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Abstract. This work is concerned with zeta functions of two-dimensional
shifts of finite type. A two-dimensional zeta function ζ0(s) which generalizes
the Artin-Mazur zeta function was given by Lind for Z2-action φ. The n-th
order zeta function ζn of φ on Zn×∞, n ≥ 1, is studied first. The trace opera-
tor Tn which is the transition matrix for x-periodic patterns of period n with
height 2 is rotationally symmetric. The rotational symmetry of Tn induces
the reduced trace operator τn and ζn = (det (I − snτn))

−1. The zeta function

ζ =
∞∏

n=1
(det (I − snτn))

−1 in the x-direction is now a reciprocal of an infinite

product of polynomials. The zeta function can be presented in the y-direction
and in the coordinates of any unimodular transformation in GL2(Z). There-
fore, there exists a family of zeta functions that are meromorphic extensions
of the same analytic function ζ0(s). The Taylor series at the origin for these
zeta functions are equal with integer coefficients, yielding a family of identities
which are of interest in number theory. The method applies to thermodynamic
zeta functions for the Ising model with finite range interactions.

1. Introduction

Various zeta functions have been investigated in the fields of number theory,
geometry, dynamical systems and statistical physics. This work studies the zeta
functions in a manner that follows the work of Artin and Mazur [1], Bowen and
Lanford [6], Ruelle [30] and Lind [21]. First, recall the zeta function that was
defined by Artin and Mazur.

Let φ : X −→ X be a homeomorphism of a compact space and Γn(φ) denote the
number of fixed points of φn. The zeta function ζφ(s) for φ defined in [1] is

(1.1) ζφ(s) = exp

( ∞∑

n=1

Γn (φ)

n
sn

)
.

Later, Bowen and Lanford [6] demonstrated that if φ is a shift of finite type,
then ζφ(s) is a rational function. In the simplest case, when a shift is generated by
a transition matrix A in Z, (1.1) is computed explicitly as
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(1.2) ζA(s) = exp

( ∞∑
n=1

trAn

n sn
)

(1.3) = (det(I − sA))−1,

and then

(1.4) ζA(s) =
∏

λ∈Σ(A)

(1− λs)−χ(λ),

where χ(λ) is a non-negative integer that is the algebraic multiplicity of eigenvalue
λ and Σ(A) is the spectrum of A. ζA(s) is a rational function which involves only
eigenvalues of A.

Lind [21] extended (1.1) to Zd-action as follows. For Zd-action, d ≥ 1, let φ be
an action of Zd on X. Denote the set of finite-index subgroups of Zd by Ld. The
zeta function ζφ defined by Lind is

(1.5) ζφ(s) = exp

(∑

L∈Ld

ΓL (φ)

[L]
s[L]

)
,

where [L] = index[Zd/L] and ΓL(φ) is the number of fixed points by φn for all
n ∈ L. Lind [21] obtained some important results for ζφ, such as conjugacy invariant
and product formulae, and computed ζφ explicitly for some interesting examples.
Furthermore, he raised some problems, including the following two.

Problem 7.2. [21] For ”finitely determined” Zd-actions φ such as shifts of finite
type, is there a reasonable finite description of ζφ(s)?

Problem 7.5. [21] Compute explicitly the thermodynamic zeta function for the
2-dimensional Ising model, where α is the Z2 shift action on the space of configu-
rations.

The present authors previously studied pattern generation problems in Zd, d ≥ 2,
and developed several approaches such as the use of higher order transition matrices
and trace operators to compute spatial entropy [2, 3]. The work of Ruelle [30] and
Lind [21] indicated that our methods could also be adopted to study zeta functions.

In this investigation, Problems 7.2 and 7.5 are answered when φ is a shift of
finite type. The following paragraphs briefly introduce relevant results.

Let Zm×m be the m×m square lattice in Z2 and S be the finite set of symbols
(alphabets or colors). SZm×m is the set of all local patterns (or configurations) on
Zm×m. A given subset B ⊂ SZm×m is called a basic set of admissible local patterns.
Σ(B) is the set of all global patterns defined on Z2 which can be generated by B.
For simplicity, this introduction presents only the results of Z2×2 with two symbols
S = {0, 1}. Section 4 considers the general case.

As presented elsewhere [21], L2 can be parameterized in Hermite normal form
[24]:

L2 =

{[
n l
0 k

]
Z
2 : n ≥ 1, k ≥ 1 and 0 ≤ l ≤ n− 1

}
.

Given a basic set B, denote by PB

([
n l
0 k

])
the set of all

[
n l
0 k

]
-periodic

and B-admissible patterns and ΓB

([
n l
0 k

])
is the number of PB

([
n l
0 k

])
.
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The zeta function, defined by (1.5), is denoted by

(1.6) ζ0B = exp

( ∞∑

n=1

∞∑

k=1

n−1∑

l=0

1

nk
ΓB

([
n l
0 k

])
snk

)
.

In [21], ζ0B is shown analytically in |s| < exp(−g(B)), where

(1.7) g(B) ≡ lim sup
[L]→∞

1

[L]
log ΓB(L).

In this work, the sum of n and k in (1.6) is treated separately as an iterated sum.
Indeed, for any n ≥ 1, define the n-th order zeta function ζn(s) ≡ ζB,n(s) (in
x-direction) as

(1.8) ζn(s) = exp

(
1

n

∞∑

k=1

n−1∑

l=0

1

k
ΓB

([
n l
0 k

])
snk

)
;

the zeta function ζ(s) ≡ ζB(s) is given by

(1.9) ζ(s) =
∞∏

n=1

ζn(s).

The first observation of (1.8) is that, for n ≥ 1 and l ≥ 1, any

[
n l
0 k

]
-periodic

pattern is

[
n 0
0 nk

(n,l)

]
-periodic, where (n, l) is the greatest common divisor (GCD)

of n and l. Therefore,

[
n 0
0 k

]
-periodicity of patterns must be investigated in details.

The trace operators Tn ≡ Tn(B) that were introduced in [3] are useful in

studying

[
n l
0 k

]
-periodic and the B-admissible pattern, where Tn = [tn;i,j ] is

a 2n × 2n matrix with tn;i,j ∈ {0, 1}. Tn(B) represents the set of patterns that are
B-admissible and x-periodic of period n with height 2. The trace operator Tn can
be used to construct (doubly) periodic B-admissible patterns. Indeed, for k ≥ 1
and 0 ≤ l ≤ n− 1,

(1.10) ΓB

([
n l
0 k

])
= tr(Tk

nR
l
n),

where Rn is a 2n × 2n rotational matrix defined by

{
Rn;i,2i−1 = 1 and Rn;2n−1+i,2i = 1 for 1 ≤ i ≤ 2n−1,
Rn;i,j = 0 otherwise.

Denote by Rn =
n−1∑
l=0

Rl
n; now based on (1.10), ζn(s) becomes

(1.11) ζn(s) = exp

(
1

n

∞∑

k=1

1

k
tr(Tk

nRn)s
nk

)
,

which is a generalization of (1.2).
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To elucidate the method used to study (1.11), Tn is firstly assumed to be sym-
metric. Then Tn can be expressed in Jordan canonical form as

(1.12) Tn = UJUt

where the eigen-matrix U = (U1, ..., UN) is an N × N matrix which consists of
linearly independent (column) eigenvectors Uj, 1 ≤ j ≤ N and N ≡ 2n. Jordan
matrix J = diag(λj) is a diagonal N ×N matrix, which comprises eigenvalues λj ,
1 ≤ j ≤ N . Now,

1
n

∞∑
k=1

1
k tr(T

k
nRn)s

nk

= 1
n tr(U(

∞∑
k=1

1
kJ

ksnk)UtRn)

(1.13) =
N∑
j=1

1
n

∣∣Rn ◦ UjU t
j

∣∣ log(1 − λjsn)−1

can be proven, where ◦ is a Hadamard product: if A = [ai,j ]M×M and B =
[bi,j]M×M , then A ◦B = [ai,jbi,j ]M×M .

Evaluating the coefficients |Rn ◦ UjU
t
j | of log(1 − λjs

n)−1 is important. Now,
the Rn-symmetry of Tn is crucial. Indeed, let U be an eigenvector of Tn with
eigenvalue λ, such that TnU = λU ; then Rl

nU is also eigenvector of Tn:

(1.14) Tn(R
l
nU) = λRl

nU

for all 0 ≤ l ≤ n− 1. Notably, Rn
n = I2n , where I2n is the 2n × 2n identity matrix.

U is called Rn-symmetric, if Rl
nU = U for all 0 ≤ l ≤ n− 1. In this case,

(1.15)
1

n
|Rn ◦ UU t| = 1.

U is called anti-symmetric if
n−1∑
l=0

Rl
nU = 0. In this case,

(1.16)
1

n
|Rn ◦ UU t| = 0.

Additionally, for any given eigenvalue λ, the associated eigenspace Eλ can be proven
to be spanned by symmetric eigenvectors U j , 1 ≤ j ≤ pλ, and anti-symmetric

eigenvectors U ′
j, 1 ≤ j ≤ qλ: Eλ = {U1, · · · , Upλ

, U ′
1, · · · , U ′

qλ
}, where pλ + qλ =

dim(Eλ) and pλ or qλ can be zero.
Therefore, for each eigenvalue λ of Tn,

(1.17) χ(λ) ≡ 1

n

∑

λj=λ

|Rn ◦ UjU
t
j | = pλ

is the number of linearly independent symmetric eigenvectors of Tn with respect
to λ, a non-negative integer. Moreover, pλ ≥ 1 can be shown if λ is the largest
eigenvalue. Hence, choosing eigen-matrix U in (1.12), which consists of symmetric
and anti-symmetric eigenvectors, yields
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(1.18) ζn(s) =
∏

λ∈Σ(Tn)

(1− λsn)−χ(λ)

as a rational function, as in (1.4).
From the rotational matrix Rn, for 1 ≤ i ≤ 2n, the equivalent class Cn(i) of

i is defined as Cn(i) =
{
j
∣∣ (Rl

n

)
i,j

= 1 for some 1 ≤ l ≤ n
}
. The index set In of

n is defined by In =
{
i
∣∣1 ≤ i ≤ 2n, i ≤ j for all j ∈ Cn(i)

}
and χn is the cardinal

number of In. Indeed, χn is the number of necklaces that can be made from n beads
of two colors when the necklaces can be rotated but not turned over. Furthermore,

(1.19) χn =
1

n

∑

d|n
φ(d)2n/d,

where φ(d) is the Euler totient function.
Then, the reduced trace operator τn = [τn;i,j ] of Tn is a χn × χn matrix that is

defined by

(1.20) τn;i,j =
∑

k∈Cn(j)

tn;i,k

for each i, j ∈ In. λ ∈ Σ(Tn) with χ(λ) ≥ 1 can be verified if and only if λ ∈ Σ(τn).
Moreover, χ(λ) is the algebraic multiplicity of τn with eigenvalue λ. Therefore,

(1.21) ζn(s) = (det (I − snτn))
−1
,

a similar formula as in (1.3). Hence, the zeta function ζ(s) is obtained as

(1.22) ζ(s) =

∞∏

n=1

(det (I − snτn))
−1
,

which is an infinite product of rational functions. Equation (1.22) generalizes (1.3)
and is a solution to Lind’s Problem 7.2. Furthermore, according to (1.22), the
coefficients of Taylor series for ζ(s) at s = 0 are integers, as obtained by Lind [21].

As presented elsewhere [3], an another trace operator T̂n is B-admissible and
y-periodic of period n with width 2 along the x-axis. L2 can be parameterized as
another Hermite normal form,

L2 =

{[
k 0
l n

]
Z
2 : n ≥ 1, k ≥ 1 and 0 ≤ l ≤ n− 1

}
.

Again, PB

([
k 0
l n

])
represents the set of all

[
k 0
l n

]
-periodic and B-admissible

patterns and ΓB

([
k 0
l n

])
denote the numbers of PB

([
k 0
l n

])
. The n-th

order zeta function ζ̂n(s) is defined by

(1.23) ζ̂n(s) = exp

(
1

n

∞∑

k=1

n−1∑

l=0

1

k
ΓB

([
k 0
l n

])
snk

)
,
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and the zeta function ζ̂(s) is defined by

(1.24) ζ̂(s) =

∞∏

n=1

ζ̂n(s).

Similar results for ζ̂n(s) and ζ̂(s) can be obtained by using τ̂n instead of τn.
Indeed,

(1.25) ζ̂n(s) =
∏

λ∈Σ(T̂n)

(1− λsn)−χ̂(λ)

(1.26) = (det (I − snτ̂n))
−1
,

and

(1.27) ζ̂(s) =
∞∏

n=1

∏

λ∈Σ(T̂n)

(1 − λsn)−χ̂(λ)

(1.28) =

∞∏

n=1

(det (I − snτ̂n))
−1
.

Since ζ and ζ̂ are rearrangements of ζ0B, the uniqueness of the analytic function
implies

(1.29) ζ(s) = ζ̂(s) = ζ0B for |s| < exp(−g(B)).
The construction of the zeta functions ζ and ζ̂ in rectangular coordinates can be

extended to an inclined coordinates system. Indeed, let the unimodular transfor-

mation γ be an element of the unimodular group GL2(Z): γ =

(
a b
c d

)
, a, b, c

and d are integers and ad− bc = ±1. The lattice Lγ is defined by

(1.30) Lγ ≡
(
n l
0 k

)

γ

Z
2 =

(
na la+ kc
nb lb+ kd

)
Z
2.

The n-th order zeta function of ζ0B(s) with respect to γ is defined by

(1.31) ζB;γ;n(s) = exp

(
1

n

∞∑

k=1

n−1∑

l=0

1

k
ΓB

([
n l
0 k

]

γ

)
snk

)
,

and the zeta function ζB;γ with respect to γ is given by

(1.32) ζB;γ(s) ≡
∞∏

n=1

ζB;γ;n(s).

The n-th order rotational matrix Rγ;n, trace operator Tγ;n(B) and reduced trace
operator τγ;n can also be introduced and

ζB;γ;n(s) =
∏

λ∈Σ(Tγ;n(B))

(1 − λsn)−χγ;n(λ)

= (det (I − snτγ;n))
−1
,

(1.33)



TWO-DIMENSIONAL ZETA FUNCTIONS 7

where the exponent χγ;n(λ) is the number of linearly independent Rγ;n-symmetric
eigenvectors and generalized eigenvectors of Tγ;n(B) with respect to eigenvalue λ
and the coordinates γ. Therefore, the zeta function ζB;γ is given by

(1.34) ζB;γ(s) =

∞∏

n=1

(det(I − snτγ;n))
−1.

Since the iterated sum in (1.31) and (1.32) is a rearrangement of ζ0B(s),

(1.35) ζB;γ(s) = ζ0B(s)

for |s| < exp(−g(B)). The identity(1.35) yields a family of identities when ζB;γ is
expressed as a Taylor series at the origin s = 0 (Theorem 6.4).

Equations (1.29) or (1.35) give some interesting results even in very simple cases.

For instance, let H2 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 and V2 =




1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1


 be the given

horizontal and vertical transition matrix, respectively; then T2 = V2 and T̂2 = H2.
Furthermore, as in Example 6.12,

(1.36) ζ(s) =

∞∏

n=1

(1− 2sn)−1,

(1.37) ζ̂(s) =
∞∏

n=1

(1 − sn)−χn ,

and χn = 1
n

∞∑
l=1

2(n,l) can be shown; for details, see Example 6.12.

The thermodynamic zeta function [30] with weight function θ : X → (0,∞) was
defined by Lind [21] as

(1.38) ζ0α,θ(s) = exp


∑

L∈Ld





∑

x∈fixL(α)

∏

k∈Zd/L

θ
(
αkx

)



s[L]

[L]


 .

For the Ising model, where α is a shift of finite type given by B and the weight
function θ is a potential with finite range, the previous arguments apply. Indeed,
the zeta function is

(1.39) ζIsing;B(s) =
∞∏

n=1

∏

λ∈Σ(TIsing;n(B))

(1 − λsn)−χ(λ)

(1.40) =

∞∏

n=1

(det (I − snτIsing;n))
−1
,

where χ(λ) is the number of linearly independent symmetric eigenvectors and gen-
eralized eigenvectors of TIsing;n with eigenvalue λ and τIsing;n is the associated
reduced trace operator. (1.40) is a solution of Lind’s Problem 7.5.
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The methods also apply to higher dimensional shifts of finite type. The results
will appear elsewhere.

Some references that are related to our work are listed here. Zeta functions
and related topics [1, 6, 8, 10, 11, 14, 15, 21, 22, 23, 25, 26, 27, 29, 30, 32, 33];
patterns generation problems and lattices dynamical systems [2, 3, 7, 13], and
phase-transition in statistical physics [4, 5, 16, 17, 18, 19, 20, 28] have all been
covered elsewhere.

The rest of this paper is organized as follows. Section 2 reviews the ordering
matrices of local patterns and trace operators Tn for x-periodic patterns. The Rn-
symmetry of Tn is investigated. Then, (1.10) and (1.11) are derived. Section 3
proves the rationality of the n-th order of the zeta function ζn, n ≥ 1. Section 4
describes how to extend the techniques employed in previous sections to study the
problems raised by more symbols on larger lattices, which is also useful in the study
of zeta functions in inclined coordinates. Section 5 elucidates the zeta function
presented in inclined coordinates that is obtained by unimodular transformations.
Section 6 discusses the analyticity of zeta functions. The meromorphic extension of
zeta function is studied. All meromorphic extensions are equal on |s| < exp(−g(B)).
Section 7 investigates the zeta function of the solution set of equations on Z2 with
numbers from a finite field. Section 8 studies the thermodynamic zeta function for
the Ising model with a finite range potential.

2. Periodic patterns

This section first reviews the ordering matrices of local patterns and trace
operators [2, 3]. It then derives rotational matrices Rn and Rn, and studies their
properties. The Rn-symmetry of the trace operator is also discussed. Finally, some

properties of periodic patterns in Z2 are investigated. In particular, the

[
n l
0 k

]
-

periodic pattern is proven to be

[
n 0
0 nk

(n,l)

]
-periodic.

For clarity, two symbols on the 2× 2 lattice Z2×2 are initially examined. Section
4 addresses more general situations.

2.1. Ordering matrices and Trace operators. For given positive integers N1

and N2, the rectangular lattice ZN1×N2 is defined by

ZN1×N2 = {(n1, n2)|1 ≤ n1 ≤ N1 and 1 ≤ n2 ≤ N2} .
In particular, Z2×2 = {(1, 1), (2, 1), (1, 2), (2, 2)}. Define the set of all global pat-
terns on Z2 with two symbols {0, 1} by

Σ2
2 = {0, 1}Z2

=
{
U |U : Z2 → {0, 1}

}
.

Here, Z2 = {(n1, n2)|n1, n2 ∈ Z}, the set of all planar lattice points (vertices).
The set of all local patterns on ZN1×N2 is defined by

ΣN1×N2 = {U |ZN1×N2
: U ∈ Σ2

2}.
Now, for any given B ⊂ Σ2×2, B is called a basic set of admissible local patterns.

In short, B is a basic set.
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An N1 × N2 pattern U is called B-admissible if for any vertex (lattice point)
(n1, n2) with 0 ≤ n1 ≤ N1 − 1 and 0 ≤ n2 ≤ N2 − 1, there exists a 2× 2 admissible
pattern (βk1,k2)1≤k1,k2≤2 ∈ B such that

Un1+k1,n2+k2 = βk1,k2 ,

for 1 ≤ k1, k2 ≤ 2. Denote by ΣN1×N2(B) the set of all B-admissible patterns on
ZN1×N2 . As presented elsewhere [2], the ordering matrices X2×2 and Y2×2 are
introduced to arrange systematically all local patterns in Σ2×2.

