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Abstract

Self-avoiding walk is a model for linear polymers. It is an important and
interesting model in Probability and Statistical mechanics. Some of the important
problems had been solved (c.f. [5]). However, many of the important problems
remain unsolved, particularly those involving critical exponents, especially the
critical exponents for long-range models. In this thesis, we see Lace expansion
to obtain that the critical exponent of the susceptibility satisfies the mean-field
behavior with the dimensions above the upper critical dimension (d. = 4) for a
special loge-range model in which each one-step distribution is the Poisson-type
distribution with parameter A > \; where )\; depends on the dimensions. To
achieve this, we choose a particular set of bootstrapping functions which is similar
as [4] and using a notoriously complicated part of the lace expansion analysis.

Moreover we get the exactly value of \; for d > 4.
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Chapter 1

Introduction

A self-avoiding walk (SAW) is a model for linear polymers. In mathematics, a SAW is a
sequence of moves on lattices (a lattice path) that does not visit the same point more than once.
This is a special case of the theoretical graphic notion of a path. Very little is known rigorously
about the SAW from a mathematical perspective, although physicists have provided numerous
conjectures that are believed to be true and are strongly supported by numerical simulations.

In higher dimensions, the SAW is believed to behave much like the corresponding random
walk. This behavior is called the mean-field behavior. The dimension d, is called the upper
critical dimension if the behavior is the mean-field behavior for dimensions d > d.. It’s well
known that d. = 4 for a finite-range SAW model (c.f. [4]) and d. = 2(a A 2) for a long-range
model in which one-step distribution decays as |z|~¢~* for some a > 0 (c.f. [7]) . The lace
expansion is a powerful tool for analyzing the critical behavior for SAW on Z? for d > d... The
idea of the lace expansion was initiated by Brydges and Spencer for investigating weakly SAW
for d > 4. Later, the lace-expansion was applied to various stochastic-geometrical models, such
as SAW for d > 4, (c.f. [5]), lattice trees/animals for d > 8, (c.f. [9]), percolation for d > 6,
(c.f. [6]), oriented percolation for d > 4, (c.f. [13]), contact process for d > 4, (c.f. [11]), and
Ising model for d > 4, (c.f. [10]). In this thesis, we consider the mean-field behavior for long-
range SAW in which one-step distribution D(x) is symmetric Poisson-type distribution that will
be defined in the next chapter.

The rest of this thesis is organized as follows. In Chapter 2, we define the symmetry
Poisson-type distribution and state the main results of this thesis and their proofs under some

key propositions (Proposition 2.2.7-2.2.9). In Chapter 3, we follow the same argument of [3] to
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introduce the lace expansion that is the most important ingredient to prove the key propositions,
and then we estimate the upper bound of the diagrams on lace expansion coefficients in Chapter
4. In Chapter 5, we evaluate the upper bounds of some random-walk quantities that are useful
to estimate the upper bound of diagrams. Finally, in Chapter 6, we can use the previous analysis

(Chapter 4-5) to prove the key propositions.
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Chapter 2

Models and Main Results

First, we provide precise definitions of the long-range Poisson-type self-avoiding walk on
74, whose translation-invariant 1-step distribution decays as the symmetric Poisson distribution.

Then, we present the main results and explain their proofs according some key propositions.

2.1 Notations and Definitions

By Taylor’s formula, we have the following equation

g d _$ e P _/\ &2 ATl
= G N )

Then, we can define a symmetry Poisson distribution D(z) on Z¢ with parameter A > 0 as

follows. Since

2x#£0,Vk=1,2.....d
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let

d - ylzjl-1 .
115 [ S A ifx zg---2q #0,

=12 (e, —1)1"

D(z) = D(xy,...,xq) = (2.1.1)

0, ifrize---2q=0.

In the rest of the thesis, we denote f(k) = > pega [(x)e™* where k = (k1, ko, ..., kq) and
(fx9)(x) = >, cza [(y)g(z —y) the Fourier transform of function f on 7% and the convolution
of two function f and g on Z<, respectively.

By (2.1.1), we get

ﬁ(k) = Z D(z)e*?
xeZd
e~ 4 s A% i A%l
— (( ezk‘ﬂ:]) _|_( Z Blk]xj))
2 j=1  a;=1 (2 = 1)! —z;=1 (—z; — 1!
T (S A ) A (Cu)
Vi od ((Zu,ej )+(ZU ’ )
7=1 u=0 u=0
d €_>\ i —ik
- H T(e’\e " (cos(k;) +isin(k;)) +e* 7 (cos(k;) — isin(k;)))
j=1
d
= H e sk (cos(ky) cos(Asin(k;)) — sin(k;) sin(Asin(k;)))
j=1
d

= H e reeshi) cos (k; + Asin(kj)).

j=1

Hence

d
D(k) = H e~ reosthi) cos (k; + Asin(k;)).
j=1
Let W, (z, y) be the set of {wy, w, ..., w, } withwy = z and w,, = y, and § be the Kronecker

delta function. Then the two-point function of the random walk (RW) from the origin o to x is

denoted by ol (z) = do, and, forn > 1,

oy () = Z HD —wi—1) = D™ (z),

wEWn (0,x) 1=1
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where D*" is the n time convolution. Similarily, we define the two-point function of SAW from

the origin o to = by () = do, and, forn > 1,

on(x) = Z HD —w;_1) H (1 = Owyuw;)-

wEWn(o :L‘) =1 0<i<j<n

Since the green function of RW is defined as follows

Zs@ )p" —%ﬁZD*” p". pe(0,1).

n=1

We can define the time-independent two-point function of SAW as follows

= pu(@)p", pe(0.po),
n=0
where p. is the radius of convergence. Moreover, the susceptibility of SAW is defined as follows

Xp = Y Gylx), pE(0,p.). 2.1.2)

xeZ4

In Physics, there is a conjecture about the susceptibility of SAW as follows,

Xp X (Pe — D),

where f(p) =< g(p) means that L&) ] ) is bounded away from zero and infinity, and r is a critical
exponent that is not statistically distinguishable from a SAW instead on the integer lattice, on the
hexagonal lattice, the triangular lattice, or indeed on any one of a wide variety of d-dimensional
lattices. This feature is called universality. Given any dimension d > 4, r = 1 was proved by
Slade (c.f. [6]) for spread-out model with sufficiently large L, and was proved by Hara and Slade
(c.f. [5]) for nearest-neighbor model. In a general finite-range model it is predict that r = é—g
ford = 2, r = 1.162 for d = 3, r = 1 with logarithmic term for d = 4, and r = 1 for d > 5.
However, up to now, there is no rigorous mathematical proof. For the long-range model which
the one-step distribution decays as || =4~ for some a > 0, given any dimension d > 2(a A 2),

r = 1 was proved by Heydenreich (c.f. [7]). In particular, for o = 2and d = 4, r = 1 with

logarithmic term was proved by Chen and Sakai (c.f. [3]). For more background and related
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results, we refer to [8] and [1]. It is interesting to get r for other long-range models. In our

thesis, we discuss a special long-range model.

2.2 Main results and their proofs

Now, we present the main theorems in this thesis.

