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中文ᄔ要

本篇論文探討卡特蘭等式(n + 2)Cn+1 = (4n + 2)Cn 證明方式以往都

以計算方式推導得出，當我參加劉映君的口試時，發現她使用組合方法

來證明這個等式。當我在尋找論文的主題時，讀到李陽明老師的一篇論文

‵‵The Chung − Feller theorem revisited′′，發現 Dyck路徑也可以作為卡特

蘭等式的組合證明，因此我們完成(n+ 2)Cn+1 = (4n+ 2)Cn的組合證明。

通過 Dyck路徑證明卡特蘭等式可以得到以下優勢：

1.子路徑 C在切換過程中不會改變。

2.由於x1中的 P的子路徑 B為空，因此在交換 Ad和 Bu部分後，生成新的

缺陷必連接在原始子路徑 C之後。

由於x2中的 Q的子路徑 A為空，因此在 Bu交換和 Ad部分後，生成新的

提升必連接在原始子路徑 C之後。

3.在計算函數g1(g2)的反函數的過程中，缺陷（提升）恢復模式必遵循

“後進先出”或“先進後出”規則。

關鍵字：卡特蘭等式、Dyck路徑
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Abstract

When we first prove the Catalan identity, (n + 2)Cn+1 = (4n + 2)Cn. We

often prove it by calculation.When I participated in the oral examination of Ying-

Jun Liu’s essay, I found that she used a combinatorial proof to prove this identity.

When I was looking for the subject of the thesis, I read a paper by professor Young-

Ming Chen, ‵‵The Chung − Feller theorem revisited′′, which found that Dyck

paths could also be used as a combinatorial proof of the Catalan identity. Therefore,

we completed the combinatorial proof of (n+ 2)Cn+1 = (4n+ 2)Cn.

Proving the Catalan identity through the Dick paths can reveal the following

advantages:

1.The subpath C does not change during the process of switching of the portions

Ad and Bu.

2.Since the subpath B of P in x1 is empty, a new flaw generated after

switching of the portions Ad and Bu must be followed by the original subpath C.

Since the subpath A of Q in x2 is empty, a new lift generated after

switching of the portions Bu and Ad must be followed by the original subpath C.

3.In the process of computing the preimage of a function g1 (g2), the flaws (lifts)

recoverymode follows the ‵‵Last−in−First−out′′ or ‵‵First−in−Last−out′′.

Keywords: Catalan identity, Dyck path
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Chapter 1

Introduction

• When we first prove the Catalan identity, (n+ 2)Cn+1 = (4n+ 2)Cn. We often prove it

by calculation. The proof method is as follows:

(n + 2)Cn+1 =
(n+2)C2n+2

n+1
n+2

= (2n+2)!
(n+1)!(n+1)!

= (2n+1)(2n)!(2n+2)
(n+1)n!n!(n+1)

= 2(2n+1)(2n)!(2n+2)
(n+1)n!n!(2n+2)

= (4n+2)(2n)!
(n+1)n!n!

= (4n+2)C2n
n

n+1 = (4n + 2)Cn

When I participated in the oral examination of Ying-Jun Liu’s essay, I found that she used

a combinatorial of proofs to prove this identity. When I was looking for the subject of the

thesis, I read a paper by teacher Young-MingChen, ”TheChung-Feller theorem revisited”,

which found that Dyck paths could also be used as a combinatorial proof of the Catalan

identity. Therefore, we complete the combinatorial proof of (n+ 2)Cn+1 = (4n+ 2)Cn.

[5] [7] [1]

1
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Definition 1.0.1. An up-step is denoted by u = (1, 1).

A down-step is denoted by d = (1,−1).

A step is either an up-step(u) or a down-step(d).

A path consists of consecutive steps.

A subpath is some of consecutive steps of a path.

Definition 1.0.2. A path is that all up-steps and down-steps are above the x-axis.

Definition 1.0.3. A totally bad path is that all up-steps and down-steps are below the x-axis.

Definition 1.0.4. A flaw is a down-step below the x-axis.

Definition 1.0.5. A lift is a up-step above the x-axis.

Definition 1.0.6. In An n-Dyck path, Cn is the number of good paths from (0, 0) to (2n, 0)

Definition 1.0.7. An n-Dyck path is a path from (0, 0) to (2n, 0) with n up-steps

and n down-steps.

An n-Dyck path with k flaws if it has k down-steps below the x-axis.

Definition 1.0.8. Let R is a subpath of n-Dyck path. The number of up-steps and

down-steps in R is denoted by |R| = r,0≤r≤2n.

Definition 1.0.9. The set Dn,k consists of all n-Dyck paths with k flaws, 0≤k≤n.

