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1. Introduction

Cellular automaton (CA) is a particular class of dynamical systems introduced by Ulam [1] and von
Neumann [2] as a model for self-production and is widely studied in a variety of contexts in physics,
biology and computer science [3–11].

One-dimensional CA consists of infinite lattice with finite states and an associated mapping, say local
rule. Hedlund [12] discusses CA systematically from purely mathematical point of view. Wolfram
[13, 14] also makes a decisive impulse to the mathematical study; he proposes a classification of CA by
means of asymptotical dynamics. Also, Wolfram does lots of computer simulation on those CA with 2
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states whose local rule is only related to its nearest neighbors in his book [15]. He numbers these 256

rules and divides them into four classes according to their asymptotic behavior. Chua et al. [16] assert
that there are only 88 equivalent classes. Any two local rules in same equivalent class are topological
conjugate to each other. In other words, local rules in same class admit the same dynamics and preserve
invariants such as topological entropy, ergodicity, mixing, and so on.

Among these 256 rules, there are eight of them being additive. More precisely, those local rules can
be represented as linear combination. They are indexed as 0, 60, 90, 102, 150, 170, 204, 240 respectively.
When periodic boundary condition is considered, Chua et al. [17] investigate the dynamical behavior of
these rules such as Isles of Eden, period of attractors, and so on [17, 18]. This demonstrates that additive
CA can still propose rich dynamics.

This essay elucidates ergodicity and equilibrium measures for additive CA associated with prime
states. Shirvani and Rogers [19] demonstrate that a one-dimensional two states CA is ergodic provided its
local rule is either rightmost or leftmost permutive. This fact has been rediscovered by Shereshevsky [20,
21] and Kleveland [22] for permutive CA. Cattaneo et al. [23] extend their result to multi-dimensional
additive CA with arbitrary finite alphabet. Additive CA whose states consist of prime symbols is a
subclass of permutive CA, Theorem 7 asserts a different proof for the ergodicity via a construction
method.

Ward [24] studies the topological entropy for additive CA with prime states. Akin [25] shows
that the uniform Bernoulli measure is a measure with maximal entropy if the local rule f is given by
f(x−k, . . . , xk) =

∑k
i=−k xi for some k ∈ N. Whenever an additive CA is an automorphism, Berg

demonstrates that the uniform Bernoulli measure is the unique measure which maximizes the measure-
theoretic entropy [26]. This investigation gives an alternative proof for the topological entropy and the
measure-theoretic entropy of additive CA is demonstrated for any Bernoulli measure. Corollaries 1 and 2
give closed formulae for measure-theoretic and topological entropies respectively, here a Bernoulli mea-
sure is considered. Theorems 8 and 9 investigate the topological pressure for those potential functions
that depend on finitely many coordinates. In addition, Parry measure is indicated to be an equilibrium
measure. This generalizes Akin’s result.

The rest of this paper is organized as follows. Section 2. states some notations and definitions. Section
3. studies the measure-theoretic and topological entropies while Section 4. investigates the ergodicity
and the topological pressure. Section 5. extends the results to additive CA with prime symbols.

2. Notation and Definition

Let A = {0, 1} be a finite alphabet and let Ω = AZ be the space of infinite sequence x = (xn)∞−∞.
Hedlund [12] studies CA in the viewpoint of symbolic dynamics.

Theorem 1 ([12]). A map F : Ω → Ω is a CA if and only if F can be represented as a sliding block
code, i.e., there exists k ∈ Z+ and a block map f : A2k+1 → A such that

F (x)i = f(xi−k, . . . , xi+k)

for x ∈ Ω and i ∈ Z.
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Such f is called the local rule of F . The study of the local rule of a CA is essential for the understand-
ing of this system. A local rule f : A2k+1 → A is called leftmost (respectively rightmost) permutive if
there exists an integer i, −k ≤ i ≤ −1 (respectively 1 ≤ i ≤ k), such that

(i) f is a permutation at xi whenever the other variables are fixed;

(ii) f does not depend on xj for j < i (respectively j > i).

In the rest of this investigation, a particular class of CA in [15], say additive CA, is investigated and
the results can be extended to any alphabet of prime symbols. The local rule of additive CA is defined by
f(x−1, x0, x1) = λ−1x−1 + λ0x0 + λ1x1 mod 2, where λi = 0, 1 for −1 ≤ i ≤ 1. The correspondence
between the local rules and Wolfram’s rules are listed in the following.

