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Abstract

When we first prove the Catalan identity, (n + 2)C,, 11 = (4n + 2)C,. We
often prove it by calculation.When I participated in the oral examination of Ying-
Jun Liu’s essay, I found that she used a combinatorial proof to prove this identity.
When I was looking for the subject of the thesis, I read a paper by professor Young-
Ming Chen, “T'he Chung — Feller theorem revisited”, which found that Dyck
paths could also be used as a combinatorial proof of the Catalan identity. Therefore,
we completed the combinatorial proof of (n + 2)C,, ;1 = (4n + 2)C,,.

Proving the Catalan identity through the Dick paths can reveal the following
advantages:
1.The subpath C does not change during the process of switching of the portions

Ad and Bu.
2.Since the subpath B of P in x; is empty, a new flaw generated after
switching of the portions Ad and Bu must be followed by the original subpath C.
Since the subpath A of Q in x5 is empty, a new lift generated after
switching of the portions Bu and Ad must be followed by the original subpath C.
3.In the process of computing the preimage of a function g, (g2), the flaws (lifts)

recovery mode follows the ' Last—in— First—out” or “ First—in— Last—out”.

Keywords: Catalan identity, Dyck path
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Chapter 1

Introduction

» When we first prove the Catalan identity, (n + 2)C),+1 = (4n + 2)C,,. We often prove it

by calculation. The proof method is as follows:

n 2n+2
(n+2)Chpy = 28

n+1
n+2
_ (2n+2)!
— (n+1)l(n+1)!
_ (2n+D)(2n)!(2n+2)
~ (n+Dl)n!nl(n+1)
~2(2n+1)(2n)!(2n+-2)
— (n+D)nn!(2n+2)
_ (4n+2)(2n)!
— (n+1)nln!
2n
= WHAG" — (4n + 2)C,

When I participated in the oral examination of Ying-Jun Liu’s essay, I found that she used

a combinatorial of proofs to prove this identity. When I was looking for the subject of the
thesis, I read a paper by teacher Young-Ming Chen, ”The Chung-Feller theorem revisited”,
which found that Dyck paths could also be used as a combinatorial proof of the Catalan

identity. Therefore, we complete the combinatorial proof of (n + 2)C,, 11 = (4n + 2)C,,.
(51171 [1]
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Definition 1.0.1. An up-step is denoted by u = (1, 1).
A down-step is denoted by d = (1, —1).
A step is either an up-step(u) or a down-step(d).
A path consists of consecutive steps.

A subpath is some of consecutive steps of a path.
Definition 1.0.2. 4 path is that all up-steps and down-steps are above the x-axis.
Definition 1.0.3. 4 totally bad path is that all up-steps and down-steps are below the x-axis.
Definition 1.0.4. 4 flaw is a down-step below the x-axis.
Definition 1.0.5. A [ift is a up-step above the x-axis.
Definition 1.0.6. In An n-Dyck path, C,, is the number of good paths from (0,0) to (2n,0)

Definition 1.0.7. An n-Dyck path is a path from (0,0) to (2n,0) with n up-steps
and n down-steps.

An n-Dyck path with k flaws if it has k down-steps below the x-axis.

Definition 1.0.8. Let R is a subpath of n-Dyck path. The number of up-steps and

down-steps in R is denoted by |R| = r,0sr<2n.
Definition 1.0.9. The set D, . consists of all n-Dyck paths with k flaws, 0<k<n.

For more details ,we refer to [4] [3] [2] [10] [9] [6] [8] [11]
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Chapter 2

Paths Start with Up-step

Definition 2.0.1. Define a function f, from D, j into D41 k41 by the following:

1. The set D41y consists of all n + 1-Dyck paths with k flaws, 0<k<n. Each path in D, j
can be factorized into BuAdC, where B is a subpath all bellow the x-xais, say with k;
flaws, 0<k <k, u is the first up step above the x-xais, A is a subpath all above the x-xais,
d is the first step to contact the x-axis after A and above the x-axis, say uAd with 0 flaws,

and C' is the remaining path with k — ki flaws, 0<k<n.