For more details ,we refer to [4] [3] [2] [10] [9] [6] [8] [11]

2
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Chapter 2

Paths Start with Up-step

Definition 2.0.1. Define a function f1 from Dn+1,k into Dn+1,k+1 by the following:

1. The set Dn+1,k consists of all n + 1-Dyck paths with k flaws, 0≤k≤n. Each path in Dn+1,k

can be factorized into BuAdC, where B is a subpath all bellow the x-xais, say with k1

flaws, 0≤k1≤k, u is the first up step above the x-xais, A is a subpath all above the x-xais,

d is the first step to contact the x-axis after A and above the x-axis, say uAd with 0 flaws,

and C is the remaining path with k − k1 flaws, 0≤k≤n.

2. The set Dn+1,k+1 consists of all n + 1-Dyck path with k + 1 flaws, 0≤k≤n. Each path in

Dn+1,k+1 can be factorized into AdBuC, where A,dBu, and C have 0, k1+1, and k−k1

flaws.

Note: A、B、C may be empty, and they have the same number of up-steps

and down-steps.

i.e. f1(BuAdC) = AdBuC

A

B

C

A

B

Cu d

ud
x-axisf1

Figure 2.1: f1(BuAdC) = AdBuC

3
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Theorem 2.0.1. Define f1:Dn+1,k→Dn+1,k+1 by f1(BuAdC) = AdBuC.

The function f1 is one-to-one.

Proof. Let |B| = 2i, 0≤i≤n; |u| = 1; |A| = 2j, 0≤j≤n− i; |d| = 1; |C| = 2(n− i− j − 1).

Claim: f1 one-to-one. (i.e.f1(BuAdC) = f1(B
′uA′dC ′) ⇒ AdBuC = A′dB′uC ′)

Suppose |B′| = 2r, 0≤r≤n; |u| = 1; |A′| = 2s, 0≤s≤n−r; |d| = 1; |C ′| = 2(n−r−s−1).

Claim 1: |A| = |A′|

case 1: 2j < 2s

The (2j+1)st step

The (2j+1)st step

A
A′

d du u

B B′

C
C ′

Figure 2.2: BuAdC and B′uA′dC ′

The (2j+1)st step

The (2j+1)st step
A

A′

d du u

B B′

C C ′

Figure 2.3: f1(BuAdC) = AdBuC and f1(B′uA′dC ′) = A′dB′uC ′

To see Figure 2.3 when we start on (0, 0) to walk along the two path AdBuC and

A′dB′uC ′. The (2j + 1)st step of AdBuC is below the x-axis, but the (2j + 1)st step

of A′dB′uC ′ is still above the x-axis. This is a contradiction as two paths are the same.

4
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case 2: 2j > 2s

The (2s+1)st step The (2s+1)st step

A
A′

d du u

B B′

C
C ′

Figure 2.4: BuAdC and B′uA′dC ′

A
A′

B B′

C C ′

d
du u

The (2s+1)st step

The (2s+1)st step

Figure 2.5: f1(BuAdC) = AdBuC and f1(B′uA′dC ′) = A′dB′uC ′

To see Figure 2.5 when we start on (0, 0) to walk along the path the two pathAdBuC and

A′dB′uC ′. The (2s+1)st step of AdBuC is still above the x-axis, but the (2s+1)st step

of A′dB′uC ′ is below the x-axis. This is a contradiction as two paths are the same. Thus,

we have proof that j = s.

∴ |A| = |A′| and A = A′.

5
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Claim 2: |B| = |B′|

recall:Let |B| = 2i, 0≤i≤n; |u| = 1; |A| = 2j, 0≤j≤n− i; |d| = 1;

|C| = 2(n− i− j − 1).

Suppose |B′| = 2r, 0≤r≤n; |u| = 1; |A′| = 2s, 0≤s≤n− r; |d| = 1;

|C ′| = 2(n− r − s− 1).

case 1: 2i < 2r

The (2j+2i+2)nd step

The (2j+2i+2)nd step

A A′

d du u

B
B′

C
C ′

Figure 2.6: BuAdC and B′uA′dC ′

A

B

C

d u

The (2j+2i+2)nd step

y = −1

A′

B′

C ′

d u

The (2j+2i+2)nd step

y = −1

Figure 2.7: f1(BuAdC) = AdBuC and f1(B′uA′dC ′) = A′dB′uC ′

To see Figure 2.7 when we start on (2j + 1,−1) to walk along the path B and B′. The

(2j + 2i + 2)nd step of Bu is above y = −1, but the (2j + 2i + 2)nd step of B′ is still

below y = −1. This is a contradiction as two paths are the same.

