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Abstract

Conventionally, contribution rates for defined-benefit pension plans have been set with reference to funding levels without making
allowance for current market interest rates: for example, on one-year bonds where rates of return on fund assets are not independent
from one year to the next. We consider how to make use of market information to reduce contribution rate volatility. The purpose
of this paper is to provide a model for determining an appropriate contribution rate for defined benefit pension plans under a model
where interest rates are stochastic and rates of return are random.

We extend previous work in two ways. First, we introduce a model for short-term interest rates, which can be used to help control
contribution-rate volatility. Second, we model three assets rather than the usual one (cash, bonds and equities) to allow comparison
of different asset strategies. We develop formulae for unconditional means and variances. We then discuss how variability can be
controlled most efficiently by setting contribution rates with reference to current funding levels and interest rates.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

A variety of factors that influence the volatility of the funding level and the contribution rate of a define-benefit (DB)
pension plan including: the amortization strategy(Cairns, 1994; Dufresne, 1989; Bowers et al., 1979); the amortization
period(Dufresne, 1988, 1989; Haberman, 1994; Cairns, 1994; Cairns and Parker, 1997); frequency of valuation(Cairns,
1994; Haberman, 1993); and the delay period(Balzer and Benjamin, 1980; Zimbidis and Haberman, 1993). The main
purpose of this paper is to develop further the approach to setting contribution rates as a means of reducing the variance
of the funding level and contribution rate under DB plans. The choice of spread period for surplus and deficit is one
of the most important ways of control of the stability of the pension plan (see, for example,Dufresne, 1988, 1989;
Haberman, 1994; Cairns and Parker, 1997). In this paper, we aim to extend the spread period contribution model and
take advantage of the current market information about interest rates to reduce further the variance of the funding level
and contribution rate.
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A pension plan’s trustees are responsible for choosing long-term investment advice and the actuary is normally
required to advise the trustees and/or the employers. Thus, actuaries are essential for advising trustees on a variety
of possible investment strategies and for making sensible comments and suggestions on the implementation of the
distribution of assets for each plan in order to match its anticipated liabilities. The aggregate investment return rate
of the pension fund has been investigated on a model with independent and identically distributed (i.i.d.) returns
(Dufresne, 1988, 1989), an AR time-series model(Mandl and Mazurova, 1996; Haberman, 1994; Cairns and Parker,
1997), and an MA time-series model(Haberman, 1997; B́edard, 1999). The plausible term structure of AR and MA
time series models was considered byChang (2000). These aggregate-return models take the investment strategy as
given exogenously and model the returns on the fund as a univariate times series. In an attempt to make the approach
to investments more realistic we explicitly allow for several assets in the portfolio. Thus, instead of using an aggregate
return rate of the pension plan, we consider a more general investment model where the pension plan’s return is a
combination of numbers of the return on the individual assets.

In this paper we extend previous work to include three assets rather than just one: cash, long bonds and equities.
Their returns are underpinned in a coherent way by a model for the one-year, risk-free interest rate and with appropriate
correlations between different asset classes. Section2 describes the basic details of the model and proposes a simple
method for setting the contribution rate which accounts for both the current funding level (as normal) and current
interest rates (new). With this model we are able to derive formulae for unconditional (that is long-run) means and
variances of the funding level and for the contribution rate. In Section3, we discuss how the contribution strategy can
be used to control most effectively variability in the funding level and in the contribution rate itself. Here we reintroduce
and extend the concept of efficient contribution strategies.

In Section4, we build a super efficient region which minimizes the variance of contribution rate based upon specific
funding constraints and discuss the optimal investment and contribution strategies.

2. A discrete-time model pension plan

We assume that we have three assets: a one-year bond (cash); a long-dated bond; and an equity asset. The log-return
on cash between timest − 1 andt is y(t − 1). The log-return rate on the bond isδb(t), and the log-return on the equity
is δe(t). Thus, investments of 1 at timet − 1 will grow to ey(t−1), eδb(t) or eδe(t), respectively. We will further assume
thaty(t) follows the AR(1) process

y(t) = y + φ(y(t − 1) − y) + σyZy(t) (2.1)

where theZy(t) are independent and identically distributed (i.i.d.) standard normal random variables. This is similar to
a discrete-time version of theVasicek (1977)model. Excess returns on the equity asset,∆e(t) = δe(t) − y(t − 1), are
assumed to be i.i.d. and normally distributed with a mean greater than zero (that is, a positive risk premium). Similarly,
the excess returns on a long-dated bond,∆b(t) = δb(t) − y(t − 1), are also assumed to be i.i.d. and normally distributed
with mean greater than zero. Thus,

∆b(t) = δb(t) − y(t − 1) = ∆b + σbyZy(t) + σbZb(t) (2.2)

∆e(t) = δe(t) − y(t − 1) = ∆e + σeyZy(t) + σebZe(t) + σeZδe(t) (2.3)

where theZδ(t), Zy(t) andZb(t) areN(0,1) random variables that are independent of one another and i.i.d. through
time. Bothσey andσby will normally be negative since if the short-term interest rate,y(t), goes up, then the prices of
long-term bonds or equities typically go down and vice versa. TheσbZb(t) term allows us to use, in effect, a two-factor
interest-rate model since it allows for a degree of independence from one-year bonds.

Since we are considering a one-year bond, the return fromt − 1 up tot is known at timet − 1 whereas the return on
equities and bonds are only known at timet. This explains the use ofy(t − 1) for the return on the one-year bond for
t − 1 to t rather thany(t). In contrast, the unknown∆b(t) and∆e(t) are used to reflect the unknown elements of returns
on the long-dated bonds and equities. In particular, bond prices at timet depend upon the new one-year rate of interest
at t, y(t), through their dependence onσbyZy(t). The extent to which unanticipated returns on equities (∆e(t)) reflect
unanticipated changes iny(t) appears in the parameterσey with further equity specific risk being reflected throughσδe
andZe(t). Further correlation with long bonds is reflected through the parameterσeb.
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Suppose we invest a proportionp1 of the pension fund in equities,p2 in long-term bonds and the remaining assets
in one-year bonds. We will assume that the return on the fund fromt − 1 to t can be written as

1 + i(t) = exp[y(t − 1) + p1∆e(t) + p2∆b(t) + ρ(p1, p2)] (2.4)

whereρ(p1, p2) = (1/2)p1vee+ (1/2)p2vbb − (1/2)(p2
1vee+ 2p1p2veb + p2

2vbb), vee = Var∆e(t), vbb = Var∆b(t)
andveb = Cov(∆e(t),∆b(t)).

