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Abstract 

This research focuses on the temperature risk and attempts to investigate which 
distribution is most appropriate for capturing the Taiwan’s temperature dynamics. We adopt 
the Campbell and Diebold (2005) model to describe the temperature characteristics and 
examine a variety of distributions. We find that the standard Gumbel distribution provides 
the best fit for both in-sample and out-of-sample performance. Further, we extend Cao and 
Wei’s (2004) approach to obtain the valuation framework for HDD and CDD contracts. 
Finally, we observe that the effects of different distributions on the value of the temperature 
derivatives are very significant. 
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I. Introduction 

Weather is an essential production factor but, at the same time, it is also the 
most important and least controllable source of risk in agriculture, the power 
industry, and retail business (Cao and Wei (2004) and Musshoff, Hirschauer, and 
Odening (2008)). There is scarcely a year without adverse weather events leading 
to economic losses in production in the different regions of the world (Bates et al. 
(2008) and Lobell, Ortiz-Monasterio, and Falcon (2007)). For instance, the U.S. 
suffered economic losses of USD8.4 billion due to severe weather, while flooding 

                                                           
*  Chuang-Chang Chang, Professor of Department of Finance, National Central University, Taoyuan, 

Taiwan. 
**  Sharon S. Yang, Professor of Department of Finance, National Central University, Taoyuan, Taiwan. 
*** Tzu-Yu Huang, Master’s Student of Department of Finance, National Central University, Taoyuan, 

Taiwan. 
**** Corresponding author: Jr-Wei Huang, E-mail: jrwei.huang@icloud.com, Associate Professor of 

Department of Insurance, Hubei University of Economics, No. 8, Yangqiaohu Rd., Jiangxia Dist., 
Wuhan County, Hubei Province 430205, China, TEL: (86) 155-2715-6007. 

 (Received: May 31, 2014; First Revision: July 17, 2014; Accepted: September 5, 2014) 

DOI: 10.6545/JFS.2016.24(2).2 



Journal of Financial Studies Vol. 24 No. 2 June 2016 
 

26 

in central Europe in May and June caused losses amounting to USD22 billion in 
2013. On the other hand, New Zealand suffered economic losses of over USD20 
million in September alone and a drought in China between January and August 
resulted in losses estimated at USD10 billion in 2013 (Impact Forecasting (2013)). 

To hedge against these uncertainties brought about by fickle weather 
conditions, weather derivatives have been developed on the Chicago Mercantile 
Exchange (CME) since 1999. Utilities and many other businesses in which weather 
has a major impact on revenues, such as energy producers and consumers, the 
leisure industry, the insurance industry, and the agricultural sector, could all be 
the users of weather derivatives. However, it is primarily the energy sector that has 
driven the demand for weather derivatives. To date, weather derivative dealing has 
been structured to cover almost any types of weather variables (temperature, 
rainfall, snowfall, wind speed, and humidity). However, it is estimated that 98% to 
99% of weather derivatives trading is based on temperature-based indices, such as 
heating degree days (HDD) or cooling degree days (CDD) defined on the basis of 
average daily temperatures according to the CME1 (Zapranis and Alexandridis 
(2009)).  

In recent years, the abnormal climate has caused the market for weather 
derivatives to grow steadily. Yang, Li, and Wen (2011) observe that the notional 
value of weather derivatives contracts in 2006 and 2007 was USD19 billion, and 
this amount grew to USD32 billion in 2007 and 2008. It is shown that the 
weather derivatives have gained increasing popularity in recent years as a tool to 
manage weather risk. Although weather derivatives have become more and more 
important, there is not yet a standardized and effective valuation model for 
weather derivatives. For example, in pricing the most traded volume of 
temperature derivatives, a number of considerations make pricing temperature 
derivatives more difficult than pricing traditional derivatives (Alaton, Djehiche, 
and Stillberger (2002), Brody, Syroka, and Zervos (2002), Cao and Wei (2004), 
Campbell and Diebold (2005), and Huang, Shiu, and Lin (2008)). First, the 
underlying temperature indices are not tradable; we cannot use the traditional 
arbitrage-free pricing method to value temperature derivatives. Second, 
although the liquidity of temperature derivative markets has improved, the 
degrees of temperature derivative markets completeness are less than those of 
traditional derivative markets completeness, which is also why the classic 
Black-Scholes-Merton methodology cannot be directly applied. Therefore, prior 
researchers have confronted the challenge of developing a forecasting model that 
can be integrated into the options pricing framework, while providing accurate 
estimates and forecasts.  

                                                           
1  An HDD is the number of degrees by which the daily temperature is below the base temperature, while 

a CDD is the number of degrees by which the daily temperature is above the base temperature. The 
base temperature is usually 65ºF in the U.S. and 18ºF in Europe and Japan. HDDs and CDDs are 
usually accumulated over a month or over a season. 
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There is a variety of temperature models proposed in the literature. Dischel 
(1998) uses a simple stochastic Brownian motion for forecasting temperature. 
Considine (2000) fits the distribution of HDD historical values and evaluate 
options by multiplying the payout of the option by the product of the probability 
distribution. Alaton, Djehiche, and Stillberger (2002) construct a temperature 
model, which takes into account temperature trends, seasonality, and mean 
reversion. Furthermore, they derive the closed-form pricing formula for the 
weather derivative using the Gaussianity property of the underlying distribution of 
the temperature process. Huang, Shiu, and Lin (2008) study Alaton, Djehiche, 
and Stillberger (2002) to consider the clustering of volatility by incorporating a 
GARCH process into the temperature. They show that for HDD and CDD the call 
price is higher under the ARCH effects variance than under the fixed variance. 
Brody, Syroka, and Zervos (2002) observe that temperature dynamics exhibit 
long-range temporal dependencies and apply a fractional Brownian motion to 
drive an Ornstein-Uhlenbeck process. Cao and Wei (2004) point out some 
important features that should be considered in modeling the future dynamics of 
temperature, which include (i) seasonal variation patterns, (ii) mean reversion 
characteristics, (iii) the autoregressive property in temperature change, (iv) a 
larger variation in daily temperature in the winter than in the summer, and (v) 
global warming. Furthermore, Campbell and Diebold (2005) employ a time-series 
approach to capture and forecast daily average temperature features in line with 
those of Cao and Wei (2004) and they further consider not only the conditional 
mean but also the conditional variance in daily temperature behavior in 
constructing the future distribution of the underlying indices. The above studies 
on the temperature models are based on the general assumption of the normal or 
lognormal distribution in terms of capturing the weather uncertainty for obtaining 
weather derivative pricing formulas. However, it is a fact that not all weather 
uncertainty can be captured by the Gaussian distribution. For instance, Stern and 
Coe (1984) analyze rainfall data from more than 15 countries and use non- 
stationary Markov chains to describe the occurrence of rain and gamma 
distributions to depict the rainfall amounts. Yue, Ourada, and Bobee (2001) show 
that a bivariate Gamma distribution constructed from a specified Gamma 
marginal distribution is useful for representing the joint probabilistic properties of 
multivariate hydrological events, such as floods and storms. Loukas et al. (2001) 
use a Gumbel theoretical distribution and provide a best fit to the maximum 
annual rainfall using data for Greece. Therefore, the temperature variable may be 
based on different distributions. 