6
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case 2: 2i > 2r

The (2j+2r+2)nd step

The (2j+2r+2)nd step
A A′

d du u

B B′

C
C ′

Figure 2.8: BuAdC and B′uA′dC ′

A

B

C

d u

The (2j+2r+2)nd step

y = −1

A′

B′

C ′

d u

The (2j+2r+2)nd step

y = −1

Figure 2.9: f1(BuAdC) = AdBuC and f1(B′uA′dC ′) = A′dB′uC ′

To see Figure 2.9 when we star on (2j + 1,−1) to walk along the path B and B′. The

(2j + 2r + 2)nd step of B′u is above y = −1, but the (2j + 2r + 2)nd step of B is still

below y = −1. This is a contradiction as two paths are the same. Thus, we have proof

that j = s.

∴ |B| = |B′| and B = B′.

Since A = A′ and B = B′,

∵ AdBuC = A′dB′uC ′ ⇒ C = C ′

∴ BuAdC = B′uA′dC ′

Therefore f1 is one-to-one.

7
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Lemma 2.0.2. If P is a path in Dn+1,k, then f1(P ) has k + 1 flaws.

Moreover, the (k + 1)st flaw will be connected to original flaws behind.

Note: A down step below the x-axis is called flaw. The flaws are counted from right to left and

bottome-up.

Proof. The function f1 from Dn+1,k into Dn+1,k+1. Suppose P has k flaws in Dn+1,k, and

P = BuAdC, where B, uAd, C have k − j flaws, 0 flaw, j flaws, respectively. The kth

flaw is in subpath B.Then f1(P ) has k + 1 flaws on Dn+1,k+1, and f1(P ) = AdBuC,

where A, dBu, C have 0 flaw, k − j + 1 flaws, j flaws, respectively.

A

B

C
A

B

Cu d

ud
x-axis

Au d

C

A

C
ud

x-axis

Figure 2.10: the new flaw will be connected to original flaws behind

Notice that the path f1(P ), d is connected to the kth flaw in subpathB behind. d becomes

the (k + 1)st flaw.

Therefore, no matter how many times we use f1, d is conneted to the kth flaw in subpath

B behind. d is still the (k + 1)st flaw.

8
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Note:

x-axis

x-axis

x-axis

x-axis

Rising from Falling to

Falling from Rising to

Figure 2.11: Rising from;Falling to;Falling from;Rising to

Lemma 2.0.3. If Q is a path in Dn+1,k+1, then f−1
1 (Q) has k flaws.

Moreover,the (k + 1)st flaw in Q will be restored.

i.e. The (k + 1)st flaw d and the first up-step u rising to the x-axis on the right side of d in

Dn+1,k+1 are restored to the first down-step d falling to the x-axis and the first up-step u

rising from the x-axis in Dn+1,k.

Show by formula:

Preimage under f1−−−−−−−−−−−−−−−→

A

B

C
ud

y=-1

A

B

Cu dy=1
Empty area

Empty area x-axis

Figure 2.12: AdBuC
Preimage under f1−−−−−−−−−−−→ BuAdC

In Q, the (k + 1)st flaw d and the first up-step u rising to the x-axis on the right side of

d in Dn+1,k+1, we can observe that there is an empty area enclosed by the u, d, the x-axis, and

the horizontal line y = −1. After switching two portions Ad and Bu, another empty area is

enclosed by the u is the first up-step rising from the x-axis, and d is the first down-step falling

to the x-axis, and the horizontal line y = 1 in f−1
1 (Q). And the remaining segments which are

behind u is the fixed subpath C.

9
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Theorem 2.0.2. Define f1:Dn+1,k→Dn+1,k+1 by f1(BuAdC) = AdBuC.

The function f1 is onto.

Proof. Claim: f1 is onto. (f1:Dn+1,k → Dn+1,k+1)

For any pathQ = AdBuC inDn+1,k+1 which 1≤k+1≤n+1. We choose the (k+1)st flaw

d and choose the first up-step u rising to the x-axis on the right side of d. We switch the

portionsAd andBu then we can restore the (k+1)st flaw and get a new pathP = BuAdC

in Dn+1,k, by Lemma 2.2、Lemma 2.3.

Where Q has at least one flaw and P has at most n flaws. In fact, if Q has k + 1 flaws

then P has k flaws. So every Q in Dn+1,k+1, we can find a path P in Dn+1,k, such that

f1(P ) = Q. Therefore f1 is onto.

Hence, f1 is one-to-one and onto by Theorem 2.1 and Theorem 2.2.

Note: Let f−1
1 be the inverse function of f1.