Theorem 2.2.1. (Infrared bound) For SAW on 74 whose one step distribution D(z) is defined
in (2.1.1) for any d > 4, there is a A,

60, ifd=75,6,
35, ifd="1,
Ad = 24, if'd =8,
18, ifd=9,
\ (1 4 A )eﬁ[ln(3125000>—1+m(d<d74)2)]7 if d > 10,

such that for all X > Ay,

11— D)Glloe = sup (1~ D(k)IG, (k)| <3,

kezd
uniformly in p € [1,p,) .

Remark 2.2.2. According Theorem 2.2.1, we obtain that \; — % as d goes to infinity. However,

for) < A< 23—6, we don t obtain what we want.
Remark 2.2.3. The \; of Theorem 2.2.1 is not the best estimate for our Poisson-type.

Define a bubble function B, = ||(pD)*? * G3?||o. By Theorem 2.2.1, we can estimate X,
that is defined in (2.1.2) as follows.

Proposition 2.2.4. Under the same assumption of Theorem 2.2.1, we have

d X
2
Xp > d—p(pxp) > : +po and B, < cc. (2.2.1)
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We will use the same argument of [7] to prove this proposition in Chapter 5. By

Proposition 2.2.4, we get the second main result of this thesis directly.

Theorem 2.2.5. Under the same assumption of Theorem 2.2.1, we have

c (1+ B
Pe  — Xp < M. (2.2.2)

DPe — P Pe— P

By Theorem 2.2.5, we obtain the third main result in our thesis obviously.

Corollary 2.2.6. Under the same assumption of Theorem 2.2.1, we have

Xp = (pe—p) 7"

In Corollary 2.2.6, we get the ciritical exponent r = 1 in our model. We use the
Proposition 2.2.4 and Theorem 2.2.1 to prove Theorem 2.2.5 as follow.
Proof of Theorem 2.2.5 according to the Proposition 2.2.4 and Theorem 2.2.1. Since B, is
increasing as p is increasing and from Proposition 2.2.4, we get B,,. < 0o, by the first inequality

of (2.2.1), we have

1
dp > Fd(pxp) > dp > dp, for p € (0,p,].

2 ~1+B, 1+ B,

(&

Then,
This implies

g

The proof of Theorem 2.2.1 is rather straightforward, assuming the following three

propositions. To state those propositions, we first define

91(p) = p, and g2(p) = [|(1 — D)Gy|| oo, (2.2.3)
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where the supremum near & = 0 should be interpreted as the supremum over the limitas |k| — 0,

and

x |ARGL (1)), (2.2.4)

where

Syl + k) + Sy(l — k)
2

U(k,1) = (1 - D(k)) ( Si(D) + 48, (1 + k) Sy (1 — k:)),

and the notation A}, f is defined as follows

Fl+k) + f(l—F)
2

Af() = — f().

Now, we state the three aforementioned propositions and show that they indeed imply
Theorem 2.2.1. To prove these three propositions, we need to use lace expansion and diagram
estimates that will be explained in Chapter 3. Then we will show these three propositions in

Chapter 6.
Proposition 2.2.7. (Continuity). The functions {g;(p)}3_, are continuous in p € [1,p,).

Let Kl = 101, K2 = 102, Kg =2.1ford = 5, and Kl = 11, K2 = 11, Kg = 2.1 for

d > 6. Then, we have the following Propositions.
Proposition 2.2.8. (Initial conditions). For d > 4, we have ¢;(1) < K fori =1,2,3.

Proposition 2.2.9. (Bootstrapping argument). For d > 4, and p € (1,p,.), assume g;(p) < K;,
i = 1,2,3, where {K;}3_, are the same constants as in Proposition 2.2.8. Then, the stronger

inequlities g;(p) < (1 — €)K; for some ¢ > 0, and i = 1,2, 3, hold.

We only use g;(p) and go(p) in Proposition 2.2.7 - 2.2.9 to prove Theorem 2.2.1 as follow.
As for g3(p), it is used to prove go(p) in Proposition 2.2.9, and we will show that in later chapter.
Proof of Theorem 2.2.1 according to Proposition 2.2.7-2.2.9. First, by Proposition 2.2.7, we
have g, (p) is continuous in p € (1,p.), and by Proposition 2.2.8 we have ¢;(1) < K, and
by Proposition 2.2.9 we have g;(p) < K; inp € (1,p.). Therefore, we can conclude that
g91(p) < Kyinp € [1,p.). In other words, p. < K;.
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Then, we use same argument to obtain that go(p) < K3 inp € [1, p.). This complete prove

Theorem 2.2.1.
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Chapter 3

The lace expansion for self-avoiding walk

The lace expansion was derived by Brydges and Spencer in [2]. It was later noted that the
lace expansion can also be seen as a result from repeated application of the inclusion-exclusion
relation. For a more combinatorial description of the lace expansion, see [14]. We use the
inclusion-exclusion approach to the time-independent two-point function (2.1.2) as follows. By

application of the inclusion-exclusion relation, we have

Z% z)p" —50x+2 p1% n1)(@)p" — RV (),

where

ROz ZZ Yo awioewt HD —wis) ] (1= Guw)P"

n=0 yeZd wMeW, _1(y,z) 0<i<j<n—1

and [ is an indicator function. Observe that

o

> (1% on1)(@)p"

n=1

= ZZ% @nlx—y)p

n=1 yczd

= > @) enle—yp"

yeZd

= p(D * Gp)(x).

n

10
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Then, we get

Gp(x) = 6o +p(D x Gp)(x) — R(l)(x).

P

. . 1 .
For convenience, we can use Feynman diagram to analyze R;(o )(x) Here we first introduce

some notations that will be needed. We define ” « b 7 as a self-avoiding path from a to

b,” a2 .. 7 as two independent self-avoiding paths and their intersection is only at
b,and ” -] to represent one step from a.

. . . . . 1
Using inclusion-exclusion, we can rewrite RI(, )(x) as follows

=R (x)
= Y OG-y -RYa

Then, we define

Continue the process, and we can rewrite RZ()Q) (z) as follows

11
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R (z) =

= > (Gz—y) - RP(),

yezd °

where y is a first hitting point of two independent self-avoiding paths. Then, we define

v
72 (y) Q

By repeating the application of inclusion-exclusion relations, we obtain the lace expansion
we redefine Feynman diagram of the lace-expansion coefficients depicted as (i.e. the solid line
represents at least one step, and ” «——<— 1+  can be allowed to merge into one point, and all
solid lines are independent. Their intersection points are only at the vertices in the following
Feynman diagrams, and some vertices have no English code, e.g. ” - 7, which represents the

sum of all possible points.)

In summary, we can get the equation as follow

Gp(x) = Go.o + (pD +TIY) % Gy) (@) + (= 1)V RV (@),

p

where
N
1M (@) = Y (- 1"m(@),
n=1

12
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and we can do a simple analytical method for R},N) (x) to get the following inequality
0< RV (z) < (7l % G,)(x). (3.0.1)

For example, given N = 5, we have

IN

Om T

= (P G)).