2. The set D, 11 j41 consists of all n + 1-Dyck path with k + 1 flaws, 0<k<n. Each path in
Dy, +1.5+1 can be factorized into AdBuC, where A,dBu, and C' have 0, ki + 1, and k — k,

flaws.

Note: A ~ B ~C may be empty, and they have the same number of up-steps

and down-steps.

ie. fi(BuAdC) = AdBuC

Uy INC A s ¢

(‘]\\/\/u
B

B

N x-axis

<

Figure 2.1: f;(BuAdC) = AdBuC
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Theorem 2.0.1. Define f1:D,, 1 x—Dy 11441 by fi(BuAdC) = AdBuC.

The function f, is one-to-one.
Proof. Let|B| = 2i, 0<i<n; |u| = 15 |A| = 27,0<5j<n —i; |d| = 1; |C] =2(n—i—j — 1).

Claim: f; one-to-one. (i.e.fi(BuAdC) = f1(B'uA’dC") = AdBuC = A'dB'uC")
Suppose | B'| = 2r, 0<r<n; |u| = 1; |A'| = 2s,0<s<n—r; |d| = 1; |C'| = 2(n—r—s—1).
Claim 1: |A| = | 4|

case 1: 25 < 2s

The (2j+1)5 step
A The (2j+1)5 step A’

C /
/U/% N U C

A A M

B B’

Figure 2.2: BuAdC and B'uA'dC’

A/

/\A/\ C Mhe (2j+1)5t step ¢
aN
XNZL Ko7
The (2j+1)5t step

B B’

Figure 2.3: fi(BuAdC) = AdBuC and f;(B'uA'dC") = A'dB'uC’

To see Figure 2.3 when we start on (0,0) to walk along the two path AdBuC' and
A'dB'uC’. The (25 + 1)** step of AdBuC is below the x-axis, but the (25 4+ 1) step

of A/dB'uC" is still above the x-axis. This is a contradiction as two paths are the same.
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case 2: 25 > 2s

A

The (25+1)5 step A The (2s+1)5t step
K /\% ¢
w u N
\\/\/ e \/\/

B B’

Figure 2.4: BuAdC and B'uA’'dC’

A

The (2s+1)5t step A’ c'
/\/\ /\/\ . . A
d\/\/u/ N The (2s+1)5t step\/\/

B B’

Figure 2.5: fi(BuAdC) = AdBuC and fi(B'uA'dC") = A'dB'uC’

To see Figure 2.5 when we start on (0, 0) to walk along the path the two path AdBuC' and
A'dB'uC’. The (2s + 1) step of AdBuC is still above the x-axis, but the (2s + 1) step
of A/dB’uC" is below the x-axis. This is a contradiction as two paths are the same. Thus,

we have proof that j = s.

o JA =]Aand A = A'.
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Claim 2: |B| = |B/|

recall:Let | B| = 2i, 0<i<n; |u| = 1; |A| = 24, 0<j<n —4; |d| = 1,
ICl=2(n—i—j—1).
Suppose |B'| = 2r, 0<r<n; |u| = 1; |A'| = 25, 0<s<n — r; |d| = 1;
|IC'|=2(n—r—s—1).

case 1: 21 < 2r

The (2j+2i+2)nd step

A

U

A

The (2j+2i+2)"4 step
A

AN

A/

/u/\/>\/\ '
N
The (2j+2i+2)"% step

B/

Figure 2.6: BuAdC and B'uA’dC’

The (2j+2i+2)"% step «—
A/

AN N

AW i AW/ 78V

\73\/ o \/\// o

B/

Figure 2.7: fi(BuAdC) = AdBuC and f,(B'uA'dC") = A'dB'uC"’

To see Figure 2.7 when we start on (25 + 1, —1) to walk along the path B and B’. The
(25 + 2i + 2)"? step of Bu is above y = —1, but the (25 + 2i + 2)"? step of B’ is still

below y = —1. This is a contradiction as two paths are the same.
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case 2: 21 > 2r

