set E ⊂ X is called an (n, ε)-separated
set with respect to f if whenever x, y ∈ E, then dn(x, y) = max0≤i≤n−1 d(f

ix, f iy)
> ε. A sub-additive valuation on X is a sequence of continuous functions φn : M →
R such that

φm+n(x) ≤ φn(x) + φm(fn(x));

we denote it by F = {φn}.
In the following we will define the topological pressure of F = {φn} with respect

to f . We define

Pn(F , ε) = sup{
∑
x∈E

expφn(x) : E is an (n, ε)-separated subset of X}.

Then the topological pressure of F is given by

P (f,F) = lim
ε→0

lim sup
n→∞

1

n
logPn(F , ε).

LetM(X) be the space of all Borel probability measures endowed with the weak*
topology. Let M(X, f) denote the subspace of M(X) consisting of all f -invariant
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measures. For µ ∈ M(X, f), let hµ(f) denote the entropy of f with respect to µ,
and let F∗(µ) denote the following limit:

F∗(µ) = lim
n→∞

1

n

∫
φndµ.

The existence of the above limit follows from a sub-additive argument. We call
F∗(µ) the Lyapunov exponent of F with respect to µ since it describes the expo-
nential growth speed of φn with respect to µ.

In [4], the authors proved the following variational principle.

Theorem 2.1 ([4]). Under the above general setting, we have

P (f,F) = sup{hµ(T ) + F∗(µ) : µ ∈ M(X, f)}.

In [2], Barreira used a different method to introduce topological pressure for
sub-additive potential functions and proved the variational principle if the potential
functions satisfy further conditions.

Let M be a C∞ Riemann manifold, dimM = m. Let U be an open subset of
M and let f : U → M be a C1 map. Suppose Λ ⊂ U is a compact invariant set on
which f is expanding, that is, fΛ = Λ and there is k > 1 such that for all x ∈ Λ
and v ∈ TxM ,

‖Dxfv‖ ≥ k‖v‖,
where ‖.‖ is the norm induced by an adapted Riemannian metric. Let M(f |Λ)
denote all the f invariant measures supported on Λ.

If x ∈ Λ, then Dxf : TxM → TfxM is a linear map. Denote the logarithms of
the singular values of Dxf by

λ1(x, f) ≥ λ2(x, f) ≥ · · · ≥ λm(x, f) ≥ log k

and for α ∈ [0,m], write

gα(x, f) = gα(Dxf) =

m∑
i=m−[α]+1

λi(x, f) + (α− [α])λm−[α](x, f).

Since f is C1, the functions x �→ λi(x, f) and x �→ gα(x, f) are all continuous.
In fact, fΛ = Λ implies fnΛ = Λ. fn is also expanding on Λ. Let the logarithms

of the singular value of Dxf
n be

λ1(x, f
n) ≥ λ2(x, f

n) ≥ · · · ≥ λm(x, fn) ≥ n log k

and set

gα(x, fn) = gα(Dxf
n) =

m∑
i=m−[α]+1

λi(x, f
n) + (α− [α])λm−[α](x, f

n).

The functions gα(·, fn) satisfy

gα(x, fn+l) ≥ gα(x, fn) + gα(fn(x), f l).

Define a sequence of functions Pn : [0,m] → R as follows:

Pn(α) = P (f |Λ,−
1

n
gα(·, fn)).

In [18], the author proved the following result.
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Lemma 2.1 ([18]). For every α ∈ [0,m], the following limit exists:

lim
n→∞

Pn(α) = inf
n∈Z+

Pn(α).

Set P ∗(α) = lim
n→∞

Pn(α). Then P ∗ is continuous and strictly decreasing on [0,m].

Theorem 2.2 ([18]). Let

D(f,Λ) = max{α ∈ [0,m] : P ∗(α) ≥ 0}.
Then

dimH Λ ≤ D(f,Λ).

Remark 1. By the variational principle and Ruelle’s inequality, we have P ∗(m) ≤ 0.
Since P ∗(0) = h(f |Λ) > 0, by Lemma 2.1, it follows that the equation P ∗(α) = 0
has a unique solution on [0,m]. By the definition, we have that D(f,Λ) is the
unique solution of the equation P ∗(α) = 0.

In this paper, we first prove the following proposition.

Proposition 2.1. Suppose {φn(x)} is a sub-additive continuous function sequence

on M . Let F = {φn}. Then we have P (f,F) = lim
n→∞

P (f, φn

n ).

Proof. The existence of the limit lim
n→∞

P (f, φn

n ) can be found in [18].

First we prove that

P (f,F) ≤ lim
n→∞

P (f,
φn

n
).

For a fixed m, let n = ms+ l, 0 ≤ l < m. From the subadditivity of {φn}, we have

φn(x) ≤
1

m

m−1∑
j=0

s−2∑
i=0

φm(f im+j(x)) +
1

m

m−1∑
j=0

[φj(x) + φm−j+l(f
(s−1)m+j(x))].

Let C1 = maxi=1,··· ,2m−1 maxx∈X φi(x). Then we have

φn(x) ≤
(sm+l)−1∑

j=0

1

m
φm(f j(x))− 1

m

sm−1∑
j=(s−1)m

φm(f j(x)) + 2C1

≤
n−1∑
j=0

1

m
φm(f j(x)) + 4C1.

Hence we have

exp(φn(x)) ≤ exp(

n−1∑
j=0

1

m
φm(f j(x)) + 4C1).

Thus

Pn(F , ε) = sup{
∑
x∈E

expφn(x) : E is an (n, ε)-separated subset of X}

≤ Pn(
1

m
φm, ε)× exp(4C1).

This implies

P (f,F) ≤ P (f,
1

m
φm) .
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From the arbitrariness of m ∈ Z+, we have

P (f,F) ≤ P (f,
1

m
φm), for all m ∈ Z+.

Therefore

P (f,F) ≤ lim
n→∞

P (f,
φn

n
).

Next, we prove that

P (f,F) ≥ lim
n→∞

P (f,
φn

n
).

Since f : Λ → Λ is an expanding map, hµ(f) is an upper-semi-continuous function
from M(f |Λ) to R. From the variational principle of topological pressure [17], we
have that for every k ∈ Z+ there exists µ2k ∈ M(f |Λ) such that

P (f |Λ,
1

2k
φ2k) = hµ

2k
(f) +

∫
Λ

1

2k
φ2kdµ2k .