Indeed, the horizontal ordering matrix X2×2 = [xp,q]4×4 is defined by

(2.1)

0

0 0

0

0

0

0

0

0

0

0

0

0

0

0 0

0

0 0

0

0

0 0 0 0

0

0

0 0 0

0

0

0

0 0 0

0

0 0

0

1

1 1

1

1

1

1

1

1 1 1 1 1

1

1 1

1

1 1 1

1

1 1 1

1

1

1

1

1

1

1

1

1 1

1 1

1

1

1

1

.

The vertical ordering matrix Y2×2 = [yi,j ]4×4 is defined by

(2.2)

0

0

0

0 0

0

0

0

0

0

0 0

0

0

0 0

0

0

0

0

0 0

1 1

1 1

1

1 1

1

1 1

1

1 1

1

1 1

1 1

1 1

1

1

1

1

111

1

1

11

00 0 0

0 0

0

0

1

0

0 0 0

0 0

0

0

0

0

1

1 1

1

1 1

1 1

.

It is clear that the local pattern yi,j inY2×2 is the reflection
π
4 of xi,j inX2×2, i.e,

. The reflection can be represented by

[
0 1
1 0

]
in GL2(Z) with determinant

−1.
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In (2.1) and (2.2), the orders of the pattern

β1,2 β2,2

β1,1 β2,1, βi,j ∈ {0, 1}, are given

by

2 4

1 3 and

3 4

1 2 respectively. More precisely, in (2.1), xp,q is ordered by

p = 2β1,1 + β1,2 + 1

and

q = 2β2,1 + β2,2 + 1,

and in (2.2), yi,j is ordered by

i = 2β1,1 + β2,1 + 1

and

j = 2β1,2 + β2,2 + 1.

X2×2 and Y2×2 are clearly related as follows.

(2.3) X2×2 =




y1,1 y1,2 y2,1 y2,2
y1,3 y1,4 y2,3 y2,4
y3,1 y3,2 y4,1 y4,2
y3,3 y3,4 y4,3 y4,4




and

(2.4) Y2×2 =




x1,1 x1,2 x2,1 x2,2
x1,3 x1,4 x2,3 x2,4
x3,1 x3,2 x4,1 x4,2
x3,3 x3,4 x4,3 x4,4


 .

The set C2×2 = [ci,j ], which consists of all x-periodic patterns of period 2 with
height 2 can be constructed from Y2×2 as follows.

(2.5)

0

0

0 0

00

0

0

1 0

00

1

0

0 1

00

1

0

1 1

00

0

0

0 0

01

0

0

1 0

01

1

0

0 1

01

1

0

1 1

01

0

1

0 0

10

0

1

1 0

10

1

1

0 1

10

1

1

1 1

10

0

1

0 0

11

0

1

1 0

11

1

1

0 1

11

1

1

1 1

11

1 1 1

1 1 1

0 0 0

0 1 0

1 0 1

0 0 0 0 1 0 1 0 1

=




c1,1 c1,2 c1,3 c1,4
c2,1 c2,2 c2,3 c2,4
c3,1 c3,2 c3,3 c3,4
c4,1 c4,2 c4,3 c4,4


 .
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The patterns in C2×2 are expressed as elements in Σ3×2 and are understood to be
extendable periodically in the x-direction to all of Z∞×2. Notably,

(2.6)

{
c1,2 ∼= c1,3, c2,1 ∼= c3,1, c2,2 ∼= c3,3,
c2,3 ∼= c3,2, c2,4 ∼= c3,4, c4,2 ∼= c4,3,

where ci,j ∼= ci′,j′ means that ci′,j′ is an x-translation by one step from ci,j . Later,
the translation invariance property (2.6) will be shown to imply R2-symmetry of
the trace operator T2.

Finally, P2×2 denotes the set of

[
2 0
0 2

]
-periodic patterns, which can be recorded

from C2×2 or Y2×2 as an element in Σ3×3 as follows.

(2.7)

0

0

0

0

0 0

0 0

0

0

0

1

0

0 0

0 0

0

0

0

0

0

0 0

1 1

0

0

0

1

0

0 0

1 1

0

1

1

0

0

0 0

0 0

0

1

1

1

0

0 0

0 0

0

1

1

0

0

0 0

1 1

0

1

1

1

0

0 0

1 1

0

0

0

0

1

1 1

0 0

1

0

0

1

1

1 1

0 0

1

0

0

0

1

1 1

1 1

1

0

0

1

1

1 1

1 1

1

1

1

0

1

1 1

0 0

1

1

1

1

1

1 1

0 0

1

1

1

0

1

1 1

1 1

1

1

1

1

1

1 1

1 1

1

P2×2 = .

Notably, the upper two rows from the top of each pattern in P2×2 is C
t
2×2, where

Ct
2×2 is the transpose of C2×2;

(2.8)

0

0

0 0

00

0

0

0 0

01

0

1

0 0

10

0

1

0 0

11

0

0

1 0

00

0

0

1 0

01

0

1

1 0

10

0

1

1 0

11

1

0

0 1

00

1

0

0 1

01

1

1

0 1

10

1

1

1 1

11

1

0

1 1

00

1

0

1 1

01

1

1

1 1

10

1

1

1 1

11

Ct
2×2 = .

Therefore, P2×2 can be regarded as a ”Hadamard type product •” of C2×2 with
Ct

2×2, given by the following construction.

(2.9) P2×2 = C2×2 •Ct
2×2;
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the lower two rows of each pattern in P2×2 come from C2×2, and the upper two
rows come from Ct

2×2; they are glued together by the middle row. Equation (2.9)
is the prototype for constructing doubly periodic patterns of Z2 from x-periodic
patterns. Later, this idea will be generalized to all doubly periodic patterns.

The y-ordering matrices of patterns in Σn×2, n ≥ 2, can be ordered analogously
by

(2.10) Yn×2 = [yn;i,j] =

β1,2 β2,2 · · · βn,2

β1,1 β2,1 · · · βn,1 2n × 2n

,

where

(2.11)

{
i = ψ(β1,1β2,1 · · ·βn,1),
j = ψ(β1,2β2,2 · · ·βn,2),

and the n-th order counting function ψ ≡ ψn : {0, 1}Zn → {j|1 ≤ j ≤ 2n} is defined
by

(2.12) ψ(β1β2 · · ·βn) = 1 +

n∑

j=1

βj2
(n−j).

The recursive formulas for generating Yn×2 from Y2×2, taken from another
investigation [2], is as follows.

Let

(2.13) Yn×2 =

[
Yn×2;1 Yn×2;2

Yn×2;3 Yn×2;4

]
,

Yn×2;i be a 2n−1 × 2n−1 matrix of patterns. Then,

(2.14) Y(n+1)×2 =




x1,1Yn×2;1 x1,2Yn×2;2 x2,1Yn×2;1 x2,2Yn×2;2

x1,3Yn×2;3 x1,4Yn×2;4 x2,3Yn×2;3 x2,4Yn×2;4

x3,1Yn×2;1 x3,2Yn×2;2 x4,1Yn×2;1 x4,2Yn×2;2

x3,3Yn×2;3 x3,4Yn×2;4 x4,3Yn×2;3 x4,4Yn×2;4




is a 2n+1 × 2n+1 matrix.
The entries in Y(n+1)×2 are explained as follows; if

xp,q =
β0,2 β1,2

β0,1 β1,1

and

Yn×2;q =

β1,2 β2,2 · · · βn,2

β1,1 β2,1 · · · βn,1

,

then

(2.15) xp,qYn×2;q =

β0,2 β1,2 · · · βn,2

β0,1 β1,1 · · · βn,1

such that the second column of xp,q and the first column of Yn×2;q are mutually
overlapping.
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Hence, x-periodic patterns of period n with height 2 can be expressed in Σ(n+1)×2,
and recorded as an element in Cn×2 by

(2.16) Cn×2 =

β1,2β1,2 β2,2 · · · βn,2

β1,1β1,1 β2,1 · · · βn,1 2n × 2n

.

Now, given any basic set B, define the associated horizontal and vertical transi-
tion matrices H2 = H2(B) = [ap,q] and V2 = V2(B) = [xi,j ] by

(2.17) ap,q =

{
1 if xp,q ∈ B,
0 if xp,q /∈ B,

and

(2.18) bi,j =

{
1 if yi,j ∈ B,
0 if yi,j /∈ B,

respectively.

(2.19) H2 =




a1,1 a1,2 a1,3 a1,4
a2,1 a2,2 a2,3 a2,4
a3,1 a3,2 a3,3 a3,4
a4,1 a4,2 a4,3 a4,4


 =




b1,1 b1,2 b2,1 b2,2
b1,3 b1,4 b2,3 b2,4
b3,1 b3,2 b4,1 b4,2
b3,3 b3,4 b4,3 b4,4


 ,

and

(2.20) V2 =




b1,1 b1,2 b1,3 b1,4
b2,1 b2,2 b2,3 b2,4
b3,1 b3,2 b3,3 b3,4
b4,1 b4,2 b4,3 b4,4


 =




a1,1 a1,2 a2,1 a2,2
a1,3 a1,4 a2,3 a2,4
a3,1 a3,2 a4,1 a4,2
a3,3 a3,4 a4,3 a4,4


 .

The associated column matrices H̃2 of H2 and Ṽ2 of V2 are defined as

(2.21) H̃2 =




a1,1 a2,1 a2,1 a2,2
a3,1 a4,1 a3,2 a4,2
a1,3 a2,3 a1,4 a2,4
a3,3 a4,3 a3,4 a4,4




and

(2.22) Ṽ2 =




b1,1 b2,1 b2,1 b2,2
b3,1 b4,1 b3,2 b4,2
b1,3 b2,3 b1,4 b2,4
b3,3 b4,3 b3,4 b4,4


 ,

respectively.

The trace operators T2 = T2(B) and T̂2 = T̂2(B) which were introduced in [3]
are defined as

(2.23) T2 = V2 ◦ H̃2 and T̂2 = H2 ◦ Ṽ2,
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where ◦ is the Hadamard product: if A = [αi,j ]p×p and B = [βi,j ]p×p, then A◦B =
[αi,jβi,j ]p×p. More precisely,

(2.24) T2 = [ti,j ]22×22 =




a1,1a1,1 a1,2a2,1 a2,1a1,2 a2,2a2,2
a1,3a3,1 a1,4a4,1 a2,3a3,2 a2,4a4,2
a3,1a1,3 a3,2a2,3 a4,1a1,4 a4,2a2,4
a3,3a3,3 a3,4a4,3 a4,3a3,4 a4,4a4,4




and

(2.25) T̂2 =
[
t̂i,j
]
22×22

=




b1,1b1,1 b1,2b2,1 b2,1b1,2 b2,2b2,2
b1,3b3,1 b1,4b4,1 b2,3b3,2 b2,4b4,2
b3,1b1,3 b3,2b2,3 b4,1b1,4 b4,2b,24
b3,3b3,3 b3,4b4,3 b4,3b3,4 b4,4b4,4


 .

From (2.5), (2.20) and (2.24), clearly

(2.26) ti,j =

{
1 if ci,j is B-admissible,
0 if ci,j is not B-admissible,

where ci,j ∈ C2×2.
Therefore, T2 is the transition matrix of the B-admissible and x-periodic patterns

of period 2 with height 2. Similarly, T̂2 is the transition matrix of B-admissible
and y-periodic patterns of period 2 with width 2.

The translation invariance property (2.6) ofC2×2 implies the following symmetry
of T2;

(2.27)

{
t1,2 = t1,3, t2,1 = t3,1, t2,2 = t3,3,
t2,3 = t3,2, t2,4 = t3,4, t4,2 = t4,3.

The symmetry of (2.6) or (2.27) can also be identified as the rotational symmetry
of a cylinder since elements in C2×2 can be regarded as cylindrical patterns.

The recursive formulas of Yn×2 can also be applied to Vn. Indeed, if

Vn =

[
Vn;1 Vn;2
Vn;3 Vn;4

]

2n×2n
,

where Vn;j is a 2n−1 × 2n−1 matrix, then

(2.28) Vn+1 =




a1,1Vn;1 a1,2Vn;2 a2,1Vn;1 a2,2Vn;2
a1,3Vn;3 a1,4Vn;4 a2,3Vn;3 a2,4Vn;4
a3,1Vn;1 a3,2Vn;2 a4,1Vn;1 a4,2Vn;2
a3,3Vn;3 a3,4Vn;4 a4,3Vn;3 a4,4Vn;4




with

(2.29) Vn+1;i =

[
ai,1Vn;1 ai,2Vn;2
ai,3Vn;3 ai,4Vn;4

]
.

The n-th order trace operator Tn is defined as
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(2.30) Tn = Vn ◦




E2n−2 ⊗
[
a1,1 a2,1
a3,1 a4,1

]
E2n−2 ⊗

[
a1,2 a2,2
a3,2 a4,2

]

E2n−2 ⊗
[
a1,3 a2,3
a3,3 a4,3

]
E2n−2 ⊗

[
a1,4 a2,4
a3,4 a4,4

]



,

where ⊗ is the Kroncker (tensor) product and Ej is the j × j full matrix.
Now, Tn represents the transition matrix of B-admissible x-periodic patterns

of period n with height 2. Similarly, T̂n represents the transition matrix of B-
admissible y-periodic patterns of period n with width 2.

2.2. Rotational matrices. In this subsection, the rotational matrices Rn and the
invariance property of Cn×2 under Rn are investigated and the Rn-symmetry of
Tn is then proven.

The shift of any n-sequence β = (β1β2 · · ·βn−1βn), n ≥ 2, βj ∈ {0, 1}, is defined
by

(2.31) σ((β1β2 · · ·βn−1βn)) ≡ σn((β1β2 · · ·βn−1βn)) = (β2β3 · · ·βnβ1).
The subscript of σn is omitted for brevity. Notably, the shift (to the left) of any one-
dimensional periodic sequence (β1β2 · · ·βnβ1 · · · ) of period n becomes (β2β3 · · ·βnβ1β2 · · · ).

The 2n × 2n rotational matrix Rn = [Rn;i,j ], Rn;i,j ∈ {0, 1}, is defined by

Rn;i,j = 1 if and only if

(2.32) i = ψ(β1β2 · · ·βn) and j = ψ(σ(β1β2 · · ·βn)) = ψ(β2β3 · · ·βnβ1).
From (2.32), for convenience, denote by

(2.33) j = σ(i).

Clearly, Rn is a permutation matrix: each row and column of Rn has one and
only one element with a value of 1. Indeed, Rn can be written explicitly as follows.

Lemma 2.1.

(2.34)

{
Rn;i,2i−1 = 1 and Rn;2n−1+i,2i = 1 for 1 ≤ i ≤ 2n−1,
Rn;i,j = 0 otherwise,

or equivalently,

(2.35) σ(i) ≡ σn(i) =

{
2i− 1 for 1 ≤ i ≤ 2n−1,
2(i− 2n−1) for 1 + 2n−1 ≤ i ≤ 2n.

Furthermore, Rn
n = I2n and for any 1 ≤ j ≤ n− 1,

(2.36) (Rj
n)i,σj(i) = 1.

Proof. Clearly,

ψ(β1β2 · · ·βn) ≤ 2n−1 if β1 = 0,

and

ψ(β1β2 · · ·βn) ≥ 1 + 2n−1 if β1 = 1.
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From (2.12),

ψ(β2β3 · · ·βnβ1) =
{

2i− 1 if β1 = 0,
2(i− 2n−1) if β1 = 1,

can be verified. Equations (2.34) and (2.35) follow.
Finally, (2.36) follows easily from (2.32) and (2.33). �

The equivalent class Cn(i) of i is defined by

(2.37)

Cn(i) = {σj(i)|0 ≤ j ≤ n− 1}

=
{
j
∣∣ (Rl

n

)
i,j

= 1 for some 1 ≤ l ≤ n
}
.

Clearly, either Cn(i) = Cn(j) or Cn(i) ∩ Cn(j) = ∅. Let i be the smallest element
in its equivalent class, and the index set In of n is defined by

(2.38)
In = {i|1 ≤ i ≤ 2n, i ≤ σq(i), 1 ≤ q ≤ n− 1}

=
{
i
∣∣1 ≤ i ≤ 2n, i ≤ j for all j ∈ Cn(i)

}
.

Therefore, for each n ≥ 1, {j|1 ≤ j ≤ 2n} = ∪
i∈In

Cn(i). The cardinal number of In
is denoted by χn. Notably, χn can be identified as the number of necklaces that
can be made from n beads of two colors, when the necklaces can be rotated but not
turned over [34]. χn is expressed as

(2.39) χn =
1

n

∑

d|n
φ(d)2n/d

where φ(n) is the Euler totient function, which counts the numbers smaller or equal
to n and prime relative to n,

(2.40) φ(n) = n
∏

p|n

(
1− 1

p

)
.

For n = 2, 3 and 4, Rn and Cn(i) are as follows.

Example 2.2. Rn, In and Cn(i) for n = 2, 3 and 4

(i) R2=




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


,

and





C2(1) = {1}, 1 → 1,
C2(2) = C2(3) = {2, 3}, 2 → 3 → 2,
C2(4) = {4}, 4 → 4,
I2 = {1, 2, 4}.
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(ii) R3=




1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1




,

and





C3(1) = {1}, 1 → 1,
C3(2) = {2, 3, 5}, 2 → 3 → 5 → 2,
C3(4) = {4, 7, 6}, 4 → 7 → 6 → 4,
C3(8) = {8}, 8 → 8,
I3 = {1, 2, 4, 8}.

(iii) For R4,





1 → 1,
2 → 3 → 5 → 9 → 2,
4 → 7 → 13 → 10 → 4,
6 → 11 → 6,
8 → 15 → 14 → 12 → 8,
16 → 16,
I4 = {1, 2, 4, 6, 8, 16}.

The following proposition shows the permutation character of Rn.

Proposition 2.3. Let M = [Mi,j ]2n×2n be a matrix where Mi,j denotes a number
or a pattern or a set of patterns. Then,

(2.41) (RnM)i,j =Mσ(i),j and (MRn)i,j =Mi,σ−1(j).

Furthermore, for any l ≥ 1,

(2.42) (Rl
nM)i,j =Mσl(i),j and (MRl

n)i,j =Mi,σ−l(j).

Proof. For any 1 ≤ i, j ≤ 2n, by (2.36),

(RnM)i,j =
∑
q
Rn;i,qMq,j

= Rn;i,σ(i)Mσ(i),j

=Mσ(i),j .

Similarly,
(MRn)i,j =

∑
q
Mi,qRn;q,j

=Mi,σ−1(j)Rn;σ−1(j),j

=Mi,σ−1(j).

Applying (2.41) l times yields (2.42).
The proof is complete. �

In the following, x-periodic patterns of period n with height k ≥ 1 are studied.
More notation is required.

Definition 2.4.

(i) For any n ≥ 1, let (β1β2 · · ·βn)∞ be a periodic sequence of period n, denoted by
β = (β1 · · ·βn). σ(β) = σ((β1β2 · · ·βn)) = (β2β3 · · ·βnβ1). For any fixed n ≥ 1

and any j ≥ 1, denote by βj = (β1,jβ2,j · · ·βn,j) a periodic sequence of period n.
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(ii) For fixed n ≥ 1 and any k ≥ 1, denote by

[β1β2 · · ·βk]
= (β1,1β2,1 · · ·βn,1)∞ ⊕ (β1,2β2,2 · · ·βn,2)∞ ⊕ · · · (β1,kβ2,k · · ·βn,k)∞

=

β1,1β1,1 β2,1 βn,1

β1,2β1,2 β2,2 βn,2

β1,kβ1,k β2,k βn,k

a x-periodic pattern of period n with height k.
(iii) A Hadamard type product • of patterns is defined as follows.

[β1β2] • [β2β3] = [β1β2β3]

and

[β1β2 · · ·βk] = [β1β2] • [β2β3] • · · · • [βk−1βk].