Definition 2.0.4. The set X1 consists of all paths in n+ 1-Dyck paths with k flaws.Each

path in X1 can be factorized into B−→u A
−→
d C. The set Y1 consists of all

n+ 1-Dyck paths which are totally bad paths.

Define a function g1 from X1 into Y1 by the following:

1. g1(P ) = fn+1−k
1 (P ), where P in X1 and fn+1−k

1 = f1 ◦ f1 ◦ · · · ◦ f1︸ ︷︷ ︸
n+1−k times

2. The first up-step rising from x-axis denote by −→u and the first down-step falling to

x-axis denote by
−→
d .

Lemma 2.0.5. Suppose that P in X1. In f1(P ), the first up-step −→u rising from the x-axis of P

connectswith the first down-step
−→
d falling to the x-axis of P to be

−→
d −→u and

−→
d −→u

is below the x-axis. Let P = −→u A
−→
d C, then f1(P ) = A

−→
d −→u C.

Proof. We may assume that P = B−→u A
−→
d C is any path of Dn+1,k. Since the subpath B is

empty, then P = −→u A
−→
d C ∈ X1 and f1(P ) = A

−→
d −→u C.We know −→u A

−→
d has 0 flaw, and

C must have k flaws in P . Then A,
−→
d −→u , and C have 0 flaw, 1 flaws, and k flaws in

f1(P ), respectively. Therefore,
−→
d −→u is below the x-axis.

Note: In f i
1(P ), 1≤i≤n+1− k, the segments below the x-axis will be always below the x-axis.

10
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Theorem 2.0.3. The function g1:X1→Y1 is one-to-one.

Proof. Suppose that g1(P ) = g1(Q), where P has k flaws and Q has h flaws in X1.

To prove that P = Q.

By definition g1(P ) = fn+1−k
1 (P ), g1(Q) = fn+1−h

1 (Q)

case 1: k < h

fn+1−k
1 (P ) = fn+1−h

1 (Q) ⇒ f1(f
n−k
1 (P )) = f1(f

n−h
1 (Q))

∵ f1 is one-to-one ∴ fn−k
1 (P ) = fn−h

1 (Q)

For the same reason, the following can be obtained

f1(f
n−k−1
1 (P )) = f1(f

n−h−1
1 (Q)) ⇒ fn−k−1

1 (P ) = fn−h−1
1 (Q)

Since f1 is one-to-one, use this method n+ 1− h times

f1(f
h−k
1 (P )) = f1(Q) ⇒ fh−k

1 (P ) = Q

The
−→
d −→u of fh−k

1 (P ) are below the x-axis, but the −→u and
−→
d of Q are above the x-axis

by Lemma 2.5.

This is a contradiction.

case 2: k > h

fn+1−k
1 (P ) = fn+1−h

1 (Q) ⇒ f1(f
n−k
1 (P )) = f1(f

n−h
1 (Q))

∵ f1 is one-to-one ∴ fn−k
1 (P ) = fn−h

1 (Q)

For the same reason, the following can be obtained

f1(f
n−k−1
1 (P )) = f1(f

n−h−1
1 (Q)) ⇒ fn−k−1

1 (P ) = fn−h−1
1 (Q)

Since f1 is one-to-one, use this method n+ 1− k times

f1(P ) = f1(f
k−h
1 (Q)) ⇒ P = fk−h

1 (Q)

The −→u and
−→
d of P are above the x-axis, but

−→
d −→u of fk−h

1 (Q) are below the x-axis by

Lemma 2.5.

This is a contradiction.

case 3: k = h

fn+1−k
1 (P ) = fn+1−h

1 (Q) ⇒ f1(f
n−k
1 (P )) = f1(f

n−h
1 (Q))

∵ f1 is one-to-one ∴ fn−k
1 (P ) = fn−h

1 (Q)

Use this method n+ 1− h times, we have f1(P ) = f1(Q) ⇒ P = Q

Therefore, g1 is one-to-one.

11
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Theorem 2.0.4. g1:X1→Y1 is onto, where Y1 is totally bad path of n+ 1-Dyck

and g1(P ) = fn+1−k
1 (P ).

Proof. Give Q ∈ Y1, Q has n+ 1 flaw, and
−→
d −→u is the (k + 1)st flaw in Q.

Define: The preimage of the function g−1
1 = f

−(n+1−k)
1 = f−1

1 ◦ f−1
1 ◦ · · · ◦ f−1

1︸ ︷︷ ︸
n+1−k times

Since f−1
1 (Q) is the preimage of Q under f1 and has n flaws.

Using this way for n− k times, we get the path f−(n−k)
1 (Q) which has k + 1 flaws.