Similarly, we can use the same argument to get the inequality (3.0.1) for V € N. Due to

the construction explained above, we have the lace expansion as follow

Proposition 3.0.1. (Lace expansion, c.f. [4]). Forany p < p.and N € Z, = {0} UN, then we

obtain the recursion equation
Gp(r) = G0 + (S * Gp) (@) + (1) TRV (2), (3.02)
where
N N
JM (z) = pD(z) + IV (2), (3.0.3)
and the remainder RI(,N) obeys the bound

0 < RM(z) < (7V) % G,)(2). (3.0.4)

13
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Chapter 4

Diagrammatic bounds estimate

4.1 Diagrammatic bounds on the lace expansion coefficients

In this chapter, we need to evaluate the upper bound of g;(p) for i = 1,2, 3 in (2.2.3) and

(2.2.4). First, we need the following lemma to help us get the important result of our thesis.

Lemma 4.1.1. Forp € [1,p.), we have

f: T (0) < d i LT A
a0 00, and sup X7 2o .
n=1 g k n=1 D(k)

The proof of Lemma 4.1.1 will be showed that in Chapter 6. Hence, by Lemma 4.1.1 we

have

lim #")(0) =0,

N—oo

and by (3.0.4) we obtain

0< > RM(x) <#M(0)G,(0) — 0 as N — oo.

p

Recall

14
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Then, (3.0.2) and (3.0.4) yield

~ ~

Gy(k) =1+ J,(k)G,(k) + 0. (4.1.1)
Through these simple calculations, we can get

1
Y EITT0)

Since y, > 0, we can get .J,(0) < 1. Using D(0) = 1, we have

A

p <1 —11,(0). (4.12)

By (3.0.3) and (4.1.1), we obtain

hence, we have

A 1
=G,(0) = ———+—,
Xp p( ) l—p—Hp(O)

since GP(O) is a positive continuous and increasing function on p € [0, p.), and p.. is a radius of

convergence. Then, we have

A

1 —p.—1L,.(0) = 0.

15
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As above,we have

Gy (k)
_ 1
(pc + ﬂpc (O)) - pD(/{:) - ﬂp(k)
1
C (p—pe) = 141+ (1L, (0) — TL,(0)) + p(1 — D(k)) + IL,,(0) — TL,(k)
1
- i (

Then, we have

Gy(k) <

| /\

(4.1.3)

Kn

R\
~A57,(0)

In order to evaluate the upper bound of g;(p) fori = 1,2, 3, we must know the upper bound

of [#(0)| and | A, 75" (0)]. Since

= i #3m(0) i AL ( (4.1.4)
m=1 m=0

and we define TI"" (k) = % #7™ (k) and etd(k) = 0% 7™ D (k) where k €

m=1 m=0

[—m, m]%. Hence, we can rewrite (4.1.4) as follow
[1,(0) = 115" (0) — T15*(0),

and
— AT, (0) = —ARIIE(0) + ARII™(0).
In the begining, we define

Ly = [|(pD)™ * Gylloc = sup( o p— = ),

16
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and

By, =||(pD)" * G}?|loc = sup( o k4= ),

and
Yo = D[ Dl + Ly + By =sup( e H= ), +sup( o p—— = ) + sup( o k—4= ).

Then, we can obtain the bounds of 7%,(3”)(0) and \Akﬁ,é”)(oﬂ in Lemma 4.1.2 and

Lemma 4.1.3.

Lemma 4.1.2. (Diagrammatic bounds on the expansion coefficients.) The expansion coefficients

A 0)=>", i (x), obey the following bound

Ly, ifn=1,
Bp(p||D||w+Lp)7pn_2> ifn > 2.

Proof of Lemma 4.1.2. First, we have the following inequality
Gy(w) [ # 0] < (pD * Gy)(3). (4.15)

In the following, we will use the above inequality, and we can analyze 7%}(7”)(0) for each

n € N to prove Lemma 4.1.2. For n =1, we have

#0)= O < O <(D)?*G,)(0) < L,

o=y o=y

For n > 2, we first decompose 7?;(,")(0) by using subadditivity and then repeatedly apply

17
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(4.1.5) to obtain Lemma 4.1.2. For example,

and

IR z@ < (s )

r#o ° r#o °
< Z Gy(x)?) (sup Gp())
x#0 z#0
(4.1:5) %2 %2
< ((pD)™ = G2)(0) ( Sl;g(pD * Gp)(2)),
<B,

LR DIV, ) SUZA TS SRS

TF#0 z#o © y;é:c
= (Z Gp( SUPZG y))(sup Gp(x))
fto rF#0 vt r#0
(4.1.5) \ § .
< (w060 (iif.f (0D)xG) (o))

D O v M M ZA T Y SR

=0 7o © ° yu
X ZG,,( supZG oz — y)) (sup Gp())
wto TF#0 - zF#0
(4.1.5) ) 2
< p(wenew) (i‘iﬁ (9D} G) (o))

By induction, we have

#"(0) < B, ( sup ((pD) * G3?) (x)) " ( sup ((pD) * G,) (:c)> .

z#0 xF#o0

In the following step, we will analyze the bound of sup,., ((pD) * G,)(z) and

Sup, 2, ((pD) * G;‘,Q) (x). Notice that, by omitting the spatial variables, we have

(4.1.5)

pD x G, =pD % (6G, + (1 = 6)G,) < pD+ (pD)* xG,,

18
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where ¢ is the Kronecker delta. Therefore,

sup(pD + G,)(x) < plID|s +1|(pD)" * Gylloo = plIDllo + Ly

Similarly, we have

pD x G2 = pD * Gy x (0G, + (1 — 6)G,)
pD G, + (pD)* % G
= pD* (6 + (1 —6)G,) + (pD)* x G

pD + (pD)*? % Gy + (pD)** x G;Q,

hence

IN

sup(pD + G?)(x) PlDllss + [[(pD)™* * Gyl + 1[(pD)™* * G}l

= p||D||oo+Lp+B = Tp-

Then, we define the following equation to get the bound of |Akfr§,") (0)].

W, (k) = sup(1 — cos k - )G, ().

T

Lemma 4.1.3. (Diagrammatic bounds on the expansion coefficients.) The expansion coefficients

|AAT(0)] = 32, (1 — cos k - z)mS™ () obey the following bound

B2W,(k)ym2y2m2, ifn =2m+ 1,

BIpr(k)m(m — 1)y 3 + BpVA\/p(k)m'ygm*Q, ifn = 2m.

To prove this lemma, we need the following lemma which can be proved by following the

argument in [4].

19
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Lemma 4.1.4. (the telescopic inequality)

d d
11— cos(z t;) < dZ(l — cost;)
j=1 j=1

Proof of Lemma 4.1.4. First, take the real part of the telescopic identity

d

1 — Tt = $(1 = eit)ei Tie (4.1.6)

j=1

Then, using the inequalities respectively |sin 37~ ¢,| < 32771 |sint,|, | sint;|| sinty| <
(sin®t; + sin®t;,)/2 and sin®t; < 2(1 — cost;), and by (4.1.6), we have

7=1 h
Then
d d
- costh — Z(l — costy)
j=1 j=1
d d—1 d j—1
= —Z(l—costj)(l—cosZth)+Zsintj sinZth
j=1 = j=1 h=1
4. sin® tysin® >0t G
< —Z h 1t —i—z | sint; sinty|
1 h=1

o
ol

J

[y

<.