Local rules f Wolfram’s rules Equivalent rules
0 0 255
x1 170 240
x0 204
x−1 240 170

x0 + x1 102 60, 153, 195
x−1 + x1 90 165
x−1 + x0 60 102, 153, 195

x−1 + x0 + x1 150

Rules 0, 204 and 255 are called “trivial rules” because of their simple dynamics.
For any m ≥ 1, f can be extended to the mapping fm : Am+2 → Am by

fm(x−1, . . . , xm) = (f(x−1, x0, x1), . . . , f(xm−2, xm−1, xm)),

here f1 = f .
Let B be the Borel σ-algebra on Ω and let µ = (p0, p1) be a Bernoulli measure. For any finite

measurable partition α of Ω, denote by

Hµ(α) = −
∑
A∈α

µ(A) log µ(A).

The measure-theoretic entropy of F with respect to α is defined by

hµ(F, α) = lim
n→∞

1

n
Hµ(

n−1∨
i=0

F−iα), (1)

where
P

∨
Q = {P ∩Q : P ∈ P , Q ∈ Q}.

Reader may refer to [27] for more details. The measure-theoretic entropy of F is defined by

hµ(F ) = sup hµ(F, α), (2)

where the supremum is taken over all finite measurable partitions of Ω.
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Define d : Ω× Ω → R by

d(x, y) =
∞∑

i=−∞

|xi − yi|
2|i|

, x, y ∈ Ω. (3)

It is easy to verify that d is a metric and (Ω, d) is a compact metric space.
Let P be an open cover of Ω, denote by

H(P) = inf{log |P̂|},

where the infimum is taken over the set of finite subcovers P̂ of P and |A| is the cardinality of A. The
topological entropy of F with respect to P is defined by

h(F,P) = lim
n→∞

1

n
H(

n−1∨
i=0

F−iP). (4)

The topological entropy of F is defined by

htop(F ) = sup h(F,P), (5)

where the supremum is taken over all open covers of Ω.
In addition, for α an open cover of Ω and φ ∈ C(Ω,R) a continuous function, denote by

pn(F, φ, α) = inf{
∑

B∈β

sup
x∈B

e(Snφ)(x) : β is a finite subcover of
n−1∨
i=0

F−iα},

where n ∈ N and Snφ =
∑n−1

i=0 φ ◦ F i. Then limn→∞ 1
n

log pn(F, φ, α) exists [27]. For each δ > 0,
define

P (F, φ, δ) = sup{ lim
n→∞

1

n
log pn(F, φ, α) : diam(α) ≤ δ}, (6)

and
P (F, φ) = lim

δ→0
P (F, φ, δ). (7)

The map P (F, ·) : C(Ω,R) → R ∪ {∞} is called the topological pressure of F . It comes immediately
that P (F, 0) = htop(F ).

3. Measures with Maximal Entropy

Let X be a compact metric space and let T : X → X be a continuous function. The variational prin-
ciple says that the supremum of measure-theoretic entropy of T coincides with the topological entropy
of T , where the supremum is taken over all ergodic measures. That is to say, htop(T ) = sup{hµ(T ) :

µ is ergodic}. A measure that reaches the supremum is called a measure with maximal entropy.
The goal of this section is going for the determination of measures with maximal entropy via the study

of measure-theoretic and topological entropies.
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3.1. Measure-theoretic entropy

In this section, a closed formula of the measure-theoretic entropy is given.
Given two integers r ≤ s and ar, . . . , as ∈ {0, 1}. Denote by C(r, s) = r[ar, . . . , as]s a cylinder of Ω,

i.e., for all x = (xn) ∈ C(r, s), xi = ai for r ≤ i ≤ s. Let ξ(i, j) be the collection of cylinders C(i, j)

and let ξj = ξ(−j, j) for j ∈ Z+. A partition α of Ω is called a generator if
∨∞

i=0 F−iα $ B whenever
F is continuous and

∨∞
i=−∞ F−iα $ B whenever F is a homeomorphism, where A $ B means the

σ-algebra generated by A coincides with the one generated by B up to a measure zero set.