We extend the existing literature to examine the setting of the distributions for 
temperature data for different temperature models. We consider the distribution 
based on the Gamma transformation and do not restrict the temperature 
disturbance to following a normal distribution. Our model is built on the well- 
developed temperature model in Campbell and Diebold (2005) that allows for 
conditional mean dynamics with a contribution from global warming and seasonal 
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and cyclical components, and that also considers conditional volatility dynamics 
with contributions coming from both seasonal and cyclical components. Thus, the 
purpose of this study is threefold. First, we examine the distribution of 
temperature disturbances by means of a Gamma transformation based on the 
empirical data. Second, we extend Campbell and Diebold’s (2005) temperature 
model with an adjustment to the disturbance by considering the Gamma 
transformed distributions. The normal distribution assumed in Campbell and 
Diebold (2005) is compared with this distribution. The out-of-sample forecast 
performance of the temperature based on different distributions is examined. 
Finally, we use an equilibrium option pricing method, which is an extension of the 
approach adopted by Cao and Wei (2004). They apply an extended version of 
Lucas’s (1978) equilibrium pricing model where the direct estimation of the 
market price of weather risk is avoided. Instead, pricing is based on the stochastic 
process of the weather index, an aggregated dividend, and an assumption 
regarding the utility function of a representative investor. In other words, they 
consider an equilibrium pricing model with a joint process of the temperature and 
the aggregated dividend. Furthermore, we analyze the market prices of the 
temperature risk to establish if it is significant in the valuation of weather 
derivatives.  

An empirical analysis is conducted to investigate the distribution setting on the 
temperature model. We demonstrate this by using a unique data set for Taiwan’s 
daily temperature. Taiwan is located in the East Asian coastal area, and the ocean 
climate patterns affect Taiwan’s climate. With its special climate and geographical 
location, the aquaculture in Taiwan is particularly sensitive to temperature 
variations. Natural disasters, such as typhoons, floods, coldness, hail, droughts, 
and earthquakes, often result in huge losses to the farmers. Furthermore, Taiwan’s 
Council of Agriculture has pointed out that frost damage has caused more than 
USD2 billion in agricultural and fishery crop losses in Taiwan during the period 
from 1949 to 2009. How to deal with the weather risk is thus very important for 
both the farmers and the government. To date, the government has used the 
indemnity method in managing the weather risk in Taiwan when the farmers have 
faced serious losses. However, the farmers may not be covered by an indemnity 
when incurring serious losses because they did not meet the indemnity criteria. In 
addition, the government may experience serious financial problems when 
indemnifying its customers due to catastrophic events. Thus, how to use 
alternative instruments to manage the weather risk is needed in Taiwan. Weather 
derivatives are introduced to demonstrate that it is necessary to price weather 
derivatives based on the case of Taiwan. Therefore, we focus on our analysis using 
Taiwan’s temperature data. 

The data set contains a sample of 30,660 daily high/low temperatures over 
the period from 1970 through 2011, obtained from the Central Weather Bureau of 
Taiwan. After examining different Gamma transformed distributions, the empirical 
analysis shows that the Gumbel distribution assumption for the temperature 
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disturbance provides more accuracy in terms of forecasting ability than that 
under the normal distribution assumption. If we ignore the Gumbel distribution, 
and instead assume that a normal distribution exists, it would cause the risk 
premiums to be underestimated. In addition, the risk premium represents a 
significant part of the determination of the prices of temperature derivatives that 
are evaluated based on risk aversion and aggregate dividend process parameters 
that conform to the empirical reality. Finally, the market price of weather risk is 
more pronounced for option prices than for forward prices due to the non- 
linearity in the option’s payoff. Based on the numerical findings, we can sum up 
the contributions of this article regarding the literature on weather derivative 
pricing in the following ways. First, we use a reasonable distribution for Taiwan’s 
temperature data. We discover that the distribution of temperatures could be 
Gumbel distributed and that our results appear to reject the assumption of a 
normal distribution according to Taiwan’s temperature data. Thus, it is important 
to obtain a proper distribution to capture the temperature uncertainty. The 
Gumbel distribution has been used to model the distribution of the maximum 
(or the minimum) of a number of samples for various distributions, for example, 
the folds, earthquakes, athletic speed records, and maximal records, such as the 
hottest day or the wettest month (Vitiello and Poon (2010)). To the best of our 
knowledge, we first investigate the Gumbel distribution using temperature data. 
Second, we extend Campbell and Diebold’s (2005) temperature model with 
different distribution settings, including the proposed Gumbel distribution for 
temperature dynamics, in order to value the HDD forward and HDD option 
contracts. Based on the equilibrium option pricing method, which is an extension 
of Cao and Wei’s (2004) approach, the corresponding valuation frameworks for 
pricing temperature derivatives are established. Thus, we are able to analyze the 
market prices of temperature risk numerically, as the risk premium can affect 
the prices of temperature risk significantly. 

The remainder of this paper is organized as follows. In Section II, we describe 
the settings of different temperature models and the equilibrium option pricing 
method, including the daily temperature behavior, the aggregate dividends 
process, and the utility function of the representative investor. In Section III, we 
provide the valuation formulas of the extended Campbell and Diebold (2005) 
model followed by the Gumbel distribution transformed by the Gamma 
distribution. In Section IV, we present the Monte Carlo simulation results. Finally, 
in the last section we draw our conclusions. 