Now we can remark that this formula for 1+ i(t) gives an approximation to the return on a buy-and-hold strategy.
However, we can give the formula for 1+ i(t) a stronger justification. First, let us assume that the market operates
in continuous time, and that the market is complete in the usual sense of derivative pricing. Then we can show (see
Appendix B) that 1+ i(t) as given for anyp1 andp2 can be replicated given 1 at timet − 1 provided we follow a
suitable hedging strategy. The functionρ(p1, p2) is a second-order adjustment which ensures that the model is arbitrage
free, and we can remark further that ifp1 = 1 andp2 = 0 or if p1 = 0 andp2 = 1 thenρ(p1, p2) = 0, which implies
that 1+ i(t) = exp[y(t − 1) +∆e(t)] and exp[y(t − 1) +∆b(t)], respectively.

We use the following additional notation which assumes that we have a stable membership in the pension plan with
no salary increases (or we use the total salary roll as the unit of currency):
F (t) is the fund size att;C(t) the contribution rate att; B the benefit outgo at the start of each year (assumed constant);

iv the actuarial valuation interest rate; AL the actuarial liability (assumed constant); NC the normal contribution rate
consistent with AL andiv.

Stability of the membership with no salary increases means that the actuarial liability does not change over time.
Consistency between NC and AL thus means that

⇒ AL = (1 + iv)(AL + NC − B) ⇒ NC = B − dvAL (2.5)

wheredv = 1 − vv andvv = (1 + iv)−1.
Annual contributions,C(t), are allowed to depend not just upon the current funding level (as is normal) but also on

the current level of interest rates. The particular form we use is

C(t) = NC + k1(AL − F (t)) + k2
ey

′ − ey(t)

ey(t)
(2.6)

wherek1, k2 andy′ are the key control factors. Ifk2 = 0 then we revert to the classical case (see, for example,Cairns
and Parker, 1997; Haberman, 1994, 1997). In a continuous-time model withy(t) constant and only one asset class,
Cairns (2000)proved that this contribution strategy using the spread method is superior (mathematically optimal) to
other approaches (such as the amortization of losses method used in North America).

The purpose of introducing thek2 term is to allow adjustment for future expected returns. For example, ify(t)
is currently high then we might feel that contributions could be lower than would otherwise be the case because of
higher expected returns than normal in the next few years. We will see later if this term allows us to reduce vari-
ability.

GivenC(t) we have the usual dynamics forF (t):

F (t) = (1 + i(t))[F (t − 1) + C(t − 1) − B]

We now take into account the earlier expression for (1+ i(t)) and work backwards recursively to get (see, for example,
Cairns and Parker, 1997):

Lemma 2.1.

F (t) = (θv − k2)
∞∑
s=0

(1 − k1)s exp
(
Sy(t, s) + Sp(t, s)

)

+ k2ey
′

∞∑
s=0

(1 − k1)s exp
(
Sy(t, s) − y(t − 1 − s) + Sp(t, s)

)

where θv = (k1 − dv)AL provided k1 has been chosen so that this sum converges.
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Within this expression, first,

Sy(t, s) =
s∑
j=0

y(t − 1 − j) = (s+ 1)y +
s+1∑
j=1

(1 − φj)σy
1 − φ

Zy(t − j) +
∞∑

j=s+2

φj−s−1(1 − φs+1)σy
1 − φ

Zy(t − j)

⇒ Sy(t,0) − y(t − 1) = 0

and fors ≥ 1

Sy(t, s) − y(t − 1 − s) = Sy(t, s− 1) = sy +
s∑
j=1

(1 − φj)σy
1 − φ

Zy(t − j) +
∞∑

j=s+1

φj−s(1 − φs)σy
1 − φ

Zy(t − j).

(The latter equality is, of course, zero if we define
∑s
j=1(·) ≡ 0 whens = 0.) Second,

Sp(t, s) =
s∑
j=0

p1∆e(t − j) +
s∑
j=0

p2∆b(t − j) + (s+ 1)ρ(p1, p2)

= (s+ 1)α0 + α1

s∑
j=0

Zy(t − j) + α2

s∑
j=0

Ze(t − j) + α3

s∑
j=0

Zb(t − j)

whereα0 = p1∆e + p2∆b + ρ(p1, p2);α1 = p1σey + p2σby;α2 = p1σe andα3 = p1σeb + p2σb.

Theorem 2.2. The unconditional expected values and the variances of the fund size and contribution rate are as
follows:

(a)
E[F (t)] = (θv − k2)Ψ1 + k2Ψ2

E[C(t)] = NC + k1(AL − E[F (t)]) + k2(ey
′
e−y+(1/2)(σ2

y/1−φ2) − 1)

where

Ψ1 =
∞∑
s=0

(1 − k1)s exp((s+ 1)(y + α0) + (1/2)V1(s))

Ψ2 = ey
′

∞∑
s=0

(1 − k1)s exp((s+ 1)(y + α0) −y + (1/2)V2(s))

and

V1(s) = Var(Sy(t, s) + Sp(t, s));V2(s) = Var(Sy(t, s− 1) + Sp(t, s)).

Thus, E[F (t)] and E[C(t)] are both linear functions of k2 but nonlinear functions of k1.

(b) Var[F (t)] = h2k
2
2 + h1k2 + h0 (2.7)

Var[C(t)] = a2k
2
2 + a1k2 + a0 (2.8)

where

h0 =
∞∑
r,s=0

(1 − k1)r+sC1(r, s) + e2y′
∞∑
r,s=0

(1 − k1)r+sC3(r, s) − 2ey
′

∞∑
r,s=0

(1 − k1)r+sC2(r, s)

h1 = −2θv

∞∑
r,s=0

(1 − k1)r+sC1(r, s) + 2θvey
′

∞∑
r,s=0

(1 − k1)r+sC2(r, s)

h2 = θ2
v

∞∑
r,s=0

(1 − k1)r+sC1(r, s)
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Table 1
Values for AL(iv) (Eq.(2.9)) for different values ofiv, with the corresponding normal contribution rates NC(iv) (Eq.(2.5))

iv AL( iv) NC(iv)

0.02 644.87 27.36
0.03 579.73 23.11
0.04 525.39 19.79
0.05 479.66 17.16
0.06 440.85 15.05

a0 = k2
1h0 + e2y′

Var(e−y(t)) + 2k1ey
′

∞∑
r=0

(1 − k1)rC4(r) − 2k1e2y′
∞∑
r=0

(1 − k1)rC5(r)

a1 = k2
1h1 − 2k1ey

′
θv

∞∑
r=0

(1 − k1)rC4(r)

a2 = k2
1h2

and

C1(r, s) = Cov(eSy(t,r)+Sp(t,r),eSy(t,s)+Sp(t,s))

C2(r, s) = Cov(eSy(t,r)−y(t−1−r)+Sp(t,r),eSy(t,s)+Sp(t,s))

C3(r, s) = Cov(eSy(t,r)−y(t−1−r)+Sp(t,r),eSy(t,s)−y(t−1−s)+Sp(t,s))

C4(r) = Cov(eSy(t,r)+Sp(t,r),e−y(t))

C5(r) = Cov(eSy(t,r)−y(t−1−r)+Sp(t,r),e−y(t)).