Lemma 1. Consider (Ω, F ) a CA with local rule f(x−1, x0, x1) = λ−1x−1 + λ0x0 + λ1x1 mod 2. ξj is
a generator for j large enough provided f is either one of the following cases:

(i) F is either rule 170 or rule 240, i.e., only λ1 6= 0 or λ−1 6= 0;

(ii) F is either rule 90 or rule 150, i.e., λ−1 = λ1 6= 0.

Proof. First considering F is rule 170, the case that F is rule 240 can be demonstrated in analogous
method.

F is rule 170 indicates that λ−1 = λ0 = 0, i.e., F is the shift map. It comes immediately that
F−nC(r, s) = C(r + n, s + n) for any cylinder C(r, s) and n ∈ N. Therefore,

n−1∨
i=0

F−iξ0 = ξ(0, n− 1) ≡ {0[a0 . . . an−1]n−1 : ak = 0, 1},

for n ∈ Z, and
∞∨

i=−∞
F−iξ $ B.

Thus ξ0 is a generator.
If F is rule 90, then λ−1 = λ1 = 1 and λ0 = 0. Observe that

F−1−1[000]1 = −2[00000]2 ∪ −2[01010]2 ∪ −2[10101]2 ∪ −2[11111]2,

F−1−1[001]1 = −2[00001]2 ∪ −2[01011]2 ∪ −2[10100]2 ∪ −2[11110]2,

F−1−1[010]1 = −2[00010]2 ∪ −2[01000]2 ∪ −2[10111]2 ∪ −2[11101]2,

F−1−1[011]1 = −2[00011]2 ∪ −2[01001]2 ∪ −2[10110]2 ∪ −2[11100]2,

F−1−1[100]1 = −2[00101]2 ∪ −2[01111]2 ∪ −2[10000]2 ∪ −2[11010]2,

F−1−1[101]1 = −2[00100]2 ∪ −2[01110]2 ∪ −2[10001]2 ∪ −2[11011]2,

F−1−1[110]1 = −2[00111]2 ∪ −2[01101]2 ∪ −2[10010]2 ∪ −2[11000]2,

F−1−1[111]1 = −2[00110]2 ∪ −2[01100]2 ∪ −2[10011]2 ∪ −2[11001]2.

Thus ξ1

∨
F−1ξ1 = ξ2. By mathematical induction,

∨n−1
i=0 F−iξ1 = ξn for n ∈ N. Hence ξ1 is a generator.

The case that λi = 1 for |i| ≤ 1 asserts that ξ1 is a generator can be done via similar argument.
The proof is complete.

The measure-theoretic entropy of F can be stated then.
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Theorem 2. Under the assumptions of Lemma 1, the measure-theoretic entropy of F can be expressed
as the following.

hµ(F ) =

{
−2(p0 log p0 + p1 log p1), λ−1 = λ1 = 1;
−(p0 log p0 + p1 log p1), otherwise.

(8)

Proof. First considering either λ−1 = 0 or λ1 = 0, Lemma 1 and Kolmogorov-Sinai Theorem imply that

hµ(F ) = hµ(F, ξ0) = lim
n→∞

1

n
H(

n−1∨
i=0

F−iξ0), (9)

and

H(
n−1∨
i=0

F−iξ0) = H(ξ(0, n− 1))

= −
∑

i0,...,in−1

pi0pi1 · · · pin−1 log(pi0pi1 · · · pin−1)

= −
∑

i0,...,in−2

pi0 · · · pin−2

∑
in−1

pin−1(log pi0 + · · ·+ log pin−1)

= −(
∑

i0,...,in−2

pi0 · · · pin−2 log pi0 · · · pin−2 + p0 log p0 + p1 log p1)

= −n(p0 log p0 + p1 log p1).

This demonstrates that hµ(F ) = −(p0 log p0 + p1 log p1).
Similarly, if λ−1 = λ1 = 1, the proof of Lemma 1 asserts that ξ1 is a generator and

∨n−1
i=0 F−iξ1 =

ξ(−n, n). Hence

hµ(F ) = lim
n→∞

1

n
H(

n−1∨
i=0

F−iξ1)

= − lim
n→∞

1

n
(2n + 1)(p0 log p0 + p1 log p1)

= −2(p0 log p0 + p1 log p1).