Since M(f |Λ) is compact, this implies that µ2k has a subsequence which converges
to µ ∈ M(f |Λ). Without loss of generality, suppose that µ2k converges to µ. Using
the sub-additivity and invariance of µ2k , then we have for every k ∈ N,

hµ
2k
(f) +

∫
Λ

φ2k(x)

2k
dµ2k ≤ hµ

2k
(f) +

∫
Λ

φ1(x)dµ2k .

Furthermore for fixed s ∈ N, if k > s, from the sub-additivity and invariance of
µ2k , we have

hµ
2k
(f) +

∫
Λ

φ2k(x)

2k
dµ2k ≤ hµ

2k
(f) +

∫
Λ

φ2s(x)

2s
dµ2k .

Since hµ(f) is an upper-semi-continuous function, we have

lim
n→∞

P (f,
φn

n
) = lim

k→∞
P (f,

φ2k

2k
)

= lim
k→∞

(hµ
2k
(f) +

∫
Λ

φ2k(x)

2k
dµ2k)

≤ lim
k→∞

(hµ
2k
(f) +

∫
Λ

φ2s(x)

2s
dµ2k)

≤ hµ(f) +

∫
Λ

φ2s(x)

2s
dµ.

Since sequence {
∫
Λ
φn(x)dµ} is a sub-additive sequence, we have

lim
n→∞

∫
Λ

φn(x)

n
dµ = inf

n≥1
{
∫
Λ

φn(x)

n
dµ}.

The arbitrariness of s ∈ N implies that

lim
n→∞

P (f,
φn

n
) ≤ hµ(f) + lim

s→∞

∫
Λ

φ2s

2s
(x)dµ.

Hence by the variational principle of the sub-additive topological pressure in [4],
we have

lim
n→∞

P (f,
φn

n
) ≤ hµ(f) + lim

s→∞

∫
Λ

φ2s

2s
(x)dµ ≤ P (f,F).

This completes the proof of Proposition 2.1. �
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Theorem 2.3. Let F(α) = {−gα(·, fn)}. Then we have P (f,F(α)) = P ∗(α).

Proof. For a fixed α, let φn(x) = −gα(x, fn). Then it is a sub-additive continuous
sequence on Λ. By Proposition 2.1 for F(α) = {−gα(x, fn)}, we have

P (f,F(α)) = lim
n→∞

P (f,
φn

n
) = lim

n→∞
P (f,− 1

n
gα(·, fn)) = P ∗(α).

�

Theorem 2.4. Let F(α) = {−gα(·, fn)}. Then we have that P (f,F(α)) is con-
tinuous and strictly monotone decreasing on α ∈ [0,m]. Thus P (f,F(α)) = 0 has
only a unique solution in [0,m].

Proof. Let φn(α, x) = −gα(x, fn). If α1, α2 ∈ [0,m], α1 < α2, then for all n ∈ N,
we have

(α1 − α2)n log k ≥ −φn(α2, x)− (−φn(α1, x)) ≥ (α1 − α2)n log ‖f‖.
Thus for ∀ε > 0,

e(α1−α2)n log k × Pn(F(α1), ε) ≤ Pn(F(α2), ε) ≤ Pn(F(α1), ε)× e(α1−α2)n log ‖f‖.

This implies that

(α1 − α2) log ‖f‖+ P (f,F(α1)) ≤ P (f,F(α2)) ≤ P (f,F(α1)) + (α1 − α2) log k.

Therefore P (f,F(α)) is continuous and strictly monotone decreasing on α ∈ [0,m].
On the one hand, P (f,F(0)) = htop(f) > 0, and on the other hand, by Ruelle’s

inequality [14] and Theorem 2.1, we have P (f,F(m)) ≤ 0. Therefore P (f,F(α)) = 0
has a unique solution in [0,m]. �

Remark 2. Theorem 2.4 can be deduced from Theorem 2.3 and Lemma 2.1. But
for the completeness, we include a different proof.

Corollary 2. D(Λ, f) is the unique solution of equation P (f,F(α)) = 0.

Proof. The proof can be deduced from Theorem 2.3 and Remark 1. �

Lemma 2.2. For a fixed n ∈ N, Pn(α) = P (f,− 1
ng

α(·, fn)) is a continuous and
monotone decreasing function on α ∈ [0,m].

Proof. The proof is analogous to the proof of Theorem 2.4. �

By the Ruelle-Margulis inequality and the variational principle in [17], we have
Pn(m) = P (f,− 1

ng
m(·, fn)) ≤ 0. Since Pn(0) = h(f |Λ) > 0, by Lemma 2.2, it

follows that equation Pn(α) = 0 has a unique solution. Denote it by αn. Then we
have the following proposition.

Theorem 2.5.

inf
n∈N

αn = D(Λ, f).

Proof. Without loss of generality, we suppose that lim
n→∞

αn = α∗ = infn∈N αn.

Otherwise we can take a subsequence which converges to α∗.
Since

|P (f,− 1

n
gα

∗
(·, fn))− P (f,− 1

n
gαn(·, fn))| ≤ ‖ − 1

n
gα

∗
(·, fn) +

1

n
gαn(·, fn)‖

≤ |α∗ − αn|‖Df‖,
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we have

P (f,F(α∗)) = lim
n→∞

P (f,− 1

n
gα

∗
(·, fn))

= lim
n→∞

P (f,− 1

n
gαn(·, fn)) = 0.

By Corollary 2, we have

D(f,Λ) = α∗ = inf
n∈N

αn.

�

Now for a fixed n ∈ N, we consider the equation

P̃n(α) = P (fn|Λ,−gα(·, fn)) = 0.

It is easy to prove that P̃n(α) is continuous and strictly decreasing on [0,m],

P̃n(0) = htop(f
n|Λ) = nhtop(f |Λ) ≥ 0

and

P̃n(m) = nP (f |Λ,− log |Jac(Dxf)|) ≤ 0.

Hence the equation P̃n(α) = 0 has a unique solution, which we denoted by Dn.
Applying Lemma 1 in [18] to the expanding map fn yields dimH Λ ≤ Dn. So
dimH Λ ≤ inf

n∈Z+
Dn. It was proved in [18] that

inf
n∈Z+

Dn ≤ D(f,Λ).