For a proof of this result and more detailed formulae for these functions, seeAppendix A. In these expressions note
thatψ1, ψ2, h0, h1, h2, a0, a1, a2 are all functions ofk1 but not ofk2.

For the actuarial liability we will assume a simple model (as inCairns and Parker, 1997) where:

• there is one member at each of ages 25–64;
• each year one new member aged 25 joins the plan;
• no deaths or other decrements before age 65;
• on retirement at age 65 each member receives a benefit ofB = 40 which accrues uniformly over the 40 years of

service.

Thus, the accrued or past-service liability, when the valuation rate of interest isiv, is

AL = AL( iv) =
64∑
x=25

(x− 25)(1+ iv)x−65 =
(

40−
(
1 − v40

v

)
iv

)
1 + iv

iv
(2.9)

where

vv = 1

1 + iv
.

Sample values for AL(iv) are given inTable 1.

3. Optimal strategies for the contribution rate

In this section, we will discuss how to make the best use of current market interest rates to control variability. We
have previously specified in Eq.(2.6)how current interest rates can be used in a simple fashion to adjust the contribution
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Fig. 1. Contour plot of Var[F (t)] (dotted lines, contours at the levels VF = 2000, 4000, 6000, 8000, 16,000, and 32,000) and Var[C(t)] (solid lines,
contours at the levels VC = 400, 500, 600, 800, and 900) for differentk2 andk1 with p1 = 0.4 (equities) andp2 = 0.3 (bonds). Also plotted
arek2f (k1) (long dashed line) andk2c(k1) (dot-dashed line). Parameter values arey = 0.03,∆e = 0.02,∆b = 0.01, φ = 0.7, σe = 0.12, σby =
−0.05, σey = −0.03, σy = 0.03, σeb = 0.02, σb = 0.03, y′ = 0.0309 andiv = 0.02.

rate through the termk2(ey
′−y(t) − 1). The question of how to make best use of current interest rates then comes down

to choosing the best value fork2.
Now we can note that, givenk1, the variances of bothF (t) andC(t) are quadratic ink2 (Eqs.(2.7) and (2.8)). It

follows that the values

k2f = k2f (k1) = −h1

2h2

k2c = k2c(k1) = −a1

2a2

minimise, respectively, the variances ofF (t) andC(t).
In Fig. 1, we plot contours for Var[F (t)] and Var[C(t)] over a range of values fork1 andk2 in the case wherep1 = 0.4

andp2 = 0.3. By superimposing one set of contours on the other we are able to compare simultaneously the effect ofk1
andk2 on the two variances. First suppose thatk2 = 0 (the old method for determiningC(t)). The minimum value for
Var[C(t)] is a little over 500 whenk1 is around 0.16. Minimising overk2 as well clearly delivers substantial reductions
in the variances. For example, if the objective is to minimize Var[C(t)], then by thek1 approach (minimize Var[C(t)]
overk1 with k2 = 0) we have Var[F (t)] ≈ 24,000 and Var[C(t)] ≈ 500. By thek2 approach (minimize Var[C(t)] over
k1 andk2), we have Var[F (t)] ≈ 12,000 (a reduction of about 50%) and Var[C(t)] ≈ 400 (a reduction of about 20%)
whenk1 = 0.17 andk2 = 250.

Depending on what the plan objectives and constraints are, we will have different strategies fork1 andk2. One
example might be the imposition of a constraint that Var[F (t)] is less than 6000. FromFig. 1, we see that this im-
poses a constraint thatk1 must exceed about 0.2 (and then only whenk2 lies between 500 and 600). Then, given
k1 it is always optimal to choosek2 between the lines fork2f (k1) andk2c(k1) (since there is always a value in this
interval which can reduce both variances compared with values ofk2 outside). A second example might specify
the value ofk1 (for example, an amortization factor based on the average future working lifetime) with minimisa-
tion overk2 only. Then it will always be efficient to choose a value ofk2 betweenk2c(k1) andk2f (k1). Any value
outside this range can be improved upon (that is both Var[C(t)] and Var[F (t)] can be reduced) by changingk2 to
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a suitable point betweenk2c(k1) and k2f (k1). We define the region between the linesk2f and k2c as theefficient
region.

To be more precise, for a fixed value ofk1, we definek∗2 = min(k2f ,2k2c) andk�2 = min(k2c,2k2f ).Var[F (t)] and
Var[C(t)] are quadratic functions ofk2, achieving their minima atk2f andk2c, respectively by definition.

If k2f > k2c, choose anŷk2 ∈ [k2c, k
∗
2]. Since 0≤ k̂2 ≤ k2f , we have

Var[F (t)]k2=0 ≥ Var[F (t)] k̂2
≥ Var[F (t)]k2f

and sincek2c ≤ k̂2 ≤ 2k2c, we have

Var[C(t)]k2=0 = Var[C(t)]2k2c ≥ Var[C(t)] k̂2
≥ Var[C(t)]k2c .

Hencek2 = k̂2 achieves a simultaneous reduction in both Var[F (t)] and Var[C(t)] from their values atk2 = 0 in the
case ofk2f > k2c.

If k2c > k2f , choose anŷk2 ∈ [k2f , k
�
2]. Since 0≤ k̂2 ≤ k2c, we have

Var[C(t)]k2=0 ≥ Var[C(t)] k̂2
≥ Var[C(t)]k2c

Fig. 2. (a) (Top) Contour plot of Var[F (t)] (dotted lines) and Var[C(t)] (solid lines) for differentk2 andk1 whenp1 = 0.4 andp2 = 0.3. Also plotted
arek∗

2 (long dashed line) andk2c (short dashed line). (b) (Bottom) Values of Var[F (T )] whenk2 = 0 (VF, solid line),k2 = k∗
2 (VF∗, dot-dashed

line), andk2 = k2f (k1) (VF′, dotted line), all corresponding to the first graph. Parameter values:y = 0.03,∆e = 0.02,∆b = 0.01, φ = 0.7, σe =
0.12, σby = −0.05, σey = −0.03, σy = 0.03, σeb = 0.02, σb = 0.03, y′ = 0.0309 andiv = 0.02.
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and sincek2f ≤ k̂2 ≤ 2k2f , we have

Var[F (t)]k2=0 = Var[F (t)]2k2f ≥ Var[F (t)] k̂2
≥ Var[F (t)]k2f .

Hencek2 = k̂2 achieves a simultaneous reduction in both Var[F (t)] and Var[C(t)] from their values atk2 = 0 in the
case ofk2c > k2f .

If k2c = k2f , thenk̂2 = k2c = k2f is the best strategy for reducing both Var[F (t)] and Var[C(t)], simultaneously.
These ideas are illustrated inFig. 2. In the top graph (a), we have plottedk2c andk∗2. Givenk1, any value ofk2

betweenk2c andk∗2 will reduce both VarF (t) and VarC(t) relative tok2 = 0. However, in some cases (k1 < 0.24)
VarF (t) can be reduced further by increasingk2 from k∗2 to k2f (Fig. 2, bottom (b)).