This completes the proof.

It is obvious that hµ(F ) = 0 if λ−1 = λ1 = 0. For the case that λ−1 = 0 and λ0 = λ1 = 1, analogous
argument as the proof of Lemma 1 shows that

n−1∨
i=0

F−iξj = ξ(−j, j + n− 1), for j ≥ 1.

The following theorem comes immediately.

Theorem 3. If F is either rule 60 or rule 102, then hµ(F ) = −(p0 log p0 + p1 log p1).

Proof. Without loss of generality, assume that F is rule 60, i.e., λ−1 = 0. The other case can be done
similarly.

Since hµ(F ) = limj→∞ hµ(F, ξj), above discussion establishes the desired formula.
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The measure-theoretic entropy of additive CA with nearest neighborhood can be concluded via The-
orems 2 and 3.

Corollary 1. Let (Ω, F ) be a CA with local rule f(x−1, x0, x1) = λ−1x−1 + λ0x0 + λ1x1 mod 2 and
let C = {i : λi 6= 0}⋃{0}. Then

hµ(F ) = −(M −m)(p0 log p0 + p1 log p1), (10)

where M = max C and m = min C.

3.2. Topological entropy

Let O be an open cover of Ω, O is called a strong generator provided, for any δ > 0, there exists
N ∈ N such that ‖∨n−1

i=0 F−iO‖ < δ (respectively ‖∨n−1
i=−n+1 F−iO‖ < δ) for all n ≥ N whenever F is

continuous (respectively F is homeomorphic), where ‖A‖ is the diameter of A. In other words, O is a
strong generator if and only if ‖∨n−1

i=0 F−iO‖ → 0 (or ‖∨n−1
i=−n+1 F−iO‖ → 0), as n →∞.

Since a cylinder is both open and close, ξj is a finite open cover of Ω for j ∈ N. The following lemma
can be done via a slight change of the proof of Lemma 1.

Lemma 2. Under the assumption of Lemma 1, ξj is a strong generator provided j large enough.

A strong generator can be used for the calculation of topological entropy.

Theorem 4 ([28]). If ξ is a strong generator of an endomorphism (Ω, F ), then htop(F ) = htop(F, ξ).

Theorem 5. Under above assumption, let M, m be the same as in Corollary 1. Then htop(F ) = (M −
m) log 2.

Proof. If F is rule 170, then ξ0 is a strong generator since
∨n−1

i=0 F−iξ0 = ξ(0, n) and
∨n−1

i=−n+1 F−iξ0 =

ξn. Theorem 4 implies that

htop(F ) = lim
n→∞

1

n
log 2n+1 = log 2.

Similarly, if F is rule 90, then ξ1 is a strong generator and
∨n−1

i=0 F−iξ1 = ξn. It comes immediately
that htop(F ) = 2 log 2.

The other cases can be done analogously. This completes the proof.

Moreover, under the same consideration of Theorem 3, the following theorem can be derived via a
slight change of the proof.

Theorem 6. htop(F ) = log 2.

The following corollary is a conclusion of Theorems 5 and 6, which can also be found in [24].

Corollary 2. If F is additive, then htop(F ) = (M −m) log 2.

Remark 1. Corollaries 2 and 2 demonstrate that the uniform Bernoulli measure is a measure with max-
imum entropy.
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4. Ergodicity and Topological Pressure

This section investigates the ergodicity of F and the topological pressure.

4.1. Ergodicity

Shirvani and Rogers [19] demonstrate that a one-dimensional two states CA is ergodic provided its
local rule is either rightmost or leftmost permutive. This fact has been rediscovered by Shereshevsky [20,
21] and Kleveland [22] for permutive CA. Cattaneo et al. [23] extend their result to multi-dimensional
additive CA with arbitrary finite alphabet. A different proof for the ergodicity is given via a construction
method.

Lemma 3 ([27]). Let (X,B, µ) be a probability space and let T : X → X be a measure preserving
transformation, then T is ergodic if for A,B ∈ B, µ(A), µ(B) > 0, there exists n ∈ N such that
µ(T−nA ∩B) > 0.

Theorem 7. F is ergodic except for λ−1 = λ1 = 0.

Proof. It is obvious that F can not be ergodic if λ−1 = λ1 = 0.
A scheme is constructed to show that F is ergodic if F is neither an identity map nor constant zero.