II. Model Specification 

The martingale method and the equilibrium asset pricing model are the two 
main categories of pricing approaches for weather derivatives. The martingale 
method typically applies the principle of non-arbitrage to price the derivatives 
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based on the tradable underlying asset. This method is further adapted to 
evaluate the weather derivatives by obtaining the market price of temperature 
risk while the temperature is non-tradable. Alaton, Djehiche, and Stillberger 
(2002) evaluate the weather derivative by using the martingale estimation 
function proposed by Bibby and Sørensen (1995). Cao and Wei (2004) first use 
an equilibrium asset pricing model for pricing weather derivatives that is an 
extension of Lucas’s (1978) model. In general, when using the equilibrium asset 
pricing model, we need to know the utility function of the representative 
investor. According to Lucas’s (1978) pure exchange economy, the fundamental 
uncertainties are driven by two state variables: the aggregate dividend and a 
state variable representing the weather condition. Aggregate dividend variables 
can be regarded as the aggregate output or dividends of the market portfolio and 
the weather conditions could be temperature, rainfall, snowfall, or the number of 
typhoons. We use the equilibrium asset pricing model based on Cao and Wei 
(2004). 

Let W denote the joint dynamic combined with temperature, and   be the 
aggregate dividend which is an exogenous process on a given probability space

( , , ).F P  The filtration,   , ; 0,1,2, , ,tF W t       assembles the infinitely 

representative investor’s information at time t. Under the standard equilibrium 
condition that the total consumption is equal to the aggregate dividend, the 
contingent claim at time t with a payoff Tq  at a future time T is given by 

 


  


1
( , ) ( , ) (0, ),

( , ) t T T
t

X t T E U T q t T
U t

            (1) 

where ( )U    is the marginal utility function of the representative investor. 

The contingent claim at time t could be evaluated by Equation (1) as long as 
the temperature factors, dividend process, and the agent’s preference determined 
by the relationship with the total consumption are specified first. We describe the 
settings of these variables as follows. 

A. The Temperature Variable Model 

A.1. Temperature Model Setting 

To capture the main characteristics of temperature behavior in modeling 
temperature dynamics, we extend the temperature model proposed by Campbell 
and Diebold (2005) and further consider different distribution settings in the 

disturbance term to examine the abnormality of variation in temperature. Let tW  

denote the daily average temperature. The daily average temperature dynamic is 
modeled by trend, seasonal, and cyclical components as follows. 

-
1

,  
L

t t t t l t l t t
l

W Trend Seasonal W  


                (2) 
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where the conditional mean dynamics of Wt with contributions comes from global 
warming, seasonal components, and cyclical components, and also allows for 

conditional volatility dynamics 
2( )t  with contributions coming from both 

seasonal and cyclical components. d(t) represents the cycles for each year, i.e., 

d(t)=1, 2, …, 365. t  is the disturbance term at time t and is assumed to be 

identical to and independently normally distributed with N(0,1) in Campbell and 
Diebold (2005). Instead, we extend their study to further examine the abnormality 
of variation in temperature and consider different Gamma transformed 
distributions in the disturbance term. 

A.2. Statistical Analysis and Model Fitting with Taiwan Average 
Temperature Time Series 

To capture the future dynamics of weather uncertainty on temperature, an 
empirical study is conducted to examine the abnormality of variations in the 
proposed temperature model. We demonstrate this with the temperature risk in 
Taiwan and employ a unique dataset, obtained from the Central Weather Bureau 
in Taiwan, of daily highs / lows of temperature measured in degrees Celsius over 
the 1970 to 2011 period. The data consist of a sample of 30,660 daily highs / lows.2 
We use the daily average temperature (W), which is widely reported and followed. 
Figure 1 depicts the daily average temperatures series for the last 40 years in 
Taiwan. The graphs show that the temperature has been oscillating and has 
increased over time, although the trend is not remarkably noticeable; in Taiwan, 
the daily average temperature moves repeatedly and regularly between periods of 
high temperature (summer) and low temperature (winter). These characteristics 
justify the inclusion of seasonality and the trend of temperature in the model. 
Furthermore, the daily average temperature varies within a range from 8ºC to 32ºC 
over the year. On the other hand, we also investigate the volatility of Taiwan daily 
temperature in Figure 2. The trend of the volatility shows a clear seasonal pattern. 
That is, the temperature variation in the winter is larger than that in the summer. 
The seasonal effect is consistent with what Cao and Wei (2004) discover for the 
U.S. market. 

                                                           
2 We remove February 29 from every leap year in our sample to keep to 365 days per year. 
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Figure 1. Time Series Plot of Daily Average Temperatures 

(1970 to 2011) 

 

Figure 2. Volatility of Taiwan Daily Average Temperautres 

The graph shows the standard deviation for each of the 365 calendar days. For each calendar day, the 
standard deviation is calculated from the corresponding 42 observations in the sample (January 1, 1970 
to December 31, 2011). 

To examine whether the normality is appropriate to capture Taiwan’s 
temperature uncertainty, we first estimate the temperature model in Equation (2) 
based on Taiwan’s temperature data and carry out the residual analysis. The 
results of the parameter estimates are shown in Table I. The estimation results 
support the following characteristics with the conditional mean equation (Wt) and 
the conditional variance 2( )t  of Taiwan’s temperature. Firstly, Taiwan’s average 

temperature displays a statistically significant trend that may be associated with 
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Table I 
Parameter Estimates for Daily Average Temperature Model 

The parameter estimates are based on the optimal lags of P=2, Q=2, R=1, S=1, and L=3. The optimal lag 

structures (P, Q, R, S, and L) are selected based on the criteria of Akaike information criterion (AIC) and 

Bayesian information criterion (BIC).3 Thus, ** and *** denote significance at the 5% and 1% levels, 

respectively. Standard errors are in parentheses. 