(iv) A 2n × 2n ordering matrix Cn×k = [Cn×k;i,j ] of x-periodic patterns of period n
with height k ≥ 2 is defined by

Cn×k;i,j = {[β1β2 · · ·βk]|ψ(β1) = i and ψ(βk) = j}.
(v) For n ≥ 1 and k ≥ 2, denote by Dn,k the ordering matrix of patterns, which

consists of a first row β1 and the k-th row βk of Cn×k:

Dn,k;i,j = {[β1βk]|[β1β2 · · ·βk] ∈ Cn×k, ψ(β1) = i and ψ(βk) = j}.
Some remarks should be made.

Remark 2.5.

(1) For any n ≥ 1, the length of β in (i) and βj in (ii) depends on n. For simplicity,
these dependencies are omitted.

(2) The product • defined in (iii) applies only when the top row of the first pattern
is identical to the first row of the second pattern.

(3) In (iv), when k = 2, (2.16) applies.
(4) Cn×k;i,j is a set of patterns with the same first and k-th rows. Dn,k is exactly
Cn×2, but, importantly, in Cn×k, all patterns in the entry Cn×k;i,j have the same
top and first rows, which can be used to construct y-periodic patterns with a shift
in the (k+1)-th row.

In the following lemma, Rn is used to shift the first row in Dt
n,k.

Lemma 2.6. Let i = ψ(β1) and j = ψ(βk). Then

(i) (RnD
t
n,k)i,j = [βkσ(β1)],

(ii) (Cn×k •RnD
t
n,k)i,j = [β1β2 · · ·βkσ(β1)].

Proof. (i) follows easily from Proposition 2.3 and part (v) of Definition 2.4. From
parts (i) and (iii) of Definition 2.4, a product in (ii) is legitimate since the top row
of Cn×k and the first row of RnD

t
n,k are βk, and (ii) follows from (i). �

Furthermore, the following result shows that the patterns in Cn×k •Rl
nD

t
n,k are

the same as the patterns in diag(Cn×(k+1)R
n−l
n ) where diag(M) is the diagonal part
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of M, such that diag(M) = I ◦M. They are important in constructing y-periodic
patterns.

Proposition 2.7. For any n ≥ 2, k ≥ 1 and 0 ≤ l ≤ n,

patterns in Cn×k •Rl
nD

t
n,k = patterns in diag(Cn×(k+1)R

n−l
n )

= {[β1 · · ·βkσ
l(β1)]|[β1 · · ·βk] ∈ Cn×k}.

Proof. By (2.42), for any 0 ≤ l ≤ n− 1, 1 ≤ i, j ≤ 2n+1,

(Cn×(k+1)R
n−l
n )i,j = {[β1 · · ·βkσ

l−n(βk+1)] : ψ(β1) = i and ψ(βk+1) = j}.
Since ψ(βk+1) = ψ(β1) = i implies βk+1 = β1,

(Cn×(k+1)R
n−l
n )i,i = {[β1 · · ·βkσ

l−n(β1)] : ψ(β1) = i}.
However, for any 1 ≤ i, j ≤ 2n, part (ii) of Lemma 2.6 implies

(Cn×k •Rl
nD

t
n,k)i,j = [β1β2 · · ·βkσ

l(β1)].

Now, for any 0 ≤ l ≤ n− 1 and β = (β1 · · ·βn),
σl(β) = σl−n(β).

The proof is complete. �

The rotational symmetry of Tn is determined by studying Cn×2 in more detail.
Given a basic admissible set B ⊂ Σ2×2, Tn is defined by (2.30). Let [β1β2] ∈ Cn×2,
for 1 ≤ j ≤ n, denote

pj = 2βj,1 + βj,2 + 1,

then the associated entry in Tn is

(2.43) Tn([β1β2]) ≡ ap1,p2ap2,p3 · · · apn,p1 .

[β1β2] is B-admissible if and only if apj ,pj+1 = 1 for all 1 ≤ j ≤ n, where pn+1 = p1.

Theorem 2.8. For any n ≥ 2, the trace operator Tn = [tn;i,j ]2n×2n has the fol-
lowing Rn-symmetry:

(2.44) tn;σl(i),σl(j) = tn;i,j

for all 1 ≤ i, j ≤ 2n and 0 ≤ l ≤ n− 1.

Proof. Given [β1β2] ∈ Cn×2, all [σ
l(β1)σ

l(β2)], 0 ≤ l ≤ n − 1, represent similar
x-periodic patterns. The entry of [σl(β1)σ

l(β2)] in Tn is

(2.45) Tn([σ
l(β1)σ

l(β2)]) = apl+1pl+2
apl+2pl+3

· · ·apnp1ap1p2 · · · aplpl+1
.

Comparing (2.43) with (2.45) clearly reveals that

(2.46) Tn([β1β2]) = Tn([σ
l(β1)σ

l(β2)])

for all 0 ≤ l ≤ n − 1. Additionally, if Tn = [tn;i,j ] with i = ψ(β1) and j = ψ(β2),
then (2.46) implies

tn;σl(i),σl(j) = tn;i,j for all 0 ≤ l ≤ n− 1.

The proof is complete. �

Proposition 2.7 and Theorem 2.8 yield the following theorem.
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Theorem 2.9. For any n ≥ 2 and k ≥ 2, 0 ≤ l ≤ n− 1,

(2.47) |Tk−1
n ◦Rl

nT
t
n| = tr(Tk

nR
n−l
n )

and

(2.48) |Tk−1
n ◦RnT

t
n| = tr(Tk

nRn),

where

(2.49) Rn =

n−1∑

l=0

Rl
n.

Proof. From Proposition 2.7, (2.43) and the properties of Tn, (2.47) follows. Equa-
tions (2.47) and (2.49) yield (2.48). The proof is complete. �

2.3. Periodic patterns. This subsection studies in detail (double) periodic pat-
terns in Z2. Indeed, consider a lattice L with Hermite normal form,

(2.50) L =

[
n l
0 k

]
Z
2,

where n ≥ 1, k ≥ 1 and 0 ≤ l ≤ n− 1.
A pattern U = (αi,j)i,j∈Z is called L-periodic if every i, j ∈ Z

(2.51) αi+np+lq,j+kq = αi,j

for all p, q ∈ Z.

The periodicity of

[
n l
0 k

]
and

[
n 0
0 k′

]
are closely related as follows.

Proposition 2.10. For any n ≥ 2, k ≥ 1 and 0 ≤ l ≤ n−1,

[
n l
0 k

]
-periodic pat-

terns are

[
n 0
0 nk

(n,l)

]
-periodic where (n, l) is the greatest common divisor (GCD)

of n and l.

Proof. By (2.51), the

[
n l
0 k

]
-periodic pattern is easily identified as

[
n l ·m
0 k ·m

]
-

periodic for all m ∈ N.
By taking m = n

(n,l) , the result holds. �

Given an admissible set B ⊂ Σ2×2, defined on square lattice Z2×2, the periodic
patterns that are B-admissible must be verified on Z2×2.

Let Z2×2((i, j)) be the square lattice with the left-bottom vertex (i, j):

Z2×2((i, j)) = {(i, j), (i+ 1, j), (i, j + 1), (i+ 1, j + 1)} .
Now, the admissibility is demonstrated to have to be verified on finite square

lattices.
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Proposition 2.11. An L-periodic pattern U is B-admissible if and only if

(2.52) U
∣∣
Z2×2((i,j))

∈ B
for any 0 ≤ i ≤ n− 1 and 0 ≤ j ≤ k − 1.

Proof. The proof follows easily from (2.51). The details are left to the reader. �

Suppose U = (αi,j)i,j∈Z is an L-periodic pattern. For convenience, let

βi+1,j+1 = αi,j

for all i, j ∈ Z.
According to proposition 2.11, the admissibility of U is determined by

(αi,j)0≤i≤n,0≤j≤k = (βi,j)1≤i≤n+1,1≤j≤k+1,

and (βi,j)1≤i≤n+1,1≤j≤k+1 with the periodic property (2.51). Therefore, the follow-
ing theorem can be obtained.

Theorem 2.12. Given a basic admissible set B ⊂ Σ2×2, an L-periodic pattern U
is B-admissible if and only if

(2.53) [β1β2 · · ·βk] and [βkσ
n−l(β1)] are B-admissible.

Theorems 2.7 and 2.12 yield the following main results.

Theorem 2.13. For n ≥ 1, 0 ≤ l ≤ n − 1 and k ≥ 1, denote by ΓB

([
n l
0 k

])

the cardinal number of the set of

[
n l
0 k

]
-periodic and B-admissible patterns. For

n ≥ 2, 0 ≤ l ≤ n− 1 and k ≥ 2,

(2.54) ΓB

([
n l
0 k

])
= tr

(
Tk

nR
l
n

)
= |Tk−1

n ◦Rn−l
n Tt

n|

and

(2.55)

n−1∑

l=0

ΓB

([
n l
0 k

])
= tr

(
Tk

nRn

)
= |Tk−1

n ◦RnT
t
n|.

For n ≥ 2 and 0 ≤ l ≤ n− 1,

(2.56) ΓB

([
n l
0 1

])
= tr(TnR

l
n) = |diag(Tn) ◦Rn−l

n Tt
n|

and

(2.57)

n−1∑

l=0

ΓB

([
n l
0 1

])
= tr(TnRn) = |diag(Tn) ◦RnT

t
n|.

Furthermore, let

(2.58) T1 =

[
a1,1a1,1 a2,2a2,2
a3,3a3,3 a4,4a4,4

]
and R1 =

[
1 0
0 1

]
;
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then

(2.59) ΓB

([
1 0
0 k

])
= tr(Tk

1).

Proof. By Proposition 2.7, Theorem 2.12 and the construction of Tn, the results
(2.54) to (2.57) hold for n ≥ 2, 0 ≤ l ≤ n− 1 and k ≥ 1.

For n = 1, define

(2.60) C1×2 =

0

0

0

0 0 0

0 0

1 1

1 1

1

1

1

1

,

which is the collection of x-periodic patterns of period 1 with height 2. Then
B-admissible patterns of C1×2 are represented by T1 as defined in (2.58).

Theorem 2.12 and the construction of T1 easily yields (2.59).
The proof is complete. �

The n-th order zeta function ζn(s) can now be obtained as follows.

Theorem 2.14. For n ≥ 1,

(2.61) ζn(s) = exp

(
1

n

∞∑

k=1

1

k
tr(Tk

nRn)s
kn

)
.

Proof. The results follow from Theorem 2.13.
The proof is complete. �

3. Rationality of ζn

This section proves that ζn is a rational function, as specified by (1.21). To
elucidate the method, the symmetric Tn is considered initially. For any n ≥ 1, let

(3.1) N = 2n.

Let λj be an eigenvalue of Tn:

(3.2) TnUj = λjUj ,

1 ≤ j ≤ N . If Tn is symmetric, then the Jordan form of Tn [12] is

(3.3) Tn = UJUt,

where

(3.4) Ut = U−1.

The eigen-matrix U in (3.3) is defined by

(3.5) U = [U1, U2, · · · , UN ]N×N = [ui,j ]N×N ,

where Uj = (u1,j , u2,j, · · · , uN,j)
t is the j-th (column) eigenvector, and
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(3.6) J = diag(λ1, λ2, · · · , λN ).

λj can be arranged such that λ1 ≥ |λ2| ≥ · · · ≥ |λN |. Equation (3.4) implies

(3.7)
N∑

p=1

ui,puj,p = δi,j and
N∑

q=1

uq,iuq,j = δi,j .

Now, Theorem 3.1 will be proven.

Theorem 3.1. Assume Tn is symmetric; then

(3.8)
1

n

n−1∑

l=0

ΓB

([
n l
0 k

])
=

1

n
tr
(
Tk

nRn

)
=

∑

λ∈Σ(Tn)

χ(λ)λk ,

where Σ(Tn) is the spectrum of Tn,

(3.9) χ(λ) =
∑

λj=λ

χ(λj)

and

(3.10)

χ(λj) = 1
n |Rn ◦ UjU

t
j |

= 1
n

∑
i∈In

ωn,i

n

(
n−1∑
l=0

uσl(i),j

)2

,

where ωn,i is the cardinal number of Cn(i). Moreover,

(3.11) ζn(s) =
∏

λ∈Σ(Tn)

(1− λsn)−χ(λ).

Proof. Clearly,
tr
(
Tk

nRn

)

= tr (Udiag(λj)U
tRn)

=
N∑
j=1

{
N∑
i=1

ui,j
N∑

p=1
up,j

(
n−1∑
l=1

Rl
n;p,i

)}
λj .

For each j, 1 ≤ j ≤ N,

N∑
i=1

ui,j

(
N∑
p=1

up,j
n−1∑
l=0

Rl
n;p,i

)

=
N∑
i=1

ui,j

(
n−1∑
l=0

uσ−l(i),j

)

=
∑
i∈In

ωn,i

n

(
n−1∑
l=0

uσl(i),j

)(
n−1∑
l=0

uσ−l(i),j

)

=
∑
i∈In

ωn,i

n

(
n−1∑
l=0

uσl(i),j

)2

.
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The following is easily verified;

(3.12) |Rn ◦ UjU
t
j | =

∑

i∈In

ωn,i

n

(
n−1∑

l=0

uσl(i),j

)2

.

Then, (3.8)∼(3.10) follow.
From [9],

(3.13)

∞∑

k=1

1

k
Jkskn = diag

(
log(1− λjs

n)−1
)
.

Therefore, (3.11) holds.
The proof is complete. �

We now extend Theorem 3.1 to general Tn. In this case, the Jordan form for
Tn is

(3.14) Tn = UJU−1,

where U is given as(3.5) and Uj, 1 ≤ j ≤ N , is an eigenvector or generalized
eigenvector [9, 12]. Denote by

(3.15) U−1 = [wi,j ] = [W1;W2; · · · ;WN ]N×N

with Wi = (wi1, wi2, · · · , wiN ), the i-th row vector.

(3.16) J = diag(J1, J2, · · · , JQ),

where Jq is the Jordan block, 1 ≤ q ≤ Q:

(3.17) Jq =




λq 1 0 · · · 0 0
0 λq 1 · · · 0 0
...

...
...

...
...

0 0 0 · · · λq 1
0 0 0 · · · 0 λq



Mq×Mq

,

Mq ≥ 1.
As is well-known [9], for any Jordan block

(3.18) J =




λ 1 0 · · · 0 0
0 λ 1 · · · 0 0
...

...
...

...
...

0 0 0 · · · λ 1
0 0 0 · · · 0 λ



M×M
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and

(3.19) log(I − tJ) =




µ1,1 µ1,2 µ1,3 · · · µ1,M

0 µ2,2 µ2,3 · · · µ2,M

. . .
...

0 0 · · · 0 µM,M



,

where

(3.20) µi,i+j−1 = µ1,j for 1 ≤ j ≤M and 1 ≤ i ≤M + 1− j,

and

(3.21) µi,j = 0 if i > j.

In particular, 1 ≤ i ≤M ,

(3.22) µi,i = log(1− λt).

Therefore,
∞∑
k=1

1
kJ

kskn

= − log(I − snJ)

(3.23)
= −diag (log(I − snJ1), · · · , log(I − snJQ))
= −[µi,j ]N×N ,

where

(3.24) log(I − snJq) =




µq;1,1 µq;1,2 µq;1,3 · · · µq;1,Mq

0 µq;2,2 µq;2,3 · · · µq;2,Mq

. . .
...

0 0 · · · 0 µq;Mq ,Mq




and

(3.25) µq;i,i = log(1 − λqs
n), 1 ≤ q ≤ Q.

Now, Theorem 3.1 is generalized for general Tn.

Theorem 3.2. For n ≥ 1, in (3.14) and (3.15) the generalized eigen-matrix is
denoted by

U = [U1,1 · · ·U1,M1 ; · · · ;Uq,1 · · ·Uq,Mq
; · · · ;UQ,1 · · ·UQ,MQ

]N×N ,

and its inverse is denoted by

U−1 = [W1,1; · · · ;W1,M1 ; · · · ;Wq,1; · · · ;Wq,Mq
; · · · ;WQ,1; · · · ;WQ,MQ

]N×N .

Then,
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(3.26) ζn(s) =

Q∏

q=1

∏

1≤i≤j≤Mq

exp (−χq;i,jµq;i,j) ,

where

(3.27)

χq;i,j =
1
n |Rn ◦ Uq,iWq,j |

= 1
n

∑
p∈In

ωn,p

n

(
n−1∑
l=0

uq;σl(p),i

)(
n−1∑
l=0

wq;j,σl(p)

)
.

In particular, if

(3.28) µq;i,j = 0 for all i 6= j,

then

(3.29)
ζn(s) =

Q∏
q=1

(1 − λqs
n)−χq

=
∏

λ∈Σ(Tn)

(1− λsn)−χ(λ),

where

(3.30) χq =
1

n

Mq∑

i=1

|Rn ◦ Uq;iWq;i|

and

(3.31) χ(λ) =
∑

λq=λ

χq.

Proof. From (3.14) and (3.21),

ζn(s) = exp

(
1

n
tr
(
Udiag(log(I − snJ1), · · · , log(I − snJQ))U

−1Rn

))
.

Now,

tr
(
Udiag(log(I − snJ1), · · · , log(I − snJQ))U

−1Rn

)

=
N∑
i=1

N∑
j=1

N∑
r=1

N∑
p=1

up,iµi,jwj,r

(
n−1∑
l=0

Rl
n;r,p

)

=
N∑
i=1

N∑
j=1

∑
p∈In

ωn,p

n

(
n−1∑
l=0

uσl(p),i

)(
n−1∑
l=0

wj,σ−l(p)

)
µi,j .

Therefore, (3.26) follows. Clearly, if (3.28) holds, then (3.29) holds.
The proof is complete. �
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In the rest of the section, (3.28) is proven and χ(λ) is shown to be a nonnegative
integer. Therefore, ζn is a rational function. Some of the symmetry properties of
the eigenvectors associated with the Rn-symmetry of Tn are investigated first.

Lemma 3.3. For n ≥ 1, if

(3.32) TnU = λU,

then for any 0 ≤ l ≤ n− 1,

(3.33) Tn(R
l
nU) = λRl

nU.

Therefore, if U is an eigenvector, then Rl
nU is also an eigenvector.

Furthermore, if

(3.34) (Tn − λ)qU = 0

for some q ≥ 2, then for any 0 ≤ l ≤ n− 1,

(3.35) (Tn − λ)q(Rl
nU) = 0.

Therefore, if U is a generalized eigenvector, then Rl
nU is also a generalized eigen-

vector.

Proof. Assume that (3.32) holds and U = (u1, u2, · · · , uN )t. Then,

(3.36) RnU = (uσ(1), uσ(2), · · · , uσ(N))
t.

According to (2.41), Tn = [tn;i,j ]N×N exhibits Rn-symmetry

tn;σ(i),σ(j) = tn;i,j

for all 1 ≤ i, j ≤ N . Therefore, for any 1 ≤ i ≤ N ,

(Tn(RnU))i =
N∑
j=1

tn;i,juσ(j)

=
N∑
j=1

tn;σ(i),σ(j)uσ(j)

= λuσ(i) = λ(RnU)i.

Hence, RnU is an eigenvector of Tn with eigenvalue λ. Similarly, Rl
nU is an

eigenvector for any 0 ≤ l ≤ n − 1. Equation (2.41) can also be applied easily to
verify (3.35) when (3.34) holds. Details are omitted.

The proof is complete. �

Based on Lemma 3.3, the equivalent class R(U) of eigenvector U is introduced
by Rn.

Definition 3.4. For any N × 1 column vector U ,

(3.37) R(U) =
{
Rl

nU |0 ≤ l ≤ n− 1
}
.

