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中文摘要

圖標號是將整數分配到一個圖的邊或點。圖標號的發展源起於 1967年，

由 Rosa 所提出，在 1990 年，Hartsfield 和 Ringel 引進了 antimagic graphs

的概念，而 (a, d)­antimagic graph的觀念則是 Bodendiek和 Walther在 1993

年引入，詳細的資料可以在 [2] 中參考。在本篇論文我們探討一些 (a,

d)­antimagic圖標號的概念，特別是探討完全圖的 (a, d)­antimagic圖標號。
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Abstract

A graph labeling is an assignment of integers to the vertices or edges, or both,

subject to certain conditions. Graph labeling methods was introduced by Rosa

in 1967. Hartsfield and Ringel introduced the concept of an antimagic graph in

1990. The concept of an (a, d)­antimagic labelings was introduced by Bodendiek

and Walther in 1993. See [2] for further introduction. In this paper, we investigate

properties of an (a, d)­antimagic graph. In particular, we study the (a, d)­antimagic

labelings of complete graphs.
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Chapter 1

Introduction

In this paper, all graphs are finite, undirected and simple. An labeling of a graph with m

edges and n vertices is a bijection from the set of edges to the integers 1, ...,m, where the image

of each edge in the function is the label of the edge. Antimagic labeling is a graph labeling

such that all n vertex sums are pairwise distinct, where a vertex sum is the sum of labels of all

edges incident with the same vertex. A graph is called antimagic if it has an antimagic labeling.

Definition 1.1. A graphG = (V,E) is said to be (a, d)­antimagic if there exist positive integers

a, d and a bijection mapping f : E → {1, 2, ..., |E|} such that the induced mapping gf : V → N

defined by gf (v) =
∑

e∈I(v) f(e), v ∈ V , where I(v) = {e ∈ E | e is incident to v}, is injective

and gf (v) form an arithmetic progression with initial value a and common differences d.

Remark 1.2. Every (a, d)­antimagic graph is antimagic, but the converse is not true. For

example, P4 is antimagic, which can be seen by the labeling shown in Figure 1.1, but it is

not (a, d)­antimagic, which can be seen by simply checking all 6 labelings from its edge set into

the set {1,2,3} (In fact, we only need to check 3 types of labeling due to symmetry), as shown in

Figure 1.2, or by a theorem which will be given later.

Figure 1.1: P4 is antimagic

1
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Figure 1.2: P4 is not (a, d)­antimagic

In [1], Bodendiek and Walther introduced the concept of an (a, d)­antimagic graph, and

also give the following necessary condition for a graph to admit an (a, d)­antimagic labeling.

Theorem 1.3. (Theorem 1. of [1])

If G = (V,E), |V | = n ≥ 3, |E| = m ≥ 2 is an (a, d)­antimagic graph, where a, d ∈ N,

then a, d satisfy the following conditions:

1. a, d ∈ N are positive solutions of the equation 2an+ n(n− 1)d = 2m(m+ 1).

2. a ≥ 1 + 2 + ...+ δ = δ(δ + 1)/2, where δ is the minimum degree of G

Proof. Since gf (v) form an arithmetic progression with initial value a and common differences

d, we have
∑

v∈V gf (v) = a+(a+d)+...+[a+(n−1)d]. Also, every edge label was used twice in

the vertex sum. That is,
∑

v∈V gf (v) = 2
∑

e∈E f(e). Therefore, a+(a+d)+...+[a+(n−1)d] =

2(1 + 2 + ... + m), and this is clearly equivalent to the first condition. The second condition

follows from the fact that every vertex of G is incident to at least δ edges.

2
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Chapter 2

Examples

In this chapter, we examine a few types of graph to see if they are (a, d)­antimagic, most

of the examples in Chapter 2 has been discussed in [1], some of them without going into detail,

we fill up some of the proofs in this Chapter.

2.1 Cycles, Paths, and Stars

In this section, we examine whether cycles, paths, and stars are (a, d)­antimagic.

Example 2.1. If n ∈ N is even, then Cn is not (a, d)­antimagic.