(sin*¢; +s1n tn)

M&

sint; sin [t5] <

'M&

j=1 h=1 j=1 h=1
1 1 d—1
— §(sin2 ty + 2sinty + ... + (d — 1) sin® 4 + Z sin®t, + ... + Zsin2 th)
h=1 h=1
d—1
- 5 (sin®t; + sin®ty + ... +sin’t,)
d—1 d
= 5 sin*t; < (d—1) Z(l — cost;).
j=1 j=1

4

Proof of Lemma 4.1.3 according to Lemma 4.1.4. First, we prove Lemma 4.1.3 for n = 2m+1.

Since 7\ )(x) is proportional to d,, and therefore Akﬁg)(O) = 0, we can assume m > 1.

20

DOI:10.6814/NCCU202000775



To bound ]ARA@’”H)(O)] = > (1 —cosk- 5L'>7T1(72m+1)(33) for m > 1, we first identify the
diagram vertices along the lowest diagram path from o to x, say v, ..., ¥m_1, and then split =
into {y; — y;-1}}j~,, where o = o and y,,, = z.

Form =1,

Aed PO = Y (L—cosk-(n—w) [N, -

y1€Z4

Then, by subadditivity, we obtain

Al (0)] < > (1 —cosk - y1)Gylyn) VAN

y1€Z2

~

< W, (k) ( sup N, ) < Wi(k)B;.

y1€24 °

For m = 2, we have

Ad@ ) =3 (=cos k- (= y-1) o NN,

Y1,y2€Z% Jj=12 .

Then, using Lemma 4.1.4 and subadditivity, we obtain

A7 P(0)] < 2 Y ((1—cosk-y)+ (1 —cosk-(y2— 1))

y1,y2€2%

><<G<y1>omy2+e< S RAVANS

Y1

< 2W sup (; Q S) + sup
y1€Z4 Y2 €74 "m” )
< 4Wp(k:) pyp, (4.1.7)

where the last inequality holds by the same argument of the proofin Lemma 4.1.2. By induction,

we have

IN

Apam+ (o mW, (k) x (m diagrams, each bounded by B2y ?
p p p

< B;W (k:)mQ%%m 2,

In the following, we prove Lemma 4.1.3 for n = 2m, and we follow the same lines as
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above for n = 2m + 1. To bound yAkfr,(fm)(O)y => (1 —cosk- x)w,(fm) (x), we first identify
the diagram vertices along the lowest diagram path from o to x, say, y1, ..., ¥m_1, and then split
x into {y; — y;-1}jL,, where yo = o and y,,, = =.
Form =1,
vi
A= 3" (1—cosk- (5 —w0)) D .
y1€Z4 vo =0

Then, by subadditivity, we obtain

Y1

Ay < > (1 —cosk- (y1 — y0)) Gp(u1) q
y1EZ4 vo =0
< W (swp )
Yy1€Z% yo =0
< BW, (k).

For m = 2, we have

Aa(0) = > (1—cos ¥ k- (y; —yi-1)) AV
y1,y2€Z% Jj=12 22
Then, by using the same argument of (4.1.7), we obtain

|Ak7%1(,4)(0)\ < 2 Z ((1 —cosk-y;)+ (L—cosk - (yo — yl)))

y1,Y2 €L7%

X(Gp(%) Omw + Gply2 — 1) 067112 )
CCIGAVAIRAVED

2, (k) (B2, + By).

IN

IN
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By induction, we have

|A72™(0) < mW,(k) x (((m — 1) diagrams, each bounded by B2~2"?)
+(1 diagram, bounded by prim_2)>
< ByW, (k)m(m — 1)7;™ > + ByW, (k)mry™ 2.
U

From Lemma 4.1.2 and Lemma 4.1.3, we can simply get that if 7, < 1 then 7%;(,")(0) and
|Akfr;(;”)| approaches zero as n goes to infinity. Hence, we need to suppose v, < 1 to achieve

our purpose.

Lemma 4.1.5. Suppose that v, = p||D||~ + L, + B, < 1. We have

0 < T19%(0) < L, + By(p||D||oe + Lp)lj—fiyg, (4.1.8)
0 < I57(0) < By pl1Pllod + L) =3 (4.19)
sgp'ﬁ_e—m < By f_ﬂj’bllm1 3725)3 + Bp!lf_"pf)\lm(1 _173)2- (4.1.11)

Proof. Note that (4.1.8) and (4.1.9) are very easy to get from Lemma 4.1.2. Hence, we explain
(4.1.10) and (4.1.11) as follows.
By lemma 4.1.3, we obtain
|[ApIL*(0)]

su—<32 Wo . m22m2’
T Il Z
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2, 2m—2 -
where ) " m*y,;" "%, and we can consider

Z

p

Then, we have

1+’y
D
( _’}/p)

Therefore, we get (4.1.10) as follows

Addlg (0)] _ B2 +12)

P
Su = ~ 00+
kpl—D@) (1— )H H
Similarly, by lemma 4.1.3, we obtain
| AL (0))
sup ——————
v 1—D(k)
< By (i = 52" 2 + By - "|| 22
— D 1 l’*) (o) m{m ’7p + o m .
- m=1

2
Since Yo " = 2% 7, we have

oo 27
2m 3 _ P
Sl gt = P

m=1 Pyp

and

1
2m 2 _
mry. — .
Z (1 _75)2

Hence, we can obtain (4.1.11) as follows

~ ~

|A even(o)’ W 27 W 1
sup—ASBiH pA||OO _p23+BPH pAHOO _A2\2°
k 1—D(k) 1-D " (1=7) 1-D " (1=13)
[l
24
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4.2 Diagramatic bounds on the bootstrapping argument

In Section 4.1, we have already estimated the coefficients of lace expansion. In this section,
we use them to estimate the upper bounds of g;(p) for i = 1,2, 3. For ¢;(p), by (4.1.2), we can

easily get

A

g1(p) <1 —1L,(0). 4.2.1)

And then, by (4.1.3) and using the symmetry of G,(k) (i.e. J,(k) = J,(—k)), we obtain
— Ay J,(0) = J,(0) — J,(k). Since p > 1, we have

i T YT
- pD(0) + ﬂ,,<01> ipﬁ(k:) — 11, (k)
— (1 D(k) + (~AL(0)
Therefore
AR\ L?(l 7 f)(zlg);f Eﬁ)Akﬂp(o) }

w2y { 1— D(k) } |
=

Then, we have

g2(p) < sup [Hl——?kr))]_' 4.2.2)

ke[—m,m]d

Suppose — 3°°° At (0) = 320 32 (1 —cos(k - )y () is smaller than 1 — D(k).
Then, we can ensure the g>(p) to be uniformly bounded.
To evaluate g3(p), we need the following proposition which can be found in ( [12], Lemma

5.7).

Proposition 4.2.1. ( [12], Lemma 5.7 ) Suppose A(k) = (1 — a(k))™", where a is the Fourier

transform of a symmetric a(x) = a(—=x) for all x € 7%, then we have the following identity
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[AA(D)]

IN

SIAW— 1) + A+ MA@ () - 4 ()]
FAAQL = AW AQ -+ R)[am(0) — @ (R)]la" (0) - 4 (D),
where o™ (x) = |a(x)|.