The (2j+2r+2)”d step
A A

/\/NC m ¢’
u < U N\
whe (2j—|—2r+2)nd step \/B\’/

B

Figure 2.8: BuAdC and B'uA’dC’

The (2j+2r+2)nd step
A )Y W
C C’
/\/\ /\/\ A
S 17V 5 1Y Vg
whe (2j+2r+2)nd step \@/
B

Figure 2.9: f,(BuAdC) = AdBuC and fi(B'vA'dC") = A'dB'uC’

To see Figure 2.9 when we star on (25 + 1, —1) to walk along the path B and B’. The
(25 + 2r + 2)"? step of B'u is above y = —1, but the (25 + 2r + 2)" step of B is still
below y = —1. This is a contradiction as two paths are the same. Thus, we have proof
that j = s.

. |B] =|B'|and B = B'.

Since A= A"and B = B/,

 AdBuC = AdB'uC' = C ="

.. BuAdC = B'uA'dC’

Therefore f; is one-to-one.
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Lemma 2.0.2. [f P is a path in D,, ;1 i, then f1(P) has k + 1 flaws.

Moreover, the (k + 1) flaw will be connected to original flaws behind.

Note: A down step below the x-axis is called flaw. The flaws are counted from right to left and

bottome-up.

Proof. The function f; from D, into D, 41 441. Suppose P has £ flaws in D, 4, and
P = BuAdC, where B, uAd, C have k — j flaws, 0 flaw, j flaws, respectively. The k"
flaw is in subpath B.Then f,(P) has k& + 1 flaws on D, ;1 441, and f1(P) = AdBuC,
where A, dBu, C have 0 flaw, k — j + 1 flaws, j flaws, respectively.

7 NN > 2N x-axis

A4 d\// ¥
B
B
u d .

7 N N > L\ X-ax1s
dw
C C

Figure 2.10: the new flaw will be connected to original flaws behind

Notice that the path f;(P), d is connected to the k" flaw in subpath B behind. d becomes
the (k + 1) flaw.
Therefore, no matter how many times we use f1, d is conneted to the £** flaw in subpath

B behind. d is still the (k + 1) flaw.
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Note:

Rising from Falling to
. X-axis > X-axis
. X-axis p X-axis
Falling from Rising to

Figure 2.11: Rising from; Falling to; Falling from; Risingto

Lemma 2.0.3. If Q is a path in D, 1 411, then f;*(Q) has k flaws.
Moreoverthe (k + 1) flaw in Q will be restored.

i.e. The (k + 1)* flaw d and the first up-step u rising to the x-axis on the right side of d in

D41 k41 are restored to the first down-step d falling to the x-axis and the first up-step u

rising from the x-axis in D, 4.

Show by formula:

C

C
/\ Preimage under fi y=1 (L/y iy ven \{j/\ /\ X_axis

J
\‘Ur Empty area ‘17'

y=-1
B B

Figure 2.12: AdBuC Preimageunder I, oy AdC

In @, the (k + 1)** flaw d and the first up-step u rising to the x-axis on the right side of
d in D, 41 x+1, we can observe that there is an empty area enclosed by the u, d, the x-axis, and
the horizontal line y = —1. After switching two portions Ad and Bu, another empty area is
enclosed by the w is the first up-step rising from the x-axis, and d is the first down-step falling
to the x-axis, and the horizontal line y = 1 in f;'(Q). And the remaining segments which are

behind u is the fixed subpath C. ]
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Theorem 2.0.2. Define f1:D,, 1 x—Dy 11441 by fi(BuAdC) = AdBuC.

The function f, is onto.

Proof. Claim: f; is onto. (f1:D,+1% — Dypiq pr1)

For any path Q = AdBuC'in D, 1 which 1<k+1<n-+1. We choose the (k+1)*" flaw
d and choose the first up-step wu rising to the x-axis on the right side of d. We switch the
portions Ad and Bu then we can restore the (k+1)** flaw and get a new path P = BuAdC
inD, ., 5, by Lemma 2.2 ~ Lemma 2.3.