Next we want to prove the reverse inequality, that is to say,

D(f,Λ) ≤ inf
n∈Z+

Dn.

In order to prove the inequality as above, we firstly prove the following theorem.

Proposition 2.2. Suppose {φn(x)} is a sub-additive continuous sequence on M .
Let F = {φn}. Then we have P (f,F) = lim

k→∞
1
kP (fk, φk).

Proof. For a fixed k ∈ N, it is well known that if E ⊂ M is an (n, ε)-separated set
of fk, then E is an (nk, ε)-separated set of f . By the definition,

P (fk, φk, ε) = lim
ε→∞

lim sup
n→∞

1

n
log sup{

∑
x∈E

exp(Ŝnφk(x)) |

E is an (n, ε)-separated set of fk},
where

(Ŝnφk(x)) = φk(x) + φk(f
kx) + · · ·+ φk(f

(n−1)kx).

Hence for a fixed m < k, letting k = mq + r and C = maxx∈M maxi=1,··· ,2m φi(x),
the sub-additivity of φn implies that

φk(x) ≤ 1

m

m−1∑
j=0

q−2∑
i=0

φm(f im+j(x)) +
1

m

m−1∑
j=0

[φj(x) + φm−j+l(f
(q−1)m+j(x))]

≤
k−1∑
i=0

1

m
φm(f i(x)) + 4C.
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Thus for 1 ≤ j ≤ n− 1, we have

φk(f
kj(x)) ≤

k−1∑
i=0

1

m
φm(f i(fkj(x)) + 4C.

Hence

Ŝnφk(x) = φk(x) + φk(f
kx) + · · ·+ φk(f

(n−1)kx)

≤
nk−1∑
i=0

1

m
φm(f i(x)) + 4nC

= Snk(
1

m
φm)(x) + 4nC.

This gives that

Pn(f
k, φk, ε) ≤ Pnk(f,

1

m
φm, ε)× e4nC .

Thus

P (fk, φk) ≤ kP (f,
1

m
φm) + lim

n→∞

1

n
log e4nC

= kP (f,
1

m
φm) + 4C.

Therefore

lim
k→∞

1

k
P (fk, φk) ≤ P (f,

1

m
φm) for all m ∈ Z+.

By Theorem 2.1, we have

lim
k→∞

1

k
P (fk, φk) ≤ lim

m→∞
P (f,

1

m
φm) = P (f,F).

Next we prove that

P (f,F) ≤ lim
k→∞

1

k
P (fk, φk).

For a fixed k ∈ N, let n = km+r, 0 ≤ r < k, and let C = maxx∈M max1≤i≤k φi(x).
For ∀ε > 0, by the uniform continuity of f , there exists δ > 0 such that if E ⊂ M
is an (n, ε)-separated set of f , then E is an (m, δ)-separated set of fk and δ → 0
when ε → 0. Using the sub-additivity of φn, we have

φn(x) ≤ φk(x) + φk(f
k(x)) + · · ·+ φk(f

(m−1)k(x)) + φr(f
mk(x)).

Thus

Pn(f,F , ε) ≤ Pm(fk, φk, δ)× eC .

Hence

P (f,F , ε) ≤ 1

k
P (fk, φk, δ).

This gives that

P (f,F) ≤ 1

k
P (fk, φk).

For k arbitrary, we have that

P (f,F) ≤ lim
k→∞

1

k
P (fk, φk).

�
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Corollary 3. Let F(α) = {−gα(·, fk)}. Then we have

P (f,F(α)) = lim
k→∞

1

k
P (fk,−gα(·, fk)).

Proof. For fixed α, let φk(x) = −gα(x, fk). Using Theorem 2.2 for F(α) =
{−gα(x, fk)}, we get

P (f,F(α)) = lim
k→∞

1

k
P (fk,−gα(·, fk)).

�

Theorem 2.6.

inf
n∈N

Dn = D(Λ, f).

Proof. Without loss of generality, we suppose that lim
n→∞

Dn = β∗ = infn∈N Dn.

Otherwise we can take a subsequence which converges to β∗. Since

|1
k
P (fk,−gβ

∗
(·, fk))− 1

k
P (fk,−gDk(·, fk))| ≤ ‖ − 1

k
gβ

∗
(·, fk) +

1

k
gDk(·, fk)‖

≤ |β∗ −Dk|‖Df‖,
we have

P (f,F(β∗)) = lim
k→∞

1

k
P (fk,−gβ

∗
(·, fk))

= lim
k→∞

1

k
P (fk,−gDk(·, fk)) = 0.

Thus

D(f,Λ) = β∗ = inf
k∈N

Dk.

�

In this section, we have proven that for a C1 non-conformal repeller Λ, D(f,Λ),
which is the unique solution of equation P (f,F(α)) = 0, is the upper bound of the
Hausdorff dimension of Λ. This is a generalization of the classical result that for a
C1+γ conformal repeller Λ, dimH Λ is given by the unique solution of the equation
P (f |Λ,−α log ‖Dxf‖) = 0. Moreover, we prove that

D(f,Λ) = inf
n∈N

Dk = inf
n∈N

αk,

where for each n ∈ N, Dn and αn are the unique solutions of the equations P̃n(α) =
0 and Pn(α) = 0, respectively.

3. Other results of upper bound estimates of the dimension

for a repeller

Let us first recall Falconer’s definition of topological pressures for sub-additive
potentials on mixing repellers. Without loss of generality, we only consider one-
sided sub-shift spaces of finite type rather than mixing repellers.

Let (ΣA, σ) be a one-sided sub-shift space over an alphabet {1, . . . ,m}, where
m ≥ 2. As usual ΣA is endowed with the metric d(x, y) = m−n, where x =
(xk), y = (yk) and n is the smallest of the k such that xk 
= yk. For any admissible
string I = i1 . . . in of length n over the letters {1, . . . ,m}, denote [I] = {(xi) ∈ Σ :
xj = ij for 1 ≤ j ≤ n}. The [I] is called an n-th cylinder in ΣA.
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Let F be a sub-additive family of continuous potentials defined on Σ. Falconer
defined the topological pressure of F by

FP (σ,F) = lim
n→∞

1

n
logFPn(σ,F) and FPn(σ,F) =

∑
[I]

sup
x∈[I]

eφn(x),

where the summation is taken over the collection of all nth cylinders [I].
It is not so hard to see that in this special case, FPn(σ,F) = Pn(σ,F , 1/m)

and Pn(σ,F ,m−k) = FPn+k−1(σ,F) for all k ∈ N. This implies that FP (σ,F) is
equivalent to our definition of P (σ,F).