Proof. It follows from the fact thatCn has n vertices and n edges, so Theorem 1.3 implies that if

Cn is an (a, d)­antimagic graph, then wemust have 2a+(n−1)d = 2(n+1) and a ≥ 3. Because

n is even, 2a+ (n− 1)d = 2(n+ 1) implies d is even, Therefore, 2(n+ 1) = 2a+ (n− 1)d ≥

6 + (n − 1)2 = 2n + 4 = 2(n + 2), which is impossible. Therefore, every even cycle is not

(a, d)­antimagic.

Example 2.2. Every odd cycles C2k+1, k ≥ 1 is (k + 2, 1)­antimagic.

Proof. Since n = m = 2k + 1, Theorem 1.3 implies that a + kd = 2k + 2 and a ≥ 3,

a + kd = 2k + 2 is equivalent to k(2 − d) = a − 2. Since a ≥ 3, we have a − 2 ≥ 1, which

implies that d can only be 1, so the only possible solution is (a, d) = (k + 2, 1). See Figure 2.1

for the actual (k + 2, 1)­antimagic labeling of C2k+1 .

3
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Figure 2.1: C2k+1 is (k + 2, 1)­antimagic

Example 2.3. If n ∈ N is even, then the path Pn with n vertices is not (a, d)­antimagic.

Proof. SincePn hasn vertices andn−1 edges, Theorem 1.3 implies that 2a+(n−1)d = 2(n−1)

and a ≥ 1, 2a+ (n− 1)d = 2(n− 1) is equivalent to 2a = (n− 1)(2− d), which implies that

d = 1, and we get 2a = n− 1,which is impossible since 2a is even and n− 1 is odd. Therefore,

every even path is not (a, d)­antimagic.

Example 2.4. Every path P2k+1, k ≥ 1 is (k, 1)­antimagic.

Proof. Similarly, since n = 2k + 1, m = 2k, Theorems 1.3 implies that a = k(2 − d) and

a ≥ 1,which implies that d = 1, and the only solution is (a, d) = (k, 1). See Figure 2.2 for the

actual (k, 1)­antimagic labeling of P2k+1.

Example 2.5. If k is odd, then the stars Sk with k+1 vertices and k edges is not (a, d)­antimagic.

Proof. The star Sk has k + 1 vertices and k edges, so Theorem 1.3 implies that 2a = k(2− d)

and a ≥ 1, which implies that d = 1,but d = 1 implies 2a = k, which is impossible since 2a is

even and k is odd.

4
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Figure 2.2: P2k+1 is (k, 1)­antimagic

Example 2.6. If k > 2 is even, then the stars Sk with k + 1 vertices and k edges is not (a, d)­

antimagic.

Proof. Similarly, the only possible solution is (a, d) = (k/2, 1), but k > 2 implies that a > 1,

which is impossible since there must be one leaf v0 of Sk such that gf (v0) = 1.

2.2 Complete graphs Kn

In this section, we introduce a theorem to help us examine whether a complete graph Kn

is (a, d)­antimagic.

Notice that in a complete graph Kn, there are m = (n− 1)n/2 edges, apply Theorem 1.3

we get the following theorem:

Theorem 2.7. Consider the complete graph Kn ,we have the following properties:

1. For Kn, n = 4k, k ≥ 1, all possible a, d ∈ N such that Kn is (a, d)­antimagic are

(a, d) = (n(n−1)/2+(n−1)h, n(n−3)/2+1−2h), where h = 0, 1, 2, ..., n(n−3)/4.

2. For Kn, n = 4k + 2, k ≥ 1, all possible a, d ∈ N such that Kn is (a, d)­antimagic are

(a, d) = (n(n−1)/2+(n−1)h, n(n−3)/2+1−2h), whereh = 0, 1, 2, ..., [n(n−3)−2]/4.

3. For Kn, n = 2k + 1, k ≥ 1, all possible a, d ∈ N such that Kn is (a, d)­antimagic are

(a, d) = (n(n−1)/2+(n−1)h/2, n(n−3)/2+1−h), where h = 0, 1, 2, ..., n(n−3)/2.

5
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Proof. We only consider the first case, the other two cases are similar.

Consider Kn, n = 4k, k ≥ 1, which has n vertices and m = (n − 1)n/2 edges, Theorem

1.3 implies that 2an + n(n − 1)d = n(n − 1)[n(n − 1)/2 + 1] and a ≥ (n − 1)n/2. For

a = (n − 1)n/2, we have d = n(n − 3)/2 + 1, which is a positive integer since n = 4k is

even, therefore, d ≤ n(n− 3)/2 + 1, and every time d decrease by 1, a increase by (n− 1)/2.