Then, we use Proposition 4.2.1, and substitute A to G, noting that G, (k) = (1 — J,(k))™*

,we obtain the upper bound of g3(p) as follows

B 1 . 1
93(p) = S ) X |AwGyp(l)],  where  Gp(k) = )
l—f?(k){ Gyl + k) + G (l—k)} o 1Ak (0)]
= i Ukl 2 Cll) 1— D(k)
4G, (1 + k)Gl — k) Bl l(0) =Bl ] (0) } (4.2.3)
1—J,(1) 1—D(k)

where |J,|(k) = 3, cp €[ ().
Applying these bounds in (4.2.1), (4.2.2), and (4.2.3), we obtain the following bounds on
the bootstrapping functions ¢;(p) for: = 1,2, 3.

Lemma 4.2.2. p € [1,p.), we have

Bp(p“DHoo + Lp)Vp

< 1+ L
91(p) X gt I ’
BX(1+72)
92(p) < = 17 s llee)” s
(1=n7)?
W 2
< 1 3 BQ pA 00 £
93(p) = max{ga(p), 1} (p—l— pH1 DH (1_75)3
W 1 B2(1+72) ’
+BPH pA ||oo _ ~2)\2 + ; || p ||O°) .
1—-D (1—=12) (1 =)

Proof. Since
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and

ARIL(0) = AT (0) — A,II2*(0).

We obtain
(4.2.1) . ~odd
91(p) < 1 —1I,(0) < 14 112%(0)
(4.1.8)
< 1+Lp+Bp(p||DHoo+Lp)1 27
P
and
(4.2.2) —Akf[ NS \Akﬂ”dd(o)l _
< sup(1 4+ — P V)l cogup(1] — —— 2 27l
92(p) < up( ) Ssup o
(4.1.10) BX(14 ;)
R e L FLE SO
(1—3)3
For g3(p),
1= D(k)  Gol+ k) + Gl — k), - A, (1)
< Sup — G,(1 -
wlo) | < Ty 2 O D
J | ZANT0) =AglJ,
4O Bl — ) 1|J,/(0) k!Jp\(O)}

1—J,() 1—D(k)

A

since G, (k) = 1/(1 — J,(k)) and |G, (k)| < g2(p)S1(k) = g2(p)/(1 = D(E)), we obtain

1= D) [, Si(l+ k) + Si(L=k), 4 5| A, (0)]
o) = s 2O ! )$:0m)
48+ RS — B)gs(0)? ‘lAj“g'(gf) == };p(l;i?))}
22 3 Ay O] —All0),
' maxde). 1) max{sg}ol_D(k)msgp S }
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Since J, = pD + 1I,,, we have

|A Adol 1
1-D(k) N 1 —D(/{)’;(l —cosk - z)e""(pD(x) + II,(v))]
< 1_;% zx:(l —cosk - $)(pD(1;) + Hgdd(x) + szen(x))
< 1Ay, Heve”( )‘ |AkHodd( )
= P+ ’
1~ D(k) 1— D(k)

which is larger than 1, since p > 1. It is easy to check that —A|.J,|(0)/(1 — D(k)) obeys the
same bound. Therefore, by using (4.1.10) - (4.1.11), we obtain

AR (0)] AL (0)]

< max AV (p+ ~ - 2
93(p) > {92(p), 1} (p 1= D(k) 1~ D(k) )
W 2.
< 1 3. BQ pA 0o p
< maxla) 1 (p B =
W 1 B2(1+42) 2
Bl 0 e )
1-D" (1 =922 (1-42)7°
as required. O

Therefore, in order to prove the main result of our thesis, we also need to evaluate the upper

bound of L,, B,, ||1Vf—pD |50, and 7, for p € [1, p.) in the next chapter.
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Chapter 5

Random-walk estimate

In Section 5.1, we use the inequlity G;(z) < Si(x) to evaluate the diagrams (i.e.
L, By, ||1VE)—%HOO) at p = 1. In Section 5.2, we use bootstrapping argument to deal with the

diamgrams for p € (1,p.).

5.1 The diagrams bound of random-walk quantities for p=1

To estimate the upper bound of L., By, H%HW we can use two RW quantities, such as

the RW loop ¢1, the RW bubble €5, defined as

€1 = (D% S11)(0) =Y D™ (0),
€ < (D™ 8:%)(0) = >~ D*(0)(n — 1). (5.1.1)

Since the symmetry Poisson distribution is long-range, we can easy to get (D*?xS;1)(0) =

>-> , D*™(0). Similarly, the analysis of (D*? x S;?)(0) can be written as follows

(D™ % 57)(0) = YD D@D (—x) =Yy Do)

m=1n=1 m=1 n=1
0o 00 00

— ZZZD*“(O)[{n—l—m:u}

u=2 m=1n=1
00 [e%S)

= D (@-1)D"0) = (n—1)D"0).

u=2 n=2
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And then, we evaluate the diagrams for p € [1, p.). First, by the Fourier transform of the
RW Green function S (k) = (1 — D(k))™!, we have

_ *2 = D<k>2 o
a = (DTS0) = /[—mr]d 1— D(k) (2m)®"
and
B B D(k)?  d%
s o= (D?eSP)(0) = /[] (1— D(k))? 2m)"

Hence we can estimate the upper bound as follows

_ / D(k)?  d% </ \D(k)]2 ok
C Jiwms L= D) @) Jiermga 1 — | D(k)] (27)7

Since

—A+Acos(k;) — E(k)

||E&

We get

IN

€1

/ D(k)® d% / 5 D(k)?  dik
[-mmjt L — D(k) (2m)*  Joma 1 — D(k) (2m)

= i %ddk.
[0,7]4 1-— D(k’)
As above, we have
1 D(k)?
g < = <—~)ddk. (5.1.2)

7 Jiome 1 — D(k)

Then, we do the analysis and calculation for this formula as follows. First, we divide the

scope into three parts, namely [y, I5 and I3,

o=k Ikl € 0, -1}, and o = {k < |[k]]2 € [—=, A4},

1
oY VA
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and
Iy = {k: ||k|]a > A\75, and |k;| < forall1 < j <d}.

So we can divide the (5.1.2) into three parts. i.e.

m 2
€1 < i %ddk
o.¢ 1 — D(k)
1 D 1 D(k)? 1 D(k)?
= = _DU? dk+— DB dk+— DE gy,
7 Ji, 1 — D(k) 7 Ji, 1 — D(k) 7 Ji, 1 — D(k)

J/ N J/

g

(1) @) 3)

First, we evaluate (1) as follow. Since [; = {k : ||k||2 € [0, %]} and cos(k;) <1 — = +

k4 k2
7 <1—2(1 — 535), we have
D (=3h0=1)) = o(—3lklIPO—15)
D(k) < He 2 ) = (2 iz)/),
7j=1
Then
~ 1 1..3 1
1 —D(k) > =||kllzs(A = =)[= + —].
() = SIKBO = )5 + 7]
Therefore
: —QQL—Mk S — —lﬁgiﬂﬂk:j;/) DBy
7 )1, 1— D(k) ™ Ji, 1 — D(k) klzel0, 2] 1 — D(k)

1/ 1
< - dk
md |Ikll2€[0, ] QHkH (A %)[%‘Fﬁ]

1

d?k

ernpl
ﬂ—d%( _1_12)<z§1+48)\) l|k||2€[0, = ] Hk||2
< 1 /f rd= 1
= 41
Wdi()‘_ 48,\
1

AT A m)d—Q(\/_

)72 d > 2,
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where o 1s the surface area of the d-dimensional unit ball.
To evaluate( ) as follow. Since [, = {k : ||k||2 € [%, A~3]} and cos(k;) < 1—%”2+—i =

2
1— (1 - —) <1— (1 — s5357), we have

~ A 1 2 >\1

D(k.) S 6(_5(1_412)\2/3”“6”2) S e(_i( _12)\12/3)%) — 6(_%(1_412)\2/3)).