Now let us turn to Barreira’s approach in defining pressures for sub-additive
potentials via open covers.

As in the previous sections, let f be a continuous map acting on a compact metric
space (X, d). Let F = {φn}∞n=1 be a family of sub-additive continuous functions
defined on X. Suppose U is a finite open cover of the space X. For n ≥ 1 we denote
by Wn(U) the collection of strings U = U1 . . . Un with Ui ∈ U . For U ∈ Wn(U) we
call the integer m(U) = n the length of U and define

X(U) = U1 ∩ f−1U2 ∩ . . . ∩ f−(n−1)Un

=
{
x ∈ X : f j−1x ∈ Uj for j = 1, . . . , n

}
.

We say that Γ ⊂
⋃

n≥1 Wn(U) covers X if
⋃

U∈Γ X(U) = X. For each U ∈ Wn(U),
we write eφ(U) = supx∈X(U) e

φn(x) when X(U) 
= ∅ and eφ(U) = −∞ otherwise.
For s ∈ R, define

M(f, s,F ,U) = lim
n→∞

inf{
∑
U∈Γ

e−sm(U)eφ(U)},

where the infimum is taken over all Γ ⊂
⋃

j≥nWj(U) that cover X. Likewise, we
define

M(f, s,F ,U) = lim inf
n→∞

inf{
∑
U∈Γ

e−sm(U)eφ(U)},

M(f, s,F ,U) = lim sup
n→∞

inf{
∑
U∈Γ

e−sm(U)eφ(U)},

where the infimum is taken over all Γ ⊂ Wn(U) that cover X. Define

P �(f,F ,U) = inf{s : M(f, s,F ,U) = 0} = sup{s : M(f, s,F ,U) = +∞},
CP �(f,F ,U) = inf{s : M(f, s,F ,U) = 0} = sup{s : M(f, s,F ,U) = +∞},
CP �(f,F ,U) = inf{s : M(f, s,F ,U) = 0} = sup{s : M(f, s,F ,U) = +∞}.

Define

P �(f,F) = lim inf
diam(U)→0

P �(f,F ,U),

CP �(f,F) = lim inf
diam(U)→0

CP �(f,F ,U),

CP �(f,F) = lim inf
diam(U)→0

CP �(f,F ,U).

Barreira named P �(f,F) the topological pressure, CP �(f,F) and CP �(f,F)
the lower and upper topological pressures of F .

Now we consider the connection between P �(f,F) and P (f,F). In [4], we prove
the following equality.
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NON-CONFORMAL REPELLER AND AVERAGE CONFORMAL REPELLER 739

Proposition 3.1. Assume that the topological entropy h(f) < ∞ and that the
entropy map µ �→ hµ(f) is upper-semi-continuous. Then P �(f,F) = P (f,F).

Theorem 3.1. Let M be a C∞ Riemann manifold and f : M → M be a C1 map.
Suppose Λ ⊂ M is a compact invariant set on which f is expanding. Then

P �(f,F(α)) = P (f,F(α)).

Proof. Since Λ ⊂ M is a compact invariant set on which f is expanding, it has
measure-theoretic entropy and hµ(f |Λ) is an upper-semi-continuous map inM(f |Λ).
By Proposition 3.1, we have

P �(f,F(α)) = P (f,F(α)).

�

In [1], Barreira proved that if Λ is a repeller of a C1+γ map, for some γ > 0 and
f is γ−bunched on Λ, then dimB ≤ t∗, where t∗ is the unique number of equations
P �(f,F(α)) = 0. In [1], the γ−bunched condition and C1+γ were used to show
that it is reasonable to define P �(f,F(α)).

Corollary 4. Let M be a C∞ Riemann manifold and f : M → M be a C1 map.
Suppose Λ ⊂ M is a compact invariant set on which f is expanding. Then

dimB Λ ≤ D(Λ, f) and dimH Λ ≤ D(Λ, f),

where D(Λ, f) is the unique solution of the equation P (f,F(α)) = 0.

Proof. By Theorem 3.1, we have that if Λ is a repeller of a C1 map, then we can
define P �(f,F(α)) and prove that it is coincident with P (f,F(α)). It is proved in [1]
that dimB ≤ t∗, where t∗ is the unique solution of the equation P �(f,F(α)) = 0.
Thus we have that t∗ = D(Λ, f), which is the unique solution of the equation
P (f,F(α)) = 0. Therefore we also have the inequality for the box dimension. �

Remark 3. In [18], Zhang posed a problem whether D(Λ, f) is the upper bound
of the box dimension of Λ. The corollary as above gives an affirmative answer
to the problem. Moreover, our result shows that the sub-additive thermodynamic
formalism can be applied. In fact we have proven that if Λ is a repeller of a C1

map, then the upper bounds of the Hausdorff dimension of Λ by Barreira in [1],
Falconer in [8] and Zhang in [18] all coincide. This unifies their results and it also
shows that the bunched condition in [1] and [8] is unnecessary. Our result also gives
an affirmative answer to a problem posed by K. Simon in [15] concerning an upper
bound without assuming the 1-bunched property.

4. Average conformal repeller

Let M be a C∞ Riemann manifold, dimM = d. Let U be an open subset of M
and let f : U → M be a C1 map. Suppose Λ ⊂ U is a compact expanding invariant
set. Let E(f) denote all the ergodic invariant measures supported on Λ. By the
Oseledec multiplicative ergodic theorem, for any µ ∈ E(f), we can define Lyapunov
exponents λ1(µ) ≤ λ2(µ) ≤ · · · ≤ λd(µ) .

Definition 4.1. An invariant repeller is called average conformal if for any µ ∈
E(f), λ1(µ) = λ2(µ) = · · · = λd(µ) > 0.
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It is obvious that a conformal repeller is an average conformal repeller, but the
reverse is not true.