Notably, it suffices to show that, for any two cylinder C(p, q) = p[cp, . . . , cq]q, D(r, s) = r[dr, . . . , ds]s,
there exists n ∈ N such that µ(F−nC(p, q) ∩D(r, s)) > 0, where p ≤ q, r ≤ s.

To make the scheme much easier to understand, the local rule f(x−1, x0, x1) = x0 +x1, i.e., rule 102,
is elucidated as an example.

The proof of Lemma 1 shows that F−nC(p, q) ∈ ξ(p, q + n) for n ∈ N. It comes immediately that, if
s < p or q < r, then µ(F−1C(p, q) ∩D(r, s)) > 0 since F is rightmost permutive.

If r ≤ p ≤ s ≤ q, define α11, α21, α22, . . . by

α11 = f1 ◦ f2 ◦ · · · ◦ fs−p(dp, dp+1, . . . , ds),

(α21, α22) = f2 ◦ f3 ◦ · · · ◦ fs−p(dp, dp+1, . . . , ds),

...

(αs−p,1, . . . , αs−p,s−p) = fs−p(dp, dp+1, . . . , ds).

It is easily seen that there exists a unique β11 ∈ A such that f(α11, β11) = cp. Repeating the same pro-
cess, there exist unique β11, . . . , β1,q−p+1 ∈ A such that fq−p+1(α11, β11, . . . , β1,q−p+1) = (cp, . . . , cq).
Let E1 = p[α11, β11, . . . , β1,q−p+1]q+1, then F (E1) = C(p, q).

Similarly, there exist unique β21, . . . , β2,q−p+1 ∈ A such that

fq−p+2(α21, α22, β21, . . . , β2,q−p+1) = (α11, β11, . . . , β1,q−p+1)

and
F (E2) = E1, where E2 = p[α21, α22, β21, . . . , β2,q−p+1]q+2.

Construct E1, E2, . . . , Es−p inductively so that F i(Ei) = C(p, q), for 1 ≤ i ≤ s − p. Moreover, there
exist unique βs−p+1,1, . . . , βs−p+1,q−p+1 ∈ A such that

fq+s−2p+1(dp, . . . , ds, βs−p+1,1, . . . , βs−p+1,q−p+1)

= (αs−p,1, . . . , αs−p,s−p, βs−p,1, . . . , βs−p,q−p+1)
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and F s−p+1(Es−p+1) = C(p, q), where

Es−p+1 = p[dp, . . . , ds, βs−p+1,1, . . . , βs−p+1,q−p+1]q+s−p+1.

Let n = s− p + 1, then µ(F−nC(p, q) ∩D(r, s)) > 0.
The other cases can be done analogously, thus is omitted. This completes the proof.

4.2. Topological pressure

For a given potential function φ ∈ C(Ω,R), the topological entropy can be generalized to the consid-
eration of topological pressure P (F, φ). It is obvious that P (F, φ) = 0 for all φ whenever F is either
zero or identity map. Let a0, a1 ∈ R be given and let φ : Ω → R be a potential function that depends on
finitely many coordinates, the topological pressure P (F, φ) can be precisely formulated.

Potential functions depend on one coordinate

Let φ : Ω → R be defined by φ(x) = ax0 , i.e., the potential of each x ∈ Ω is determined by its center
coordinate.

Theorem 8. Let M, m be the same as in Corollary 1. If either M or m is nonzero, then P (F, φ) =

(M −m− 1) log 2 + log(ea0 + ea1).

Proof. First considering that λ−1 = 0 and λ0 = λ1 = 1, since
∨n−1

i=0 F−iξj = ξ(−j, n + j − 1) for
n, j ∈ N,

p2(F, φ, ξj) =
∑

m1,m2

∑

Am1;m2 6=∅
sup

x∈Am1;m2

exp((S2φ)(x))

=
∑

m1,m2

∑

Am1;m2 6=∅
exp(φ(x) + φ(F (x)))

=
∑

i1,i2∈A
22j exp(ai1 + ai2) = 22j(ea0 + ea1)2,

where Am1;m2 ∈ [m1] ∩ F−1[m2] and m1,m2 ∈ A2j+1. Mathematical induction asserts that

pn(F, φ, ξj) =
∑

i1,...,in∈A
22j exp(ai1 + · · ·+ ain) = 22j(ea0 + ea1)n,

thus P (F, φ, ξj) = log(ea0 + ea1) for j ∈ N. This demonstrates that P (F, φ) = log(ea0 + ea1).
The proof of other cases are similar, and the theorem follows.