Parameter Parameter Value 

0  7.1062*** 

(0.1553)  

1  2.51×10-5*** 
(2.74×10-6) 

,1c  -2.0074*** 
(0.0450) 

,1s  -0.8919*** 
(0.0306) 

,2c  -0.0482*** 

(0.0193) 

,2s  -0.0594*** 
(0.0196) 

1  0.8437*** 
(0.0085) 

2  -0.2211*** 
(0.0108) 

3  0.0645*** 
(0.0082) 

,1c  0.5120*** 
(0.0859) 

,1s  0.5827*** 
(0.1076) 

,2c  -0.1604*** 
(0.0331) 

,2s  0.0410*** 
(0.0184) 

1  0.0575** 
(0.0085) 

1  0.6219*** 

(0.0594) 
Log-Likelihood 

AIC 
BIC 

-22,825.62 
0.364 
0.371 

 
urbanization and global warming effects. Secondly, the conditional mean 
dynamics displays both statistically and economically important seasonality. 
Thirdly, the conditional mean dynamics also displays strong cyclical persistence. 
Fourthly, we find that the volatility exhibits a seasonal effect, as the amplitude of 

                                                           
3  AIC = − 2/T ln (likelihood) + 2/T × (number of parameters), Akaike (1973). BIC = − 2/T  ln (likelihood) + 

((number of parameters) × ln (T)) / T. The numerical results regarding the selection of the optimal lags 
are available upon request. 
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the residual fluctuation varies over the course of each year, becoming wider in the 
winter and narrower in the summer. Finally, the conditional variance also exhibits 
strong cyclical persistence. 

After obtaining the parameter estimates, we calculate the residuals of Taiwan’s 
daily average temperature. Table II and Figure 3 present the descriptive statistics 
and a graph of residuals. In Table II, the skewness and kurtosis coefficients 
suggest a leptokurtic distribution with negative skewed residuals for Taiwan’s 
average temperature. The Jarque-Bera statistics show that the hypothesis of the 
normal distribution is rejected. A typical shape of the Gumbel distribution is 
presented in Figure 4. Furthermore, we use the Kolmogorov-Smirnov test to 
identify that the residuals of Taiwan’s daily average temperature is to follow the 
Gumbel distribution. Here, our purpose is to present an appropriate distribution 
for capturing Taiwan’s temperature uncertainty. Thus, we evaluate the forecasting 
performance for the out-of-sample period to investigate the importance of the 
distribution to the temperature process. Recall that the in-sample period refers to 
the estimation period from 1970 to 2010, while the out-of-sample period covers 
the forecasting horizon, which is a one-year period from January 1, 2011 to 
December 31, 2011. 

Table II 
Descriptive Statistics for Residuals of Taiwan’s Average Temperatures 

from January 1, 1970 to December 31, 2011. 
The skewness and excess kurtosis statistics include a test of the null hypotheses where each is zero (the 
population values if the series is i.i.d. normal). The Jarque-Bera statistic is used to test for normality 
based on the skewness and kurtosis measures combined. *** denotes significance at the 1% level. 

Mean Media Max. Min. Std. Dev. Skewness 
Excess 

Kurtosis 
Jarque- 

Bera 

-0.0199 0.0742 3.1751 -5.8574 1.0023 -0.5498*** 0.7896*** 1170.6*** 

 

 
Figure 3. Histograms and Descriptive Statistics for Residuals of 

Taiwan’s Average Temperatures 
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Figure 4. The Standard Gumbel Density Function 

Table III presents the performance measured by the root mean square error 
(RMSE), the mean absolute error (MAE), and the mean absolute percentage error 
(MAPE) under different distribution assumptions. In particular, we compare the 
forecasting performance based on both the normal distribution and Gumbel 
distribution assumptions. According to the forecasting ability, the Gumbel 
distribution transformed by a Gamma distribution is better than the normal one. 
This is very reasonable and convincing since the Gumbel distribution is a special 
case of an extreme value distribution and is more capable of capturing the 
abnormality of variation in temperature. 

B. The Aggregate Dividend Process 

Cao and Wei (2004) extend Lucas’s (1978) equilibrium asset pricing model 
under the pure exchange economy where the fundamental uncertainties are driven 
by the aggregate dividend and the weather conditions. Furthermore, their model 
considers the mean-reversion in the rate of change in the aggregate dividend 

Table III 
Forecasting Abilities under Different Temperature Disturbance 

Assumptions 

 
  

     


      
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1 1 1

ˆ1 1 1ˆ ˆRMSE , MAE , MAPE ,
N N N

T N T N T N
t t

t t t t
t T t T t T t

W W
W W W W

W
 

where t
W  is the actual value of the daily average temperature, ˆ

t
W  is the forecast value of the daily 

average temperature, and N is the number of observations. 

 RMSE MAE MAPE 

Normal 2.6554 2.0217 0.1098 

Gumbel Distribution 2.5396 1.9958 0.1014 
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0
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suggested by Marsh and Merton (1987). The derivative prices are normally within 
1% of the “risk-neutral” prices if the contemporaneous correlation of the 
temperature process and the aggregate dividend process only is considered. 
However, we also take into account the lagged correlation, which makes the 
market price of risk become more important. Therefore, the residual of their 
aggregate dividend model takes into account the lagged correlations of the 
temperature residual. The aggregate dividend model is shown as follows: 

                         1ln ln ,  1      t t t                   (3) 


           



 

            


 

 
 
  



1 1 2 2 3 32
... , 0

1

~ (0,1)   , - 1,..., - ,

    

     

t t t t t t m t m

iid

t i

m

N i t t t m

   

where 1  is the speed of the measured mean reversion, t  describes the 

randomness due to all factors except for the temperature, and i  are innovations 

of the temperature process as defined in Equation (2). In light of this construction, 
the contemporaneous correlation between temperature and aggregate dividend is 
 , and j  is the coefficient of temperature-related lagged terms used to capture 

the lagged effects on the aggregate dividend. Based on the inevitability and 

assumption, 2

1

( )
m

j
j

m


  is bounded. When t represents a future time, the 

conditional variance of t  is 2 2

2
1

1
1 -

,
m

j
j


 

 

 
 
 
 

  which can be explained in 

three parts: in the first part, all factors except for the temperature contribute to 
;2  in the second part, the contemporaneous temperature contributes to 

1-

2
2

2





; in the final part, the lagged terms of the temperature contribute to 

2 2

1

m

j
j

 

 . If 0, 0, ,j j     then the aggregate dividend is independent of the 

temperature process. 

C. The Utility Function of the Representative Investor 

Following the literature generated by Cao and Wei (2004), we consider the 
utility function with constant relative aversion as: 


 

  




  


，

1
-( , ) 0, 0,

1
t t

tU t e
                

(4) 

where   is the rate of time preference, and   is the risk parameter. 
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According to the models we described above, in the next section we use these 
models to illustrate the valuation framework for HDD/CDD derivatives. 