Next we will give the main theorem.

Theorem 4.1 (Main Theorem). Let f be a C1 dynamical system and let Λ be an
average conformal repeller. Then the Hausdorff dimension of Λ is the zero t0 of
t �→ P (−tF), where

(4.3) F = {log(m(Dfn(x))), x ∈ Λ, n ∈ N},

and where m(A) = ‖A−1‖−1

The proof will be given in Section 6.

Theorem 4.2. If Λ is an average conformal repeller, then

lim
n→∞

1

n
(log ‖Dfn(x)‖ − logm(Dfn(x))) = 0

uniformly on Λ.

Proof. Let

Fn(x) = log ‖Dfn(x)‖ − logm(Dfn(x)), n ∈ N, x ∈ Λ.

It is obvious that the sequence {Fn(x)} is a non-negative sub-additive function
sequence. That is to say,

Fn+m(x) ≤ Fn(x) + Fm(fn(x)), x ∈ Λ.

Suppose (4.3) is not true. Then there exists ε0 > 0, and for any k ∈ N, there exists
nk ≥ k and xnk

∈ Λ such that

1

nk
Fnk

(xnk
) ≥ ε0.

Define measures

µnk
=

1

nk

nk−1∑
i=0

δfi(xnk
).

The compactness of P(f) implies that there exists a subsequence of µnk
that con-

verges to the measure µ. Without loss of generality, we suppose that µnk
→ µ. It

is well known that µ is f -invariant. Therefore µ ∈ M(f).
For a fixed m, we have

lim
k→∞

∫
M

1

m
Fm(x)dµnk

=

∫
M

1

m
Fm(x)dµ.

This implies

lim
k→∞

1

nk

nk−1∑
i=0

1

m
Fm(f i(xnk

)) =

∫
M

1

m
Fm(x)dµ.

For a fixed m, let nk = ms+ l, 0 ≤ l < m. The sub-additivity of {Fn} implies that
for j = 0, . . . ,m− 1,

Fnk
(xnk

) ≤ Fj(xnk
) + Fm(f j(xnk

) + · · ·+ Fm(fm(s−2)f j(xnk
))

+Fm−j+l(f
m(s−1)f j(xnk

)).
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Summing j from 0 to m− 1, we get

Fnk
(xnk

) ≤ 1

m

m−1∑
j=0

s−2∑
i=0

Fm(f im+j(xnk
))

+
1

m

m−1∑
j=0

[Fj(xnk
) + Fm−j+l(f

(s−1)m+j(xnk
))].

Let C1 = maxi=1,...,2m−1 maxx∈Λ Fi(x). Then

Fnk
(x) ≤

(sm+l)−1∑
j=0

1

m
Fm(f j(x))− 1

m

sm−1∑
j=(s−1)m

Fm(f j(x)) + 2C1

≤
nk−1∑
j=0

1

m
Fm(f j(x)) + 4C1.

Hence we have

lim
k→∞

1

nk
Fnk

(xnk
) ≤ lim

k→∞

1

nk

nk−1∑
i=0

1

m
Fm(f i(xnk

)) =

∫
M

1

m
Fm(x)dµ.

The arbitrariness of m ∈ N implies that

lim
k→∞

1

nk
Fnk

(xnk
) ≤ 1

m

∫
M

Fm(x)dµ, ∀m ∈ N.

Hence

lim
m→∞

1

m

∫
M

Fm(x)dµ ≥ ε0 > 0.

Then the ergodic decomposition theorem [17] implies that there exists µ̃ ∈ E(f)
such that

lim
m→∞

1

m

∫
M

Fm(x)dµ̃ ≥ ε0 > 0.

On the other hand, from the Oseledec theorem and Kingman’s sub-additive ergodic
theorem, we have

lim
m→∞

1

m

∫
M

log ‖Dfm(x)‖dµ̃ = λd(µ̃) and lim
m→∞

1

m

∫
M

logm(Dfm(x))dµ̃ = λ1(µ̃).

Therefore

λd(µ̃)− λ1(µ̃) ≥ ε0.

This gives a contradiction to the assumption of an average conformal repeller. �

5. Super-additive variational principle

In this section, we first give the definition of super-additive topological pressure.
Then we prove the variational principle for a special super-additive potential.

Let f : X → X be a continuous map. A set E ⊂ X is called an (n, ε)-separated
set with respect to f if whenever x, y ∈ E, then dn(x, y) = max0≤i≤n−1 d(f

ix, f iy)
> ε. A super-additive valuation on X is a sequence of functions ϕn : M → R such
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that

ϕm+n(x) ≥ ϕn(x) + ϕm(fn(x));

we denote it by F = {ϕn}.
In the following we will define the topological pressure of F = {ϕn} with respect

to f . We define

P ∗
n(F , ε) = sup{

∑
x∈E

expϕn(x) : E is an (n, ε)-separated subset of X}.

Then the topological pressure of F is given by

P ∗(f,F) = lim
ε→0

lim sup
n→∞

1

n
logPn(F , ε).

For every µ ∈ M(X, f), let F∗(µ) denote the following limit:

F∗(µ) = lim
n→∞

1

n

∫
ϕndµ.

The existence of the above limit follows from a super-additive argument. We call
F∗(µ) the Lyapunov exponent of F with respect to µ since it describes the expo-
nential growth speed of ϕn with respect to µ.

Theorem 5.1. Let f be a C1 dynamical system and let Λ be an average conformal
repeller. Let F = {ϕn(x)} = {−t log ‖Dfn(x)‖} for t ≥ 0 be a super-additive
function sequence. Then we have

P ∗(f,F) = sup{hµ(T ) + F∗(µ) : µ ∈ M(X, f)}.
Proof. First we prove that for any m ∈ N,

P ∗(f,F) ≥ P (f,
ϕm

m
).

For a fixed m, let n = ms + l, 0 ≤ l < m. From the super-additivity of {ϕn}, we
have

ϕn(x) ≥
1

m

m−1∑
j=0

s−2∑
i=0

ϕm(f im+j(x)) +
1

m

m−1∑
j=0

[ϕj(x) + ϕm−j+l(f
(s−1)m+j(x))].