Therefore
1 D(k)? 1 D(k)? D(k)?
7 Ji, 1 — D(k) ™ Ji, 1 — D(k) T Jikll2el e A=8) 1 = D(k)

IN

(]——1 _ -1
1 e (1 12A2/3) AT3 d1
— yE——l r¢ dr
s 1—6_2 T 12x2/3 0

—(1——L _
e (1 12)‘2/3)0-d

~
7Td[1 — 6(7%(1712;2/3))] d )\%

Finally, we evaluate (3) as follow. Since I3 = {k : ||k[|> > A~ 5 and |k;| <m, forall1 <

j < d} and cos(k;) < 1 — $k(1 — =), we have

D(k) < eC3O-IMB) < (30-518) _ =3r3a-1)
Therefore
! D(ky %k
7 Jiy 1— D(k)
1 D k)? 1 5 k)2
™ J 1 — D(k) T S 1 — D(k’)
. - 11 / o(AA=E)IIKIB) g,
T eteba-nn Uy
N
- 8 / g,
- 1
rd(1 — e 23 0-5)) oS

IN
S
|

off
—
Q.
—_
~—
o
>/

where the last inequality can be explained in the following inequaily.
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2
e M=) a1 < o (_)T (5.1.3)

The proof of (5.1.3) is easy, if we let f(r) = e *=T2)r9~1 using the first order derivative

_d-1 1 yd=t
law, we can get, when r = zxg—li , the maximum value of f(r)ise™ "2 (%g_l%)) 7.
As the above estimate, we obtain
. 1 o 1 (L)dfz N e—(l—llef/s*)crd l(i)d
1 > ﬂ.d%(/\__)(_+4§>\)d—2 No\ Tl — e (—301- 12A2/3)]d A3
o od—1
n e ()T VAR - N 5], d > 2,
7Td<1 — e‘ﬁ)“?’(l 7{2)) 2)‘( - 1_2)
(5.1.4)
Similarly,
D(k?  d% 1 D(k)?
e2 = (D™ % 57%)(0) =/ (A) - < —/ _ DRy, (5.1.5)
et (1= D(k))> (27) o1t (1 — D(k))?
We can also divide the (5.1.5) into three parts. i.e.
1 D(k)? 1 D(k)? /4 D(k)?
1 (1—D(k))* T (1= D(k))? T 1; (1= D(k))?
) (@) ()
And then, using the same arguments of estimating €;, we get
4oy 11, ey, 11,
£9 S d \ 1\273 1 2 4(_> + _1(1_ 1 ) E )\1/3)
A= H)PE+ mlPd—4 VA il —e 2 1B/
— d—1 a1 1
+ 7d T (o) T [Var - 3] d >4
(1 — e_%’\z’v(l_*))2 2X( 12)

(5.1.6)

Note that o, = 2”( 7>

of €5 for d > 4, which are very important for estimating bootstrapping argument.

we can estimate the upper bound of €; for d > 2 and the upper bound
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Proposition 5.1.1. Letd > 5 and p = 1. For all A > 0, we have

~

W
1_me§5a+2q+@y

Ly <e€,B1 < e, and ||

Proof. For p = 1, using the inequality G, (z) < Si(z),r € Z¢ obtain the upper bound of L.

D(k)?  dk
nsipesile = [ POk
—rat 1 = D(k) (27)

= (D*?* % $1)(0) = €.

Similarily, we have

D(k)? %
B, < ||D*2*ST2||00 = / (A) d
-rald (1= D(k))? (27)

— (D** %.5%)(0) = €.

Finally, since

(1 —cosk - .’L‘)Gl(l') < (1 —cosk - x)Sl(x) — / (_Aksl(l))eil-a:_

AN
T\
f!

A
a

Q>

—

£
o
I|=

[sH

Then by Lemma 4.2.1 and using the Schwarz inequality, we have

IN

Ay A i
/[m]d 00D 51— D(k)) /[M]d 5107 oy

= 5(1 — D(k))S7*(0),

by (5.1.1), we have

S32(0) = Y > DM @)D (—x) =) Y Y D(0)I[n+m = ul

m=0 n=0 u=0 m=0 n=0
o)

= > (u+1)D*(0)

u=0

= 14+2D(0) +2¢; + €2 =140+ 2¢; + €.
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Therefore

2 dl .
/[M]d U(k,1) (27 < 5(1 = D(k))(1 + 2€1 + €3).

Hence, we have

~

Wi
1—-D

||oo S 5(1 + 261 + 62).

5.2 The diagrams bound of random-walk quantities for p > 1

First, we estimate the upper bound of L,, B,, HIV_V—”DHOO for p € [1,p.) under the

bootstrapping assumptions.

Proposition 5.2.1. Let d > 5 and p € (1, p.) and suppose that g;(p) < K;, i = 1,2, 3 for some

contants { K;}_,. For all A > 0, we have

A

L, < K}Kye, B, < K{ K€, and || Wﬁ||oo < 5K3(1+ 261 + €3).

1 _
Proof.
L= 6D Glesp [ DWMIGHI
? g S [—m,m]¢ ! (27T)d
D(k)2 dik D(k)?  dik
< p2/ —(A) 92(P) =7 SKsz/ (A) d
e 1 — D(k) (2m) —rme 1 — D(k) (2m)
= K%KQG]_,
and
B= 6D eGPl si [ DOPGP
P P = [—m,m]d P (27T)d
D(k)? d’k
< 2/ _ 2 < K?K2¢
~ p [_ﬂ—’ﬂ]d (1 _ D(k))ng(p) (27T)d = 1439€2
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Finally, since g3(p) < K3, we obtain

0S(-esk )G = [ RGO

uniformly in « and k. Then, by the similar of analysis for p = 1, we have

~

)4
Poloe < BK3(1 + 261 + €3).
1-D

Finally, we need to estimate the upper bounded of || D(z)|| as follows.

Lemma 5.2.2. Forany A > 1,

1D(2)]]o0 <

1
(2v2m)d(|A = 1])4>

Proof. By (2.1.1)

d o] —1
e A3
= T SRy 1fx1:1;21:d7£0
15 @
Then
—d\ d |x| 1 7d)\ d ‘m‘
e AI%i Al%
Di(x = — max -
|| ( )||OO 2d z:(ml,acg,m,md)ezd (Hl (|$J| - 1 2d H ijZ\{O} |:L‘]||
z122-2q7#0 J

Using the Stirling’s formula

n
I = V2mn(=)"e*, wh <a< —
n 7Tn(€> e”, where on 1 a o
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we have the lower bound of n! is v/27n(%)"e 277 . Therefore

|5
Pz Al 1 e TigT ]efﬁ
’%‘" N 21w J
1 X . B
—_— E(‘r_e)xje IZggj_H:UJ 2’ > 1
J
S \/%el’j [ln()\e)_ln(m]_)]xj_%
1
- \/—g_ﬂf(%'),

where

f(t) _ et[ln()\e)fln(t)]tfé.