Corresponding toFig. 2(a) and (b) gives us the graphs of Var[F (t)] whenk2 = 0, the minimum Var[F (t)] subject
to Var[C(t)] ≤ Var[C(t)]k2=0 and the minimum unconstrained Var[F (t)]. We see fromFig. 2(b) that VF∗ (VarF (t) at
k∗) is not much different from VF′ (VarF (t) at k2f ) and that it can give us the rate of minimum Var[F (t)] subject to
Var[C(t)] ≤ Var[C(t)]k2=0. We can note that this small difference allows us achieve a significant reduction in Var[C(t)]
for only a small deterioration in Var[F (T )] when we move fromk2f (k1) to k∗2(k1). More generally, within this efficient
region (0< k2 < k∗2) we then can choose optimal values fork1, k2, p1 andp2 according to different objective functions
and constraints.

Fig. 3. Contour plots for the optimal values ofk1 (left-hand plot (a)) andk2 (right-hand plot (b)) for the problemminimise VarC(t) subject to
VarF (t) = Vf and for specified asset strategies (p1, p2). p1 is the proportion in equities andp2 is the proportion in bonds,p1 + p2 = 1. Parameter
values arey = 0.03,∆e = 0.02,∆b = 0.01, φ = 0.7, σe = 0.12, σby = −0.05, σey = −0.03, σy = 0.03, σeb = 0.02, σb = 0.03, y′ = 0.0309 and
iv = 0.04.
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4. Optimal investment and contribution strategies

In this section we will consider optimization when there are specific objectives and constraints put in place. In the
previous discussion we were concerned only with minimisation of the Variance ofF (t) orC(t). As the basis for what
follows we will start by investigating the problem:

minimize overk1 andk2 : Var[C(t)], subject to Var[F (t)] = Vf

and for specified values ofp1 (equities) andp2 (bonds).
In Fig. 3, we have plotted contours for the optimal values ofk1 (left-hand plot) andk2 (right-hand plot). In this

plot we have restricted ourselves to asset strategies wherep1 + p2 = 1 (that is, zero investment in cash). For example,
when we require VarF (t) = Vf = 8000 withp1 = 0.4 andp2 = 0.6, the optimal value fork1 is about 0.13, and the
optimal value fork2 is about 190.

In Fig. 4, we show what the consequences are of using these optimal values fork1 andk2 for the chosen values of
Vf , p1 andp2. For these inputs we have calculated the values of Var[C(t)], E[C(t)] andE[F (t)]. Contours for each
of these variables are shown inFig. 4. First, (solid lines) we can see that Var[C(t)] decreases as we move from left
to right. This reflects the fact that we are investing more in bonds and less in equities. For the same reason, however,
E[C(t)] is increasing from left to right, since bonds are low return as well as low risk. The impact of this is less marked
onE[F (t)], which at first is surprising. However, we can see fromFig. 3 thatk1 is closely linked to the constrained
value ofVf : the lowest values of Var[F (t)] can only be achieved by amortizing surplus or deficit as quickly as possible
(that is, by havingk1 close to 1). The same high values ofk1 mean thatE[F (t)] will be close to the actuarial liability
AL = 525 (Table 1, for iv = 0.04).

Example 1. Suppose the objective function is to minimize Var[C(T )] with the constraint that Var[F (T )] is less than
8000. FromFig. 3we can see thatk1 must greater than around 0.1 (that is, the amortization period should be less than
about 11 years). If the required Var[C(T )] can not be more than 200, thenFig. 4indicates that the investment strategy
cannot allocate more than 45% to equities. If we further require thatE[C(T )] can not be more than 4, then we become
restricted to an approximately triangular region inFig. 4. This region indicates that we must invest between 38 and
45% in equities andk1 should be between 0.13 and 0.25.

Fig. 4. Contours for Var[C(t)] (solid lines),E[C(t)] (dot-dashed lines) andE[F (t)] (long-dashed lines) as a function ofVf , p1 andp2 and assuming
that the optimal values fork1 andk2 are being used for each (Vf , p1, p2). Parameter values arey = 0.03,∆e = 0.02,∆b = 0.01, φ = 0.7, σe =
0.12, σby = −0.05, σey = −0.03, σy = 0.03, σeb = 0.02, σb = 0.03, y′ = 0.0309 andiv = 0.04.
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Example 2. If we wish to obtain an optimal Var[C(T )] under the control thatE[C(T )] is between 0 and 4,
Var[F (T )] is less than 8000, andE[F (T )] is more than 600, the available region inFig. 4 would be shaped ap-
proximately like a trapezium, with the an equity holding of between 38 and 67%, and with Var[F (T )] between
3800 and 8000. The minimum Var[C(t)] would be about 160 at the top right corner of this trapezium (where
Var[F (T )] = 8000 andE[C(T )] = 4). Our optimal strategy then is to invest 38% in equities and the rest in bonds,
and to setk1 = 0.13 (equivalent withiv = 0.04 to an amortization period of about 8 years). This gives, as remarked
above, Var[F (T )] = 8000 andE[C(T )] = 4. If, instead, we wish to restrict Var[C(T )] to be not more than 300 and
Var[F (T )] to 8000 and seek for the smallestE[C(T )], we will obtain an optimalE[C(T )] ≈ 1.5. Our optimal strategy
is to invest 56% in equities and 44% in bonds with the amortization period near to 5 years (k1 = 0.18) and Var[F (T )]
= 8000.

Example 3. If our constraint is that the amortization period must not be more than 7 years (that is, we requirek1 to
be larger than 0.16), andE[C(T )] is less than 4, in order to minimize Var[C(T )], our optimal strategy will be to invest
about 40% in equities and the rest in bonds with the optimal Var[C(T )] equal to about 180.

5. Conclusions

In this paper we have investigated a model for defined-benefit pension plans which incorporates a Vasicek type of
model for the short-term interest rate and three assets: cash, bonds and equities. We have proposed a simple method
for adjusting the contribution rate to account for the current level of interest rates as well as the usual adjustment for
the current funding level. Using this model we have derived formulae for the unconditional moments of the funding
level and the contribution rate.

A number of illustrative examples have been given which demonstrate that the new adjustment to the contribution
rate, taking account of current interest rates, does improve stability significantly, particularly where there is a strong
degree of persistence in interest rates. The approach therefore indicates that the standard approach to liability valuation
using an artificial valuation interest rate can be improved upon by making an adjustment for market conditions. What
we have not done here is to look at direct methods for valuing liabilities using the current term-structure of interest
rates. This is a topic for further investigation.