Let C1 = mini=1,...,2m−1 minx∈X ϕi(x). Then we have

ϕn(x) ≥
(sm+l)−1∑

j=0

1

m
ϕm(f j(x))− 1

m

sm−1∑
j=(s−1)m

ϕm(f j(x)) + 2C1

≥
n−1∑
j=0

1

m
ϕm(f j(x)) + 4C1.

Hence we have

exp(ϕn(x)) ≥ exp(
n−1∑
j=0

1

m
ϕm(f j(x)) + 4C1).

Thus

P ∗
n(F , ε) = sup{

∑
x∈E

expϕn(x) : E is an (n, ε)-separated subset of X}

≥ Pn(
1

m
ϕm, ε)× exp(4C1).
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This implies

P ∗(f,F) ≥ P (f,
1

m
ϕm) .

For an arbitrary m ∈ Z+, we have

P ∗(f,F) ≥ P (f,
1

m
ϕm), for all m ∈ Z+.

By the variational principle in [17], for every µ ∈ M(f), we have

P ∗(f,F) ≥ P (f,
1

m
ϕm) ≥ hµ(f) +

∫
M

1

m
ϕm(x)dµ, ∀m ∈ N.

Hence we have for every µ ∈ M(f),

P ∗(f,F) ≥ hµ(f) + lim
m→∞

∫
M

1

m
ϕm(x)dµ.

Therefore

P ∗(f,F) ≥ sup{hµ(f) + lim
m→∞

∫
M

1

m
ϕm(x)dµ, µ ∈ M(f)}.

Let Φn(x) = −t logm(Dfn(x)) for t ≥ 0. Then it is sub-additive. By the
theorem in [4], we have

P (f, {Φn}) = sup{hµ(f) + lim
m→∞

∫
M

1

m
Φm(x)dµ, µ ∈ M(f)}.

By the definitions, −t logm(Dfn(x)) ≥ −t log ‖Dfn(x)‖ for t ≥ 0 implies that

P ∗(f,F) ≤ P (f, {Φn}).
Theorem 4.3 implies that for any µ ∈ M(f), we have

lim
m→∞

∫
M

1

m
Φm(x)dµ = lim

m→∞

∫
M

1

m
ϕm(x)dµ.

Therefore

P ∗(f,F) = sup{hµ(f) + lim
m→∞

∫
M

1

m
Φm(x)dµ, µ ∈ M(f)}.

This completes the proof of the theorem. �

6. The proof of the main theorem

In this section, we will give the proof of the main theorem. First we state some
known results.

In [1], Barreira proved the following theorem.

Theorem 6.1. If f is a C1 expanding map and Λ is a repeller, then

s1 ≤ dimH Λ ≤ dimBΛ ≤ dimBΛ ≤ t1,

where s1 and t1 are the unique roots of Bowen’s equations P (f,−t log ‖Df(x)‖) = 0
and P (f,−t logm(Df(x))) = 0, respectively.

Since Λ is f -invariant, it is fn-invariant. Hence we have the following corollary.

Corollary 5. If f is a C1 expanding map and Λ is a repeller, then

sn ≤ dimH Λ ≤ dimBΛ ≤ dimBΛ ≤ tn,

where sn and tn are the unique roots of Bowen’s equations P (fn,−t log ‖Dfn(x)‖)
= 0 and P (fn,−t logm(Dfn(x))) = 0, respectively.
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Next we prove that the sequences {t2k} and {s2k} are monotone.

Theorem 6.2. The sequence {s2k} is monotone, and

lim
k→∞

s2k = s∗.

Then we have that s∗ is the unique root of the equation P ∗(f,−t{log ‖Dfn(x)‖})
= 0.

Proof. First we prove that the sequence {s2n} is monotone increasing. Let ϕn =
− log ‖(Dfn(x)‖ and F = {ϕn}. Then it is a super-additive function sequence. For
a fixed k ∈ N,

Pk(φ, ε) = sup{
∑
x∈E

expSnφ(x) : E is an (n, ε)-separated subset of X}.

For ∀ε > 0, by the uniform continuity of f , there exists δ > 0 such that if E ⊂ M is

an (n, ε)-separated set of f2k+1

, then E is a (2n, δ)-separated set of f2k and δ → 0
when ε → 0. Using the super-additivity of ϕn, the Birkhoff sum Snϕ2k+1 of ϕ2k+1

with respect to f2k+1

has the following property:

Snϕ2k+1(x) = ϕ2k+1(x) + ϕ2k+1(f2k+1

x) + · · ·+ ϕ2k+1(f2k+1(n−1)x)

≥ ϕ2k(x) + ϕ2k(f
2kx) + ϕ2k(f

2k+1

x) + ϕ2k(f
2k+1

f2kx)

+ · · ·+ ϕ2k(f
2k+1(n−1)x) + ϕ2k(f

2k+1(n−1)f2kx)

= S2nϕ2k(x),

where S2nϕ2k(x) is the Birkhoff sum of ϕ2k with respect to f2k .
Thus

Pn(f
2k+1

, ϕ2k+1 , ε) ≥ P2n(f
2k , ϕ2k , δ).

Hence

P (f2k+1

, ϕ2k+1) ≥ 2P (f2k , ϕ2k).

Therefore if s2k+1 is the unique root of Bowen’s equation P (tϕ2k+1) = 0, then
we have

0 = P (f2k+1

, s2k+1ϕ2k+1) ≥ 2P (f2k , s2k+1ϕ2k).

Since the function P (f2k , tϕ2k) is monotone decreasing, s2k ≤ s2k+1 .
The arbitrariness of k implies that the sequence {s2k} is monotone decreasing.
Next we prove that

P ∗(f,F) ≥ 1

k
P (fk, ϕk) ∀k ∈ N.

For a fixed k ∈ N, let n = km+r, 0 ≤ r < k, and let C = minx∈M max1≤i≤k ϕi(x).
For ∀ε > 0, by the uniformly continuity of f , there exists δ > 0 such that if E ⊂ M
is an (n, ε)-separated set of f , then E is an (m, δ)-separated set of fk and δ → 0
when ε → 0. Using the super-additivity of ϕn, we have

ϕn(x) ≥ ϕk(x) + ϕk(f
k(x)) + · · ·+ ϕk(f

(m−1)k(x)) + ϕr(f
mk(x)).