In f
−(n−k)
1 (Q),

−→
d −→u is still under the x-axis and is the (k + 1)st flaw.We use this way

again, we get the path f−(n+1−k)
1 (Q) which has k flaws and−→u A

−→
d is above the x-axis, as

f1 is onto and by Lemma 2.5.

So we have f−(n+1−k)
1 (Q) = f

−(n+1−k)
1 (fn+1−k

1 (P )) = P ,

where P has k flaws,P ∈ X1.

Let P = f
−(n+1−k)
1 (Q) ⇒ g1(P ) = fn+1−k

1 (P )

= fn+1−k
1 ((f

−(n+1−k)
1 )(Q))

= Q

Thus g1 is onto.

Hence, g1 is one-to-one and onto by Theorem 2.3 and Theorem 2.4.

12
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Definition 2.0.6. The set Z1 contains the totally bad path for all n-Dyck paths which

replaces
−→
d −→u in Y1 with a dot mark, and all paths in Y1 are n+ 1-Dyck

paths which are totally bad path. Let h1 be the function from Y1 into Z1.

i.e. Q = R
−→
d −→u S is (2n+ 2, 0) path, where R,

−→
d −→u , and S are all totally bad paths. h1(Q) =

h1(R
−→
d −→u S) = R • S

Theorem 2.0.5. h1 is one-to-one and onto.

Proof. It is clear that h1 is one-to-one.

Given Q′ = R • S ∈ Z1

We can change • into
−→
d −→u . Thus R • S ⇒ R

−→
d −→u S ∈ Y1.

Therefore, h1 is one-to-one and onto.

R
d⃗ u⃗ S SR

x-axis
h1

Figure 2.13: h1(Rd⃗u⃗S) = R • S

13
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Chapter 3

Paths Start with Down-step

Definition 3.0.1. Define a function f2 from Dn+1,k+1 into Dn+1,k by the following:

1. The set Dn+1,k+1 consists of all n + 1-Dyck paths with k + 1 flaws, 0≤k≤n. Each path in

Dn+1,k+1 can be factorized into AdBuC, where A is a subpath all above the x-xais, d

is the first down step below the x-xais, B is a subpath all bellow the x-xais, say with k2

flaws, 0≤k2≤k, u is the first up step contact the x-axis after B and below the x-axis, say

uBd with k2 + 1 flaws, and C is the remaining path with k − k2 flaws, 0≤k≤n.

2. The set Dn+1,k consists of all n+1-Dyck path with k flaws, 0≤k≤n. Each path in Dn+1,k can

be factorized into BuAdC, where B,dAu, and C have k2, 0, and k − k2 flaws.

Note: A、B、C may be empty, and they have the same number of up-steps

and down-steps.

i.e. f2(AdBuC) = BuAdC

A

BC

A

B

C

ud

u d
x-axisf2

Figure 3.1: f2(AdBuC) = BuAdC

14
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Theorem 3.0.1. Define f2:Dn+1,k+1→Dn+1,k by f2(AdBuC) = BuAdC.

The function f2 is one-to-one.

Proof. Let |B| = 2i, 0≤i≤n; |u| = 1; |A| = 2j, 0≤j≤n− i; |d| = 1; |C| = 2(n− i− j − 1).

Claim: f2 one-to-one. (i.e.f2(AdBuC) = f2(A
′dB′uC ′) ⇒ BuAdC = B′uA′dC ′)

Suppose |B′| = 2r, 0≤r≤n; |u| = 1; |A′| = 2s, 0≤s≤n−r; |d| = 1; |C ′| = 2(n−r−s−1).

Claim 1: |B| = |B′|

case 1: 2i < 2r

A

B

C

d u

The (2i+1)st step

A′

B′

C ′

d u

The (2i+1)st step

Figure 3.2: AdBuC and A′dB′uC ′

The (2i+1)st step

The (2i+1)st step

A A′

d du u

B
B′

C C ′

Figure 3.3: f2(AdBuC) = BuAdC and f2(A′dB′uC ′) = B′uA′dC ′

To see Figure 3.3 when we start on (0, 0) to walk along the two path BuAdC and

B′uA′dC ′. The (2i + 1)st step of BuAdC is above the x-axis, but the (2i + 1)st step

of B′uA′dC ′ is still below the x-axis. This is a contradiction as two paths are the same.

15
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case 2: 2i > 2r

A

B

C

d u

The (2r+1)st step

A′

B′

C ′

d u

The (2r+1)st step

Figure 3.4: AdBuC and A′dB′uC ′

A A′

B
B′

C C ′
d du u

The (2r+1)st step

The (2r+1)st step

Figure 3.5: f2(AdBuC) = BuAdC and f2(A′dB′uC ′) = B′uA′dC ′

To see Figure 3.5 when we start on (0, 0) to walk along the path the two path BuAdC

and B′uA′dC ′. The (2r+1)st step of BuAdC is below the x-axis, but the (2r+1)st step

of B′uA′dC ′ is still above the x-axis. This is a contradiction as two paths are the same.