Where () has at least one flaw and P has at most n flaws. In fact, if () has k + 1 flaws
then P has k flaws. So every () in D, 41 41, we can find a path P in D, x, such that
fi1(P) = Q. Therefore f; is onto.

Hence, f; is one-to-one and onto by Theorem 2.1 and Theorem 2.2.

Note: Let f; ' be the inverse function of f;. ]

Definition 2.0.4. The set X, consists of all paths in n + 1-Dyck paths with k flaws.Each
path in X, can be factorized into BﬁA?C. The set Y consists of all
n + 1-Dyck paths which are totally bad paths.
Define a function ¢, from X into Y, by the following:
1. g1(P) = fIF(P), where P in X, and " = fiofio---ofi

~
n+1—k times

2. The first up-step rising from x-axis denote by U and the first down-step falling to
x-axis denote by 7

Lemma 2.0.5. Suppose that P in Xy. In f1(P), the first up-step u rising from the x-axis of P
connectswith the first down-step j falling to the x-axis of P to be 77 and 77
is below the x-axis. Let P = 71470, then f1(P) = Adwc,

Proof.  We may assume that P = BﬁAjC’ is any path of D, ;. Since the subpath B is
empty, then P = 7/170 € Xjand fi(P) = A770.We know 7/17 has 0 flaw, and
C must have k flaws in P. Then A, 77, and C have 0 flaw, 1 flaws, and £ flaws in
f1(P), respectively. Therefore, 'd W is below the x-axis.

]

Note: In fi(P), 1<i<n + 1 — k, the segments below the x-axis will be always below the x-axis.

10

DOI:10.6814/NCCU202000719



Theorem 2.0.3. The function g,: X,—Y is one-to-one.

Proof.  Suppose that g; (P) = ¢1(Q), where P has k flaws and Q has h flaws in X].
To prove that P = ().
By definition g, (P) = f"'%(P), :(Q) = fF'"(Q)

case l: k< h
fIHTRP) = fHMQ) = AUTTHP)) = ATMQ))
*.* f1 is one-to-one L fRPY = Q)

For the same reason, the following can be obtained

AUTEHP) = ATHQ) = A7 P) = A7HQ)

Since f; is one-to-one, use this method n 4+ 1 — A times

AUTHP) = AQ) = [I7HP) =@

The d @ of f1=*(P) are below the x-axis, but the @ and d of () are above the x-axis
by Lemma 2.5.

This is a contradiction.

case 2: k> h
I P) = f77MQ) = AITHP)) = A(ATMQ))
" f1 is one-to-one SRR = Q)

For the same reason, the following can be obtained

AATHP) = AATHQ) = AP = A7HQ)

Since f; is one-to-one, use this method n + 1 — & times

fi(P) = fi(fi Q) = P = fi"(Q)

The @ and d of P are above the x-axis, but q T of fF"(Q) are below the x-axis by
Lemma 2.5.

This is a contradiction.

case3: k= h
TP = MR = AUTTEP) = ATNQ)
" f1 is one-to-one SRR = Q)

Use this method n + 1 — h times, we have f1(P) = f1(Q) = P =(Q

Therefore, g, is one-to-one.

11
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Theorem 2.0.4. g,:X,—Y] is onto, where Y7 is totally bad path of n + 1-Dyck
and g\(P) = fi*'7*(P).

Proof. Give Q € Y1, Q hasn + 1 flaw, and 77 is the (k + 1) flaw in Q.

Define: The preimage of the function g7 '= f; "™ = f7lo filo .o fi!

n+1—k times

Since f;*(Q) is the preimage of Q under f; and has n flaws.
Using this way for n — k times, we get the path f, (nfk)(Q) which has k£ + 1 flaws.
In f;"77(Q), " is still under the x-axis and is the (k 4+ 1) flaw.We use this way
again, we get the path f, (n+1-k) (@) which has k flaws and 7147 is above the x-axis, as
f1 1s onto and by Lemma 2.5.
Sowe have /" (Q) = I (TE(P) = P
where P has k flaws,P € X;.
Let P = f; """P(Q) = g1(P) = fiH5(P)
= A TT@)
=@

Thus g, is onto.