Thus

P ∗
n(f,F , ε) ≥ Pm(fk, ϕk, δ)× e−C .
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Hence

P ∗(f,F , ε) ≥ 1

k
P (fk, ϕk, δ).

This gives that

P ∗(f,F) ≥ 1

k
P (fk, ϕk).

Therefore

P ∗(f,F) ≥ 1

2k
P (f2k , ϕ2k) ∀k ∈ N.

Let tF = {tϕn(x)}. Then we have

P ∗(f, s2kF) ≥ 1

2k
P (f2k , s2kϕ2k) = 0 ∀k ∈ N.

The monotone decreasing of P ∗(f, tF) with respect to t implies that the unique
root s∗ of the equation

P ∗(f, tF) = 0

satisfies

s∗ ≥ s2k ∀k ∈ N.

Thus

s∗ ≥ s = lim
k→+∞

s2k .

Next we want to prove that

s ≥ s∗.

For a fixed m,
1

2m
P (f2m , s2mϕ2m) = 0.

Using the variational principle, for any µ ∈ M(f) ⊂ M(f2m), we have

hµ(f) +
1

2m
s2m

∫
M

ϕ2mdµ =
1

2m
(hµ(f

2m) + s2m

∫
M

ϕ2mdµ) ≤ 0.

Letting m → ∞, we have

hµ(f) + s lim
m→∞

∫
M

1

2m
ϕ2mdµ ≤ 0.

Using the super-additive variational principle, we have

P ∗(f, s{ϕn}) ≤ 0.

Since P (f, t{ϕn}) is strictly monotone decreasing with respect to t, we have

s∗ ≤ s.

�

Lemma 6.1. If φn(x) is a sub-additive sequence, then

lim
k→∞

1

2k
P (f2k , φ2k) ≤ lim

m→∞
P (f,

φ2m

2m
).
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Proof. For a fixed k ∈ N, it is well known that if E ⊂ M is an (n, ε)-separated set

of f2k , then E is an (n2k, ε)-separated set of f . By the definition,

P (f2k , φ2k) = lim
ε→∞

lim sup
n→∞

1

n
log sup{

∑
x∈E

exp(Ŝnφ2k(x)) |

E is an (n, ε)-separated set of f2k},
where

(Ŝnφ2k(x)) = φ2k(x) + φ2k(f
2kx) + · · ·+ φ2k(f

(n−1)2kx).

Hence for a fixed m < k, let 2k = 2mq + r and C = maxx∈M maxi=1,...,2m φi(x).
Then the sub-additivity of φn implies that

φ2k(x) ≤ 1

2m

2m−1∑
j=0

q−2∑
i=0

φ2m(f i2m+j(x))

+
1

2m

2m−1∑
j=0

[φj(x) + φ2m−j+l(f
(q−1)2m+j(x))]

≤
2k−1∑
i=0

1

2m
φ2m(f i(x)) + 4C.

Thus for 1 ≤ j ≤ n− 1, we have

φ2k(f
2kj(x)) ≤

2k−1∑
i=0

1

2m
φ2m(f i(f2kj(x)) + 4C.

Hence

Ŝnφ2k(x) = φ2k(x) + φ2k(f
2kx) + · · ·+ φ2k(f

(n−1)2kx)

≤
n2k−1∑
i=0

1

2m
φ2m(f i(x)) + 4nC

= Sn2k(
1

2m
φ2m)(x) + 4nC.

This gives that

Pn(f
2k , φ2k , ε) ≤ Pn2k(f,

1

2m
φ2m , ε)× e4nC .

Thus

P (f2k , φ2k) ≤ 2kP (f,
1

2m
φ2m) + lim

n→∞

1

n
log e4nC

= 2kP (f,
1

2m
φ2m) + 4C.

Therefore

lim
k→∞

1

2k
P (f2k , φ2k) ≤ P (f,

1

2m
φ2m) for all m ∈ Z+.

Hence

lim
k→∞

1

2k
P (f2k , φ2k) ≤ lim

m→∞
P (f,

1

2m
φ2m).

�
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Lemma 6.2.

lim
n→∞

P (f,
φ2k

2k
) ≤ P (f,F).

Proof. Since f : Λ → Λ is an expanding map, hµ(f) is an upper-semi-continuous
function from M(f |Λ) to R. From the variational principle of topological pressure
[17], we have that for every k ∈ Z+ there exists µ2k ∈ M(f |Λ) such that

P (f |Λ,
1

2k
φ2k) = hµ

2k
(f) +

∫
Λ

1

2k
φ2kdµ2k .

Since M(f |Λ) is compact, this implies that µ2k has a subsequence that converges
to µ ∈ M(f |Λ). Without loss of generality, suppose that µ2k converges to µ. Using
the sub-additivity and invariance of µ2k , then we have for every k ∈ N,

hµ
2k
(f) +

∫
Λ

φ2k(x)

2k
dµ2k ≤ hµ

2k
(f) +

∫
Λ

φ1(x)dµ2k .

Furthermore for fixed s ∈ N, if k > s, from the sub-additivity and invariance of
µ2k , we have

hµ
2k
(f) +

∫
Λ

φ2k(x)

2k
dµ2k ≤ hµ

2k
(f) +

∫
Λ

φ2s(x)

2s
dµ2k .

Since hµ(f) is an upper-semi-continuous function, we have

lim
k→∞

P (f,
φ2k

2k
) = lim

k→∞
(hµ

2k
(f) +

∫
Λ

φ2k(x)

2k
dµ2k)

≤ lim
k→∞

(hµ
2k
(f) +

∫
Λ

φ2s(x)

2s
dµ2k)

≤ hµ(f) +

∫
Λ

φ2s(x)

2s
dµ.

Since the sequence {
∫
Λ
φn(x)dµ} is a sub-additive sequence, we have

lim
n→∞

∫
Λ

φn(x)

n
dµ = inf

n≥1
{
∫
Λ

φn(x)

n
dµ}.

The arbitrariness of s ∈ N implies that

lim
k→∞

P (f,
φ2k

2k
) ≤ hµ(f) + lim

s→∞

∫
Λ

φ2s

2s
(x)dµ.

Hence by the variational principle of the sub-additive topological pressure in [4],
we have

lim
k→∞

P (f,
φ2k

2k
) ≤ hµ(f) + lim

s→∞

∫
Λ

φ2s

2s
(x)dµ ≤ P (f,F).