We have developed further the notion of efficient regions for various subsets of the control parametersk1, k2, iv
and (p1, p2) depending on different constraints and objectives. These are regions that we can move into to reduce the
variances of bothF (t) andC(t).
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Appendix A. Proof of Theorem 2.2

(a)(i) Recall that

F (t) = (θv − k2)
∞∑
s=0

(1 − k1)s exp
(
Sy(t, s) + Sp(t, s)

)

+ k2ey
′

∞∑
s=0

(1 − k1)s exp
(
Sy(t, s) − y(t − 1 − s) + Sp(t, s)

)
. (A.1)

For notational convenience write

Xs = exp(Sy(t, s) + Sp(t, s))

and

Ys = exp(Sy(t, s) − y(t − 1 − s) + Sp(t, s)).
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Then

E[F (t)] = (θv − k2)
∞∑
s=0

(1 − k1)sE[Xs] + k2ey
′

∞∑
s=0

(1 − k1)sE[Ys]

with

E[Xs] = exp

[
(s+ 1)(y + α0) + 1

2
V1(s)

]

E[Ys] = exp

[
(s+ 1)(y + α0) − y + 1

2
Vs(s)

]

where

V1(s) = Var(Sy(t, s) + Sp(t, s))

V2(s) = Var(Sy(t, s) − y(t − 1 − s) + Sp(t, s))

(a)(ii) Next recall that

C(t) = NC + k1(AL − F (t)) + k2(ey
′−y(t) − 1). (A.2)

Hence,

E[C(t)] = NC + k1(AL − E[F (t)]) + k2(E[ey
′−y(t)] − 1)

= NC + k1(AL − E[F (t)]) + k2(E[ey
′−y+(1/2)γy(0)] − 1)

where

γy(s) = Cov[y(t), y(t − s)] = σ2
yφ

s

1 − φ2 .

(b)(i) From Eq.(A.1) we also have

Var[F (t)] = (θv − k2)2
∞∑
r,s=0

(1 − k1)r+sC1(r, s) + 2(θv − k2)k2ey
′

∞∑
r,s=0

(1 − k1)r+sC2(r, s)

+ k2
2e2y′

∞∑
r,s=0

(1 − k1)r+sC3(r, s)

where

C1(r, s) = Cov(Xr,Xs)

C2(r, s) = Cov(Yr,Xs)

C3(r, s) = Cov(Yr, Ys);

Expressions forC1, C2 andC3 are given below. Finally we separate out terms involvingk2 and k2
2 to get

Var[F (t)] = h0 + h1k2 + h2k
2
2 as in the statement of the theorem.

(b)(ii) From (A.2) we can deduce that

Var[C(t)] = k2
1Var[F (t)] − 2k1k2ey

′
Cov[F (t),e−y(t)] + k2

2e2y′
Var[e−y(t)]

= k2
1(h0 + h1k2 + h2k

2
2) − 2k1k2ey

′

×
(

(θv − k2)
∞∑
s=0

(1 − k1)sC4(s) + k2ey
′

∞∑
s=0

(1 − k1)sC5(s)

)
+ k2

2e2y′
Var[e−y(t)]
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where

C4(s) = Cov[Xs,e
−y(t)]

C5(s) = Cov[Ys,e
−y(t)]

Rearranging this we get

Var[C(t)] = a0 + a1k2 + a2k
2
2

where

a0 = k2
1h0

a1 = k2
1h1 − 2k1ey

′
θv

∞∑
s=0

(1 − k1)sC4(s)

a2 = k2
1h2 + 2k1ey

′
∞∑
s=0

(1 − k1)sC4(s) − 2k1e2y′
∞∑
s=0

(1 − k1)sC5(s) + k2
2e2y′

Var[e−y(t)]

To calculate these moments more explicitly we need to work out theVi’s and theCi’s.

C1(r, s) = Cov(eSy(t,r)+Sp(t,r),eSy(t,s)+Sp(t,s))

= E[eSy(t,r)+Sp(t,r)+Sy(t,s)+Sp(t,s)] − E[eSy(t,r)+Sp(t,r)] × E[eSy(t,s)+Sp(t,s)]

= exp((r + s+ 2)(y + α0) + 1
2W1(r, s)) − exp((r + 1)(y + α0)

+ 1
2V1(r)) exp((s+ 1)(y + α0) + 1

2V1(s))

C2(r, s) = Cov
(

eSy(t,r−1)+Sp(t,r),eSy(t,s)+Sp(t,s)
)

= E[eSy(t,r−1)+Sp(t,r)+Sy(t,s)+Sp(t,s)] − E[eSy(t,r−1)+Sp(t,r)] × E[eSy(t,s)+Sp(t,s)]

= exp((r + s+ 2)(y + α0) − y + 1
2W2(r, s)) − exp((r + 1)(y + α0) − y

+ 1
2V2(r)) exp((s+ 1)(y + α0) + 1

2V1(s))

C3(r, s) = Cov(eSy(t,r−1)+Sp(t,r),eSy(t,s−1)+Sp(t,s))

= E[eSy(t,r−1)+Sp(t,r)+Sy(t,s−1)+Sp(t,s)] − E[eSy(t,r−1)+Sp(t,r)] × E[eSy(t,s−1)+Sp(t,s)]

= exp((r + s+ 2)(y + α0) − 2y + 1
2W3(r, s)) − exp((r + 1)(y + α0) − y

+ 1
2V2(r)) exp((s+ 1)(y + α0) − y + 1

2V2(s))

C4(r) = Cov(eSy(t,r)+Sp(t,r),e−y(t)) = E[eSy(t,r)+Sp(t,r)−y(t)] − E[eSy(t,r)+Sp(t,r)] × E[e−y(t)]

= exp((r + 1)(y + α0) − y + 1
2W4(r, s)) − exp((r + 1)(y + α0) + 1

2V1(r)) exp(−y + 1
2γy(0))

C5(r) = Cov(eSy(t,r−1)+Sp(t,r),e−y(t)) = E[eSy(t,r−1)+Sp(t,r)−y(t)] − E[eSy(t,r−1)+Sp(t,r)] × E[e−y(t)]

= exp((r + 1)(y + α0) − 2y + 1
2W5(r, s)) − exp((r + 1)(y + α0) − y + 1

2V2(r)) exp(−y + 1
2γy(0))

where

V1(s) = Var(Sy(t, s) + Sp(t, s))

V2(s) = Var(Sy(t, s− 1) + Sp(t, s))

W1(r, s) = Var(Sy(t, r) + Sy(t, s) + Sp(t, r) + Sp(t, s))
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W2(r, s) = Var(Sy(t, r − 1) + Sy(t, s) + Sp(t, r) + Sp(t, s))

W3(r, s) = Var(Sy(t, r − 1) + Sy(t, s− 1) + Sp(t, r) + Sp(t, s))

W4(s) = Var(Sy(t, s) + Sp(t, s) − y(t))

W5(s) = Var(Sy(t, s− 1) + Sp(t, s) − y(t))

These formulae for theCk exploit the normality ofy(t), Sy(t, r), etc.
We now derive each of these five functions:

V1(s) = Var(Sy(t, s) + Sp(t, s)) = (α2
2 + α2

3)(s+ 1) + α2
1(s+ 1) + 2α1σy

1 − φ
(s− φ(1 − φs)

1 − φ
)

+ σ2
y

(1 − φ)2

(
s− 2φ(1 − φs)

1 − φ
+ φ2(1 − φ2s)

1 − φ2

)
+
(

(1 − φs+1)σy
1 − φ

)2

+ σ2
y

(1 − φ)2
(1 − φs+1)2

φ2

1 − φ2

If s = 0, thenV2(s) = α2
1 + α2

2 + α2
3.