Thus, we have proof that i = r.

∴ |B| = |B′| and B = B′.

16
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Claim 2: |A| = |A′|

recall:Let |B| = 2i, 0≤i≤n; |u| = 1; |A| = 2j, 0≤j≤n− i; |d| = 1;

|C| = 2(n− i− j − 1).

Suppose |B′| = 2r, 0≤r≤n; |u| = 1; |A′| = 2s, 0≤s≤n− r; |d| = 1;

|C ′| = 2(n− r − s− 1).

case 1: 2j < 2s

The (2i+2j+2)nd step

The (2i+2j+2)nd step

A
A′

d du u

B B′

C C ′

Figure 3.6: AdBuC and A′dB′uC ′

A

B

C
du

The (2i+2j+2)nd step

y = 1

A′

B′

C ′

du

The (2i+2j+2)nd step

y = 1

Figure 3.7: f2(AdBuC) = BuAdC and f2(A′dB′uC ′) = B′uA′dC ′

To see Figure 3.7 when we start on (2j + 1, 1) to walk along the path A and A′. The

(2i+2j+2)nd step ofAd is below y = 1, but the (2i+2j+2)nd step ofA′d is still above

y = 1. This is a contradiction as two paths are the same.
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case 2: 2j > 2s

A
A′

B B′

C C ′

d
du u

The (2i+2s+2)nd step

The (2i+2s+2)nd step

Figure 3.8: AdBuC and A′dB′uC ′

A

B

Cdu

The (2i+2s+2)nd step

y = 1

A′

B′

C ′

du

The (2i+2s+2)nd step

y = 1

Figure 3.9: f2(AdBuC) = BuAdC and f2(A′dB′uC ′) = B′uA′dC ′

To see Figure 3.9 when we star on (2i + 1, 1) to walk along the path A and A′. The

(2i+2s+2)nd step ofAd is above y = 1, but the (2i+2s+2)nd step ofA′d is still below

y = 1. This is a contradiction as two paths are the same. Thus, we have proof that j = s.

∴ |A| = |A′| and A = A′.

Since B = B′ and A = A′,

∵ BuAdC = B′uA′dC ′ ⇒ C = C ′

∴ AdBuC = A′dB′uC ′

Therefore f2 is one-to-one.

18
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Lemma 3.0.2. If Q is a path in Dn+1,k+1, then f2(Q) has k flaws. Moreover, the k + 1st

flaw will be restored and connected to original lift behind.

Note: A up-step above the x-axis is called lift. The lifts are counted from right to left and

top to bottom.

Proof. The function f2 from Dn+1,k+1 into Dn+1,k. Suppose P has k + 1 flaws in Dn+1,k+1,

and Q = AdBuC, where A, dBu, C have 0 flaw, k + 1− j flaws, j flaws, respectively.

(i.e.A, dBu, C have n − k − i lifts, 0 lift, i lifts, respectively.) The (k + 1)th flaw is in

subpath dBu.Then f2(Q) has k flaws on Dn+1,k, and f2(Q) = BuAdC, where B, uAb,

C have k − j flaws, 0 flaw, j flaws, respectively.

A

B

C
A

B

C

ud

u d
x-axis

B
u

d

C

B

C
u d x-axis

Figure 3.10: the new lift will be connected to original lift behind

Notice that the path f2(Q), u is connected to the (n − k)th flaw in subpath A behind. u

becomes the (n− k + 1)st lift.

Therefore, no matter how many times we use f2, u is conneted to the (n− k + 1)st lift in

subpath A behind. u is still the (n− k + 1)st lift.
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Note:

x-axis

x-axis

x-axis

x-axis

Rising from Falling to

Falling from Rising to

Figure 3.11: Rising from;Falling to;Falling from;Rising to

Lemma 3.0.3. If P is a path in Dn+1,k, then f−1
2 (P ) has k + 1 flaws.Moreover,

the (n− k + 1)st lift in P will be dropped.

i.e. The (n − k)th lift u and the first down-step d falling to the x-axis on the right side of u

in Dn+1,k are dropped to the first up-step u rising to the x-axis and the first down-step d

falling from the x-axis in Dn+1,k+1.