U is called (Rn-) symmetric if R(U) = {U}, such meaning that uj = ui for all
j ∈ Cn(i) or
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(3.38) Rl
nU = U

for all 0 ≤ l ≤ n − 1. U is called (Rn-) anti-symmetric if
n−1∑
l=0

Rl
nU = 0, such

meaning

(3.39)

n−1∑

l=0

Uσl(i) = 0

for all i ∈ In.
For a symmetric eigenvector U , the following property is observed.

Lemma 3.5. Let U = (u1, u2, · · · , uN)t and W = (w1, w2, · · · , wN ),

(3.40)
1

n
|Rn ◦ UW | =

∑

i∈In

1

ωn,i


 ∑

j∈Cn(i)

uj




 ∑

j∈Cn(i)

wj


 .

Furthermore, if U is symmetric, then

(3.41)
1

n
|Rn ◦ UW | =WU =

N∑

j=1

ujwj .

In particular, if |U | = 1, then

(3.42)
1

n
|Rn ◦ UU t| = 1.

Proof. Clearly,

(3.43)

n−1∑

l=0

uσl(i) =
n

ωn,i

∑

j∈Cn(i)

uj ,

and

(3.44)

n−1∑

l=0

wσl(i) =
n

ωn,i

∑

j∈Cn(i)

wj .

Therefore, substituting (3.43) and (3.44) into (3.27) yields

1

n
|Rn ◦ UW | =

∑

i∈In

1

ωn,i


 ∑

j∈Cn(i)

uj




 ∑

j∈Cn(i)

wj


 .

If U is symmetric, then ∑

j∈Cn(i)

uj = ωn,iui.
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Hence,

1

n
|Rn ◦ UW | =

∑

i∈In


 ∑

j∈Cn(i)

uiwj


 =

N∑

j=1

ujwj =WU.

The proof is complete. �

The following non-singular matrix Qn is very useful in finding symmetric and
anti-symmetric eigenvectors of Tn.

Lemma 3.6. For n ≥ 2, the n× n matrix

(3.45) Qn =




1 1 1 · · · 1 1 1 1

1 − 1
n−1 − 1

n−1 · · · − 1
n−1 − 1

n−1 − 1
n−1 − 1

n−1

0 1 − 1
n−2 · · · − 1

n−2 − 1
n−2 − 1

n−2 − 1
n−2

...

0 0 0 · · · 0 1 − 1
2 − 1

2

0 0 0 · · · 0 0 1 −1




is non-singular and

(3.46)

Qn =




1√
n

1√
n

1√
n

· · · 1√
n

1√
n

√
n−1
n − 1√

n(n−1)
− 1√

n(n−1)
· · · − 1√

n(n−1)
− 1√

n(n−1)

0
√

n−2
n−1 − 1√

(n−1)(n−2)
· · · − 1√

(n−1)(n−2)
− 1√

(n−1)(n−2)

...

0 0 0 · · · 1√
2

− 1√
2




is orthogonal.

Proof. The non-singularity of Qn and orthogonality of Qn can be verified directly;
the details are omitted. �

In the following lemma, when Qn is used, R(U) can be replaced by symmetric
and anti-symmetric eigenvectors.

Lemma 3.7. For n ≥ 2, given eigenvector U , define

(3.47) U1 =
1√
n

n−1∑

l=0

Rl
nU

and, 2 ≤ j ≤ n,
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(3.48) U j =

√
n− j + 1

n− j + 2
Rj−2

n U − 1√
n− j + 1

√
n− j + 2

n−1∑

k=j−1

Rk
nU.

If R(U) has rank κ, for some κ, 1 ≤ κ ≤ n,

(i) then
{
U j

}n
j=1

also has rank κ;

(ii) if U1 6= 0, then U1 is symmetric, and for each j, 2 ≤ j ≤ n, U j is anti-
symmetric.

Proof. Clearly,

(
U1, U2, · · · , Un

)t
= Qn

(
U,RnU, · · · , Rj

nU, · · · , Rn−1
n U

)t
.

Since Qn is orthogonal, (i) holds.
Since Rn(U1) = U1, U1 is symmetric. For 2 ≤ j ≤ n and i ∈ In,

n−1∑
l=0

(U j)σl(i) =
√

n−j+1
n−j+2

(
n−1∑
l=0

(Rj−2
n U)σl(i) − 1

n−j+1

n−1∑
k=j−1

n−1∑
l=0

(Rk
nU)σl(i)

)

=
√

n−j+1
n−j+2

(
n−1∑
l=0

uσl(i) − 1
n−j+1

n−1∑
k=j−1

n−1∑
l=0

uσl(i)

)

= 0.

Therefore, U j is anti-symmetric for any 2 ≤ j ≤ n.
The proof is complete. �

The main result can now be proven.

Theorem 3.8. For n ≥ 1,

(3.49)
1

n
tr
(
Tk

nRn

)
=

∑

λ∈Σ(Tn)

χ(λ)λk

and

(3.50) ζn(s) =
∏

λ∈Σ(Tn)

(1− λsn)−χ(λ),

where χ(λ) is the number of linearly independent symmetric eigenvectors and gen-
eralized eigenvectors of Tn with eigenvalue λ.

Proof. The case of symmetric Tn is considered first. Let Eλ be the eigenspace
of Tn with eigenvalue λ. By Lemma 3.7, Eλ is spanned by linearly independent
symmetric unit eigenvectors U1, U2, · · · , Up and anti-symmetric unit eigenvectors
U ′
1, U

′
2, · · · , U ′

p′ , where p+ p′ = dim(Eλ) and p or p′ may be zero.
Now,

(3.51)
χ(λ) = 1

n

(
p∑

j=1

|Rn ◦ U jU
t

j |+
p′∑
j=1

|Rn ◦ U ′
j(U

′
j)

t|
)

= p,
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which is the number of linearly independent symmetric eigenvectors of Tn with
eigenvalue λ.

For generalTn, in Jordan canonical form (3.14) and (3.16),U can be decomposed
into

U = Eλ1 ⊕ Eλ2 ⊕ · · · ⊕ EλQ
.

Each Eλj
is spanned by unit symmetric eigenvectors and generalized eigenvectors

U j,1, U j,2, · · · , U j,pj
and anti-symmetric eigenvectors and generalized eigenvectors

U ′
j,1, U

′
j,2, · · · , U ′

j,p′

j
, and pj + p′j = dim(Eλj

).

The inverse matrix is

U−1 =
[
W 1,1; · · · ;W 1,p1 ;W

′
1,1; · · · ;W ′

1,p′

1
; · · · ;WQ,1; · · · ;WQ,pQ

;W ′
Q,1; · · · ;W ′

Q,p′

Q

]
.

Lemma 3.5 implies

1

n
|Rn ◦ U j,iW j′,k| = δjj′δik

and
1

n
|Rn ◦ U ′

j,iW
′
j′,k| = 0.

Therefore,

χ(λj) = pj
= the number of linearly independent symmetric eigenvectors and

generalized eigenvectors of Tn with eigenvalue λj .

The result follows.
The proof is complete. �

To further study the eigenvalue λ with symmetric eigenvectors and generalized
eigenvectors of Tn, the following reduced trace operator τn of Tn is introduced.

Definition 3.9. For n ≥ 1,

Tn = [tn;i,j ].

For each i, j ∈ In, define

(3.52) τn;i,j =
∑

k∈Cn(j)

tn;i,k

and denote the reduced trace operator of Tn by

(3.53) τn = [τn;i,j ],

which is a χn × χn matrix.

The following theorem indicates that τn is more effective in computing the eigen-
values with rotationally symmetric eigenvectors and generalized eigenvectors of Tn.
See also examples 7.2 and 7.3.
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Theorem 3.10. λ ∈ Σ(Tn) with χ(λ) ≥ 1 if and only if λ ∈ Σ(τn). Moreover,
χ(λ) is the algebraic multiplicity of τn with eigenvalue λ. Furthermore,

(3.54)
1

n

n−1∑

l=0

ΓB

([
n l
0 k

])
=

∑

λ∈Σ(τn)

χ(λ)λk = tr(τkn ),

and

(3.55) ζn(s) = exp

( ∞∑

k=1

tr(τkn )

k
snk

)
.

Proof. Let λ ∈ Σ(Tn) be an eigenvalue with rotationally symmetric eigenvector
U = (u1, u2, · · · , u2n)t, where ui = uj for any i ∈ In and j ∈ Cn(i).

Define V = (u1, · · · , ui, · · · , u2n)t for i ∈ In. Then, clearly, TnU = λU implies
τnV = λV .

On the other hand, if τnV = λV and V = (v1, · · · , vi, · · · , v2n)t, then V can be
extended to U , a 2n-vector, by uj = vi for i ∈ In and j ∈ Cn(i). Then, TnU =
λU and U is rotationally symmetric. The arguments also hold for a generalized
eigenvector.

Finally, (3.54) follows from (2.55) and (3.49), and (3.55) follows from (1.8) and
(3.54).

The proof is complete. �

Remark 3.11. According to Theorem 3.10, the following is easily verified;

(3.56)
∑

λ∈Σ(Tn)

χ(λ) =
∑

λ∈Σ(τn)

χ(λ) = χn.

Theorem 3.10 yields the following result.

Theorem 3.12. For n ≥ 1,

(3.57) ζn(s) = (det (I − snτn))
−1

(3.58) =
∏

λ∈Σ(τn)

(1− λsn)
−χn(λ) ,

where χn(λ) is the algebraic multiplicity of λ ∈ Σ(τn) and

(3.59) ζ(s) =

∞∏

n=1

(det (I − snτn))
−1

(3.60) =
∞∏

n=1

∏

λ∈Σ(τn)

(1− λsn)−χn(λ) .

4. More symbols on larger lattice

This section extends the results found in previous sections to any finite num-
ber of symbols p ≥ 2 on any finite square lattice Zm×m, m ≥ 2. The results are
outlined here and the details are left to the reader. The proofs of the theorems are
sketched only or omitted for brevity.
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For fixed positive integers p ≥ 2 and m ≥ 2, the set of symbols is denoted by
Sp = {0, 1, 2, · · · , p− 1} and the basic square lattice is Zm×m.

For any n1, n2 ≥ 1, local patterns on Zn1×n2 are denoted by [βα1,α2 ]1:n1,1:n2
:

β1,1 β2,1 βn1,1

β1,2 β2,2 βn1,2

β1,n2
β2,n2 βn1,n2

,

where βα1,α2 ∈ Sp. Here, [βα1,α2 ]n1:n′

1,n2:n′

2
means n1 ≤ α1 ≤ n′

1 and n2 ≤ α2 ≤ n′
2.

Define the counting function on SZn1×n2
p by

(4.1) ψ
(
[βα1,α2 ]1:n1,1:n2

)
= 1 +

n1∑

α1=1

n2∑

α2=1

βα1,α2p
n2(n1−α1)+(n2−α2).

For any fixed n ≥ 1, Yn×m = [yn×m;i,j ] denote the ordering matrix of local
patterns [βα1,α2 ]1:n,1:mon Zn×m.

Pattern [βα1,α2 ]1:n,1:m can be rewritten as

[βα1,α2 ]1:n,1:m = [βα1,α2 ]1:n,1:m−1 • [βα1,α2 ]1:n,2:m ,

and thus recorded as an element yn×m;i,j in Yn×m by

(4.2) [βα1,α2 ]1:n,1:m = yn×m;i,j

with

(4.3) i ≡ ψ
(
[βα1,α2 ]1:n,1:m−1

)
= 1 +

n∑

α1=1

m−1∑

α2=1

βα1,α2p
(m−1)(n−α1)+(m−1−α2)

and

(4.4) j ≡ ψ
(
[βα1,α2 ]1:n,2:m

)
= 1 +

n∑

α1=1

m−1∑

α2=1

βα1,α2+1p
(m−1)(n−α1)+(m−1−α2).

Notably, Yn×m is a pn(m−1)×pn(m−1) matrix that has pn×m non-trivial elements
only and leaves p2n(m−1) − pmn empty sites when m ≥ 3.
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For any fixed n ≥ m, such as in (2.16), the x-periodic patterns of period n with
height m can be recorded as Cn×m;i,j in Cn×m by

Cn×m;i,j =

β1,1β1,1 β2,1β2,1 βn,1 βm−1,1

β1,2β1,2 β2,2β2,2 βn,2 βm−1,2

β1,mβ1,m β2,mβ2,m βn,m βm−1,m

,

where i and j are given as in (4.3) and (4.4), respectively.

Now, given a basic admissible set of patterns B ⊂ SZm×m
p , the associated vertical

transition matrix Vn×m = Vn×m(B) = [bn×m;i,j] for n ≥ m is defined by

(4.5) bn×m;i,j = 1 if and only if yn×m;i,j = [βα1,α2 ]1:n,1:m is B-admissible.

Similarly, for any n ≥ m, the associated trace operator Tn×m = [tn×m;i,j ] can be
defined by

(4.6) tn×m;i,j = 1 if and only if Cn×m;i,j = [β1β2 · · ·βm] is B-admissible.

Notably, both Vn×m and Tn×m are pn(m−1)×pn(m−1)

matrices with entries in
{0, 1}. To verify (4.5),

(4.7) [βα1,α2 ]k:k+m−1,1:m ∈ B
for 1 ≤ k ≤ n −m + 1, must be checked. Similarly, to verify (4.6), in addition to
(4.7), the following must be established;

(4.8) [βα1,α2 ] ∈ B,
where

α1 = n−m+ k + 1, · · · , n, 1, · · · , k and α2 = 1, · · · ,m
for 1 ≤ k ≤ m− 1.

Clearly, when B = SZm×m
p , then both Vm−1

n×m and Tm−1
n×m are full matrices, such

meaning that all of their entries are 1.
For 1 ≤ n ≤ m − 1,

[
m
n

]
= p and m = pn + q, 0 ≤ q ≤ n − 1. Then,

Cn×m = [Cn×m;i,j ] also records all of the x-periodic patterns of period n with
height m by expressing Cn×m;i,j as an (n+m− 1)×m pattern as follows:

β1,1β1,1β1,1 β2,1β2,1β2,1 βn,1βn,1 βq−1,1

β1,2β1,2β1,2 β2,2β2,2β2,2 βn,2βn,2 βq−1,2

β1,mβ1,mβ1,m β2,mβ2,mβ2,m βn,mβn,m βq−1,m

,
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where [βα1,α2 ]1:n,1:m repeats p times and i and j are given as in (4.3) and (4.4) ,

respectively.
Hence, for 1 ≤ n ≤ m− 1, the associated trace operator Tn×m = [tn×m;i,j ] can

be defined similarly to (4.6).
Notably, for any k ≥ 1, (Tk

n×m)i,j is the number of B-admissible patterns of the
form

(4.9)
[β1 · · ·βmβm+1 · · ·βm+k−1]

= [β1 · · ·βm−1] • [β2 · · ·βm] • · · · • [βk+1 · · ·βm+k−1],

where

(4.10) i = ψ([β1 · · ·βm−1])

and

(4.11) j = ψ([βk+1 · · ·βm+k−1]).

Now, for any n ≥ 1, the corresponding rotational matrix Rn×(m−1) which is a

zero-one pn(m−1) × pn(m−1) matrix is defined by

Rn×(m−1);i,j = 1 if and only if

(4.12) j = σ(i),

where i is given by 1 ≤ i ≤ pn(m−1) which is represented by (4.9) and 1 ≤ σ(i) ≤
pn(m−1) is represented by

(4.13) σ(i) = ψ
(
[σ(β1)σ(β2) · · ·σ(βm−1)]

)
.

The explicit expression for Rn×(m−1), like (2.35), can also be obtained and the
result is omitted here. When m = 3, see (7.27).

Furthermore, Rn×(m−1) clearly sends patterns in Yn×m−1 into itself as follows.

β1,1β1,1 β2,1β2,1 βn−1,1 βn,1βn,1

β1,2β1,2 β2,2β2,2 βn−1,2 βn,2βn,2

β1,m−1β1,m−1 β2,m−1β2,m−1 βn−1,
m − 1

βn,m−1βn,m−1

β3,1

β3,2

β3,m−1

Rn×(m−1)

.

As (2.37) and (2.38), the equivalent class Cn×(m−1)(i) of i is defined by
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(4.14)

Cn×(m−1)(i) = {σj(i)|0 ≤ j ≤ n− 1}

=

{
j
∣∣
(
Rl

n×(m−1)

)
i,j

= 1 for some 1 ≤ l ≤ n

}
,

and the index set In×(m−1) of n is defined by

(4.15)
In×(m−1) = {i|1 ≤ i ≤ pn(m−1), i ≤ σq(i), 1 ≤ q ≤ n− 1}

=
{
i
∣∣1 ≤ i ≤ pn(m−1), i ≤ j for all j ∈ Cn×(m−1)(i)

}
.

The cardinal number of In×(m−1) is denoted by χn×(m−1) and χn×(m−1) is equal

to the number of necklaces that can be made from 2m−1 colors, when the necklaces
can be rotated but not turned over [34]. χn×(m−1) is expressed as

(4.16) χn×(m−1) =
1

n

∑

d|n
φ(d)

(
2m−1

)n/d
,

where φ(n) is the Euler totient function.
Like Proposition 2.3, Rn×(m−1) has the following permutation properties.

Proposition 4.1. Let M = [Mi,j] be a pn(m−1) × pn(m−1) matrix, where Mi,j is a
number or pattern or set of patterns. Then,

(4.17) (Rn×(m−1)M)i,j =Mσ(i),j and (MRn×(m−1))i,j =Mi,σ−1(j).

Furthermore, for any l ≥ 1,

(4.18) (Rl
n×(m−1)M)i,j =Mσl(i),j and (MRl

n×(m−1))i,j =Mi,σ−l(j).

The proof is similar to that of Proposition 2.3 and is omitted here.
Now, define

(4.19) Rn×(m−1) =
n−1∑

l=0

Rl
n×(m−1).

A similar result to Theorem 2.13 can now be obtained for ΓB

([
n l
0 k

])
.

Theorem 4.2. For n ≥ 1, k ≥ 1 and 0 ≤ l ≤ n− 1,

(4.20) ΓB

([
n l
0 k

])
= tr

(
Tk

n×mR
l
n×(m−1)

)

and

(4.21)
n−1∑

l=0

ΓB

([
n l
0 k

])
= tr

(
Tk

n×mRn×(m−1)

)
.
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Proof. For k ≥ m and l = 0,

[
n 0
0 k

]
-periodic patterns have the form

(4.22) [β1 · · ·βkβ1 · · ·βm−1].

Now, from (4.9)∼(4.11),
(
Tk

n×m

)
ii
have the form (4.22). Hence,

ΓB

([
n 0
0 k

])
= tr

(
Tk

n×m

)
.

For 1 ≤ l ≤ n− 1,

[
n l
0 k

]
-periodic patterns has the form

(4.23) [β1 · · ·βkσ
n−l(β1)σ

n−l(β2) · · ·σn−l(βm−1)].

Proposition 4.1 implies that
(
Tk

n×mR
l
n×(m−1)

)
i,i

has the form (4.23). Therefore,

ΓB

([
n l
0 k

])
= tr

(
Tk

n×mR
l
n×(m−1)

)
.

Equations (4.20) and (4.21) follow for k ≥ m.
Now, (4.20) and (4.21) for 1 ≤ k ≤ m− 1 must be shown.
When k = 1, from (4.9)∼(4.11) Tn×m;i,i has the form [β1β2 · · ·βm] which satis-

fies

(4.24) [β1β2 · · ·βm−1] = [β2β3 · · ·βm],

which implies

(4.25) β1 = β2 = · · · = βm.

Accordingly,

ΓB

([
n 0
0 1

])
= tr (Tn×m) .

Proposition 4.1 can again be applied to verify

ΓB

([
n l
0 1

])
= tr

(
Tn×mR

l
n×(m−1)

)

for any 1 ≤ l ≤ n− 1.