Because n is even, n − 1 is odd, that is, (n − 1)/2 is not an integer, so we get a new set of

solutions for (a, d) whenever d decrease by 2, and the smallest positive integer d can be is 1, so

there are |{1, 3, ..., n(n− 3)/2 + 1}| = n(n− 3)/4 + 1 possible solutions for (a, d).

Remark 2.8. With the help of Theorem 2.7, we will be able to identify all the candidates for

(a, d) for a completeKn to be (a, d)­antimagic without having to solve the equation in Theorem

1.3. However, these candidates may not be true for Kn. For example, by Theorem 2.7, all the

possible candidate for K4 are (6, 3) and (9, 1), but K4 is neither (6, 3)­antimagic nor (9, 1)­

antimagic, the proof will be given in the next chapter.

6
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Chapter 3

Main results

In this chapter, we will show thatK4 is not (a, d)­antimagic, and we will present a theorem

with stronger restrictions to the choice of (a, d) for a complete graphKn.

3.1 K4 is not (a, d)­antimagic

In this section, we prove in detail that the complete graph K4 is not (a, d)­antimagic. The

method being used in the proof will play an important role in the theoremwe are going to present.

Proposition 3.1. K4 is not (a, d)­antimagic.

Proof. By Theorem 2.7, the only possible solutions for (a, d) are (6, 3) and (9, 1). We discuss

the two cases below:

1. If K4 is (6, 3)­antimagic, then the set of all gf (v), v ∈ V is {6, 9, 12, 15}. Let v1 ∈ V be

the vertex with gf (v1) = 6, then the only possible edges incident to v1 are edges with label

1, 2, 3. Without lose of generality, say v2, v3, v4 ∈ V such that f(v1v2) = 1, f(v1v3) = 2,

and f(v1v4) = 3, see Figure 3.1 below. Now, consider v2, v3, v4 ∈ V , because each

vi, i = 2, 3, 4 is incident to v1 and two other vertices, the largest possible value for gf (v2)

is 1 + 5 + 6 = 12, the largest possible value for gf (v3) is 2 + 5 + 6 = 13, gf (v4) is

3+ 5+ 6 = 14, contradict to the fact that in a (6, 3)­antimagic labeling, one of the vertex

v ∈ V must have gf (v) = 6 + 3 + 3 + 3 = 15.

2. If K4 is (9, 1)­antimagic, then the set of all gf (v), v ∈ V is {9, 10, 11, 12}. Let v1 ∈ V

7
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Figure 3.1

be the vertex with gf (v1) = 9, then the possible edges incident to v1 are edges with label

sets {1, 2, 6}, or {1, 3, 5}, or {2, 3, 4}. We have three subcases:

(a) If the edges incident to v1 are edges with label sets {1, 2, 6}, Without lose of

generality, say v2, v3, v4 ∈ V such that f(v1v2) = 1, f(v1v3) = 2, and f(v1v4) = 6.

Consider v4, all possible value for gf (v4) are 6 + 3 + 4 = 13, or 6 + 3 + 5 = 14,

or 6 + 4 + 5 = 15, which is impossible for an (9, 1)­antimagic of K4 since

13 /∈ {9, 10, 11, 12}, 14 /∈ {9, 10, 11, 12}, and 15 /∈ {9, 10, 11, 12}

(b) If the edges incident to v1 are edges with label sets {1, 3, 5}, Without lose of

generality, say v2, v3, v4 ∈ V such that f(v1v2) = 1, f(v1v3) = 3, and f(v1v4) = 5.

First, consider v2, all possible value for gf (v2) are 1 + 2 + 4 = 7, or 1 + 2 + 6 = 9,

or 1+ 4+ 6 = 11, since 7 /∈ {9, 10, 11, 12} and gf (v1) = 9, the only possible value

for gf (v2) is 11, next, consider v3, all possible value for gf (v3) are 3 + 2 + 4 = 9,

or 3 + 2 + 6 = 11, or 3 + 4 + 6 = 13, since gf (v1) = 9, and 13 /∈ {9, 10, 11, 12},

gf (v3) must be 11. We get gf (v2) = 11 = gf (v3), which leads to a contradiction.