The variational principle for topological pressure says that

P (F, φ) = sup{hµ(F ) +

∫

Ω

φ dµ : µ is an ergodic measure}.

A measure µ is called an equilibrium measure provided P (F, φ) = hµ(F ) +
∫

Ω
φ dµ. Corollary 1 and

Theorem 8 are used for the determination of equilibrium measures.
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Example 1. Let f(x−1, x0, x1) = x−1, then P (F, φ) = log(ea0 + ea1) and

hµ(F ) +

∫

Ω

φ dµ = −
1∑

i=0

pi log pi +
1∑

i=0

aipi =
1∑

i=0

pi(ai − log pi).

To determine whether µ is an equilibrium measure, define Φ : [0,∞) → R by

Φ(x) =

{
0, x = 0;
x log x, otherwise.

Then Φ is convex and Φ ∈ C1((0,∞),R). Moreover,

Φ(
n∑

i=1

αixi) ≤
n∑

i=1

αiΦ(xi), for
n∑

i=1

αi = 1, αi ≥ 0, xi ∈ R.

Let αi = eai/λ and xi = (piλ)/eai for i = 0, 1, where λ = ea0 + ea1 .

0 = Φ(1) = Φ(
1∑

i=0

αixi)

≤
1∑

i=0

eai

λ
· piλ

eai
log

piλ

eai
=

1∑
i=0

pi log
piλ

eai

= log(ea0 + ea1)−
1∑

i=0

pi(ai − log pi).

The equality holds if and only if (piλ)/eai = 1 for i = 0, 1, i.e., µ is an equilibrium measure if and only
if pi = eai/(ea0 + ea1) for i = 0, 1.

Example 2. Consider Wolfram’s rule 150, i.e., f(x−1, x0, x1) = x−1 + x0 + x1 mod 2. Let φ : Ω → R
be defined by φ(x) = log px0 , then P (F, φ) = log 2 and

hµ(F ) +

∫

Ω

φ dµ = −2
1∑

i=0

pi log pi +

∫

Ω

log px0 dµ = −(p0 log p0 + p1 log p1).

It is easily verified that µ is an equilibrium measure provided µ is the uniform Bernoulli measure.

Potential functions depend on finitely many coordinates

Let φ : Ω → R be defined by φ(x) = axk1
· · · axk2

for some k1, k2 ∈ Z, k1 ≤ k2, and let ξ = ξ(k1, k2)

be a finite partition. Define the transition matrix with respect to φ, Tφ,F = (tij)(k2−k1+1)×(k2−k1+1), by

tij = sij exp φ(x), x ∈ Ci, (11)

where Ci = [c0, . . . , ck2−k1 ] ∈ ξ, i = 1+
∑k2−k1

k=0 ck ·2k2−k1−k and sij denotes the cardinality of connected
components of Ci ∩ F−1Cj . The following lemma comes immediately.

Lemma 4. Let s = max{0, M + k1 −m− k2 − 1}, then

sij =

{
2s, Ci ∩ F−1Cj 6= ∅;
0, otherwise.



Entropy 2009, 11 281

Theorem 9. P (F, φ) = s log 2 + log ρ, where ρ is the spectral radius of 2−sTφ,F

Proof. The case that λ−1 = 0 and λ0 = λ1 = 1 is studied. The other cases can be done via analogous
method, thus are omitted.

To clarify the proof, considering k1 = 0 and k2 = 1. Then ξ = {0[00]1, 0[01]1, 0[10]1, 0[11]1} =

{C1, C2, C3, C4}, and

F−1C1 = 0[000]2 ∪ 0[111]2, F−1C2 = 0[001]2 ∪ 0[110]2,

F−1C3 = 0[011]2 ∪ 0[100]2, F−1C4 = 0[010]2 ∪ 0[101]2.