Hence, ¢ is one-to-one and onto by Theorem 2.3 and Theorem 2.4.

12
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Definition 2.0.6. The set Z| contains the totally bad path for all n-Dyck paths which
replaces 77 in Y1 with a dot mark, and all paths in Y, are n + 1-Dyck
paths which are totally bad path. Let hy be the function from Y into Z.

ie. Q= Rd WS s (2n + 2,0) path, where R, 77, and S are all totally bad paths. h;(Q) =
h(RdWS)=ReS

Theorem 2.0.5. h is one-to-one and onto.

Proof. 1t is clear that h; is one-to-one.
Given )’ = Re S € 7,
We can change e into 77 Thus Re S = R775 €vY.

Therefore, h; is one-to-one and onto.

h1

Figure 2.13: hy(RduS) = Re S

Y

13
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Chapter 3

Paths Start with Down-step

Definition 3.0.1. Define a function f; from Dy, 11 11 into D, by the following:

1. The set D, 41 consists of all n + 1-Dyck paths with k + 1 flaws, 0<k<n. Each path in
Dy 41,541 can be factorized into AdBuC', where A is a subpath all above the x-xais, d
is the first down step below the x-xais, B is a subpath all bellow the x-xais, say with ks
Sflaws, 0<ko=<k, w is the first up step contact the x-axis after B and below the x-axis, say

uBd with ky + 1 flaws, and C' is the remaining path with k — ks flaws, 0<k<n.

2. The set D, 11\, consists of all n+ 1-Dyck path with k flaws, 0<k<n. Each path in D, , j, can
be factorized into BuAdC', where B,dAu, and C have ks, 0, and k — ks flaws.

Note: A ~ B - C may be empty, and they have the same number of up-steps

and down-steps.

ie. fo(AdBuC) = BuAdC

Figure 3.1: fo(AdBuC) = BuAdC

14
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Theorem 3.0.1. Define fo:D,, 11 k1—Dpi1k by fo(AdBuC') = BuAdC.

The function f, is one-to-one.
Proof. Let|B| = 2i, 0<i<n; |u| = 15 |A| = 27,0<5j<n —i; |d| = 1; |C] =2(n—i—j — 1).

Claim: f; one-to-one. (i.e.fo(AdBuC) = fo(A'dB'uC’") = BuAdC = B'uA'dC")
Suppose | B'| = 2r, 0<r<n; |u| = 1; |A'| = 2s,0<s<n—r; |d| = 1; |C'| = 2(n—r—s—1).
Claim 1: |B| = |B/|

case 1: 21 < 2r

The (2i+1)t step The (2i+1)5t step
‘—‘ Cl

d U W N
B

B/

Figure 3.2: AdBuC and A'dB'uC’

A A

The (2i+1)5t stem C A 4 C’
\/\/ \/\/ A
; st
B The (2i+1)%" step

B/

Figure 3.3: fo(AdBuC) = BuAdC and fo(A'dB'uC") = B'uA'dC’

To see Figure 3.3 when we start on (0,0) to walk along the two path BuAdC' and
B'uA'dC’. The (2i + 1)% step of BuAdC is above the x-axis, but the (2i + 1)** step

of B'uA’dC" is still below the x-axis. This is a contradiction as two paths are the same.

15
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case 2: 21 > 2r

The (2r+1)5t step
A A’

C c’
d o \d\/\/U/
The (2r+1)5t step

B/
B

Figure 3.4: AdBuC and A'dB'uC’

A A

C Vol
u The (2r+1)5t step A AN
N
Mhe (2r+1)t step \/B\,/

B

Figure 3.5: fo(AdBuC') = BuAdC and fy(A'dB'uC’) = B'uA'dC’

To see Figure 3.5 when we start on (0, 0) to walk along the path the two path BuAdC
and B'uA’dC". The (2r + 1) step of BuAdC is below the x-axis, but the (2r 4 1) step
of B'uA’dC" is still above the x-axis. This is a contradiction as two paths are the same.