III. The Valuation of Temperature Derivatives 

The valuation of the HDD/CDD derivatives, an appropriate assumption for 
modeling the temperature uncertainty should be considered. According to the 
empirical analysis in Section II.A. based on the Taiwan temperature data, we find 
that the temperature residuals are not normally distributed. The transformation of 
the standard Gumbel distribution provides the best fit for the Taiwan temperature 
data. Therefore, we assume that the transformed temperature disturbances follow 
the standard Gumbel distribution, which is  

   ( ) exp , .zf z z e z                     (5) 

By adopting Equation (4), we can derive the marginal utility function as 

    -( , ) .t
t tU t e                         (6) 

Then, a contingent claim XT can be represented by 

        
( )( , ) .T t

t t T TX t T e E q                    (7) 

Next, we use Equation (7) with the model introduced in Section II to price the 
pure discount bond and other HDD/CDD derivatives under the Gumbel 
distribution transformed by the Gamma distribution. 

A. Discount Factor 

Let 1Tq  , the contingent claim at time t, be regarded as the value of a pure 
discount bond at time t with maturity T. We denoted it by D(t, T) and derive the 
following closed-form formula: 

  

  
  

 

  

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2 2 2( )
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( , ) ( , ), 0,

[ ]

     

T
T i

i t
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t

D t T e E

e A t T e C t T

      

(8)

 

where 

for 1T t m   , 

      
     

   
   

 
   
  
   
   ( 1 )

1
1 1 1
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T i T t i j

t m j t i m
i t i j

A t T      (9) 
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and 

for ,T t m   

      



    
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where 0 21 -





  and ˆ (0 1)t l l m      are the realized error terms for the 

temperature variable. 

Proof: See Appendix 

B. Valuation of HDD and CDD Forward and Option Contracts 

Assume that there is an HDD forward contract with a tick size of NTD1, a 
strike price of K and the accumulation of heating degree days between dates T1 and 
T2. Then, based on Equations (4) and (7), we can obtain the value at time t of the 
HDD forward contract as follows: 


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(15)

 

Take the forward price at time t, 1 2( , , )HDDF t T T , to equal the strike price K 

such that 1 2( , , , ) 0,HDDf t T T K   that is, 
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We can obtain 
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Next, we consider a European HDD option with strike price X and an 
accumulation period from T1 to T2. For an HDD call, the expired payoff is 

  －
2

1
max ,0

T

ii T
HDD X , and the call price can be expressed as 

   
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Similarly, an HDD put price can be expressed by 

   


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1
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HDD t t T i
i T
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The CDD derivatives are analogously expressed by replacing the above 
notation “HDD” with “CDD.” To solve the above pricing formula for different 
temperature derivatives, it is difficult to obtain closed-form solutions without 
further restrictions for the dividend and temperature variables. Therefore, Monte 
Carlo simulations are conducted to calculate the price for temperature derivatives 
and the corresponding numerical results are analyzed in Section IV. 

C. Market Price of Risk 

We refer to the perspective of Cao and Wei (2004) for decomposing the 
derivatives price into two parts: the expected future spot value and the market 
price of risk, i.e., the risk premium. The expected future spot value is the value of 
the future payoff discounted by the discount factor. On the other hand, the risk 
premium implies the unpredictable temperature risk. That is, the correlation 
between the aggregate dividend and the temperature determines the risk premium 
in terms of the value of the temperature derivatives. With the HDD contract as an 
example, we decompose the valuation to clarify the relationship between the value 
and the risk premium as follows. 
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(22)

 

where  ( , )Cov．．  is the covariance and   is the risk premium of each derivative. 

Through the above equations, we can observe that the weather conditions 
affect the discount factor and the risk premium, which are the major elements 
for temperature derivative pricing. Similarly, the formula for CDD derivatives 
can be obtained by using the same method. Owing to the negative correlation 
between HDD and the temperature, the risk premiums in Equations (20) and 
(21) are negative, but those in Equation (22) are positive when 0   and 

0, .i i   The CDD derivatives are reversed. A summary of the different cases is 

provided in Table IV. 
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Table IV 
The Relation between Correlations and Risk Premium 

Element    0, 0,
i

i  , ,   0 0  
i

i  

, , ,
, ,

F HDD C HDD P CDD
    Negative Positive 

, , ,
, ,

F CDD C CDD P HDD
    Positive Negative 

 
Furthermore, we can observe that once the temperature and the aggregate 

dividend are completely independent, the derivatives price will be equal to the risk 
neutral value. In other words, if the joint processes are completely independent, 

i.e., 0, 0, ,i i     then the value at time t of the temperature derivatives is the 

future payoff discounted by the risk-free rate. 

IV. Simulation and Analysis 

We study the impact of the distribution assumption regarding the temperature 
disturbance on the price of the HDD and CDD forward and option contracts. 
However, since the HDD contracts are a mirror image of the CDD contracts by 
nature, to maintain brevity, we only report the results for HDD contracts. Table V 
contains the base parameter values used to calculate the prices of temperature 
derivatives. For comparison purposes, we use the assumptions outlined in Cao and 
Wei (2004). 

Table V 
Base Assumption of Parameter Values for Pricing Temperature 

Derivatives 
a

  The risk-free rate is based on the return on a one-year deposit with the Bank of Taiwan. b  The mean 
reversion rate is 1 - μ . c  TAIEX stands for the Taiwan Stock Exchange Capitalization Weighted Stock 
Index. 

Parameter Notion Value 

Rate of Time Preferencea   1.24% 

Mean Reversionb   0.9 

TAIEX Daily Variancec   0.0154% 

Aggregate Dividend Lags        0, 15, 30 

Risk Aversion        -2, -10, -40 

Contemporaneous Correlation    -0.25, -0.15, 0.15, 0.25 

We first investigate the risk premiums for HDD contracts. In particular, we 
study the effects of different lagged correlated numbers, correlation levels, and 
risk aversion on the risk premiums for HDD contracts. For each derivative, the 
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risk premium ,  which is defined in Section III, is exhibited by the percentage 

differences between the derivative values (excluding the discount factor) and the 
risk-neutral values. Table VI shows the simulated results of the HDD forward 
price under both the Gumbel distribution and the normal distribution, where the 
values in parentheses are the simulated results under the normal distribution. 