(c) If the edges incident to v1 are edges with label sets {2, 3, 4}, Without lose of

generality, say v2, v3, v4 ∈ V such that f(v1v2) = 2, f(v1v3) = 3, and f(v1v4) = 4.

Consider v2, all possible value for gf (v2) are 2 + 1 + 5 = 8, or 2 + 1 + 6 = 9,

or 2 + 5 + 6 = 13, since 8 /∈ {9, 10, 11, 12}, 13 /∈ {9, 10, 11, 12}, we must have

gf (v2) = 9 = gf (v1), which leads to a contradiction.

8
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Using the same method in the proof of Propsition 3.1, we can also show thatK5 is neither

(10, 6)­antimagic nor (12, 5)­antimagic.

3.2 Main results

In this section, we will present a theorem with stronger restriction to the choice of (a, d)

for a complete graphKn to be (a, d)­antimagic.

Theorem 3.2. Kn, n ≥ 4 is not (n(n− 1)/2, n(n− 3)/2 + 1)­antimagic.

Proof. For n ≥ 4, m = (n − 1)n/2 > n. Consider (a, d) = (n(n − 1)/2, n(n − 3)/2 + 1).

SupposeKn is (n(n− 1)/2, n(n− 3)/2+ 1)­antimagic, then there is a vertex v1 ∈ V such that

gf (v1) = n(n− 1)/2, which can only be the sum of 1, 2, ..., (n− 1), that is, v1 must be incident

to the edges with labeling {1, 2, ..., (n − 1)} Now, consider any vertex v′ ∈ V, v′ ̸= v1, since

v′ must incidient to v1 and (n − 2)′s other vertices, we have gf (v′) ≥ a + d ≥ 1 + [n + (n +

1) + ...(2n− 3)] = 1 + (3n− 3)(n− 2)/2, which implies (n(n− 1)/2 + n(n− 3)/2 + 1) ≥

1 + (3n − 3)(n − 2)/2, but this is equivalent to 2(n − 1)2 ≥ 2 + 3(n − 1)(n − 2), which is

equivalent to (n− 1)(n− 4) ≤ −2, which is impossible for n ≥ 4.

Remark 3.3. With Theorem 3.2, we can modify Theorem 1.3 into:

If Kn, n ≥ 4 is an (a, d)­antimagic graph, where a, d ∈ N, then a, d satisfy the following

conditions:

1. a, d ∈ N are positive solutions of the equation 2an+ n(n− 1)d = 2m(m+ 1).

2. a > 1 + 2 + ...+ δ = δ(δ + 1)/2, where δ is the minimum degree of G

Corollary 3.4. K4 is not (6, 3)­antimagic, K5 is not (10, 6)­antimagic, K6 is not (15, 10)­

antimagic, K7 is not (21, 15)­antimagic, etc.

Remark 3.5. In fact,K5 is (14, 4)­antimagic, (16, 3)­antimagic, (18, 2)­antimagic, and (20, 1)­

antimagic; K6 is (25, 6)­antimagic, (30, 4)­antimagic, and (35, 2)­antimagic; K7 is (33, 11)­

antimagic, (36, 10)­antimagic, (39, 9)­antimagic, (42, 8)­antimagic,..., and (63, 1)­antimagic,

we demonstrate the cases for K5 in Figure3.2 and 3.3, see Figure 6, 8 of [1] for the labeling of

the other cases.

9
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Figure 3.2: K5 is (20, 1)­antimagic, (18, 2)­antimagic

Figure 3.3: K5 is (16, 3)­antimagic, (14, 4)­antimagic

10
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3.3 Conclusion

In this paper we discuss the concept of an (a, d)­antimagic graph, and give some examples

to demonstrate how to verify whether or not a graph is (a, d)­antimagic, and in the end we give

a stronger necessary conditions for a complete graph to admit an (a, d)­antimagic labeling.

However, from the observation such as K4 is not (9, 1)­antimagic, K5 is not (12, 5)­

antimagic, andK6 is not (20, 8)­antimagic, etc, we have a feeling that there are stricter necessary

conditions for a complete graphKn to be (a, d)­antimagic, and even possibly lead to a necessary

and sufficient condition.

11
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