For any 2 ≤ k ≤ m − 1,
[
m
k

]
= p and m = pk + q, 0 ≤ q ≤ k − 1.

[
n 0
0 k

]
-

periodic patterns have the form

(4.26) [β1 · · ·βk · · ·β1 · · ·βk︸ ︷︷ ︸
p+1 times

β1 · · ·βq−1]

Pattern (4.9) in
(
Tk

n×m

)
i,i

implies

[β1β2 · · ·βm−1] = [βk+1βk+2 · · ·βm+k−1],

i.e.,
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(4.27) βj = βj+k

for any 1 ≤ j ≤ m− 1. The relation (4.27) implies that (4.9) has exactly the form

of (4.26). Hence, ΓB

([
n 0
0 k

])
= tr

(
Tk

n×m

)
holds. A similar argument also

establishes that (4.20) holds for any 2 ≤ k ≤ m− 1.
The proof is complete. �

As in (1.6), the n-th order zeta function is given by

(4.28) ζn(s) = exp

(
1

n

∞∑

k=1

n−1∑

l=0

1

k
ΓB

([
n l
0 k

])
skn

)
.

From Theorem 4.2, the following theorem is obtained.

Theorem 4.3. For any n ≥ 1,

(4.29) ζn(s) = exp

(
1

n

∞∑

k=1

1

k
tr
(
Tk

n×mRn×(m−1)

)
snk

)
.

The proof that ζn(s) is a rational function depends on the fact that Tn×m is
also Rn×(m−1)-symmetric.

Proposition 4.4. For any n ≥ 1,

(4.30) tn×m;σ(i),σ(j) = tn×m;i,j

for any 1 ≤ i, j ≤ pn(m−1).

Then the reduced trace operator of Tn×m is defined as follows.

Definition 4.5. For n ≥ 1, the reduced trace operator τn×m = [τn×m;i,j ] of Tn×m

is a χn×(m−1) × χn×(m−1) matrix defined by

(4.31) τn×m;i,j =
∑

k∈Cn×(m−1)(j)

tn×m;i,k

for each i, j ∈ In×(m−1).

The notion of symmetric and anti-symmetric eigenvectors of Tn×m, as in Defi-
nition 3.4, must also be introduced.

Definition 4.6. Let U be an eigenvector of Tn×m. U is called symmetric if

(4.32) Rl
n×(m−1)U = U

for all 0 ≤ l ≤ n− 1, and is called anti-symmetric if

(4.33)

n−1∑

l=0

Rl
n×(m−1)U = 0.

The equivalent class R(U) of U is defined by
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(4.34) R(U) =
{
Rl

n×(m−1)U
∣∣0 ≤ l ≤ n− 1

}
.

Now, the main result can be obtained.

Theorem 4.7. For any n ≥ 1,

(4.35) ζn(s) =
∏

λ∈Σ(Tn×m)

(1− λsn)−χ(λ)

(4.36) = (det (I − snτn×m))−1 ,

where χ(λ) is the number of linearly independent symmetric eigenvectors and gen-
eralized eigenvectors of Tn×m with eigenvalue λ.

The zeta function is

(4.37) ζ(s) =

∞∏

n=1

(det (I − snτn×m))
−1
.

Proof. Lemma 3.7: the symmetrization of eigenvectors also holds for the present
cases.

The arguments in Section 3 apply here and the results follow. �

5. Zeta functions presented in inclined coordinates

This section will present the zeta function with respect to the inclined coor-
dinates, as determined by applying unimodular transformations. Z

2 is known to
be invariant with respect to unimodular transformation. Indeed, Lind [21] proved
that ζ0B;γ = ζ0B for any γ ∈ GL2(Z): the zeta function is independent of a choice of

basis for Z2. This section presents the constructions of the trace operator Tγ;n(B)
and the reduced trace operator τγ;n(B), then determines ζB;γ;n and ζB;γ . Finally,
ζB;γ is obtained as

(5.1) ζB;γ(s) =

∞∏

n=1

(det(I − snτγ;n(B)))−1.

As mentioned in (1.35), ζB;γ(s) = ζ0B(s) in |s| < exp(−g(B)), for any γ ∈ GL2(Z),
which yields a family of identities when ζB;γ is expressed as Taylor series at the origin
s = 0 (Theorem 6.4). Furthermore, for some B ⊂ Σ2×2, we may find a γ ∈ GL2(Z)
such that ζB;γ offers a better description of poles and natural boundary of ζ0B when

ζB and ζ̂B fail to do so, see Example 7.4.
For simplicity, only B ⊂ Σ2×2 with two symbols are considered. The general

cases can be treated analogously.
We begin with the study in the modular group SL2(Z). The results also hold

for any γ ∈ GL2(Z) with det γ = −1.
Recall the modular group

SL2(Z) =

{[
a b
c d

] ∣∣∣ a, b, c, d ∈ Z and ad− bc = 1

}
.
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γ =

[
a b
c d

]
∈ SL2(Z) is called a unimodular transformation. Then,

(5.2) Z
2 = {p(a, c) + q(b, d)|p, q ∈ Z}

holds, here Z2 is the set of lattice points (vertices).
Consider the set of all finite-index subgroups L2 of Z2 by

L2 =

{[
a11 a12
a21 a22

]
Z
2
∣∣ a11a22 − a12a21 ≥ 1, aij ∈ Z, 1 ≤ i, j ≤ 2

}
,

here Z2 =

{(
n1

n2

)
|n1, n2 ∈ Z

}
. An equivalent relation ∼ exists in L2. Two

sublattices L =

[
a11 a12
a21 a22

]
Z2 and L′ =

[
a′11 a′12
a′21 a′22

]
Z2 are equivalent if L and

L′ determine the same sublattice of Z2: L′ = L.
The following result states the existence of unique Hermite normal upper (or

lower) triangular forms within each equivalent class in L2.

Proposition 5.1. For each L =

[
a11 a12
a21 a22

]
Z2 ∈ L2, there is a unique

[
n l
0 k

]
Z2 ∈

L2, n, k ≥ 1 and 0 ≤ l ≤ n − 1, and

[
k1 0
l1 n1

]
Z
2 ∈ L2, n1, k1 ≥ 1 and

0 ≤ l1 ≤ n1 − 1, such that they are equivalent, where

(5.3) nk = n1k1 = a11a22 − a12a21.

The proof can be found elsewhere [24].

For a given γ =

[
a b
c d

]
∈ SL2(Z), the lattice points in γ-coordinates are

(1, 0)γ = (a, b) and (0, 1)γ = (c, d),

and the unit vectors are

(
1
0

)

γ

=

(
a
b

)
and

(
0
1

)

γ

=

(
c
d

)
.

Notably, when γ =

[
1 0
0 1

]
, standard rectangular coordinates are used and the

subscript γ is omitted.
The parallelogram

Mγ =

[
n l
0 k

]

γ

with respect to γ is defined by

(5.4) Mγ

(
1
0

)

γ

=

(
n
0

)

γ

=

(
na
nb

)

and

(5.5) Mγ

(
0
1

)

γ

=

(
l
k

)

γ

=

(
la+ kc
lb+ kd

)
.
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Hence,

(5.6) Mγ =

[
na la+ kc
nb lb+ kd

]
.

Let Lγ =MγZ
2. Then,

(5.7) Lγ = γtL

is easily verified:

γtL =

[
a c
b d

] [
n l
0 k

]
Z
2 =

[
na la+ kc
nb lb+ kd

]
Z
2 =MγZ

2 = Lγ .

The Hermite normal form in Proposition 5.1 indicates the existence and unique-
ness of 0 ≤ lj ≤ nj − 1, 1 ≤ kj for j = 1, 2, such that

(5.8) Lγ =

[
a c
b d

] [
n l
0 k

]
Z
2 =

[
n1 l1
0 k1

]
Z
2 =

[
k2 0
l2 n2

]
Z
2

with n1k1 = n2k2 = nk.
Therefore, the n-th order zeta function of ζ0B(s) with respect to γ is defined by

(5.9) ζB;γ;n(s) = exp

(
1

n

∞∑

k=1

n−1∑

l=0

1

k
ΓB

([
n l
0 k

]

γ

)
snk

)

and the zeta function ζB;γ with respect to γ is defined by

(5.10) ζB;γ(s) ≡
∞∏

n=1

ζB;γ;n(s).

Since (5.8) holds, the iterated sum in (5.9) and (5.10) is a rearrangement of
ζ0B(s). Therefore,

(5.11) ζB;γ(s) = ζ0B(s)

for |s| < exp(−g(B)). See Proposition 6.2 (i) and another work [21].
The main purpose of this section is to establish results that are similar to The-

orems 3.8, 3.12 and 4.7:

(5.12) ζB;γ;n(s) =
∏

λ∈Σ(Tγ;n)

(1 − λsn)−χγ;n

(5.13) = (det (I − snτγ;n))
−1
,

where Tγ,n is the trace operator with respect to γ and τγ;n is the associated re-
duced trace operator of Tγ;n. The following introduces cylindrical matrix Cγ and
rotational symmetrical operator Rγ,n. Only the essential parts of the proofs of the
results are presented and the details are left to the reader.

In the following, a unimodular transformation γ is given and fixed. Let Zγ;n×m

be the n×m lattice with one side in the γ1 =

(
1
0

)

γ

=

(
a
b

)
direction and the
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other side in the γ2 =

(
0
1

)

γ

=

(
c
d

)
direction. The total number of lattice

points on Zγ;n×m is n · m. The ordering matrix Yγ;n×m = [yγ;n×m;i,j] of local
patterns [βγ;α1,α2 ]1:n,1:m is defined on Zγ;n×m. On Zγ;2×2 and Zγ;n×2, Yγ;2×2 is

arranged as in (2.2) and Yγ;n×2 is defined recursively as in (2.13) and (2.14), except
that the horizontal is now in the γ1 direction and the vertical is in the γ2 direction.
Yγ;n×m = [yγ;n×m;i,j] is given in (4.2).

The γ1-periodic patterns of period n with height m on Zγ;(n+1)×m can be
recorded as Cγ;n×m;i,j in a cylindrical matrix Cγ;n×m. The indices i, j are given
by (4.3) and (4.4) with p = 2.

To illustrate the cylindrical matrix Cγ;n×m, consider the following example:

given γ =

[
1 1
0 1

]
, Cγ;1×3 is defined by

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

.

Fig 5.1.

The shift operator σγ is defined to shift one step to the left in the γ1 direction.
Since the admissible local pattern B is given on square lattice Z2×2, the periodic

patterns in γ-coordinates that are B-admissible must be verified on Z2×2. Let
Z2×2 ((i, j)) be the square lattice with the left-bottom vertex (i, j):

Z2×2((i, j)) = {(i, j), (i+ 1, j), (i, j + 1), (i+ 1, j + 1)} .
Now, the admissibility is demonstrated to have to be verified on finite square

lattices.

Proposition 5.2. Given γ =

[
a b
c d

]
∈ SL2(Z) and n ≥ 1, k ≥ 1 and 0 ≤ l ≤

n− 1. An

[
n l
0 k

]

γ

-periodic pattern U is B-admissible if and only if
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(5.14) U
∣∣
Z2×2((ξ,η)γ)

∈ B
for any 0 ≤ ξ ≤ n− 1 and 0 ≤ η ≤ k − 1.

Proof. Clearly, (5.14) is a necessary condition. Now, only (5.14) must be shown to
be sufficient. Since ad− bc = 1, if (ξ, η)γ = (i, j), then

(5.15)





(i+ 1, j) = (ξ + d, η − b)γ ,
(i, j + 1) = (ξ − c, η + a)γ ,
(i+ 1, j + 1) = (ξ + d− c, η + a− b)γ ,

are easily verified.
Now, suppose that (5.14) holds; then, the periodicity and (5.15) imply that (5.14)

holds for all (ξ, η) ∈ Z
2.

The proof is complete. �

For a given basic set B ⊂ {0, 1}Z2×2, the definition of trace operator Tγ;n×m of B
on Zγ;n×m has to be justified, since B is given in a 2×2 square lattice in the

(
1
0

)

and

(
0
1

)
directions and Tγ;n×m is defined in the

(
a
b

)
and

(
c
d

)
directions.

For any γ =

[
a b
c d

]
∈ SL2(Z), the height h(γ) of γ is

(5.16) h = h(γ) = |a|+ |b|,
and the width w(γ) of γ is

(5.17) w = w(γ) = |c|+ |d|.
The following lemma determines that the first square lattice that occurs in a

parallelogram in the γ-coordinates is proven first.

Lemma 5.3. For any γ =

[
a b
c d

]
∈ SL2(Z), there exists exactly one square

lattice that is determined by a parallelogram with vertices (0, 0)γ, (w, 0)γ , (0, h)γ
and (w, h)γ . The square lattice has either vertices (0, h)γ and (w, 0)γ or vertices
(0, 0)γ and (w, h)γ .

Proof. The proofs are divided into three cases.
(I) no zero in a, b, c or d: eight subcases.
(II) exactly one zero in a, b, c and d: 16 subcases.
(III) exactly two zeros in a, b, c and d: four subcases.

The proof is given for only a few cases. The proofs for the other cases are
analogous and so are omitted.

(I)(i) a, b, c, d > 0. Since ad − bc = 1, 0 < b
a <

d
c . Let (p, 0)γ and (0, q)γ be the

two couple of vertices of the first square lattice along γ1 and γ2 directions. See Fig
5.2 (i). Then

pa− qc = 1 and −pb+ qd = 1,

implying
p = c+ d = w and q = a+ b = h.



44 JUNG-CHAO BAN∗, WEN-GUEI HU, SONG-SUN LIN∗∗, AND YIN-HENG LIN

(I)(ii) a > 0, b > 0, c < 0, d < 0. Then, ad− bc = 1 implies b
a >

d
c > 0. See Fig

5.2 (ii). In this case,

pa+ qc = −1 and pb+ qd = 1.

Therefore,

p = −c− d = |c|+ |d| = w and q = a+ b = h.

The proof is complete.

Fig 5.2 (i). Fig 5.2 (ii).

(pa, pb)

(qc, qd)

(pa, pb)

(qc, qd)

�

The lemma shows that the existence of the parallelogram contains exactly n · k
square lattices, as follows.

Proposition 5.4. Given γ =

[
a b
c d

]
∈ SL2(Z), for any n ≥ 1 and k ≥ 1,

exactly n · k square lattices have pairs of vertices that lie on the parallelogram that
is determined by (0, 0)γ, (w+n− 1, 0)γ, (0, h+ k− 1)γ and (w+n− 1, h+ k− 1)γ.

For a given B, γ ∈ SL2(Z) and n ≥ 1, the trace operator Tγ;n(B) acts exactly
on n square lattices which lie in the γ1-direction.

Therefore, consider Zγ;n+w,h+1. From Proposition 5.4, n square lattices have
pairs of vertices on Zγ;n+w,h+1. The γ1-periodic patterns with period n and height
h+ 1 are denoted by Cγ;n+w,h+1.

The trace operator Tγ;n = Tγ;n(B) = [tγ;n;i,j], associated with B (where B is
omitted for brevity later to prevent confusion), is defined by
(5.18)

tγ;n;i,j = 1 if and only if the pattern in Cγ;n+w,h+1;i,j is B-admissible.

As in another study [3], a recursive formula exists forTγ;n+1 in terms ofCγ;n+w+1,h+1;i,j,
B and γ.

A similar result as in Proposition 2.7 can be obtained; the detailed proof is
omitted.

Proposition 5.5. For γ =

[
a b
c d

]
∈ SL2(Z), n ≥ 1 and k ≥ 1,

(
Tk

γ;n

)
i,j

is the

number of B-admissible patterns of the form
[
βγ;1βγ;2 · · ·βγ;h+k

]

=
[
βγ;1 · · ·βγ;h

]
•
[
βγ;2 · · ·βγ;h+1

]
• · · · •

[
βγ;k+1 · · ·βγ;h+k

]
,
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where

(5.19) i = ψ
([
βγ;1 · · ·βγ;h

])

and

(5.20) j = ψ
([
βγ;k+1 · · ·βγ;k+h

])
.

Now, for any n ≥ 1, the associated rotational matrix Rγ;n which is a zero-one
2nh × 2nh matrix is defined by

(5.21) Rγ;n;i,j = 1 if and only if j = σγ(i),

where 1 ≤ i ≤ 2nh is given by (5.19) and 1 ≤ σγ(i) ≤ 2nh is defined by

(5.22) σγ(i) = ψ
([
σγ(βγ;1)σγ(βγ;2) · · ·σγ(βγ;h)

])
.

The equivalent class Cγ;n(i), the index set Iγ;n and the cardinal number χγ;n of
Iγ;n can be defined as similar to (4.14)∼(4.16) and are omitted here.

Now, the following is the rotationality of Rγ;n, as Proposition 2.3. The proof is
similar to the proof of Proposition 2.3 and omitted here.

Proposition 5.6. Let M = [Mi,j ] be a 2nh × 2nh matrix, where Mi,j is a number
or pattern or set of patterns. Then,

(5.23) (Rγ;nM)i,j =Mσγ(i),j and (MRγ;n)i,j =Mi,σ−1
γ (j).

Furthermore, for any l ≥ 1,

(5.24) (Rl
γ;nM)i,j =Mσl

γ(i),j
and (MRl

γ;n)i,j =Mi,σ−l
γ (j).

Also, Tγ;n is Rγ;n-symmetric such that the following result holds.

Proposition 5.7. Given γ =

[
a b
c d

]
∈ SL2(Z) and B ⊂ Σ2×2, for any n ≥ 1,

tγ;n;σγ(i),σγ(j) = tγ;n;i,j

for any 1 ≤ i, j ≤ 2nh.

Now, the reduced trace operator is defined as follows.

Definition 5.8. For n ≥ 1, the reduced trace operator τγ;n = [τγ;n;i,j ] of Tγ;n is a
χγ;n × χγ;n matrix defined by

(5.25) τγ;n;i,j =
∑

k∈Cγ;n(j)

tγ;n;i,k

for each i, j ∈ Iγ;n.
The eigenvector U of Tγ;n is Rγ;n-symmetric if

(5.26) Rl
γ;nU = U for all 0 ≤ l ≤ n− 1,

and anti-symmetric if

(5.27)

n−1∑

l=0

Rl
γ;nU = 0.
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See also (3.38) and (3.39). Now, define

(5.28) Rγ;n =

n−1∑

l=0

Rl
γ;n.

It is easy to verify that all results also hold for any γ ∈ GL2(Z) with det γ = −1.
The main results as in Theorem 2.13 are then obtained.

Theorem 5.9. Given any B ⊂ Σ2×2 and γ =

[
a b
c d

]
∈ GL2(Z). Then, for any

n ≥ 1, k ≥ 1 and 0 ≤ l ≤ n− 1,

(5.29) ΓB

([
n l
0 k

]

γ

)
= tr

(
Tk

γ;nR
l
γ;n

)

and

(5.30)

n−1∑

l=0

ΓB

([
n l
0 k

]

γ

)
= tr

(
Tk

γ;nRγ;n

)
.

Moreover,

(5.31) ζB,γ,n(s) = exp

(
1

n

∞∑

k=1

1

k
tr
(
Tk

γ;nRγ;n

)
snk

)
.

Finally, by the argument as in sections 3 and 4, the rationality of the n-th order
zeta function ζB;γ;n is established, as in Theorems 3.8, 3.12 and 4.7.

Theorem 5.10. For any B ⊂ Σ2×2 and γ =

[
a b
c d

]
∈ GL2(Z),

(5.32) ζB;γ;n(s) =
∏

λ∈Σ(Tγ;n(B))

(1 − λsn)−χγ;n(λ)

(5.33) = (det (I − snτγ;n))
−1
,

where the exponent χγ;n(λ) is the number of linearly independent Rγ;n-symmetric
eigenvectors of Tγ;n(B) with respect to eigenvalue λ. The zeta function of B with
respect to γ-coordinates is

(5.34) ζB;γ(s) =

∞∏

n=1

(det (I − snτγ;n))
−1
.