Supposes ≥ 1. Then:

V2(s) = Var(Sy(t, s− 1) + Sp(t, s)) = (α2
2 + α2

3)(s+ 1) + α2
1(s+ 1) + 2α1σy

1 − φ

(
s− φ(1 − φs)

1 − φ

)

+ σ2
y

(1 − φ)2

(
s− 2φ(1 − φs)

1 − φ
+ φ2(1 − φ2s)

1 − φ2

)
+ σ2

y

(1 − φ)2
(1 − φs)2

φ2

1 − φ2

ForW1(r, s), if r = s thenW1(r, s) = 4V1(s).
Supposes ≥ r. Let

Q1(r, s) = Sy(t, r) + Sy(t, s) + Sp(t, r) + Sp(t, s)

Then

Q1(r, s) = Sy(t, r) + Sy(t, s) + Sp(t, r) + Sp(t, s)

= 2α1Zy(t) +
r∑
j=1

(
2(1− φj)σy

1 − φ
+ 2α1

)
Zy(t − j) +

(
2(1− φr+1)σy

1 − φ
+ α1

)
Zy(t − r − 1)

+
s∑

j=r+2

(
(φj−r−1(1 − φr+1) + 1 − φj)σy

1 − φ
+ α1

)
Zy(t − j)

+ (φs−r(1 − φr+1) + 1 − φs+1)σy
1 − φ

Zy(t − s− 1)

+
∞∑

j=s+2

(
φj−r−1(1 − φr+1) + φj−s−1(1 − φs+1)

1 − φ
σy

)
Zy(t − j) + 2α2

r∑
j=0

Ze(t − j)

+α2

s∑
j=r+1

Ze(t − j) + 2α3

r∑
j=0

Zb(t − j) + α2

s∑
j=r+1

Zb(t − j)

Thus:

W1(r, s) = Var(Q1(r, s)) = (α2
2 + α2

3)(4 + s+ 3r) + 4α2
1(r + 1)

+ 8α1σy

1 − φ
(r − φ(1 − φr)

1 − φ
) + 4σ2

y

(1 − φ)2

(
r − 2φ(1 − φr)

1 − φ
+ φ2(1 − φ2r)

1 − φ2

)

+
(

2(1− φr+1)σy
1 − φ

+ α1

)2

+ α2
1(s− r − 1)
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+ 2α1σy

1 − φ

(
s− r − 1 + φ(1 − φs−r−1)

1 − φ
− 2φr+2(1 − φs−r−1)

1 − φ

)

+ σ2
y

(1 − φ)2

(
s− r − 1 + 2(1− 2φr+1)

φ(1 − φs−r−1)

1 − φ

)

+ σ2
y

(1 − φ)2

(
(1 − 4φr+1 + 4φ2r+2)

φ2(1 − φ2(s−r−1))

1 − φ2

)
+ φ2σ2

y

1 − φ2

(1 + φs−r − 2φs+1)2

(1 − φ)2

Supposes ≥ r. Then:

Q2(r, s) = Sy(t, r − 1) + Sy(t, s) + Sp(t, r) + Sp(t, s) = 2α1Zy(t) +
r∑
j=1

(
2(1− φj)σy

1 − φ
+ 2α1

)
Zy(t − j)

+
s∑

j=r+1

(
(φj−r(1−φr) + 1−φj)σy

1 − φ
+ α1

)
Zy(t − j) + (φs−r+1(1 − φr) + 1 − φs+1)σy

1 − φ
Zy(t − s1)

+
∞∑

j=s+2

(
φj−r(1 − φr) + φj−s−1(1 − φs+1)

1 − φ
σy

)
Zy(t − j) + 2α2

r∑
j=0

Ze(t − j)

+α2

s∑
j=r+1

Ze(t − j) + 2α3

r∑
j=0

Zb(t − j) + α2

s∑
j=r+1

Zb(t − j)

W2(r, s) = Var(Q2(r, s)) = (α2
2 + α2

3)(4 + s+ 3r) + 4α2
1(r + 1) + 8α1σy

1 − φ

(
r − φ(1 − φr)

1 − φ

)

+ 4σ2
y

(1 − φ)2

(
r − 2φ(1 − φr)

1 − φ
+ φ2(1 − φ2r)

1 − φ2

)

+α2
1(s− r) + 2α1σy

1 − φ

(
s− r + (1 − 2φr)

φ(1 − φs−r)
1 − φ

)

+ σ2
y

(1 − φ)2

(
s− r + 2(1− 2φr)

φ(1 − φs−r)
1 − φ

+ (1 − 4φr + 4φ2r)
φ2(1 − φ2(s−r))

1 − φ2

)

+
(

(φs−r+1(1 − φr) + 1 − φs+1)σy
1 − φ

)2

+ σ2
y

(1 − φ)2
(1 + φs−r+1 − 2φs+1)2

φ2

1 − φ2

Supposes = r. Then:

Q2(r, s) = Sy(t, s− 1) + Sy(t, s) + 2Sp(t, s) = 2α1Zy(t) +
s∑
j=1

(
2(1− φj+1)σy

1 − φ
+ 2α1

)
Zy(t − j)

+
(

(φ(1 − φs) + 1 − φs+1)σy
1 − φ

)
Zy(t − s− 1)

+
∞∑

j=s+2

(
φj−s+1(1−φs+1) + φj−s(1−φs)

1 − φ
σy

)
Zy(t − j) + 2α2

s∑
j=0

Ze(t − j) + 2α3

s∑
j=0

Zb(t − j)

W2(r, s) = Var(Q2(r, s)) = (α2
2 + α2

3)(4 + 4s) + 4α2
1(s+ 1) + 8α1σy

1 − φ

(
s− φ(1 − φs)

1 − φ

)
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+ 4σ2
y

(1 − φ)2

(
s− 2φ(1 − φs)

1 − φ
+ φ2(1 − φ2s)

1 − φ2

)
+
(

(φ(1 − φs) + 1 − φs+1)σy
1 − φ

)2

+ σ2
y

(1 − φ)2
(1 + φ − 2φs+1)2

φ2

(1 − φ2)
Supposer ≥ s. Then:

Q2(r, s) = Sy(t, r − 1) + Sy(t, s) + Sp(t, r) + Sp(t, s)