It is easily seen that

sij =





1, i = 1, 4, j = 1, 2;
1, i = 2, 3, j = 3, 4;
0, otherwise.

and

Tφ,F =




exp(a2
0) exp(a2

0) 0 0

0 0 exp(a0a1) exp(a0a1)

0 0 exp(a0a1) exp(a0a1)

exp(a2
1) exp(a2

1) 0 0


 .

Observe that p1(F, φ, ξ) =
∑

i1,i2∈A exp(ai1ai2) = |Tφ,F |/2, where |A| =
∑

aij for A a square matrix.
Moreover, p2(F, φ, ξ) =

∑
m1,m2∈A2

∑
Am1;m2 6=∅ exp(φ(x) + φ(F (x))) = |T2

φ,F |/2, where Am1;m2 ∈
[m1] ∩ F−1[m2]. It comes from induction that pn(F, φ, ξ) = |Tn

φ,F |/2 for n ∈ N, Perron-Frobenius
theorem demonstrates that P (F, φ, ξ) = log ρ, where

ρ =
1

2

(
ea2

0 + ea0a1 +

√
(ea2

0 − ea0a1)2 + 4ea2
1+a0a1

)

is the spectral radius of Tφ,F .
Furthermore, fixing j ∈ N, then p1(F, φ, ξj) = 22(j−1)|Tφ,F | and pn(F, φ, ξj) = 22(j−1)|Tn

φ,F | for
n ∈ N. This infers that P (F, φ, ξj) = log ρ for all j ∈ N. The proof is done by letting j tend to
infinity.

Remark 2. It worth emphasizing that Tφ,F1 and Tφ,F2 are similar for any f1, f2 ∈ {f =
∑1

i=−1 λixi :

λ−1 + λ1 = 1}. Moreover, if P is a four by four invertible matrix such that Tφ,F1 = P−1Tφ,F2P , then P

is the product of permutation matrices.

Remark 3. Theorem 8 can also be done via the same method as above. Whenever a potential function
which depends only on one coordinate is considered, the transition matrix is universal for each local rule.
That is,

T = 2s

(
ea0 ea0

ea1 ea1

)
.
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5. Multiple Symbols and Larger Neighborhood

This section generalizes those results in previous sections to the case that |A| = p and f(x`, . . . , xr) =∑r
i=` λixi mod p, where p is prime. Without loss of generality, assume that λ` and λr are both nonzero.

5.1. Measure-theoretic entropy

Let µ = (s0, . . . , sp−1) be an F -invariant Bernoulli measure and let C, M and m be the same as in
Corollary 1. Analogous consideration still goes for the measure-theoretic entropy of additive CA.

Theorem 10. hµ(F ) = −(M −m)
∑p−1

i=0 si log si.

5.2. Topological entropy

Similar as discussed in last section, the argument in the proof of Theorem 5 gives an alternative proof
for the formula that is demonstrated by Ward [24].

Theorem 11. htop(F ) = (M −m) log p.

5.3. Ergodicity and topological pressure

Theorem 7 can be generalized via the same algorithm.

Theorem 12. F is ergodic provided either λr 6= 0 with r > 0 or λ` 6= 0 with ` < 0.

Let a0, . . . , ap−1 ∈ R be given and let φ : Ω → R be defined by φ(x) = ax0 . The following theorem
is a general version of Theorem 8.

Theorem 13.

P (F, φ) =

{
0, M = m = 0;
(M −m− 1) log p + log(ea0 + ea1 + · · ·+ eap−1), otherwise.

Furthermore, considering potential function φ(x) =
∏k2

n=k1
abn

xn
, where k1, k2 ∈ Z+, bn ∈ R. Define

Tφ,F = (tij)(k2−k1+1)×(k2−k1+1), tij 6= 0 if and only if Ci ∩ F−1Cj 6= ∅,

where Ci ∈ ξ(m,n) and tij = φ(x) (x ∈ Ci) provided tij 6= 0. Theorem 9 can be extended.

Theorem 14. Let s = max{0, M + k1 −m− k2 − 1}, then P (F, φ) = s log p + log ρTφ,F
, where ρTφ,F

is the spectral radius of Tφ,F .

It is worth emphasizing that, if either M or−m is greater than or equal to k2−k1 +1, the topological
pressure can be presented by

Corollary 3. P (F, φ) = s log p + log
∑

exp(ai1ai2 · · · aik2−k1+1
).
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