Using the simple analysis of calculus, there is ¢. such that f'(¢.) = 0, hence f(t.) is
maximum value, and ¢, satisfies the identity ln(%) = % However, it not easy to get ¢, exactly,
so we just evaluate the approximation of t.. Let A(t) = In(2) — 4. Clearly, i(t.) = 0 and we

want to find the interval of the root of /() as follows. If ¢ = X\ — 3, we have

A =1, 1 1 1
In(Z) =1 = —In(l-=)=) —(&)f=—~+-"
() =i = =53 ;k(zx) o Ee
and
1 1.1 I, 1, 1 1
% mo1 wio g T mam) Tt e
We obtain

1
h(\ — 5) < 0, and h(t) is decreasing ift > 1,
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and

k=1 k=0
— i+i(1+i+i+ ) (1+L+L+ ))
n 2X  A3V'3 4\ B2 2 2\ 22
1 1, 1 1,1,
= w2l W
1 1 -1 1 IX2-)\—1 145
(- = = if \ ~ 1.
S RS CI Bei b oT5 e | S L 0

By Intermediate value theorem, there is ¢, € (A — 1,A — 1) such that h(¢.) = 0. Hence

f(t.) is a maximum value of f(t) for ¢t > 1. Since =, € Z,

|z
mszn < (i)
1 1 1
< \/—Q—Wmax{fﬂ)\—§J),f(p\—§W),f(L>\—1J)},

for j =1,2,...,d. Then, we evaluate f(|A — %])and f([A —1]) and f([A — £]) as follows

FOA— %J) — (A=3DIn(e)~In(A=3)] 1
A1)
Since
! A -~
In(Ae) = In(A =3) = 1+1n(>\—%)zl+ln( _%)=1+Z(ﬁ)"%
k=1
I 1gn, 1 11 (4
< v ts — )k = RS )
< 1+2)\+2Z(2)\) 1+2)\+21_L’
k=2 2X
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so we have

-1 1411
e R
-4
= exp(A — —[1 — 1)
AT 2—5  4r -2 A1
Similarily,
1 1 1 ) .
A— — < N— —[1 —

FA=35D < exp( 4A[ 2_§+4A_2]) S
2

and

FA=1D = exp(A = 51 2i2+2/\1—2]) L/\l— 1]
As above, we obtain
N Azl Lmax 1 1 1
B N e o T eV pe
1 1
= VDol
Therefore
A Al /N 1
D@l = G maxEm) <1157 s

(2v2m)d(|A - 1))
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Chapter 6

Proof of Proposition 2.2.7 - 2.2.9

In this chapter, we use the same argument of [4].

6.1 Proof of Proposition 2.2.7

First, we prove Proposition 2.2.7, and we have

~

ArGy(1)]
O (k,1

a(p) =p, g(p)=[(1- D)CATYp||oo> and g3(p) = sup (k. 1)

k.l

where
O(k,1) = (1= DI (S04 R) + 50(1 — K)S(D) + 481+ R)S1(1 — b)),

Obviously, g1 (p) = p is continuous. In order to prove the continuity of g,(p) and g3(p), we

define
G2 (p) = (1 — D(k)Gp(k),
and
. 1 XA
Gsk1(p) = Ok D) X AGp(1),
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and, clearly, they are continuous in p € [1, p,) for every k, [ € Z?. However, since

g2(p) = sup |gok(p)|, and g3(p) = sup |Gsxi(p)l,
kezd k,lezd

and the supremum of continuous functions is not necessarily continuous, we must use the

following lemma to provide a sufficient condition for the supremum to be continuous.

Lemma 6.1.1. (Lemma 5.13 of [12], in our language). Fix py € [1,p.) and let {fk(p)}kezd be
an equicontinuous family of functions in p € [1, po|. Suppose that sup;,.;a fk (p) < oo for every

p € [1,po]. Then, sup,cza fi(p) < oo is continuous in p € [1, po).

Therefore, in order to prove the continuity of {g;(p)}i—a3. We want to show that
{92.4(P) Yke|—nme and {g3 k1 } ke[ x are equicontinuous families of functions in p € [1, po]

for each py € [1, p.). To prove this, it suffices to show that (i) and (¢¢) in the following lemma.

Lemma 6.1.2.

(i) Go.x(p) and 9,G2.1(p) are uniformly bounded in k € [—m, 7| and p € [1,po).
and
(ii) G311 (p) and 0,33 .1(p) are uniformly bounded in k.l € [—7,x|" and p € [1, py].

Proof. First, we prove (i) as follows
By 0 < 1— D(k) < 2,|G,(k)| < G,(0) = x, and the monotonicity of y, in p, we obtain
|Go.k] = [(1 = D)G,| < 2xp < 2Xpy < 00, 50 Joi(p) is uniformly bounded in &k € [, 7]% and

pE [LPO]

By subadditivity and translation-invariance, we have

Op(pGp(2)) = Gp(x) + p(0,Gp), (6.1.1)
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where

hGp(x) = ap(Z en(2)p") = Z o ()p" ™!

= Z nn ()"t = Z(n + D)ont1(x)p”

n=0
0 n

Z(n +1)D * gy (x)p" = ZD * o (z)p" Z 1

- DD D pnem@p™ ™ =3 ) Y D)¢nimlz —yp

m=0 n=0 m=0n=0 vy

= > DY Gurmlz—yp"

m=0 n=0

S DWW YD enk pmlx —y)p

IA

IN

m=0 n=0

= Y DWW DD en(Dpmlr —y—2)p"t"

m=0n=0 =z

F ZD(y)ZZgOn(Z)angom(x—y—Z)pm

z n=0 m=0

= YD) GG —y—2) = DHGEa—y)

=X D x G;Q(x).
Then, by (6.1.1) we obtain
9,G,(r) < D'* G x),
hence

|ap£~72,k(p)| = ’(1 - D)apép(k)‘ < 2|8pép(k>’

IA

2| D(K)Gy(k)?] < 2/GC(k)I?

IN

2X127 = 2X1270’

This is the complete proof of (7). Next, we prove (i) as follows. Using Lemma 4.1.4, and
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we obtain

By = [5Gyl + K) + Cyll — B) — Cy(D)

- |1(Z Gp(m)ei(lﬂc)'x + Z Gp(x)ei(lfk)-x) B Z Gp(w)eil-x’
= ZG )cos(l+ k) - m+ZG Jcos(l — k ZG )cos(l - x)|

= |ZG )cos(l - x)cos(k - x) ZG )cos(l - x)|

< |ZG Ycos(l - z)(cos(k - x) — 1)|
< ZG )(1 —cos(k - x))
= Zl—cosk‘ ) Z Z HD w; — wj—1) H (1 = 0y ) )"
n= UwEWn( ) i=1 0<i<ji<n
= ZZ Z 1—cosZk: Wi — wi—1))
z  n=0weW,(z
xHD wi—wic1) [ (1= e, )p"
0<i<j<n
< Z(l—cosk v—u)) Z n
U, T WEW, ()
X Zf[wi;l = u and w; = v|p" H D(w; — wi—1) H (1 = dww;)-
i=1 i=1 0<i<j<n