Thus, we have proof that ; = r.

. |B] =|B'|and B = B'.
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Claim 2: |A] = |A/|

recall:Let | B| = 2i, 0<i<n; |u| = 1; |A| = 27, 0<j<n —4; |d| = 1,
ICl=2(n—i—j—1).
Suppose |B'| = 2r, 0<r<n; |u| = 1; |A'| = 25, 0<s<n — r; |d| = 1;
|IC'|=2(n—r—s—1).

case 1: 25 < 2s

The (2i+25+2)"% step
/
A A
/\/\ c ¢’
AN

A VY

The (2i+2j+2)nd step B

Figure 3.6: AdBuC and A'dB'uC’

The (2i—|—2j—|—2)nd step The (2'+2j—|—2)nd step
A/
A
1 /\/\ c ] o
AT N VAN VI 7u N\
A ) A S
B B’

Figure 3.7: fo(AdBuC) = BuAdC and f5(A'dB'uC’) = B'uA'dC’

To see Figure 3.7 when we start on (25 + 1,1) to walk along the path A and A’. The
(2 +25 +2)" step of Ad is below y = 1, but the (2i + 25 + 2)"¢ step of A’'d is still above

y = 1. This is a contradiction as two paths are the same.

17
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case 2: 25 > 2s

The (2i+25+2)"% step

A
A/
C /\/\ C’ N
)
d\/\/u/ e ; \ w
B The (2i42542)"% step” g
Figure 3.8: AdBuC and A'dB'uC’
A The (2i+25+2)" step
A/
The (2i+25+2)""% step -‘
B /\/\ - B /\/\ c
\/‘”\//' m f]\/\\/ \/y\//' m d NN N
B B’

Figure 3.9: fo(AdBuC) = BuAdC and fo(A'dB'uC") = B'uA'dC’

To see Figure 3.9 when we star on (2¢ + 1,1) to walk along the path A and A’. The
(2i +2s +2)" step of Ad is above y = 1, but the (2i +2s +2)"? step of A'd is still below
y = 1. This is a contradiction as two paths are the same. Thus, we have proof that j = s.
L JA =]Aand A = A'.

Since B= B and A = A,

" BuAdC = B'uA'dC" = C ="

. AdBuC = A'dB'uC’

Therefore f5 is one-to-one.
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Lemma 3.0.2. If Q is a path in D, 11 41, then fo(Q) has k flaws. Moreover, the k + 1%

flaw will be restored and connected to original lift behind.

Note: A up-step above the x-axis is called lift. The lifts are counted from right to left and

top to bottom.

Proof.  The function f5 from D, 11 41 into D, ;. Suppose P has k + 1 flaws in D, 41 411,
and Q = AdBuC', where A, dBu, C have 0 flaw, k + 1 — j flaws, j flaws, respectively.
(i.e.A, dBu, C have n — k — i lifts, 0 lift, 7 lifts, respectively.) The (k + 1) flaw is in
subpath dBu.Then f>(Q) has k flaws on D, 1 4, and fo(Q) = BuAdC, where B, uAb,
C have k — j flaws, 0 flaw, j flaws, respectively.

Z AW, N x-axis

<:
7
w{

u N /\, X-axis

¢
;

Figure 3.10: the new li ft will be connected to original li ft behind

Notice that the path f5(Q), u is connected to the (n — k)™ flaw in subpath A behind. u
becomes the (n — k + 1)* lift.

Therefore, no matter how many times we use f», u is conneted to the (n — k + 1)% lift in

subpath A behind. w is still the (n — k + 1) lift.
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Note:

Risingfry‘ \Faliing to
X-axis

X-axis

X-axis
Falling from X-axis Rising to

Figure 3.11: Rising from; Falling to; Falling from; Risingto

Lemma 3.0.3. If P is a path in D, 1 1, then f, ' (P) has k + 1 flaws.Moreover,
the (n — k + 1) lift in P will be dropped.

i.e. The (n — k)™ lift v and the first down-step d falling to the x-axis on the right side of u
in D4, ;, are dropped to the first up-step w rising to the x-axis and the first down-step d

falling from the x-axis in Dy, 41 j41.