An immediate consequence of (5.34) is the following result, see Proposition 6.2
and [21].

Theorem 5.11. For any B ⊂ Σ2×2 and γ ∈ GL2(Z), the Taylor series for ζB;γ at
s = 0 has integer coefficients.

Proof. Since τγ;n has integer entries for any n ≥ 1. The result follows. �
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We now briefly investigate the zeta functions presented in the lower Hermite

normal form. For any γ =

[
a b
c d

]
∈ GL2(Z) and n ≥ 1, define

(5.35) ζ̂B;γ;n(s) = exp

(
1

n

∞∑

k=1

n−1∑

l=0

1

k
ΓB

([
k 0
l n

]

γ

)
snk

)

and

(5.36) ζ̂B;γ(s) =

∞∏

n=1

ζ̂B;γ;n(s).

Denote by

(5.37) γ̂ =

[
0 1
1 0

]
,

the reflection
π

4
with respect to the diagonal axis y = x.

Then we have the following results.

Theorem 5.12. For any γ ∈ GL2(Z),

(5.38) ζ̂B;γ;n = ζB;γ̂γ;n

and

(5.39) ζ̂B;γ = ζB;γ̂γ .

In particular,

(5.40) ζ̂B = ζB;γ̂ .

Proof. For any n ≥ 1, k ≥ 1 and 0 ≤ l ≤ n− 1, and γ =

[
a b
c d

]
∈ GL2(Z), denote

by the lattices

(5.41) L̂ =

[
k 0
l n

]
Z
2 and L̂γ = M̂γZ

2,

where the parallelogram M̂γ is defined by

(5.42) M̂γ =

[
k 0
l n

]

γ

.

Hence,

M̂γ

(
1
0

)

γ

=

(
k
l

)

γ

=

(
ka+ lc
kb+ ld

)

and

M̂γ

(
0
1

)

γ

=

(
0
n

)

γ

=

(
nc
nd

)
.

As in (5.7), it is easy to verify

(5.43) L̂γ = γtL̂.

Now, we show that

(5.44) L̂ = Lγ̂ .
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Indeed, by (5.7),

Lγ̂ = γ̂tL = γ̂L =

[
0 1
1 0

] [
n l
0 k

]
Z
2

=

[
0 k
n l

]
Z
2 =

[
0 k
n l

] [
0 1
1 0

]([
0 1
1 0

]
Z
2

)

=

[
k 0
l n

]([
0 1
1 0

]
Z
2

)
=

[
k 0
l n

]
Z
2 = L̂.

Similarly,

(5.45) L = L̂γ̂

holds.
Therefore,

(5.46) ΓB

([
k 0
l n

])
= ΓB

([
n l
0 k

]

γ̂

)
.

Hence, (5.46) implies

ζ̂B;n = ζB;γ̂;n

and

ζ̂B = ζB;γ̂ .

Furthermore, we show that

L̂γ = Lγ̂γ .

Indeed, by (5.43), (5.45) and (5.7),

L̂γ = γtL̂ = γtγ̂γ̂L̂ = (γ̂γ)tγ̂tL̂

= (γ̂γ)tL̂γ̂ = (γ̂γ)tL = Lγ̂γ .

Similarly,

(5.47) Lγ = L̂γ̂γ

also holds. Therefore, (5.38) and (5.39) follow. The proof is complete. �

Remark 5.13. From Theorem 5.12, for any B ⊂ Σ2×2 there is a family of zeta

functions {ζB;γ |γ ∈ GL2(Z)} =
{
ζ̂B;γ |γ ∈ GL2(Z)

}
. In computation, it is much

easier to study ζB and ζ̂B, i.e., the rectangular zeta functions. However, for certain
B, some other γ ∈ GL2(Z) may give a better description, see Example 7.4.

Remark 5.14. For any B ⊂ Σ2×2 and γ ∈ GL2(Z), ζB;γ in (5.34), which is an
infinite product of rational function, is a rearrangement of ζ0B in (1.6), which is
a triple series. In deriving the rationality of ζB;γ;n, the basic formula used is the
power series

(5.48)

∞∑

k=1

tk

k
= − log(1− t).
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The other rearrangements of ζ0B may not have the form as in (5.34). For example,
for any m ≥ 1, denote by

(5.49) fB;m(s) = exp


∑

n|m

n−1∑

l=0

1

m
ΓB

([
n l
0 m

n

])
sm




and

(5.50) fB(s) =
∞∏

m=1

fB;m(s).

In general, fB;m(s) is not a rational function of the form as in (1.3). It is also not
clear how to identify the poles or natural boundary of fB(s) from (5.49) and (5.50),
see Section 6.

6. Analyticity and meromorphic extensions of zeta functions

This section studies the analyticity and meromorphisms of zeta functions
obtained in the previous sections. Application to number theory is also considered.
For simplicity, only B ⊂ Σ2×2 with two symbols are considered. The general cases
can be treated analogously.

6.1. Analyticity of zeta functions. Recall the analyticity results of Lind [21].
Given an admissible set B ⊂ Σ2×2, the analytic region found by Lind is related to
quantity g(B), which specifies the growth rate of admissible periodic patterns.

Given an admissible set B ⊂ Σ2×2,

(6.1) g(B) ≡ lim sup
[L]→∞

1
[L] log ΓB(L)

= lim
n→∞

sup
[L]≥n

log ΓB(L)

[L]
.

Remark 6.1. Since ΓB(L) ≤ 2[L],

(6.2) g(B) ≤ log 2.

In particular,

(6.3) exp (−g(B)) ≥ 1

2
.

Recall the results of Lind [21] that are related to analyticity of zeta functions.

Proposition 6.2. According to Lind, [21]
(i) The zeta function

(6.4) ζ0B(s) = exp

(∑

L∈L2

ΓB(L)

[L]
s[L]

)

has radius of convergence exp(−g(B)) and is analytic in |s| < exp(−g(B)).
(ii) ζ0B satisfies the product formula,

(6.5) ζ0B(s) =
∏

α

π2(s
|α|),
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where the product is taken over all admissible periodic patterns α with respect to B,
and

(6.6) π2(s) =

∞∑

n=1

P (n)sn,

where P (n) is the partition function.
(iii) The Taylor series for ζ0B(s) has integer coefficients: for |s| < exp(−g(B)),

(6.7) ζ0B(s) =
∞∑

n=0

an(B)sn

with

(6.8) an(B) ∈ Z.

Remark 6.3. The L that appears in the sum of (6.4) is taken within each equivalent
class of L2. In particular, if the upper (or lower) Hermite normal form is adopted,
then

(6.9) ζ0B;γ = exp

( ∞∑

n=1

∞∑

k=1

n−1∑

l=0

1

nk
ΓB

([
n l
0 k

]

γ

)
snk

)

or

(6.10) ζ̂0B;γ = exp

( ∞∑

n=1

∞∑

k=1

n−1∑

l=0

1

nk
ΓB

([
k 0
l n

]

γ

)
snk

)
.

Equations (6.9) and (6.10) are triple sums and can be treated as a double series
in n and k after taking the summation in l.

If U is an Lγ =

[
n l
0 k

]

γ

-periodic pattern, then U is a

[
na la+ kc
nb lb+ kd

]
-

periodic pattern. By the Hermite normal form theorem, U is

[
n1 l1
0 k1

]
- periodic

and

[
k2 0
l2 n2

]
-periodic with n1k1 = n2k2 = nk, 0 ≤ l1 ≤ n1 − 1 and 0 ≤ l2 ≤

n2 − 1. Therefore, ζ0B;γ and ζ̂0B;γ are rearrangements of ζ0B and ζ̂0B, respectively.
Now, Propositions 6.2 and 5.1 imply

Theorem 6.4. For any admissible set B ⊂ Σ2×2 and γ ∈ GL2(Z),

(6.11) ζ0B(s) = ζB;γ(s) = ζ̂B;γ(s)

for |s| < exp(−g(B)). Moreover, ζB;γ and ζ̂B;γ have the same (integer) coefficients
in their Taylor series around s = 0: if

(6.12) ζB;γ =

∞∑

n=0

aγ;n(B)sn

and

(6.13) ζ̂B;γ =

∞∑

n=0

âγ;n(B)sn,

then

(6.14) aγ;n(B) = âγ;n(B) = an(B)
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for each γ ∈ GL2(Z) and n ≥ 0.

Proof. Since
∑

L∈L2

log ΓB(L)

[L]
s[L]

is absolutely convergent in |s| < exp(−g(B)), for each γ ∈ GL2(Z),

∞∑

n=1

∞∑

k=1

n−1∑

l=0

1

nk
ΓB

([
n l
0 k

]

γ

)
snk

and
∞∑

n=1

∞∑

k=1

n−1∑

l=0

1

nk
ΓB

([
k 0
l n

]

γ

)
snk

are absolutely convergent in |s| < exp(−g(B)). Hence (6.11) holds. (6.14) follows
from (6.11) and Proposition 6.2 (iii) or Theorem 5.11.

The proof is complete. �

To express the Taylor series of ζB;γ and ζ̂B;γ explicitly, consider the general
infinite product

(6.15) ζ(s) =

∞∏

n=1

Jn∏

j=1

(1 − λn,js
n)−χn,j ,

where Jn and χn,j are positive integers and λn,j ∈ C.

Proposition 6.5. Given an infinite product (6.15), its Taylor series at s = 0 is
given by

(6.16) ζ(s) =

∞∑

n=0

Pζ(n)s
n,

where

(6.17) Pζ(n) =
∑

n1+2n2+···+lnl=n

ni∈N∪{0}

l∏

m=1

am,nm
,

and

(6.18) an,i ≡
∑

κn=i

Jn∏

j=1

λ
|Kn,j|
n,j ,

where

(6.19) Kn,j = (kn,j;1, · · · , kn,j;χn,j
),

(6.20) |Kn,j | =
χn,j∑

l=1

kn,j;l,
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kn,j;l is a non-negative integer, and

(6.21)

κn =
Jn∑
j=1

|Kn,j|

=
Jn∑
j=1

χn,j∑
l=1

kn,j;l.

Proof. It is easy to verify that

Jn∏
j=1

(1− λn,js
n)−χn,j

=
Jn∏
j=1

( ∞∑
k=0

λkn,js
kn

)χn,j

=
∞∑
p=0

(
∑

κn=p

Jn∏
j=1

λ
|Kn,j |
n,j

)
spn.

Therefore, (6.16)∼(6.21) follow. The proof is complete. �

Remark 6.6. Pζ(n) is a general partition function where n is partitioned three

times. Indeed, if H2 =




1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


, as shown by Lind [21], Jn = λn,j =

χn,j = 1 and

ζ(s) =
∞∏

n=1
(1 − sn)−1

=
∞∑

n=0
P (n)sn,

where P (n) is the typical partition function. In this case, Pζ(n) = P (n).

The rest of subsection discusses the meromorphicity of zeta function ζB;γ . We
need the following notations.

Definition 6.7.

(i) Given any B ⊂ Σ2×2 and γ ∈ GL2(Z). The meromorphic domain MB;γ of
ζB;γ is defined by

(6.22) MB;γ = {s ∈ C|ζB;γ(s) is meromorphic at s}.
(ii) The pole set PB;γ of ζB;γ is defined by

PB;γ = {s ∈ C|1− λsn = 0, where λ ∈ Σ(Tγ;n(B)), χγ;n(λ) ≥ 1 and n ≥ 1}
= {s ∈ C|1− λsn = 0, where λ ∈ Σ(τB;γ;n) and n ≥ 1}.

(6.23)

(iii) ζB;γ has a natural boundary ∂MB;γ if every point in ∂MB;γ is singular.

Remark 6.8.

(i) From (6.3) and Proposition 6.2 (i),

(6.24) MB;γ ⊇ {s ∈ C| |s| < exp(−g(B))} ⊇
{
s ∈ C| |s| < 1

2

}
.
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(ii) ζB;γ has a natural boundary if

(6.25) PB;γ ⊇ ∂MB;γ .

In studying the infinite products ζB;γ(s), the associated infinite series

(6.26) ξB;γ(s) ≡
∞∑

n=1


 ∑

λ∈Σ(Tγ;n)

λχγ;n(λ)


 sn

is useful. Denote by

(6.27) λ∗B;γ ≡ lim sup
n→∞


 ∑

λ∈Σ(Tγ;n)

|λ|χγ;n(λ)




1
n

.

Let

(6.28) S∗
B;γ ≡

(
λ∗B;γ

)−1
.

Therefore, ξB;γ absolutely converges for |s| < S∗
B;γ .

Furthermore, the reciprocal of ζB;γ ,

(6.29) ζ−1
B;γ ≡

∞∏

n=1

∏

λ∈Σ(Tγ;n)

(1− λsn)χγ;n(λ)

is absolutely convergent in |s| < S∗
B;γ . The similar notations can also be introduced

to ζ̂B;γ , the details are omitted here.
Accordingly, zeta functions ζB;γ have the following meromorphic property.

Theorem 6.9. Given an admissible set B ⊂ Σ2×2 and γ ∈ GL2(Z). Then
zeta function ζB;γ is meromorphic in |s| < S∗

B;γ and may have poles in PB;γ ∩{
s ∈ C| |s| < S∗

B;γ

}
, i.e.,

{
s ∈ C| |s| < S∗

B;γ

}
⊂ MB;γ .

Proof. For each s /∈ PB;γ and |s| < S∗
B;γ , ζB;γ is convergent and has an isolated pole

in PB;γ when |s| < S∗
B;γ , and then is meromorphic in |s| < S∗

B;γ .
The proof is complete. �

Theorem 6.10. Given admissible set B ⊂ Σ2×2. For any γ and γ′ in GL2(Z), the
zeta functions ζB;γ = ζB;γ′ in |s| < min(S∗

B;γ ,S∗
B;γ′).

Proof. Since ζB;γ and ζB;γ′ are meromorphic functions and are equal to ζ0B on
|s| < exp(−g(B)), by uniqueness theorem of meromorphic functions [31], they are
equal on |s| < min(S∗

B;γ ,S∗
B;γ′). �

Remark 6.11. Given B ⊂ Σ2×2, can we find a γ ∈ GL2(Z) such that ζB;γ is the
maximum meromorphic extension of ζ0B, i.e, for any meromorphic extension ζ′B of
ζ0B, ζB;γ is a meromorphic extension of ζ′B. In particular, for any γ′ ∈ GL2(Z),
MB;γ′ ⊆ MB;γ? Furthermore, is there γ ∈ GL2(Z) such that ζB;γ admits a natural
boundary? These two problems are closely related. The answers are not clear. See
examples studied in subsection 6.2 and section 7.
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6.2. EXAMPLES. This subsection presents some examples to elucidate the meth-
ods described above.

Example 6.12. Consider

(6.30) B =

{
0

0 0

0

,

1

0 0

1

,

0

1 1

0

,

1

1 1

1

}
.

Clearly,

(6.31) H2 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 and V2 =




1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1


 .

First, ΓB

([
n l
0 k

])
and ΓB

([
k 0
l n

])
are computed directly. Indeed, B-

admissible patterns have the same symbols in each row of the lattice, as presented
in Fig 6.1. Then,

(6.32) ΓB

([
n l
0 k

])
= 2k for any 0 ≤ l ≤ n− 1

and

(6.33) ΓB

([
k 0
l n

])
= 2(n,l) for any 1 ≤ l ≤ n− 1,

where (n, l) is the greatest common divisor of n and l, are easily verified.

n

k

l

Fig 6.1 (a).

n

k

l

Fig 6.1 (b).

Consequently, for any n ≥ 1,

ζn(s) = exp

(
1
n

∞∑
k=1

n2k

k skn
)

(6.34) = (1 − 2sn)−1

and the zeta function ζ(s) =
∞∏

n=1
(1 − 2sn)−1 with S∗ = 1, which was obtained by

Lind in [21].
However, (6.33) implies
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ζ̂n(s) = exp

((
1
n

n∑
l=1

2(n,l)
) ∞∑

k=1

skn

k

)

(6.35) = (1− sn)−χ̂n ,

and the zeta function ζ̂(s) =
∞∏

n=1

(1− sn)−χ̂n , where

(6.36) χ̂n =
1

n

n∑

l=1

2(n,l).

Now, it is easy to check that lim
n→∞

(χ̂n)
1
n = 2. Therefore, Ŝ∗ = 1

2 as in (6.27) and

(6.28) for ζ̂(s).
Theorem 6.4 implies that the zeta function ζ0B(s) of B given by (6.30) is

(6.37) ζ0B(s) =
∞∏

n=1

(1 − 2sn)−1 =

∞∏

n=1

(1− sn)−χ̂n

in |s| < 1
2 .

The natural boundary of (6.37) is |s| = 1 and ζ has poles
{
2−

1
n e2πij/n : 0 ≤ j ≤ n− 1, n ≥ 1

}
,

as described elsewhere [21].
However, (6.31) implies

T2 = V2 and T̂2 = H2.

Furthermore,

(6.38) Tn =




1 0 · · · 0 1
0 0 · · · 0 0
...

...
0 0 · · · 0 0
1 0 · · · 0 1



2n×2n

and

(6.39) T̂n = I2n ,

where I2n is the 2n × 2n identity matrix.
From (6.38), λn,1 = 2 and λn,j = 0, 2 ≤ j ≤ 2n. Then, the Rn-symmetry

eigenvector of λn,1 can be chosen as (1, 0, · · · , 0, 1)t. Therefore, χ(λn,1) = 1. Hence,
(6.34) follows.

As for T̂n, λn,j = 1 for 1 ≤ j ≤ 2n. Furthermore, for each i ∈ In, define
eigenvector Ui = (ui,j)

t where ui,j = 1 if j ∈ Cn(i) and ui,j = 0 if j /∈ Cn(i).
Clearly, Ui is Rn-symmetric and χ(λn,i) = 1. Therefore,

(6.40) ζ̂n(s) = (1 − sn)−χn ,
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where χn is the cardinal number of In. Now, (6.36) and (6.40) imply χ̂n = χn, i.e.,

(6.41) χn =
1

n

n∑

l=1

2(n,l).

Moreover, (6.39) implies

ζ̂n(s) = exp

(
1
n

∞∑
k=1

tr(Rn)
k skn

)

= exp

(
1
n tr(Rn)

∞∑
k=1

skn

k

)

= 1
n tr(Rn)(1− sn)−1.

Therefore, (6.40) implies

(6.42)
1

n
tr(Rn) = χn.

Hence,

(6.43) tr(Rn) =
n∑

l=1

2(n,l).

The equality (6.14) of the Taylor series of
∞∏

n=1
(1 − 2sn)−1 and

∞∏
n=1

(1 − sn)−χn

yield some identity for χn. Indeed, let
∞∏

n=1

(1− sn)−χn =

∞∑

n=0

âns
n

and ∞∏

n=1

(1 − 2sn)−1 =

∞∑

n=0

ans
n.

Now,

(6.44) ân = an for any n ≥ 0.

The expressions for ân and an are omitted here.
The following example can also be solved explicitly and is helpful in elucidating

the natural boundary and location of the poles of the zeta function.

Example 6.13. Consider

(6.45) H2 =




1 1 1 0
1 1 1 0
1 1 1 0
0 0 0 0


 .

Then,

(6.46) V2 =




1 1 1 1
1 0 1 0
1 1 0 0
1 0 0 0


 = G⊗G,
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where

(6.47) G =

[
1 1
1 0

]

is the one-dimensional golden-mean matrix, which has eigenvalues

(6.48) g = 1+
√
5

2 and g = 1−
√
5

2 = −g−1.

Now,

(6.49) H̃2 = V2 and Ṽ2 = H2.