Ignoring the self-avoiding constraint between n = (wy, w1, ...,w;—1) and £ = (w;, Wi, ..., Wn)

and using translation-invariance, we can further bound |A,G,(1)]| as

ArG,(1)] < Y (I—cosk-(v—w)pDo—u) Y (nl+[E+1)

u,v,T n€w;_1(0,u)
E€wn_it1(v,x)

In] £

xpl"l HD(m — ni—1)pl*! H D(& = &-1) H (1 = Oy ;)

i=1 j=1 0<i<j<n

IS 3 SID SRS

z n=0 weW,(z)

< [[Dwj—wic1) [ (1= duw)-

j=1 0<i<j<n

IN
S

43

DOI:10.6814/NCCU202000775



However, by the identity [w| + 1 = > I[y € w] for a self-avoiding path w, subadditivity

and translation-invariance, the sum in the last line is bounded as

)2) BID DRCERI HD< —wm) [T =6

r n=0 WEW () 0<i<y<n
= Zpr px—y)zxf,.
.,y
As aresult, we arrive at
[AWG, (D] < 2po(1 — D(E)),, (6.1.2)

which implies that g3 ;(p) is uniformly bounded in k,l € Z% and p € [1, py]. For the derivative
Oplzki(p) = Uk, 1)~ A0,G(k), we note that

1Acd,G(k) - (1~ cosk - 2)9,G,(x)
< iu — cos(k - 2))(D * G;2)(x)
T 3= DU+ 2, SO(1 = cos(k - 1))Gy(v)
= AyGy(0) ’
P (= PR + (1~ D(k)

- 31— DR, (14, o).

Therefore, 9,731 (p) is uniformly bounded in k, [ € [—m, 71]% and p € [1, po].

6.2 Proof of Proposition 2.2.8 - 2.2.9 and Lemma 4.1.1

First, we prove Proposition 2.2.8. In (5.1.4) and (5.1.6), it is obvious that ¢; and e, are
decreasing when d and A are increasing. To estimate the upper bounds of them, we only need

to fix d = 5 and A = 60.

1
(2v2m)d([A — 1])4/2
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Remark 6.2.1. For d > 6 and \ = 60, we get v; = 0.00789534870075646.

In addition, by (4.1.8) - (4.1.11) and Proposition 5.1.1, we have

#(0) < 0.0094953729577, and sup L() < 0.176357145340,
= v & 1-D(k)

which imply that the inequalities in Lemma 4.1.1 hold for p = 1 and d > 4. Moreover, by

Lemma 4.2.2, we have

IN

g1(1) 1.009495372,

g2(1) < 1.005553012,

N

g5(1) < 1.406997428.

Then Proposition 2.2.8 holds.
Next, we prove Proposition 2.2.9 holds for p € (1, p.). First, we fix d = 5and A = A5 =

60, according the assumptions g;(p) < K fori = 1,2, 3, we have

vy < 0.044147,

In addition, by (4.1.8) - (4.1.11) and Proposition 5.2.1, we have

Zﬁ'zgn)(()) < 0.00988157659877, and Supz M < 0.3753353454618. (6.2.1)
— k= 1—D(k)

Then, we have

IN

91(p) 1.0098815763136844 < K,

A\

92(p) < 1.0132463877593048 < Ko,

g3(p) < 2.0508909504570774 < K.

Hence Proposition 2.2.9 holds for p € (1, p.) and A > \5. Moreover, this also implies that
the inequalities in Lemma 4.1.1 hold for p € (1,p.) and d = 5.
Next, we have to prove that Proposition 2.2.9 holds for d > 5 and A > \;. To do this, we

should estimate ¢; and ¢, in (5.1.4) and (5.1.6) for different dimensions d, respectively. First,
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substitute d = 6 and A = 2d in some small terms of right-hand sides of (5.1.4) and (5.1.6), it

yields
6 <5.10 x 107° + 10.884, (6.2.2)
and
€2 < 0.0002 + 59.14 A, (6.2.3)
Var (d-1)\ %3
where A = ey (y) .

Using Lemma 4.2.2, we obtain

By (pl[ Dllso + L)

Bp’Vz

alp) <1+ L,+

1—7

p
§1+Lp+1—fyg'

Since ¢1(1) < Ki, g2(1) < Ky, suppose 7, = 0.03 < 1, Proposition 5.2.1, and

Lemma 5.2.2 hold, we have

g1(p) <1+ KiKye; + 0.00091( K7 Kjey) < 1.0001 + 14.6A.

Let g1(p) < (1 — €)K; for all A > A\, and some € > 0. Then, we obtain A, as follows

60,

35,

24,

18,

\

if d = 5,6,
ifd =7,
ifd =8,
ifd =9,

We use them to obtain the upper bound of A is shown in Table 6.1 as follow,

Table 6.1: Upper bounds A for6 <d <9

d=6,\s =60

d:7,)\7:35

d=28, s =24 d=9,) ;=18

A 0.00028

0.00027

0.00024 0.00023
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For d > 10, let A < 0.0002 and using I'($) > ([4] — 1)!. Then, we obtain

A > 26(1 + - )ed L1 [In(3125000) ~ 1+In(d(d—4)*)] Hence, when d > 10, \; = %(1 +

d%)ed 1[ln(3125000) L+In(d(d—4)2)]

We use them to evidence that v, < 0.03 holds as follows.

K
= p||D||se + Ly + B, < !

PS i1y T K2Ker + K2K2es < 0.03.

Next, we need to prove g2(p) < (1 —¢€) K5 and g3(p) < (1 —€) K3 for some € > 0. Suppose
91(1) < Ky, g2(1) < K, g3(p) < K3,and 7, = 0.03 < 1, Table 6.1, Lemma 5.2.1, and Lemma

5.2.2, we have
g2(p) S (1 - 1004(K12K2262)25K3(1 + 261 + 62))_1
< 1.016 < (1 — €) Ky,
g3(p) < 1.1 <K1 + (K Kje2)*5K5(1 + 2¢; + €2)0.061

+ KK 65 K3(1 4 261 + €3)1.002
2
+(K?Kjer)*5K3(1 + 261 + 62)1.004)

< 1.66 < (1 — €) K.

Therefore, This proves Proposition 2.2.9 and Lemma 4.1.1 for d > 5 and p € (1, p.). This

completes the proof of Proposition 2.2.9 and Lemma 4.1.1.
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Appendix A

Proof of Proposition 2.2.4. First, we prove - (pxp) > 1 B

CZ)(pXI) = dp Z Z@n = —[P + Z ZSOTL n+1

zeZd n=0 mEZd n=1
= 14> Z(n + Den(z)p” =Y Z(n + 1)gn(z)p
zezd n=1 zezd n=0
= 2 el QD)
x€Z4 n=0 m=0
- I3 Sewir=0 0.
reZd m=0n=m
Since B, at least one step for our definition, we have
R IP P WS Qo A 2
zeZd m=0n=m
> Xo—QB,. (A.0.2)
Hence, we have
X2
> A.0.3
©= 1+ B, ( )
Next, we claim B, < co. By Theorem 2.2.1 we obtain
(b) < 3and Cy(k) < —>— (A.0.4)
= T "
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then by monotone convergence theorem we have

. 9 dk
lim B, < - - < 00,d>4. (A.0.5)
ptpe -malt (1= D(k))? (27)
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