Show by formula:

Preimage under f2−−−−−−−−−−−−−−−→

A

B

C
u d

y=1
A

B

C
ud

y=-1
Empty area

Empty area x-axis

Figure 3.12: BuAdC
Preimage under f2−−−−−−−−−−−→ AdBuC

In P , the (n − k + 1)st lift u and the first down-step d falling to the x-axis on the left

side of u in Dn+1,k, we can observe that there is an empty area enclosed by the u, d, the x-axis,

and the horizontal line y = 1. After switching two portions Bu and Ad, another empty area is

enclosed by the d is the first down-step falling from the x-axis, and u is the first up-step rising

to the x-axis, and the horizontal line y = −1 in f−1
2 (P ). And the remaining segments which are

behind d is the fixed subpath C.
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Theorem 3.0.2. Define f2:Dn+1,k+1→Dn+1,k by f2(AdBuC) = BuAdC.

The function f2 is onto.

Proof. Claim: f2 is onto. (f2:Dn+1,k+1 → Dn+1,k)

For any path P = BuAdC in Dn+1,k which 0≤k≤n. We choose the (n − k + 1)st lift u

and choose the first down-step d falling to the x-axis on the right side of u. We switch the

portionsBu andAd then we can drop the (n−k+1)st lift (i.e. the (k+1)st flaw) and get

a new pathQ = AdBuC in Dn+1,k+1, by Lemma 3.2、Lemma 3.3. WhereQ has at most

n+ 1 flaws and P has at least one flaw. In fact, if P has k flaws then Q has k + 1 flaws.

So every P in Dn+1,k, we can find a path Q in Dn+1,k+1, such that f2(Q) = P . Therefore

f2 is one-to one and onto.

Hence, f2 is one-to-one and onto by Theorem 3.1 and Theorem 3.2.

Note: Let f−1
2 be the inverse function of f2.

Definition 3.0.4. The set X2 consists of all paths in n+ 1-Dyck paths with k + 1 flaws.Each

path in X2 can be factorized into A
−→
d B−→u C. The set Y2 consists of all

n+ 1-Dyck paths which are good paths.

Define a function g2 from X2 into Y2 by the following:

1. g2(Q) = fk+1
2 (Q) where Q in X2, and fk+1

2 = f2 ◦ f2 ◦ · · · ◦ f2︸ ︷︷ ︸
k+1 times

2. The first down-step falling from x-axis denote by
−→
d and the first up-step rising to

x-axis denote by −→u .

Lemma 3.0.5. Suppose that Q in X2. In f2(Q), the first down-step
−→
d falling from the

x-axis of Q connects with the first up-step −→u rising to the x-axis of Q to

be −→u
−→
d and −→u

−→
d is above the x-axis. Let Q =

−→
d B−→u C, then f2(Q) = B−→u

−→
d C.

Proof. We may assume that Q = A
−→
d B−→u C is any path of Dn+1,k+1. Since the subpath A is

empty, then Q =
−→
d B−→u C ∈ X2 and f2(Q) = B−→u

−→
d C.We know

−→
d B−→u has k + 1 − j

flaws, and C must have j flaws in Q. Then B, −→u
−→
d , and C have k− j flaws, 0 flaw, and

j flaws in f2(Q), respectively. Therefore, −→u
−→
d is above the x-axis.

Note: In f i
2(Q), 1≤i≤K + 1, the segments above the x-axis will be always above the x-axis.
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Theorem 3.0.3. The function g2:X2→Y2 is one-to-one.

Proof. Suppose that g2(P ) = g2(Q), where P has k flaws and Q has h flaws in X2.

To prove that P = Q.

By definition g2(P ) = fk+1
2 (P ), g2(Q) = fh+1

2 (Q)

case 1: k < h

fk+1
2 (P ) = fh+1

2 (Q) ⇒ f2(f
k
2 (P )) = f2(f

h
2 (Q))

∵ f2 is one-to-one ∴ fk
2 (P ) = fh

2 (Q)

For the same reason, the following can be obtained

f2(f
k−1
2 (P )) = f2(f

h−1
2 (Q)) ⇒ fk−1

2 (P ) = fh−1
2 (Q)

Since f2 is one-to-one, use this method k + 1 times

f2(P ) = f2(f
h−k
2 (Q)) ⇒ P = fh−k

2 (Q)

The
−→
d and −→u of P are below the x-axis, but the −→u

−→
d of fh−k

2 (Q) are above the x-axis

by Lemma 3.5.