Through Table VI, we can obtain the following observations: (i) it is consistent 
with the theoretical result in Table IV that the sign of the correlation coefficient 
determines the sign of the risk premium; (ii) given a fixed correlation, a higher 
risk aversion brings a larger risk premium, and thus it makes sense that those 
investors ask for higher returns; (iii) under the same risk aversion level, a higher 
correlation level gives rise to a larger risk premium, which also makes intuitive 
sense; (iv) the largest risk premium under the Gumbel (normal) distribution is 

Table VI 
Risk Premium in HDD Forward Prices: Lagged Correlations 

The risk-neutral forward is calculated by = 0, = 0, 
i

φ η i.  The forward price is calculated by excluding 

the discount factor. The risk premiums are the percentage differences between the risk-neutral value and 
the derivative price. For example, under = -2, = 0.15,κ φ  and 15-lagged correlations, the price is 0.171% 
(0.154%), which is higher than the risk-neutral value under the Gumbel (normal) distribution. 

Risk-Neutral Forward 
814.9691 (669.8511) 

  -2     -10     -40  

  a-    a     a-    a     a-    a  

 a 0.15  

Zero-Lagged 
Correlation 

Forward Price 814.399 815.679 813.152 816.735 809.223 820.493 

(669.688) (670.226) (668.796) (671.020) (666.646) (675.038) 

Risk Premium -0.070% 0.087% -0.223% 0.217% -0.705% 0.678% 

(-0.024%) (0.056%) (-0.157%) (0.174%) (-0.478%) (0.774%) 

15-Lagged 
Correlations 

Forward Price 812.784 816.361 807.211 823.451 786.407 853.501 
(669.231) (670.883) (664.901) (674.348) (652.723) (687.807) 

Risk Premium -0.268% 0.171% -0.952% 1.041% -3.505% 4.728% 
(-0.093%) (0.154%) (-0.739%) (0.671%) (-2.557%) (2.681%) 

30-Lagged 
Correlations 

Forward Price 812.825 816.973 807.486 824.191 784.208 854.976 

(669.044) (671.138) (669.285) (674.478) (652.174) (688.399) 

Risk Premium -0.263% 0.246% -0.918% 1.132% -3.775% 4.909% 

(-0.120%) (0.192%) (-0.845%) (0.691%) (-2.639%) (2.769%) 

                            a 0.25  

Zero-Lagged 
Correlation 

Forward Price 814.166 815.987 812.501 818.301 803.876 826.596 
(669.506) (670.390) (668.605) (671.502) (664.456) (675.587) 

Risk Premium -0.099% 0.125% -0.303% 0.409% -1.361% 1.427% 
(-0.051%) (0.080%) (-0.186%) (0.247%) (-0.805%) (0.856%) 

15-Lagged 
Correlations 

Forward Price 812.469 817.744 803.637 827.454 775.592 870.021 
(668.366) (671.391) (663.306) (677.037) (645.576) (696.742) 

Risk Premium -0.307% 0.340% -1.390% 1.532% -4.832% 6.755% 
(-0.222%) (0.230%) (-0.977%) (1.073%) (-3.624%) (4.015%) 

30-Lagged 
Correlations 

Forward Price 812.328 817.974 802.628 827.735 774.166 871.990 
(667.911) (671.730) (663.233) (677.182) (644.537) (698.350) 

Risk Premium -0.324% 0.369% -1.514% 1.566% -5.007% 6.997% 

(-0.290%) (0.280%) (-0.988%) (1.094%) (-3.779%) (4.255%) 
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6.997% (4.255%) for 30-lagged (30-lagged) correlation when -40  and 
0.25  ; (v) not only the forward prices but also the risk premiums under the 

Gumbel distribution are higher than those under the normal distribution; and (vi) 
by comparing three different cases of lagged correlated numbers, the risk 
premium is higher if we consider more lagged correlations, but the risk premiums 
between the 15-lagged correlations and 30-lagged correlations are almost the 
same. This implies that the effect converges when the lagged number of 
correlations is higher. 

We further analyze the effect for HDD call and put options. For the purpose of 
letting the risk-neutral call and put options be at-the-money and characterized by 
equality, under the Gumbel (normal) distribution we set the strike price equal to 
the risk-neutral forward price, namely, 814.9691 (669.8511). Other setups are the 
same as those for the forward price. The results of the HDD call and put options 
are illustrated in Tables VII and VIII, respectively. 

Table VII 
Risk Premium in HDD Call Prices: Lagged Correlations 

Risk-Neutral Call Price 
38.0556 (27.3056) 

  -2     -10     -40  

  a-    a     a-    a     a-    a  

 a 0.15  

Zero-Lagged 

Correlation 

Call Price 37.694 38.694 35.680 39.019 35.024 42.752 

(27.139) (27.472) (26.457) (27.673) (25.739) (29.891) 

Risk Premium -0.949% 1.679% -6.240% 2.533% -7.965% 12.341% 

(-0.610%) (0.610%) (-3.107%) (1.346%) (-5.737%) (9.470%)

15-Lagged 

Correlations 

Call Price 37.200 38.715 33.906 42.632 25.000 61.693 

(27.000) (27.588) (24.771) (29.200) (19.240) (37.160) 

Risk Premium -2.248% 1.732% -10.903% 12.025% -34.307% 62.114% 

(-1.119%) (1.035%) (-9.281%) (6.938%) (-29.538%) (36.090%)

30-Lagged 

Correlations 

Call Price 36.778 38.806 33.882 43.514 23.929 62.275 

(26.806) (27.727) (24.686) (29.371) (19.174) (37.587) 

Risk Premium -3.358% 1.971% -10.966% 14.344% -37.122% 63.641% 

(-1.831%) (1.543%) (-9.595%) (7.566%) (-29.780%) (37.653%)

                     a 0.25  

Zero-Lagged 

Correlation 

Call Price 37.333 38.944 35.373 40.278 32.811 44.750 

(27.085) (27.472) (26.143) (28.471) (24.267) (30.156) 

Risk Premium -1.898% 2.336% -7.048% 5.839% -13.782% 17.591% 

(-0.807%) (0.610%) (-4.257%) (4.267%) (-11.129%) (10.437%)

15-Lagged 

Correlations 

Call Price 37.057 39.649 32.161 44.339 20.618 71.874 

(26.611) (27.833) (23.800) (31.000) (16.404) (43.308) 

Risk Premium -2.624% 4.186% -15.489% 16.511% -45.822% 88.865% 

(-2.543%) (1.933%) (-12.838%) (13.530%) (-39.925%) (58.604%)

30-Lagged 

Correlations 

Call Price 36.389 39.750 32.150 44.667 20.289 73.154 

(26.333) (28.278) (23.563) (31.676) (16.385) (43.955) 

Risk Premium -4.380% 4.453% -15.516% 17.372% -46.685% 92.229% 

(-3.561%) (3.561%) (-13.706%) (16.007%) (-39.996%) (60.973%)
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Table VIII 
Risk Premium in HDD Put Prices: Lagged Correlations 

The option price is calculated by excluding the discount factor. The values in parentheses are the results 
under the normal distribution. 