Then,

T2 = V2 ◦ H̃2 = V2 = G⊗G

can be verified, and for any n ≥ 2,

(6.50) Tn = G⊗G⊗ · · · ⊗G⊗︸ ︷︷ ︸
n−1 times⊗

G =
n−1
⊗ G,

which is the n− 1 times Kronecker product of G.
The eigenvalues of Tn are given by

(6.51) λε =




n∏

j=1

εj


 gε1gε2 · · · gεn ,

where ε = ε1ε2 · · · εn is an n-sequence with εj ∈ {−1, 1}. The corresponding
eigenvector of (6.51) is

(6.52) Uε =

(
ε1g

ε1

1

)
⊗
(
ε2g

ε2

1

)
⊗ · · ·

(
εng

εn

1

)
.

Clearly, {Uε} are linearly independent.
The total number of ε is 2n and the spectrum of Tn is

(6.53) Σ(Tn) = {gn−j · gj |0 ≤ j ≤ n},
which has n+1 members. In fact, ε has

(6.54) j =

n∑

i=1

1

2
(1− εi)

many g and n− j many g.
For ε, the counting function

(6.55) i = ψ̃(ε) =

n∑

k=1

1

2
(1− εk)2

n−k

is defined when 1 ≤ i ≤ 2n and denoted by Un;i = Uε.
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Define

σ(ε) = ε2ε3 · · · εnε1;
then,

(6.56) σ(i) = ψ̃(σ(ε))

for any 1 ≤ i ≤ 2n, where σ(i) is defined in (2.35).
For any i ∈ In,

n−1∑

i=0

Un,σl(i) =

n−1∑

i=0

Rl
nUn,i 6= 0.

Then, Lemma 3.8 implies

χ(λn,i) = 1

for i ∈ In. Therefore,

(6.57)

χn,j = χ(gn−jgj)

=
∑
i∈In

λn,i=gn−jgj

1.

Clearly, χn,0 = χn,n = 1. Furthermore for any 1 ≤ j ≤ n − 1, by Burnside’s
Lemma,

(6.58) χn,j =
1

n

∑

d|(j,n−j)

φ((j, n− j)/d)C
nd/(j,n−j)
jd/(j,n−j) ,

where φ is the Euler totient function (2.40). The detailed proof of (6.58) is omitted
for brevity. Therefore,

(6.59) ζn(s) =

n∏

j=0

(
1− gn−jgjsn

)−χn,j

and

ζ(s) =

∞∏

n=1

ζn(s)

(6.60) =

∞∏

n=1

(1− gnsn)
−1

n∏

j=1

(
1− gn−jgjsn

)−χn,j
.

Since λn,1 = gn is the maximum eigenvalue of Tn,

(6.61) lim
n→∞

λ
1
n

n,1 = g.

From (6.58),

lim sup
n→∞

max
0≤j≤n

(∣∣gn−jgjχn,j

∣∣) 1
n = 2,

which implies S∗ = 1
2 in (6.28) and S∗ < g−1.



TWO-DIMENSIONAL ZETA FUNCTIONS 59

Now, consider T̂n and the associated zeta function ζ̂(s).
Clearly,

T̂2 = H2 ◦ Ṽ2 = H2.

To study higher-order T̂n, n ≥ 3, the recursive formula of Hn must be obtained.
Let

(6.62) Hn =

[
Hn;1 Hn;2

Hn;3 Hn;4

]
.

Now,

Hn+1 =

[
Hn+1;1 Hn+1;2

Hn+1;3 Hn+1;4

]

=




Hn;1 Hn;2 Hn;1 0
Hn;3 Hn;4 Hn;3 0
Hn;1 Hn;2 Hn;1 0
0 0 0 0




(6.63) =




Hn

Hn−1 0
Hn;3 0

Hn−1 Hn;2

0 0
Hn−1 0
0 0



.

If the zero rows and columns are deleted from Hn, then clearly the remaining
matrix is a rn × rn full matrix Ern , where rn is the sum of the entries of the first
row of Hn. The maximum eigenvalue ρ(Hn) equals rn.

Therefore, (6.63) implies

(6.64) rn+1 = rn + rn−1,

where r2 = 3 and r3 = 5.
Furthermore, for n ≥ 2,

(6.65) T̂n =

[
Hn;1 Hn;2

Hn;3 Hn;4

]
◦




n−2
⊗
[

1 1
1 1

]
n−2
⊗
[

1 0
1 0

]

n−2
⊗
[

1 1
0 0

]
n−2
⊗
[

1 0
0 0

]



.

The remaining matrix of T̂n can be verified to be a full matrix Er̂n after the zero
rows and columns have been deleted, where r̂n is the sum of entries in the first row

of T̂n. Hence, the maximum eigenvalue λ̂n of T̂n equals r̂n, the other eigenvalues
are zeros.

Clearly, r̂2 = 3,
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T̂3 =




1 1 1 0 1 0 0 0
1 1 1 0 1 0 0 0
1 1 1 0 1 0 0 0
0 0 0 0 0 0 0 0
1 1 1 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0




and r̂3 = 4. Since

Hn+1;2 =

[
Hn−1 0
Hn;3 0

]
,

the first row of Hn+1;2

n−1
⊗
[

1 0
1 0

]
can be verified to be the same as the first row

in Hn−2. Hence,

(6.66) r̂n+1 = rn + rn−2.

Combining (6.64) with (6.66) and

(6.67) λ̂n+1 = λ̂n + λ̂n−1

with

(6.68) λ̂2 = 3 and λ̂3 = 4

yields

(6.69) ζ̂n(s) = (1− λ̂ns
n)−1

and

(6.70) ζ̂(s) =

∞∏

n=1

(1− λ̂ns
n)−1.

Now, λ̂n and gn must be compared. Let

gn = αng + βn

with α2 = β2 = 1. Then, αn+1 = αn + βn and βn+1 = αn, or αn+1 = αn + αn−1

with α3 = 2. That

λ̂n = αn + 2βn

can be verified and

(6.71) λ̂n+1 − gn+1 = −
(
(
√
5− 1)αn+1 + 2βn

(
√
5− 1)αn + 2βn−1

)
(λ̂n − gn).

Equation (6.71) implies
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(6.72) λ̂
− 1

2n
2n < g−1 < λ̂

− 1
2n+1

2n+1 .

Equation (6.72) implies that the meromorphic extension ζ̂ of ζ0B satisfies Ŝ∗ = g−1

and has poles on
{
λ̂
− 1

2n
2n eπij/n : 0 ≤ j ≤ 2n− 1, n ≥ 1

}
with the natural boundary

|s| = g−1.

7. Equations on Z2 with numbers in a finite field

This section briefly discusses the equations on Z
2 with numbers in a finite

field, see [15, 21, 33]. The problems can be studied by applying the methods that
were developed in the previous sections. Consider first the following example.

Example 7.1. Let F2 = {0, 1} be the field with two elements and

(7.1) X =
{
x ∈ F Z

2

2 : xi,j + xi+1,j + xi,j+1 + xi+1,j+1 = 0 for all i, j ∈ Z

}
.

Then, X is a compact group with coordinate-wise operations, and it is invariant
under the natural Z2-shift action σ.

The equation

(7.2) xi,j + xi+1,j + xi,j+1 + xi+1,j+1 = 0

is now interpreted as a pattern generation problem on Z2×2. The solutions of (7.2)
are clearly given by

(7.3) B =

{
0

0 0

0

,

0

0 1

1

,

1

0 0

1

,

1

0 1

0

,

0

1 0

1

,

0

1 1

0

,

1

1 0

0

,

1

1 1

1

}
,

which consists of all even patterns of Z2×2.
B is the basic set of admissible local patterns determined by (7.2). The set of all

global patterns Σ(B) generated by B is exactly X:

(7.4) Σ(B) = X.

Hence, the zeta function ζB(s) of B can be derived as in (3.50).

H2 = H2(B) =




1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1


 =

[
I2 J2
J2 I2

]
.

That H2 = V2 = H̃2 = Ṽ2 can be easily checked; then Tn = T̂n for all n ≥ 1.
For n ≥ 1,

I2n =




1 0 · · · 0 0
0 1 · · · 0 0
...

...
...

0 0 · · · 1 0
0 0 · · · 0 1



2n×2n

and J2n =




0 0 · · · 0 1
0 0 · · · 1 0
...

...
...

0 1 · · · 0 0
1 0 · · · 0 0



2n×2n

.
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Then, Tn = I2n + J2n for all n ≥ 1. Moreover, σ(Tn) = {2, 0} for n ≥ 1, and the
algebraic multiplicities of λ = 2 and λ = 0 of Tn are both equal to 2n−1.

For n ≥ 1, consider the 2n × 2n matrix

Un = [U1, · · · , U2n ] =
1√
2




1 0 0 0 0 0 0 1
0 1 0 · · · 0 0 · · · 0 1 0
0 0 1 0 0 1 0 0

...
...

...
...

0 0 0 1 1 0 0 0
0 0 0 1 −1 0 0 0

...
...

...
...

0 0 1 0 0 −1 0 0
0 1 0 · · · 0 0 · · · 0 −1 0
1 0 0 0 0 0 0 −1




.

Then, Tn is expressed in Jordan canonical form as Tn = UnJnUn, where{
Jn;i,i = 2 for 1 ≤ i ≤ 2n−1,
Jn;i,j = 0 otherwise.

From (3.10),

χn(2) = 1
n

2n−1∑
j=1

|Rn ◦ UjU
t
j |

= 1
2n |Rn ◦ (I2n + J2n)|

= 1
2n tr(Rn) +

1
2n |Rn ◦ J2n |.

Since 1
2n tr(Rn) =

χn

2 by (6.42) and 1
2n |Rn ◦ J2n | ≥ 0,

(7.5) lim
n→∞

χn(2)
1
n = 2.

In fact,

(7.6) χn(2) =
∑

d|n

φ(2d)2n/d

2n
,

where φ(n) is the Euler totient function.
Then,

(7.7) ζB(s) =
∞∏

n=1

1

(1− 2sn)χn(2)
.

Equation (7.6) implies that S∗ = 1
2 and ζB is analytic in |s| < 1

2 . However, it

is not clear whether there is a γ ∈ GL2(Z) such that ζB;γ has poles in |s| ≥ 1
2 and

has the natural boundary. Further investigation must be performed later.

Lind [21] considered the following example.

Example 7.2. Consider F2 = {0, 1} and

(7.8) X =
{
x ∈ F Z

2

2 : xi,j + xi+1,j + xi,j+1 = 0 for all i, j ∈ Z

}
.
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In this case, X is also a compact group with coordinate-wise operations, and it
is invariant under the natural Z2-shift action σ.

The equation

(7.9) xi,j + xi+1,j + xi,j+1 = 0

can be interpreted as a pattern generation problem on L-shape lattices: , as in
Lin and Yang [?]. Indeed, the solutions of (7.9) are given by

(7.10) B(L) =
{

0

0 0 ,

1

0 1 ,

0

1 1 ,

1

1 0

}
,

which consists of all even patterns on L-shape lattices.
B(L) can be extended to Z2×2 as

(7.11)

B =

{
0

0 0

0

,

0

0 0

1

,

1

0 1

0

,

1

0 1

1

,

0

1 1

0

,

0

1 1

1

,

1

1 0

0

,

1

1 0

1

}
.

That

(7.12) Σ(B) = X

can be easily verified.
Therefore,

(7.13) H2 = H2(B) =




1 1 0 0
0 0 1 1
0 0 1 1
1 1 0 0


 = V2

and

(7.14) H̃2 =




1 0 1 0
0 1 0 1
0 1 0 1
1 0 1 0


 = Ṽ2.

According to (2.58),

T1 =

[
1 0
1 0

]
and ζ1(s) =

1
1−s .

For T2 = V2 ◦ H̃2, (7.13) and (7.14) imply

(7.15) T2 =




1 0 0 0
0 0 0 1
0 0 0 1
1 0 0 0


 .

The eigenvalue λ of T2 with its χ2(λ) is found and the reduced trace operator τ2,
introduced in (3.52), is applied as follows.

Let V = (v1, v2, v3, v4)
t be an eigenvector of T2 with eigenvalue λ. Then,
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(7.16)





v1 = λv1
v4 = λv2
v4 = λv3
v1 = λv4.

If V is a rotationally symmetric eigenvector as in Example 2.2 (i), then v2 = v3.
The equivalent classes are C2(1) = {1}, C2(2) = {2, 3} and C2(4) = {4}.

Let C2(j), j = 1, 2, 4, be vertices; write vj = λvi as C2(i) → C2(j), which
describes an edge from C2(i) to C2(j). Then (7.16) can be plotted as in Fig 7.1. τ2
is the reduced trace operator of T2.

C2(1)

C2(4) C2(2)

Fig 7.1.

and τ2 =




1 0 0
0 0 1
1 0 0


 .

Figure 7.1 includes only one cycle C2(1) → C2(1) with period 1. Then, λ = 1 is an
eigenvalue with χ2(1) = 1. Hence,

ζ2(s) =
1

1− s2
.

For n = 3, the equivalent classes C3(1) = {1}, C3(2) = {2, 3, 5}, C3(4) = {4, 7, 6}
and C3(8) = {8} are vertices. T3 generates the graph in Fig 7.2 and the reduced
trace operator τ3.

C3(1)

C3(8)

C3(2)

C3(4)

Fig 7.2.

and τ3 =




1 0 0 0
0 0 1 0
0 0 1 0
1 0 0 0


 .

Figure 7.2 includes two cycles with period 1. Therefore,

ζ3(s) =
1

(1− s3)2
.

For n = 4, T4 generates the graph in Fig 7.3 and the reduced trace operator τ4.
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C4(1)

C4(16)

C4(8)

C4(6)

C4(4)

C4(2)

Fig 7.3.

and τ4 =




1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
0 0 1 0 0 0
1 0 0 0 0 0



.

Figure 7.3 includes only one cycle with period 1. Hence,

ζ4(s) =
1

1− s4
.

For n = 5, T5 generates the graph in Fig 7.4 and the reduced trace operator τ5.

C5(1)C5(32)

C5(16)

C5(12)

C5(8) C5(6)

C5(4)

C5(2)

Fig 7.4.

and τ5 =




1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0




.

Figure 7.4 only includes one cycle with period 1 and one cycle with period 3.
Therefore,

(7.17) ζ5(s) =
1

(1 − s5)(1− s5)(1 − ρ3s5)(1 − ρ23s
5)

=
1

(1− s5)(1− s15)
,

where ρ3 = e
2πi
3 , (ρ33 = 1).

In general, for any n ≥ 1, induction can be used to show that each row of Tn

has exactly a single 1 and each column has either two 1s or all 0s.
Therefore, the eigenvalue λ of Tn is |λ| = 1 or λ = 0. By a similar argument as

for n = 2 to 5, for the eigenvalue λ with a rotationally symmetric eigenvector, Tn

generates the graph with equivalent classes Cn(i) as vertices and has m(n) disjoint
cycles; each cycle has period pn,k ≥ 1, 1 ≤ k ≤ m(n). In computing, it is more
efficient to compute λ ∈ Σ(τn) with algebraic multiplicity χ(λ).

The following can be demonstrated
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(7.18) ζn(s) =

m(n)∏

k=1

1

(1− ρn,ksn) · · · (1− ρ
χn,k−1
n,k sn) (1− sn)

=

m(n)∏

k=1

1

1− snpn,k
,

where ρn,k = e
2πi
pn,k .

Hence,

(7.19) ζ(s) =

∞∏

n=1

m(n)∏

k=1

1

1− snpn,k
.

For n = 1 to 20, the numbers and periods of cycles are listed in Table 7.1.

n 1 2 3 4 5 6 7 8 9 10
p
q

1
1

1
1

1
2

1
1

1 3
1 1

1 2
2 1

1 7
3 1

1
1

1 7
2 4

1 3 6
1 1 4

n 11 12 13 14 15 16
p
q

1 31
1 3

1 2 4
2 1 5

1 63
1 5

1 2 7 14
3 4 1 20

1 3 15
4 4 72

1
1

n 17 18 19 20
p
q

1 5 15
1 3 256

1 2 7 14
2 1 4 259

1 511
1 27

1 3 6 12
1 1 4 272

p : the period of cycle.
q = q(p) : the number of cycles with period p.

Table 7.1.

From Table 7.1, ζn can be written for 1 ≤ n ≤ 20. For example,

ζ13 =
1

(1− s13) (1− s819)
5

and

ζ14 =
1

(1− s14)
3
(1− s28)

4
(1− s98) (1− s196)

20 .

Up to n = 20, the Taylor expansion of (7.19) at s = 0, which recovers Lind’s
result [21] (p.438), is

(7.20) ζB(s) = 1 + s+ 2s2 + 4s3 + 6s4 + 9s5 + 16s6 + 24s7 + 35s8 + 54s9

+78s10 + 110s11 + 162s12 + 226s13 + 317s14 + 446s15 + 612s16

+834s17 + 1146s18 + 1543s19 + 2071s20 + · · · .
Further investigation is needed to understand τn and pn,k for large n. The results
will appear elsewhere.

Lind [21] showed that the zeta function ζ0 defined by (7.9) is analytic in |s| < 1.
By (7.19), all poles of ζ appear on |s| = 1. Therefore, ζ is analytic in |s| < 1 with
natural boundary |s| = 1.
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In the following example, the harmonic patterns on square-cross lattice L: ,
which were studied by Ledrappier [15], are investigated.

Example 7.3. Let F2 = {0, 1} and

(7.21) X =
{
x ∈ F Z

2

2 : xi,j = xi−1,j + xi,j−1 + xi+1,j + xi,j+1 for all i, j ∈ Z

}
.

Clearly, (7.21) can be written as

(7.22)
{
x ∈ F Z

2

2 : xi,j + xi−1,j + xi,j−1 + xi+1,j + xi,j+1 = 0 for all i, j ∈ Z

}
.

Then, X is also a compact group with coordinate-wise operations, and it is invariant
under the natural Z2-shift action σ.

The equation

(7.23) xi,j + xi−1,j + xi,j−1 + xi+1,j + xi,j+1 = 0

can be interpreted as a pattern generation problem on a square-cross lattice. Indeed,
the basic set of (7.23) on L is

(7.24) B(L) =





x0,0x−1,0

x0,−1

x1,0

x0,1

∈ F L
2 : x0,0 + x−1,0 + x0,−1 + x1,0 + x0,1 = 0




,

which consists of all even patterns on a square-cross lattice.
B(L) can be extended to Z3×3 as

(7.25) B =





x0,0x−1,0

x0,−1

x1,0

x0,1x−1,1 x1,1

x−1,−1
x1,−1

∈ F
Z3×3

2 : x0,0 + x−1,0 + x0,−1 + x1,0 + x0,1 = 0




.

Then, that

(7.26) Σ(B) = X

can be easily verified.
Now, by (4.6), the associated trace operator Tn×3(B) can be constructed for

n ≥ 1. Furthermore, the rotational matrix Rn×2 is defined by (4.12) with

(7.27) σn(i) =





1 + 4(i− 1) for 1 ≤ i ≤ 22n−2,
2 + 4(i− 22n−2 − 1) for 22n−2 + 1 ≤ i ≤ 22n−1,
3 + 4(i− 22n−1 − 1) for 22n−1 + 1 ≤ i ≤ 3 · 22n−2,
4 + 4(i− 3 · 22n−2 − 1) for 3 · 22n−2 + 1 ≤ i ≤ 22n.

The number χn×2 of the equivalent classes of Rn×2 can be shown to be the number
of n-bead necklaces with four colors. The formulae for χn×2, n ≥ 1, is given by

(7.28) χn×2 =
1

n

∑

d|n
φ(d)4n/d.
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See [34].
As in Example 7.2, the reduced trace operator τn×3 of Tn×3 is more convenient

for computing the n-th order zeta function ζn. The definition and results of the
reduced trace operator for more symbols on larger lattices are similar to Definition
3.9 and Theorem 3.12.