This is a contradiction.

case 2: k > h

fk+1
2 (P ) = fh+1

2 (Q) ⇒ f2(f
k
2 (P )) = f2(f

h
2 (Q))

∵ f1 is one-to-one ∴ fk
2 (P ) = fh

2 (Q)

For the same reason, the following can be obtained

f2(f
k−1
2 (P )) = f2(f

h−1
2 (Q)) ⇒ fk−1

2 (P ) = fh−1
2 (Q)

Since f2 is one-to-one, use this method h+ 1 times

f2(f
k−h
2 (P )) = f2(Q) ⇒ fk−h

2 (P ) = Q

The −→u
−→
d of fk−h

2 (P ) are above the x-axis, but
−→
d and −→u of Q are below the x-axis by

Lemma 3.5.

This is a contradiction.

case3: k = h

fk+1
2 (P ) = fh+1

2 (Q) ⇒ f2(f
k
2 (P )) = f2(f

h
2 (Q))

∵ f2 is one-to-one ∴ fk
2 (P ) = fh

2 (Q)

Use this method h+ 1 times, we have f2(P ) = f2(Q) ⇒ P = Q

Therefore, g2 is one-to-one.
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Theorem 3.0.4. g2:X2→Y2 is onto, where Y2 is good path of n+ 1-Dyck

and g2(Q) = fk+1
2 (Q).

Proof. Give P ∈ Y2, P has 0 flaw, and −→u
−→
d is the (n− k + 1)st lift in P .

Definition:The preimage of the function g2= f
−(k+1)
2 = f−1

2 ◦ f−1
2 ◦ · · · ◦ f−1

2︸ ︷︷ ︸
k+1 times

Since f−1
2 (P ) is the preimage of P under f2 and has 1 flaw.

Using this way for k times, we get the path f−k
2 (P ) which has k flaws.

In f−k
2 (P ), −→u

−→
d is still above the x-axis and is the (n − k + 1)st lift.We use this way

again, we get the path f
−(k+1)
2 (p) which has k + 1 flaws and

−→
d B−→u is under the x-axis,

as f2 is onto and by Lemma 3.5.

So we have f−(k+1)
2 (P ) = f

−(k+1)
2 (fk+1

2 (Q)) = Q,

where Q has k + 1 flaws,Q ∈ X2.

Let Q = f
−(k+1)
2 (P ) ⇒ g2(Q) = fk+1

2 (Q)

= fk+1
2 ((f

−(k+1)
2 )(P ))

= P

Thus g2 is onto.

Hence, g2 is one-to-one and onto by Theorem 3.3 and Theorem 3.4.
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Definition 3.0.6. The set Z2 contains the good path for all n-Dyck paths which replaces
−→u
−→
d in Y2 with a dot mark, and all paths in Y2 are n+ 1-Dyck paths which

are good path. Let h2 be the function from Y2 into Z2.

i.e. P = R−→u
−→
d S is (2n + 2, 0) path, where R, −→u

−→
d , and S are all good paths. h2(P ) =

h2(R
−→u

−→
d S) = R • S

Theorem 3.0.5. h2 is one-to-one and onto.

Proof. It’s clearly that h2 is one-to-one.

Given P ′ = R • S ∈ Z2

We can change • into −→u
−→
d . Thus R • S ⇒ R−→u

−→
d S ∈ Y2.

Therefore, h2 is one-to-one and onto.

R d⃗u⃗ S SR

x-axis
h2

Figure 3.13: h2(Ru⃗d⃗S) = R • S

We have completed the combinatorial proof of (n+ 2)Cn+1 = (4n+ 2)Cn.
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Chapter 4

Summary

• In this thesis, we prove the Catalan identity in combinatorial way.

In Chapter 2, we give a bijective proof between ‵‵Paths Start with Up − step′′ and
‵‵Dotted Totally Bad Paths′′. Then we construct the functions in X1

g1−→ Y1
h1−→ Z1

that Paths Start with Up-step.

In Chapter 3, we give a bijective proof between ‵‵Paths Start with Down − step′′ and
‵‵Dotted Good Paths′′.Then we construct the functions in X2

g2−→ Y2
h2−→ Z2 that Paths

Start with Down-step.

Proving the Catalan identity through the Dyck paths can reveal the following advantages:

1.The subpath C does not change during the process of switching of the portions

Ad and Bu.

2.Since the subpath B of P in x1 is empty, a new flaw generated after

switching of the portions Ad and Bu must be followed by the original subpath C.

Since the subpath A of Q in x2 is empty, a new lift generated after

switching of the portions Bu and Ad must be followed by the original subpath C.

3.In the process of computing the preimage of a function g1 (g2), the flaws (lifts) recovery

mode follows the ‵‵Last− in− First− out′′ or ‵‵First− in− Last− out′′.
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Appendix A

examples of Catalan identity

A.1 (n + 2)Cn+1 = (4n + 2)Cn

• n = 1
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• n = 2
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• n = 3
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