Risk-Neutral Put Price 
38.0556 (27.3056) 

  -2     -10     -40  

  a-    a     a-    a     a-    a  

 a 0.15  

Zero-Lagged 

Correlation 

Put Price 38.250 37.591 39.667 36.508 40.756 34.217 

(27.306) (27.111) (27.486) (26.257) (28.957) (24.696) 

Risk Premium 0.511% -1.219% 4.234% -4.066% 7.096% -10.087% 

(0.000%) (-0.712%) (0.660%) (-3.840%) (6.046%) (-9.558%) 

15-Lagged 

Correlations 

Put Price 39.400 37.108 41.656 34.132 53.917 22.907 

(27.611) (26.639) (29.686) (24.743) (36.220) (19.360) 

Risk Premium 3.533% -2.490% 9.462% -10.311% 41.679% -39.807% 

(1.119%) (-2.442%) (8.717%) (-9.385%) (32.647%) (-29.099%)

30-Lagged 

Correlations 

Put Price 38.917 36.850 41.324 34.171 54.524 22.392 

(27.611) (26.694) (28.971) (24.829) (36.783) (19.109) 

Risk Premium 2.263% -3.168% 8.587% -10.206% 43.274% -41.159% 

(1.119%) (-2.238%) (6.101%) (-9.071%) (34.707%) (-30.019%) 

                             a 0.25  

Zero-Lagged 

Correlation 

Put Price 38.520 37.156 39.731 36.156 43.973 33.036 

(27.556) (26.944) (28.176) (26.248) (29.622) (24.444) 

Risk Premium 1.219% -2.365% 4.402% -4.993% 15.549% -13.191% 

(0.916%) (-1.322%) (3.190%) (-3.873%) (8.484%) (-10.478%) 

15-Lagged 

Correlations 

Put Price 39.571 36.484 43.387 32.200 60.059 16.641 

(28.111) (26.306) (30.314) (23.857) (40.788) (16.288) 

Risk Premium 3.983% -4.129% 14.010% -15.387% 57.819% -56.272% 

(2.950%) (-3.662%) (11.019%) (-12.629%) (49.378%) (-40.347%) 

30-Lagged 

Correlations 

Put Price 39.647 36.722 44.727 32.000 61.632 16.577 

(28.278) (26.389) (30.588) (24.235) (41.705) (15.455) 

Risk Premium 4.182% -3.504% 17.532% -15.912% 61.952% -56.440% 

(3.561%) (-3.357%) (12.022%) (-11.244%) (52.733%) (-43.401%) 

 
For the call price, the result is the same as for the forward price. As expected, 

the result for the put price is inversed. It is worth noting that the risk premiums 
for options are larger than those for the forward contract due to the payoff types 
between them, namely, linear and non-linear. Under the Gumbel (normal) 
distribution, the largest risk premium, 92.229% (60.973%), is for a call with 

-40   and   0.25,  and that of 61.952% (52.733%) is for a put with -40   
and -0.25   for 30-lagged correlations. According to the statements in Table 
VI through Table VIII, the risk premium is small if we only consider the 
contemporaneous correlation between the dividend and temperature processes. 
Furthermore, the difference in the results between the 15-lagged correlations 
and 30-lagged correlations cannot be explained. On the other hand, both the 
15-lagged correlations and 30-lagged correlations have identical portions of the 
variance contributed by the temperature variations. Therefore, we suggest that 
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the number of lagged terms of the correlation should be 15.4 On the other hand, 
the results reveal that in the case of the normal distribution assumption, the risk 
premium is lower for HDD forward prices and options, compared with the 
Gumbel distribution assumption; thus, these risk premiums would tend to be 
underestimated if we were to ignore the important properties of abnormal 
variations in Taiwan’s temperature. 

Finally, we set 0.9   which corresponds to a mean reversion rate of 0.1. To 
see how sensitive the results are to this mean reversion parameter, the calculations 
in Table VI through Table VIII are repeated by assuming four other levels of 
  0.80,  0.85, 0.90, 0.95, and 0.99. Note that 0.99   roughly corresponds to a 
random walk. In Table IX, it is seen that a higher value of   or a lower mean 
reversion speed, leads to a bigger risk premium in forward and option values. This 
makes intuitive sense since a higher   means a bigger variation in the aggregate 
dividends. Furthermore, the risk premiums for options are larger than for the 
forward contracts due to the payoff types between them, which may be linear and 
non-linear. To illustrate, for options, when   increases from 0.9 to 0.99, the risk 
premium increases by more than 10-fold. With a near-random walk, the risk 
premium is more than 10% for all option values. An obvious conclusion is that in 
determining the significance of the market price of risk for the temperature 
variable, the degree of mean reversion in the aggregate dividend process must be 
carefully determined. 

V. Conclusions 

The Council of Agriculture in Taiwan has pointed out that frost damage has 
caused more than NTD60 billion in agricultural and fishery crop losses in Taiwan 
over the period from 1949 to 2009. In view of the temperature dynamics and high 
amounts of such losses, the development of temperature derivatives is very 
important in Taiwan in developing hedging instruments to mitigate weather risk. 
In this paper, we address the characteristics of the temperature distribution for 
capturing the weather uncertainty in Taiwan and propose a Gumbel distribution 
incorporating Campbell and Diebold’s (2005) temperature model for pricing 
temperature derivatives that is based on temperature data in Taiwan. We discover 
that in terms of forecasting ability, the temperature model under the Gumbel 
distribution is more accurate than that under a normal distribution. We also 
utilize the equilibrium approach proposed by Cao and Wei (2004) to deal with the 
extended temperature model of Campbell and Diebold (2005) by using a Gumbel 
distribution to price HDD and CDD forward and option contracts. Under the 

                                                           
4  Cao and Wei (2004) point out that the lagged term of the aggregate dividend is used to fully assess the 

significance of the risk premium. In order to understand how many lagged terms are specified, it is 
necessary to examine the lagged term of the empirical results. 
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Table IX 
Impact of Mean Reversion in the Dividend Process for HDD Contracts 
Forward and option prices are all for HDD contracts for Taiwan. Except for the mean reversion 
parameter, all other aspects of the calculation are the same as in Tables VI though Table VIII. The 
assumption of parameters is = 0.15a , 30-lagged and Gumbel distribution. 