Show by formula:

B C _ C
Y=l eSO NN Preimage under fy ; /N x_axis
9 y_ 1 \{ Empty area U/

B
B

Figure 3.12: BuAdC LLEmasender b 4 g BuC

In P, the (n — k + 1) lift u and the first down-step d falling to the x-axis on the left
side of w in D, ;, we can observe that there is an empty area enclosed by the u, d, the x-axis,
and the horizontal line y = 1. After switching two portions Bu and Ad, another empty area is
enclosed by the d is the first down-step falling from the x-axis, and u is the first up-step rising
to the x-axis, and the horizontal line y = —1 in f; *(P). And the remaining segments which are

behind d is the fixed subpath C. ]
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Theorem 3.0.2. Define fo:D,, 11 k1—Dpi1k by fo(AdBuC') = BuAdC.

The function f is onto.

Proof. Claim: f; is onto. (fo:Dy11 541 — Dpgi1 k)
For any path P = BuAdC' in D, which 0<k<n. We choose the (n — k + 1)* lift u
and choose the first down-step d falling to the x-axis on the right side of u. We switch the
portions Bu and Ad then we can drop the (n — k+ 1) lift (i.e. the (k + 1)*' flaw) and get
anew path ) = AdBuC inD,,;4 ;41, by Lemma 3.2 ~ Lemma 3.3. Where () has at most
n + 1 flaws and P has at least one flaw. In fact, if P has k flaws then () has k£ + 1 flaws.
So every P in Dy, 4, we can find a path () in D, ;.+1, such that f»(Q)) = P. Therefore

f2 1s one-to one and onto.

Hence, f; is one-to-one and onto by Theorem 3.1 and Theorem 3.2.

Note: Let f, ' be the inverse function of f5. ]

Definition 3.0.4. The set X, consists of all paths in n + 1-Dyck paths with k + 1 flaws.Each
path in X, can be factorized into AjBﬁC. The set Y5 consists of all
n + 1-Dyck paths which are good paths.
Define a function g, from X into Ys by the following:
1. 32(Q) = f5*(Q) where Q in Xy, and f5+' = faofoo---0fo

.
k+1 times

2. The first down-step falling from x-axis denote by j and the first up-step rising to
x-axis denote by .

Lemma 3.0.5. Suppose that Q) in Xo. In f3(Q), the first down-step jfallingﬁom the
x-axis of () connects with the first up-step v rising to the x-axis of ) to

be 77 and 72 is above the x-axis. Let () = 7370, then f5(Q) = 3770.

Proof.  'We may assume that () = AjB W C is any path of Dy, 41,k+1. Since the subpath A is
empty, then ) = 7370 € Xy and f»o(Q) = BﬁjC.We know 737 hask+1—7
flaws, and C must have j flaws in (). Then B, 77, and C have k — j flaws, 0 flaw, and
j flaws in f5(Q), respectively. Therefore, 77 is above the x-axis.

[

Note: In f4(Q), 1<i<K + 1, the segments above the x-axis will be always above the x-axis.
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Theorem 3.0.3. The function g,: Xo—Y5 is one-to-one.

Proof.  Suppose that g2(P) = g2(Q), where P has k flaws and Q has h flaws in X.
To prove that P = ().
By definition g(P) = f3(P), 9:(Q) = f;(Q)

case l: k < h
2, TH(P) = [71Q) = fL(f5(P) = L(f2(Q))
.+ fo is one-to-one SR P) = fMQ)

For the same reason, the following can be obtained

F(f57H(P) = L(7H(@) = 71(P) = £71(Q)

Since f, is one-to-one, use this method £ + 1 times

f2(P) = f2(f37HQ)) = P = f37(Q)

The d and @ of P are below the x-axis, but the @d of fi=k(Q) are above the x-axis
by Lemma 3.5.