= 2α1Zy(t) +
s∑
j=1

(
2(1− φj+1)σy

1 − φ
+ 2α1

)
Zy(t − j) +

(
2(1− φs+1)σy

1 − φ
+ α1

)
Zy(t − s1)

+
r∑

j=s+2

(
(φj−s−1(1 − φs+1) + 1 − φj)σy

1 − φ
+ α1

)
Zy(t − j)

+
∞∑

j=r+1

(
φj−r(1 − φr) + φj−s−1(1 − φs+1)

1 − φ
σy

)
Zy(t − j) + 2α2

s∑
j=0

Ze(t − j)

+α2

r∑
j=s+1

Ze(t − j) + 2α3

s∑
j=0

Zb(t − j) + α3

r∑
j=s+1

Zb(t − j)

W2(r, s) = Var(Q2(r, s)) = (α2
2 + α2

3)(4 + r + 3s) + 4α2
1(s+ 1) + 8α1σy

1 − φ

(
s− φ(1 − φs)

1 − φ

)

+ 4σ2
y

(1 − φ)2

(
s− 2φ(1 − φs)

1 − φ
+ φ2(1 − φ2s)

1 − φ2

)
+
(

2(1− φs+1)σy
1 − φ

+ α1

)2

+ α2
1(r − s− 1)

+ 2α1σy

1 − φ

(
r − s− 1 + (1 − 2φs+1)

φ(1 − φr−s−1)

1 − φ

)

+ σ2
y

(1 − φ)2

(
r − s− 1 + 2(1− 2φs+1)

φ(1 − φr−s−1)

1 − φ

)

+ σ2
y

(1 − φ)2

(
(1 − 4φs+1 + 4φ2s+2)

φ2(1 − φ2(r−s−1))

1 − φ2

)
+ σ2

y

(1 − φ)2
(1 + φr−s−1 − 2φr)2

φ2

(1 − φ2)

Supposer = 0. Then:
Q2(r, s) = Sy(t, s) + Sp(t,0) + Sp(t, s) = 2α1Zy(t) +

s∑
j=1

(
(1 − φj)σy

1 − φ
+ α1

)
Zy(t − j)

+
(

(1 − φs+1)σy
1 − φ

)
Zy(t − s− 1) +

∞∑
j=s+2

(
φj−s−1(1 − φs+1)

1 − φ
σy

)
Zy(t − j) + 2α2Ze(t)

+α2

s∑
j=1

Ze(t − j) + 2α3Zb(t) + α3

s∑
j=1

Zb(t − j)

W2(r, s) = Var(Q2(r, s)) = (α2
2 + α2

3)(s+ 4) + 4α2
1 + α2

1s+ 2α1σy

1 − φ

(
s− φ(1 − φs)

1 − φ

)

+ σ2
y

(1 − φ)2

(
s− 2φ(1 − φs)

1 − φ
+ φ2(1 − φ2s)

1 − φ2

)
+
(

(1 − φs+1)σy
1 − φ

)2

+ σ2
y

(1 − φ)2
(1 − φs+1)2

φ2

(1 − φ2)
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Now considerW3(r, s) Supposes ≥ r. Then:
Q3(r, s) = Sy(t, r − 1) + Sy(t, s− 1) + Sp(t, r) + Sp(t, s)

= 2α1Zy(t) +
r∑
j=1

(
2(1− φj+1)σy

1 − φ
+ 2α1

)
Zy(t − j)

+
s∑

j=r+1

(
(φj−r(1 − φr) + 1 − φj)σy

1 − φ
+ α1

)
Zy(t − j)

+
∞∑

j=s+1

(
φj−r(1 − φr) + φj−s(1 − φs)

1 − φ
σy

)
Zy(t − j) + 2α2

r∑
j=0

Ze(t − j)

+α2

s∑
j=r+1

Ze(t − j) + 2α3

r∑
j=0

Zb(t − j) + α3

s∑
j=r+1

Zb(t − j)

W3(r, s) = Var(Q3(r, s)) = (α2
2 + α2

3)(4 + s+ 3r) + 4α2
1(r + 1) + 8α1σy

1 − φ

(
r − φ(1 − φr)

1 − φ

)

+ 4σ2
y

(1 − φ)2

(
r − 2φ(1 − φr)

1 − φ
+ φ2(1 − φ2r)

1 − φ2

)
+ α2

1(s− r)

+ 2α1σy

1 − φ

(
s− r + (1 − 2φr)

φ(1 − φs−r)
1 − φ

)

+ σ2
y

(1 − φ)2

(
s− r + 2(1− 2φr)

φ(1 − φs−r)
1 − φ

+ (1 − 4φr + 4φ2r)
φ2(1 − φ2(s−r))

1 − φ2

)

+ σ2
y

(1 − φ)2
(1 + φs−r − 2φs)2

φ2

(1 − φ2)

Supposer = s. Then:

W3(r, s) = 4V2(s)

If r = s = 0,W3(r, s) = 4α2
1 + 4(α2

2 + α2
3).

Supposer = 0. Then:

Q3(r, s) = Sy(t, s− 1) + Sp(t,0) + Sp(t, s)

Q3(r, s) = Sy(t, s− 1) + Sp(t,0) + Sp(t, s) = 2α1Zy(t) +
s−1∑
j=1

(
(1 − φj)σy

1 − φ
+ α1

)
Zy(t − j)

+
∞∑

j=s+1

(
φj−s(1 − φs)

1 − φ
σy

)
Zy(t−j) + 2α2Ze(t) + α2

s∑
j=1

Ze(t−j) + 2α3Zb(t) + α3

s∑
j=1

Zb(t − j)

W3(r, s) = Var(Q3(r, s)) = (α2
2 + α2

3)(s+ 4) + 4α2
1 + α2

1s+ 2α1σy

1 − φ

(
s− φ(1 − φs)

1 − φ

)

+ σ2
y

(1 − φ)2

(
s− 2φ(1 − φs)

1 − φ
+ φ2(1 − φ2s)

1 − φ2

)
+ σ2

y

(1 − φ)2
(φ − φs)2

φ2

(1 − φ2)

y(t) = y +
∞∑
j=0

φjσyZy(t − j)
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Consider:

Q4(s) = Sy(t, s) + Sp(t, s) − y(t) = sy + (s+ 1)α0 + (α1 − σy)Zy(t)

+
s∑
j=1

(
(1 − φj)σy

1 − φ
− φjσy + α1

)
Zy(t − j) +

(
(1 − φs+1)σy

1 − φ
− φs+1σy

)
Zy(t − j)

+
∞∑

j=s+2

(
φj−s−1(1 − φs+1)

1 − φ
σy − φjσy

)
Zy(t − j) + α2

s∑
j=0

Ze(t − j) + α3

s∑
j=0

Zb(t − j)

W4(s) = Var(Q4(s)) = (α1 − σy)
2 + α2

1s+ φ2(1 − φ2s)