This completes the proof of the lemma. �

Theorem 6.3. The sequence {t2n} is monotone, and

lim
n→∞

t2n = t∗,

where t∗ is the unique root of the equation P (f,−t{logm(Dfn(x))}) = 0.
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Proof. First we prove that the sequence {t2n} is monotone decreasing. Let φn =
− logm(Dfn(x)). For a fixed k ∈ N,

Pk(φ, , ε) = sup{
∑
x∈E

expSnφ(x) : E is an (n, ε)-separated subset of X}.

For ∀ε > 0, by the uniform continuity of f , there exists δ > 0 such that if E ⊂ M is

an (n, ε)-separated set of f2k+1

, then E is a (2n, δ)-separated set of f2k and δ → 0
when ε → 0. Using the sub-additivity of φn, the Birkhoff sum Snφ2k+1 of φ2k+1

with respect to f2k+1

has the following property:

Snφ2k+1(x) = φ2k+1(x) + φ2k+1(f2k+1

x) + · · ·+ φ2k+1(f2k+1(n−1)x)

≤ φ2k(x) + φ2k(f
2kx) + φ2k(f

2k+1

x) + φ2k(f
2k+1

f2kx)

+ · · ·+ φ2k(f
2k+1(n−1)x) + φ2k(f

2k+1(n−1)f2kx)

= S2nφ2k(x),

where S2nφ2k(x) is the Birkhoff sum of φ2k with respect to f2k .
Thus

Pn(f
2k+1

, φ2k+1 , ε) ≤ P2n(f
2k , φ2k , δ).

Hence

P (f2k+1

, φ2k+1) ≤ 2P (f2k , φ2k).

Therefore if t2k+1 is the unique root of Bowen’s equation P (tφ2k+1) = 0, then we
have

0 = P (f2k+1

, t2k+1φ2k+1) ≤ 2P (f2k , t2k+1φ2k).

The monotone decreasing of the function P (f2k , tφ2k) implies that t2k ≥ t2k+1 .
The arbitrariness of k implies that the sequence {t2k} is monotone decreasing.

Hence the limit exists and we denote the limit of this sequence by t. From the proof
as above, we have

P (f2k+1

, φ2k+1)

2k+1
≤ P (f2k , φ2k)

2k
≤ · · · ≤ P (f2, φ2)

2
≤ P (f, φ).

Next we prove that

P (f,F) ≤ 1

k
P (fk, φk) ∀k ∈ N.

For a fixed k ∈ N, let n = km+r, 0 ≤ r < k, and let C = maxx∈M max1≤i≤k φi(x).
For ∀ε > 0, by the uniform continuity of f , there exists δ > 0 such that if E ⊂ M
is an (n, ε)-separated set of f , then E is an (m, δ)-separated set of fk and δ → 0
when ε → 0. Using the sub-additivity of φn, we have

φn(x) ≤ φk(x) + φk(f
k(x)) + · · ·+ φk(f

(m−1)k(x)) + φr(f
mk(x)).

Thus

Pn(f,F , ε) ≤ Pm(fk, φk, δ)× eC .

Hence

P (f,F , ε) ≤ 1

k
P (fk, φk, δ).

This gives that

P (f,F) ≤ 1

k
P (fk, φk).

Licensed to Penn St Univ, University Park. Prepared on Fri Jul  5 06:16:23 EDT 2013 for download from IP 130.203.136.75.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



NON-CONFORMAL REPELLER AND AVERAGE CONFORMAL REPELLER 749

Therefore

P (f,F) ≤ 1

2k
P (f2k , φ2k) ∀k ∈ N.(6.4)

Let tF = {tφn(x)}. Then we have

P (f, t2kF) ≤ 1

2k
P (f2k , t2kφ2k) = 0 ∀k ∈ N.

Therefore the unique root t∗ of the equation

P (f, tF) = 0

satisfies
t∗ ≤ t2k ∀k ∈ N.

Thus
t∗ ≤ t = lim

k→+∞
t2k .

Next we want to prove that
t ≤ t∗.

From Theorem 6.2 and Lemmas 6.1 and 6.2, we have that the sequence

{ 1
2k
P (f2k , φ2k)} is monotone decreasing and it converges to P (f,F). By the defi-

nition, it is easy to prove that

0 ≤ P (f2k , tφ2k)

2k
− P (f2k , t2kφ2k)

2k
≤ |t− t2k |C, ∀k ∈ N,

where C = maxx∈M |φ1(x)|. Letting k → ∞, we have

P (f, tF) = 0.

Hence, we have
t = t∗.

�
Theorem 6.4. t∗ = s∗.

Proof. From the theorems as above, we have that the functions

P (f,−t{logm(Dfn(x))})
and

P (f,−t{log ‖Dfn(x)‖})
coincide and both of them have unique zero points. Therefore

t∗ = s∗.

�
The proof of the main theorem. From Corollary 5 and Theorem 6.4 stated above,
we have

dimH Λ = dimBΛ = dimB = s∗ = t∗.

This completes the proof of the main theorem.

Corollary 6. If Λ is an average conformal repeller, then the Hausdorff dimension
of Λ is the zero t∗ of

t �→ P (−t
1

d
log(| det(Df)|)),

where d = dimM and t �→ P (−t 1d log(| det |Df |)) is classical topological pressure.
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Proof. If Λ is an average conformal repeller, then by Theorem 4.2, we have

lim
n→∞

1

n
(log ‖Dfn(x)‖ − logm(Dfn(x))) = 0

uniformly on Λ.
On the other hand, log(m(Dfn(x))) ≤ 1

d log(| det(Dfn(x))|) ≤ log(|Dfn(x)|).
Therefore

P (f,−t∗{logm(Dfn(x))}) = P (f,−t∗{1
d
log | det(Dfn(x))|})

= P (f,−t∗{log ‖Dfn(x)‖}) = 0.

The additivity of {log ‖Dfn(x)‖} implies that

P (f,−t∗{1
d
log | det(Dfn(x))|}) = P (f,−t∗ log

1

d
| det(Df(x)|) = 0.

That is to say that t∗ is the root of the equation P (−t 1d log | det(Df)|) = 0. This
gives the proof of the corollary.

�
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