This is a contradiction.

case 2: k > h
3 TH(P) = £71Q) = LlfE(P) = f((Q))
.+ f1 is one-to-one o fEP) = Q)

For the same reason, the following can be obtained

f(fs7H(P) = f(fHQ) = (P) = f71(Q)

Since f, is one-to-one, use this method A + 1 times

fao(fs7"(P)) = £2(Q) = f;"(P) = Q

The @ d of f¥="(P) are above the x-axis, but d and T of (@ are below the x-axis by
Lemma 3.5.

This is a contradiction.

case3: k= h
;TP = [7HQ) = L(F(P) = f(£2(Q)
" f2 is one-to-one SOfHP) = )

Use this method h + 1 times, we have fo(P) = fo(Q) = P =Q

Therefore, g, is one-to-one.
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Theorem 3.0.4. g, Xo—Y5 is onto, where Y5 is good path of n + 1-Dyck
and g»(Q) = f1(Q).

Proof. Give P € Y5, P has 0 flaw, and @ d is the (n — k+ 1) lift in P.

Definition: The preimage of the function go= f; "™ = f; o fy o0 f;!

k+1 times

Since f, '(P) is the preimage of P under f, and has 1 flaw.
Using this way for k times, we get the path f, *(P) which has k flaws.
In f;*(P), @ d is still above the x-axis and is the (n — k 4 1) lift. We use this way
again, we get the path f, (k+1) (p) which has & + 1 flaws and BT is under the X-axis,
as f, is onto and by Lemma 3.5.
Sowehave £, "V (P) = ;" (A7(Q) = @,
where () has k£ + 1 flaws,() € Xs.
LetQ = f; “"V(P) = 9(Q) = 7(Q)
= fH (TP
=P

Thus g5 is onto.

Hence, g5 is one-to-one and onto by Theorem 3.3 and Theorem 3.4.
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Definition 3.0.6. The set Z5 contains the good path for all n-Dyck paths which replaces
77 in Y5 with a dot mark, and all paths in Y, are n + 1-Dyck paths which

are good path. Let hy be the function from Y5 into Zs.

ie. P = R dSis (2n + 2,0) path, where R, @ d, and S are all good paths. hs(P) =
ho(RT dS)=ReS

Theorem 3.0.5. h, is one-to-one and onto.

Proof.  1t’s clearly that hy is one-to-one.
Given PP = Re S € Z,
We can change e into 77 Thus Re S = R?jS €Y.

Therefore, h, is one-to-one and onto.

U ~d S S
/ \/\

X-axis

Figure 3.13: ho(R@dS) = R e S

We have completed the combinatorial proof of (n + 2)C,, .1 = (4n + 2)C,,.
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Chapter 4

Summary

* In this thesis, we prove the Catalan identity in combinatorial way.
In Chapter 2, we give a bijective proof between “Paths Start with Up — step” and
“Dotted Totally Bad Paths”. Then we construct the functions in X; - Y; y 71
that Paths Start with Up-step.
In Chapter 3, we give a bijective proof between ' Paths Start with Down — step” and
“Dotted Good Paths".Then we construct the functions in X, 25 Y5 2y Z, that Paths

Start with Down-step.

Proving the Catalan identity through the Dyck paths can reveal the following advantages:
1.The subpath C does not change during the process of switching of the portions
Ad and Bu.
2.Since the subpath B of P in x; is empty, a new flaw generated after
switching of the portions Ad and Bu must be followed by the original subpath C.
Since the subpath A of Q in x5 is empty, a new lift generated after
switching of the portions Bu and Ad must be followed by the original subpath C.
3.In the process of computing the preimage of a function g; (g»), the flaws (lifts) recovery

mode follows the ' Last — in — Flirst — out” or “First — in — Last — out”.
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Appendix A

examples of Catalan identity

Al (n+2)C, = (4n+2)C,

en=1
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