Panel A. Forward Prices 

Mean 
Reversion 

Risk Neutral 
Forward 

  -2     -10     -40  

  a-    a     a-    a     a-    a  

0.80 814.9690 -0.043% 0.031% -0.473% 0.540% -1.596% 2.016% 

0.85 814.9690 -0.156% 0.107% -0.513% 0.593% -2.287% 2.815% 

0.90 814.9690 -0.263% 0.246% -0.918% 1.132% -3.775% 4.909% 

0.95 814.9690 -0.492% 0.374% -1.973% 2.183% -6.692% 8.808% 

0.99 814.9690 -1.554% 1.575% -7.483% 8.047% -22.368% 25.674% 

Panel B. Option Prices 

Mean 
Reversion 

Risk Neutral 
Call (Put) Price 

  -2     -10     -40  

  a-    a     a-    a     a-    a  

0.80 Call (Put) 

38.0556 

-0.949% 0.671% -4.802% 6.642% -18.271% 24.114% 

(1.094%) (-1.898%) (5.335%) (-4.964%) (15.553%) (-19.335%) 

0.85 Call (Put) 

38.0556 

-2.409% 1.678% -6.152% 10.365% -23.728% 35.388% 

(1.941%) (-2.744%) (6.423%) (-6.642%) (25.525%) (-25.468%) 

0.90 Call (Put) 

38.0556 

-3.358% 1.971% -10.966% 14.344% -37.122% 63.641% 

(2.263%) (-3.168%) (8.587%) (-10.206%) (43.274%) (-41.159%) 

0.95 Call (Put) 

38.0556 

-6.602% 4.087% -21.606% 26.732% -58.453% 122.166% 

(3.833%) (-3.943%) (20.175%) (-20.342%) (91.895%) (-66.225%) 

0.99 Call (Put) 

38.0556 

-16.753% 18.248% -62.277% 111.574% -99.592% 450.141% 

(16.356%) (-15.428%) (97.793%) (-61.898%) (388.758%) (-99.616%) 

equilibrium approach, the pricing framework relies on the fundamental 
uncertainties, which are set to be driven by the aggregate dividend and the 
temperature. The effects of the model settings with the pricing framework for 
temperature derivatives are investigated and compared numerically. According to 
the simulation results, we find that ignoring the abnormal variations in 
temperature would cause an underestimation of the risk premium when we use 
the normal distribution assumption. Furthermore, we demonstrate that the effects 
of different distributions on the value of the temperature derivatives are very 
significant. Therefore, the justifiability of the distribution is critical for pricing the 
temperature derivatives. 

Since the data sets for macroeconomic variables in Taiwan are smaller and less 
frequent, we do not estimate the dividend model. For the purposes of our analysis, 
we set the parameters of the dividend process by resorting to Cao and Wei’s 
(2004) dividend model. There is room for future research to examine the dividend 
process in different economic environments and to make the study more 
accurately match the reality. 
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Appendix. Proof of the Value of the Pure Discount Bond 

First, we illustrate the distribution of the temperature residual. According to 
Figures 3 and 4, the patterns of residuals are similar to the Gumbel distribution; 
hence, we use the Gamma transformed method proposed by Vitiello and Poon 
(2010) to explain the density function of the temperature residual. 

THEOREM: Let ( )h z  be some transformation of z. If x in ( )h z ax  has a 
Gamma density and ( )h   is a monotonic differentiable function, then the density 
function of z is given by: 

       1 ( )1
( ) | ( )| ( ) ,

( )
p h zf z h z h z e

p
 


                 (A1) 

where ( )h z  is the first derivative of ( )h z , which is gamma distributed, and 
( )f z  is a transformed Gamma density. 

For = 1p  and by setting ( ) exp( )h z z , the variable z follows the standard 
Gumbel density function. Based on the above theorem, we can obtain the density 
function of the temperature residual. By the theorem, since the temperature 
residual is similar to the Gumbel distribution, we can set ( ) exp( )h x    , 

where ~ ( 1)x Exp   . Then we obtain the density function of   as follows. 

1
( ) ,

e

f e









                           (A2) 

and the moment generating function of   is 

( ) ( ) ( ) ( 1).t t tM t E e E X t
                       (A3) 

Second, in Equation (3), we iterate the process and obtain: 

   
1

1 1 0

1
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(A4)

 

where 0 21








, and we suppose that j  has m lagged error terms without 

loss of generality. 

When 

for 1,T t m    
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and 

for ,T t m   
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Here, the ˆ (0 1)t l l    m  are the realized error terms for the temperature 

variable. 

Third, we use the moment generating function to obtain the conditional 
expectation of the aggregate dividend at time .T  Because  j  follows an i.i.d. 

normal distribution and the moment generating function of    is given by 

Equation (A3), we can use the moment generating function to obtain the 
conditional expectation of the aggregate dividend at time .T  Assume that 

   , ,j i i j  and that tF  is the infinitely representative investor’s information 

at time .t  
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For   ,T t m  
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Finally, we use the above result to derive the value of the pure discount bond. 
By Equation (7) and assuming that 1Tq  , then 
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評價溫度衍生性商品－以臺灣為例 
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摘 要 

本文著重於溫度風險及探討何種分配最能捕捉臺灣溫度之動態行為。我們採用 Campbell
與 Diebold (2005) 模型捕捉臺灣溫度之特性及探討在不同機率分配之影響。我們發現標準

Gumbel 分配在樣本內外皆提供良好的配適與預測能力。此外，我們延伸 Cao 與 Wei (2004) 之

評價方法並求得 HDD 與 CDD 之價格。最後，我們發現在不同機率分配假設下其對溫度衍生

性商品影響十分顯著。 

關鍵詞：溫度衍生性商品、均衡定價模型、日高溫度指數、日低溫度指數 
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