For n = 1, T1×3 generates the of graph of equivalent classes in Fig 7.5 and the
reduced trace operator τ1×3.

C1×2(1)

C1×2(4) C1×2(2)

C1×2(3)

Fig 7.5.

and τ1×3 = T1×3 =




1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0


 .

The graph in Fig 7.5 has one cycle of period 1 and one cycle of period 3. Hence,

ζ1(s) =
1

(1− s)(1− s3)
.

For n = 2, T2×3 generates the of graph of equivalent classes in Fig 7.6 and the
reduced trace operator τ2×3.

C1×2(1)

C1×2(2)

C1×2(3)C1×2(4)

C1×2(6)

C1×2(7)

C1×2(8)

C1×2(11)

C1×2(12)

C1×2(16)

Fig 7.6.

and τ2×3 =




1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0




.

The graph in Fig 7.6 has one cycle of period 1 and three cycles of period 3. Hence,

ζ2(s) =
1

(1− s2)(1 − s6)3
.

For n = 3, the reduced trace operator τ3×3 is a 24× 24 matrix and can be used
to indicate that the graph of equivalent classes generated by T3×3 has two cycles
of period 1, two cycles of period 2, two cycles of period 3 and two cycles of period
6. Hence,

ζ3(s) =
1

(1− s3)2(1− s6)2(1− s9)2(1− s18)2
.

From (7.22), if xi,j−1 and xi,j are given for some j ∈ Z and for all i ∈ Z, xi,j+1

is determined for all i ∈ Z. Therefore, the trace operator Tn×3 is a permutation



TWO-DIMENSIONAL ZETA FUNCTIONS 69

matrix. Furthermore, the reduced trace operator τn×3 ofTn×3 is also a permutation
matrix. Hence, |λ| = 1 for all λ ∈ Σ(τn×3).

By the same argument as in Example 7.2, let the graph generated by Tn×3 have
m(n) disjoint cycles, each of period pn,k ≥ 1, for 1 ≤ k ≤ m(n). Then, the n-th
order zeta function can be represented as

(7.29) ζn(s) =

m(n)∏

k=1

1

1− snpn,k
.

Hence,

(7.30) ζ(s) =

∞∏

n=1

m(n)∏

k=1

1

1− snpn,k
.

Table 7.2 presents the numbers and periods of cycles of Tn×3. For brevity, only
n = 1 to 10 are listed.

n 1 2 3 4 5
p
q

1 3
1 1

1 3
1 3

1 2 3 6
2 2 2 2

1 3 6
1 7 8

1 3 5 15
7 7 9 9

n 6 7 8
p
q

1 2 3 4 6 12
2 6 6 8 10 48

1 3 9
1 1 260

1 3 6 12
1 7 88 640

n 9
p
q

1 2 3 6 7 14 21 42
2 2 2 2 260 390 260 390

n 10
p
q

1 2 3 5 6 10 15 30
7 24 21 9 120 648 27 3240

p : the period of cycle.
q = q(p) : the number of cycles with period p.

Table 7.2.

Up to n = 16, the Taylor expansion of (7.30) at s = 0 is

(7.31) ζB(s) = 1 + s+ 2s2 + 5s3 + 7s4 + 17s5 + 32s6 + 46s7 + 84s8 + 140s9

+229s10+384s11+615s12+938s13+1483s14+2353s15+3563s16+ · · · .
The analyticity and the natural boundary of the zeta function in (7.30) need

further investigation. The results will appear elsewhere.

In the following example, we study the equation on the diagonal lattice L: and

show that the rectangular zeta function ζ = ζ̂ fails to describe poles and natural

boundary of ζ0 but ζγ works well with γ =

[
1 1
0 1

]
.
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Example 7.4. Let F2 = {0, 1} and

(7.32) X =
{
x ∈ F Z

2

2 : xi,j + xi+1,j+1 = 0 for all i, j ∈ Z

}
.

It is clear that the solutions of xi,j + xi+1,j+1 = 0 mod 2 are given by
(7.33)

B =

{
0

0 0

0

,

1

0 0

0

,

0

0 1

0

,

1

0 1

0

,

0

1 0

1

,

1

1 0

1

,

0

1 1

1

,

1

1 1

1

}
.

Now,

(7.34) H2 = V2 =




1 0 1 0
1 0 1 0
0 1 0 1
0 1 0 1




and

(7.35) H̃2 = Ṽ2 =




1 1 0 0
0 0 1 1
1 1 0 0
0 0 1 1


 .

It is easy to verify

(7.36) T1 = T̂1 =

[
1 0
0 1

]
= Rt

1

and

(7.37) T2 = T̂2 =




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


 = Rt

2.

Furthermore, for n ≥ 3, we show that

(7.38) Tn = T̂n = Rt
n.

Indeed, by the recursive formula of Vn, it can be verified that Vn;i,j = 1 if and
only if

(7.39)

{
i = 2j − 1 and 2j for 1 ≤ j ≤ 2n−1,
i = 2(i− 2n−1)− 1 and 2(i− 2n−1) for 2n−1 + 1 ≤ j ≤ 2n.

Therefore, by applying (2.30), Tn = [tn;i,j ] with tn;i,j = 1 if and only if

(7.40)

{
i = 2j − 1 for 1 ≤ j ≤ 2n−1,
i = 2(i− 2n−1) for 2n−1 + 1 ≤ j ≤ 2n.

Hence,

(7.41) Tn = Rt
n.

Therefore,

(7.42) ζn(s) =
1

(1 − sn)χn
,
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where χn is the cardinal number of In, and

(7.43) ζ(s) =

∞∏

n=1

1

(1 − sn)χn
.

As in Example 6.12, lim
n→∞

χ
1
n
n = 2 and then S∗ = 1

2 .

On the other hand, consider

(7.44) B′ =





0

0

0

0

,

0

0

1

1

,

1

1

0

0

,

1

1

1

1



 .

Then,

(7.45) Σ(B′) = Σ(B).
In particular,

(7.46) ΓB′

([
n l
0 k

]

γ

)
= 2k.

Therefore, as in Example 6.12,

ζγ;n =
1

1− 2sn
.

We can also use the construction of Tγ;n in Section 5 to study ζγ;n. Indeed, by
Figure 5.1, it is easy to see that

(7.47) Tγ;1 =




1 1 0 0
0 0 1 1
1 1 0 0
0 0 1 1


 .

Therefore,

(7.48) ζγ;1 =
1

1− 2s
.

Furthermore, for any n ≥ 2, after deleting the zero columns and rows of Tγ;n, Tγ;n

is reduced to Tγ;1. Therefore,

(7.49) ζγ;n =
1

1− 2sn
.

Hence,

(7.50) ζγ =

∞∏

n=1

1

1− 2sn
.

ζγ has natural boundary with |s| = 1 and has poles
{
2−

1
n e2πij/n : 0 ≤ j ≤ n− 1, n ≥ 1

}
.
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Motivated by examples 7.1∼7.4, given a finite field F and a set of finite lattice
points L ⊂ Z2, consider the equation

(7.51)
∑

(i,j)∈L

xi,j = 0 in F.

Then, denote the solution set of (7.51) on Z2 by

(7.52) X(L) =



x ∈ F Z

2

:
∑

(i,j)∈L

xi+k,j+l = 0, (k, l) ∈ Z
2



 .

Denoted by

(7.53) B(L) =



x : L → F :

∑

(i,j)∈L

xi,j = 0



 ,

B(L) ⊂ F L is the set of admissible local patterns.
Let Zm×m be the smallest rectangular lattice that contains L. Let B be the set

of all admissible patterns on Zm×m that can be generated from B(L). Then, the
following can be easily verified;

(7.54) X(L) = Σ(B).
The results presented in previous sections apply to Σ(B) and then to X(L). The

above method can also be applied to any finite set of equations defined on L with
numbers in F , since the solution set B(L) ⊂ F L and can be extended to a unique
admissible set B ⊆ F Zm×m .

8. Square lattice Ising model with finite range interaction

This section extends the results presented in previous sections to the thermo-
dynamic zeta function for a square lattice Ising model with finite range interaction,
see Ruelle [30] and Lind [21]. For simplicity, the square lattice Ising model with
nearest neighbor interaction is considered.

The square lattice Ising model with external field H, the coupling constant J
in the horizontal direction, and the coupling constant J ′ in the vertical direction
is now considered. Each site (i, j) of the square lattice Z2 has a spin ui,j with

two possible values, +1 or −1. First, assume that the state space is {+1,−1}Z2

.

Given a state U = {ui,j}i,j∈Z in {+1,−1}Z2

, denoted by Um×n = U
∣∣
Zm×n

=

{ui,j}0≤i≤m−1,0≤j≤n−1.
Define the Hamiltonian (energy) E(Um×n) for Um×n by

(8.1) E(Um×n) = −J
∑

0≤i≤m−2

0≤j≤n−1

ui,jui+1,j − J ′
∑

0≤i≤m−1

0≤j≤n−2

ui,jui,j+1 −H
∑

0≤i≤m−1

0≤j≤n−1

ui,j .

Therefore, the partition function Zm×n is defined by
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(8.2)

Zm×n =
∑

Um×n∈{+1,−1}Zm×n

exp


K

∑

0≤i≤m−2

0≤j≤n−1

ui,jui+1,j + L
∑

0≤i≤m−1

0≤j≤n−2

ui,jui,j+1 + h
∑

0≤i≤m−1

0≤j≤n−1

ui,j


 ,

where K = J /kBT ,L = J ′/kBT , h = H/kBT , kB is Boltzmann’s constant and T
is the temperature.

To the thermodynamic zeta function, given L =

[
n l
0 k

]
Z2 ∈ L2, the partition

function for the

[
n l
0 k

]
-periodic states is defined by

(8.3)

ZL = Z
([

n l
0 k

])

=
∑

U∈fixL({+1,−1}Z2)
exp


K

∑
0≤i≤n−1

0≤j≤k−1

ui,jui+1,j + L
∑

0≤i≤n−1

0≤j≤k−1

ui,jui,j+1 + h
∑

0≤i≤n−1

0≤j≤k−1

ui,j


 ,

where un,j = u0,j, 0 ≤ j ≤ k − 1 and ui,k = ui,0, 0 ≤ i ≤ n− 1.
Then, the thermodynamic zeta function for the square lattice Ising model with

nearest neighbor interaction can be defined by

ζ0(s) ≡ ζ0Ising(s) ≡ exp

(∑

L∈L2

ZL
s[L]

[L]

)

(8.4) = exp

( ∞∑

n=1

∞∑

k=1

n−1∑

l=0

1

nk
Z
([

n l
0 k

])
snk

)
.

To simplify the notation, the subscript Ising is omitted in this section whenever
such omission will not cause confusion.

As (1.8) and (1.9), for any n ≥ 1, define the n-th order thermodynamic zeta
function ζIsing;n(s) as

(8.5) ζn(s) ≡ ζIsing;n(s) ≡ exp

(
1

n

∞∑

k=1

n−1∑

l=0

1

k
Z
([

n l
0 k

])
snk

)
;

the thermodynamic zeta function ζIsing(s) is given by

(8.6) ζ(s) ≡ ζIsing(s) ≡
∞∏

n=1

ζn(s).

Since the discussion of ζn(s) is similar to that in sections 2 and 3, only the parts
of the arguments that differ are emphasized. The results are outlined here and the
details are left to the reader.
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According to the spin ui,j ∈ {+1,−1} for i, j ∈ Z,replacing all the symbols ”0”
in (2.1) and (2.2) with the symbol ”−1” yields the ordering matrices XIsing;2×2

and YIsing;2×2 as follows.

(8.7)

-1

-1 -1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1 -1

-1

-1 -1

-1

-1

-1 -1 -1 -1

-1

-1

-1 -1 -1

-1

-1

-1

-1 -1 -1

-1

-1 -1

-1

1

1 1

1

1

1

1

1

1
1 1 1 1

1

1 1

1

1 1 1

1

1 1 1

1

1

1

1

1

1

1

1

1 1

1 1

1

1

1

1

XIsing;2×2 =

and

(8.8)

- 1

- 1

- 1

- 1 - 1

- 1

- 1

- 1

- 1

- 1

- 1 - 1

- 1

- 1

- 1 - 1

- 1

- 1

- 1

- 1

- 1 - 1

1 1

1 1

1

1 1

1

1 1

1

1 1

1

1 1

1 1

1 1

1

1

1

1

111

1

1

11

- 1- 1 - 1 - 1

- 1 - 1

- 1

- 1

1

- 1

- 1 - 1 - 1

- 1 - 1

- 1

- 1

- 1

- 1

1

1 1

1

1 1

1 1

YIsing;2×2 = .

The ordering matrix XIsing;n×2, YIsing;n×2 and the cylindrical ordering matrix
CIsing;n×2 can be obtained in the same way. The recursive formulae for generating
YIsing;n×2 form YIsing;2×2 are as in (2.14).

Given L ∈ L2, (8.3) yields
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(8.9) ZL =
∑

U∈fixL({+1,−1}Z2)

∏

0≤i≤n−1

0≤j≤k−1

exp [ui,j (Kui+1,j + Lui,j+1 + h)] .

Based on (8.7), (8.8) and (8.9), the associated horizontal transition matrix
HIsing;2 = [aI;i,j ]4×4 and the vertical transition matrix VIsing;2 = [bI;i,j]4×4 are
defined as

(8.10)

HIsing;2 =




eK+L−h e−K−L−h eK−L−h e−K+L−h

e−K+L−h eK−L−h e−K−L−h eK+L−h

eK+L+h e−K−L+h eK−L+h e−K+L+h

e−K+L+h eK−L+h e−K−L+h eK+L+h


 = [aI;i,j]4×4 ,

and

(8.11) YIsing;2 =




eK+L−h e−K−L−h e−K+L−h eK−L−h

eK−L−h e−K+L−h e−K−L−h eK+L−h

eK+L+h e−K−L+h e−K+L+h eK−L+h

eK−L+h e−K+L+h e−K−L+h eK+L+h


 = [bI;i,j]4×4 ,

respectively. Similar to (2.21) and (2.22), the associated column matrices H̃Ising;2

of HIsing;2 and ṼIsing;2 of VIsing;2 are defined as

(8.12) H̃Ising;2 =




aI;1,1 aI;2,1 aI;1,2 aI;2,2
aI;3,1 aI;4,1 aI;3,2 aI;4,2
aI;1,3 aI;2,3 aI;1,4 aI;2,4
aI;3,3 aI;4,3 aI;3,4 aI;4,4




and

(8.13) ṼIsing;2 =




bI;1,1 bI;2,1 bI;1,2 bI;2,2
bI;3,1 bI;4,1 bI;3,2 bI;4,2
bI;1,3 bI;2,3 bI;1,4 bI;2,4
bI;3,3 bI;4,3 bI;3,4 bI;4,4


 .

Therefore, the trace operators TIsing;2 and T̂Ising;2 are defined as

(8.14) TIsing;2 = VIsing;2 ◦ H̃Ising;2 and T̂Ising;2 = HIsing;2 ◦ ṼIsing;2.

The recursive formulas for TIsing;n and T̂Ising;n are similar to (2.30). Construct-
ing TIsing;2 and the rotational matrix Rn yield a similar result to that of Theorem

2.12 for Z
([

n l
0 k

])
.

Theorem 8.1. Given n ≥ 2, 0 ≤ l ≤ n− 1, k ≥ 1,

(8.15) Z
([

n l
0 k

])
= tr

(
Tk

Ising;nR
l
n

)
.
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Furthermore, let

TIsing;1 =

[
aI;1,1aI;1,1 aI;2,2aI;2,2
aI;3,3aI;3,3 aI;4,4aI;4,4

]
;

then

Z
([

1 0
0 k

])
= tr

(
Tk

Ising;1

)
for k ≥ 1.

From Theorem 8.1, the n-th order thermodynamic zeta function ζIsing;n can now
be obtained as follows.

Theorem 8.2. For any n ≥ 1,

(8.16) ζIsing;n = exp

(
1

n

∞∑

k=1

tr
(
Tk

Ising;nRn

)
snk

)
.

The Rn-symmetric property of TIsing;n is essential to the rationality of n-th
order thermodynamic zeta function ζIsing;n.

Proposition 8.3. For any n ≥ 1,

(8.17) TIsing;n;σl(i),σl(j) = TIsing;n;i,j

for all 1 ≤ i, j ≤ 2n and 0 ≤ l ≤ n− 1.

Similarly, the associated reduced trace operator τIsing;n can be defined as in
(3.52). Finally, by the arguments presented in section 3, the rationality of the n-th
order thermodynamic zeta function ζIsng;n is established as follows.

Theorem 8.4. For n ≥ 1,

(8.18) ζIsing;n(s) =
∏

λ∈Σ(TIsing;n)

(1− λsn)
−χ(λ)

(8.19) = (det (I − snτIsing;n))
−1
,

where χ(λ) is the number of linear independent symmetric eigenvectors and gener-
alized eigenvectors of TIsing;n with eigenvalue λ. Furthermore,

(8.20) ζIsing(s) =

∞∏

n=1

(det (I − snτIsing;n))
−1
.

The state space {+1,−1}Z2

is extended to the shift of finite type given by B ⊆
{+1,−1}Z2×2.

Given B ⊆ {+1,−1}Z2×2 and L =

[
n l
0 k

]
Z2 ∈ L2, the partition function for

B with

[
n l
0 k

]
-periodic patterns is defined as
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(8.21)

ZL(B) = ZB

([
n l
0 k

])

=
∑

U∈fixL(Σ(B))

exp


K

∑
0≤i≤n−1

0≤j≤k−1

ui,jui+1,j + L
∑

0≤i≤n−1

0≤j≤k−1

ui,jui,j+1 + h
∑

0≤i≤n−1

0≤j≤k−1

ui,j


 ,

where un,j = u0,j, 0 ≤ j ≤ k − 1 and ui,k = ui,0, 0 ≤ i ≤ n− 1.
Hence, the thermodynamic zeta function is defined by

ζ0Ising;B(s) ≡ exp

(∑

L∈L2

ZL(B)
s[L]

[L]

)

(8.22) = exp

( ∞∑

n=1

∞∑

k=1

n−1∑

l=0

1

nk
ZB

([
n l
0 k

])
snk

)
.

Similar to (8.5) and (8.6), for any n ≥ 1, the n-th order thermodynamic zeta
function ζIsing;B;n(s) is defined as

(8.23) ζIsing;B;n(s) ≡ exp

(
1

n

∞∑

k=1

n−1∑

l=0

1

k
ZB

([
n l
0 k

])
snk

)

and the thermodynamic zeta function ζIsing;B(s) is given by

(8.24) ζIsing;B(s) ≡
∞∏

n=1

ζIsing;B;n(s).

Equations (2.17), (2.18), (8.10) and (8.11) are combined to define the associated
horizontal transition matrix and vertical transition matrix as follows.

(8.25) HIsing;2(B) = HIsing;2 ◦H2(B)
and

(8.26) VIsing;2(B) = VIsing;2 ◦V2(B).
Therefore, the trace operator TIsing;n(B) and the associated reduced trace op-

erator τIsing;n(B) can be defined for all n ≥ 1 as above. Since all arguments for
ζIsing;B;n are similar to those above; the final result is as follows.

Theorem 8.5. For n ≥ 1,

(8.27) ζIsing;B;n(s) =
∏

λ∈Σ(TIsing;n(B))

(1− λsn)
−χ(λ)

(8.28) = [det (I − snτIsing;n(B))]−1
,
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where χ(λ) is the number of linear independent symmetric eigenvectors and gener-
alized eigenvectors of TIsing;n(B) with eigenvalue λ. Moreover,

(8.29) ζIsing;B(s) =
∞∏

n=1

[det (I − snτIsing;n(B))]−1
.

Remark 8.6. The results in this section hold for any model with finite range in-
teraction.
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