1 − φ2 σ2
y + σ2

y

(1 − φ)2

(
s− 2φ(1 − φs)

1 − φ
+ φ2(1 − φ2s)

1 − φ2

)

− 2α1σy
φ(1 − φs)

1 − φ
+ 2α1σy

1 − φ

(
s− φ(1 − φs)

1 − φ

)
− 2σ2

y

1 − φ

(
φ(1 − φs)

1 − φ
− φ2(1 − φ2s)

1 − φ2

)

+
(

(1 − φs+1)σy
1 − φ

− φs+1σy

)2

+ σ2
y

(1 − φ)2
(1 − φs+1)2

φ2

(1 − φ)2

+ σ2
y

φ2s+4

1 − φ2 − 2σ2
y

1 − φ
(φs−1 − φ2s)

φ4

1 − φ2 + (α2
2 + α2

3)(s+ 1)

Consider, fors ≥ 0:

Q5(s) = Sy(t, s− 1) + Sp(t, s) − y(t) = (s− 1)y + (s+ 1)α0 + (α1 − σy)Zy(t)

+
s∑
j=1

(
(1 − φj)σy

1 − φ
− φjσy + α1

)
Zy(t − j) +

∞∑
j=s+1

(
φj−s(1 − φs)

1 − φ
σy − φjσy

)
Zy(t − j)

+α2

s∑
j=0

Ze(t − j) + α3

s∑
j=0

Zb(t − j)

W5(s) = Var(Q5(s)) = (α1 − σy)
2 + α2

1s+ φ2(1 − φ2s)

1 − φ2 σ2
y + σ2

y

(1 − φ)2

(
s− 2φ(1 − φs)

1 − φ
+ φ2(1 − φ2s)

1 − φ2

)

− 2α1σy
φ(1 − φs)

1 − φ
+ 2α1σy

1 − φ
(s− φ(1 − φs)

1 − φ
) − 2σ2

y

1 − φ

(
φ(1 − φs)

1 − φ
− φ2(1 − φ2s)

1 − φ2

)

+ σ2
y

(1 − φ)2
(1 − φs)2

φ2

(1 − φ)2
+ σ2

y

φ2s+2

1 − φ2 − 2σ2
y

1 − φ
(φs − φ2s)

φ2

1 − φ2 + (α2
2 + α2

3)(s+ 1)

If s = 0, then:

Q5(s) = Sp(t,0) − y(t + 1)

W5(s) = Var(Sp(t,0) − y(t)) = (α1 − σy)
2 + σ2

y

φ2

1 − φ2 + α2
2 + α2

3

Appendix B. Asset returns

In this appendix we will demonstrate that the asset returns for a mixed investment strategy involving the one-year
cash account, bonds and equities can reasonably be given by Eq. (2.4). We will do this by discussing a continuous-time
model that runs in the background, even though decisions in the pensions model are only made on an annual basis. To
this end we will introduce the following notation. LetSi(u) represent the value atu, for t − 1 ≤ u ≤ t, of an investment
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of 1 at timet − 1 in asseti, for i = 0,1,2,3. Any coupon or dividend income on the assets are assumed to be reinvested
in the same asset meaning that the total return processSi(u) represents the price of atradeable asset.

Asset 0 is the zero-coupon bond maturing at timet, so thatS0(u) = P(u, t)/P(t − 1, t) andP(s, T ) is the usual
notation for the price ats of a zero-coupon bond maturing atT. Asset 1 is the equity account, so that, in line with
Section2 we haveS1(t) = exp[y(t − 1) +∆e(t)]. Asset 2 is the bond account, withS2(t) = exp[y(t − 1) +∆b(t)].
Asset 3 is an additional asset which cannot be replicated using assets 0–2. We know that such assets exist since we
have three independent sources of risk and the minimum requirement, then, for a market to be complete is that there
are four tradeable assets.

We will assume in our background model that the market is complete, implying that any derivative payment att can
be replicated over the intervalt − 1 to t usingS0(u) to S3(u).

We now recall the Fundamental Theorem of Asset Pricing that asserts

(a) The market is arbitrage-free if and only if there exists a martingale measureQ.
(b) The market is complete if and only if there exists aunique martingale measureQ.

Instead of using the instantaneous cash account as the numeraire we will useS0(u). We thus seek a measureQ̂ under
which the prices of all tradeable assets discounted byS0(u) are martingales. If such âQ exists then the assumption of
completeness made above ensures that all claims att can be replicated and therefore have a well-defined value att − 1.

We construct our model as follows. LetŜi(t) = Si(t)/S0(t) be the discounted asset prices usingS0(t) as the numeraire.
Let Ẑy(t), Ẑb(t) andẐe(t) be i.i.d. standard normal random variables under a measureQ̂ equivalent to the real-world
measureP. In our construction of the model we will assume that the prices of all tradeable assets discounted byS0(t)
underQ̂ are martingales. Specifically we assume that

Ŝ1(t) = exp[∆e(t)]

Ŝ2(t) = exp[∆b(t)]

where

∆e(t) = σeyẐy(t) + σebẐb(t) + σeẐe(t) − 1
2vee

∆b(t) = σbyẐy(t) + σbẐb(t) − 1
2vbb

vee = σ2
ey + σ2

eb + σ2
e

and
vbb = σ2

by + σ2
b.

ClearlyEQ̂[Ŝi(t)|y(t − 1)] = 1.
Now consider a derivative security that pays at timet

V (t) = exp[y(t − 1) + p1∆e(t) + p2∆b(t) + ρ(p1, p2)]

where

ρ(p1, p2) = 1
2p1vee+ 1

2p2vbb − 1
2(p2

1vee+ 2p1p2veb + p2
2vbb)

and

veb = σeyσby + σebσb.

It is straightforward to show that

EQ̂

[
V (t)

S0(t)

∣∣∣∣ y(t − 1)

]
= 1

Earlier in this appendix we assumed, with the help of an additional asset, that the market was complete. It follows
that the derivative payingV (t) at t can be replicated using the four assetsS0(u), . . . , S3(u) and that the value of this
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derivative is 1 at timet − 1. In other words a return of

1 + i(t) = exp[y(t − 1) + p1∆e(t) + p2∆b(t) + ρ(p1, p2)]

at timet can be described as afair return at t on an initial investment of 1 at timet − 1 in relation to 100% investments
in equities, bonds or cash.

As a final remark, if we assume that, in continuous time,Ŝ1(u) andŜ2(u) have constant volatilities and instantaneous
covariance fort − 1< u < t then the replicating strategy for 1+ i(t) above maintains constant proportions ofp1 in
equities,p2 in bonds and 1− p1 − p2 in the zero-coupon bond maturing att. This follows from the observation that
V̂ (u) = EQ̂[V (t)|Fu] ∝ Ŝ1(u)p1Ŝ2(u)p2. We can note also that this does not require the use of the third risky asset
S3(u) which was required for completeness of the larger market.
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