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Abstract

A graph labeling is an assignment of integers to the vertices or edges, or both,
subject to certain conditions. Graph labeling methods was introduced by Rosa
in 1967. Hartsfield and Ringel introduced the concept of an antimagic graph in
1990. The concept of an (a, d)-antimagic labelings was introduced by Bodendiek
and Walther in 1993. See [2] for further introduction. In this paper, we investigate
properties of an (a, d)-antimagic graph. In particular, we study the (a, d)-antimagic

labelings of complete graphs.
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Chapter 1

Introduction

In this paper, all graphs are finite, undirected and simple. An labeling of a graph with m
edges and n vertices is a bijection from the set of edges to the integers 1, ..., m, where the image
of each edge in the function is the label of the edge. Antimagic labeling is a graph labeling
such that all n vertex sums are pairwise distinct, where a vertex sum is the sum of labels of all

edges incident with the same vertex. A graph is called antimagic if it has an antimagic labeling.

Definition 1.1. 4 graph G = (V, E) is said to be (a, d)-antimagic if there exist positive integers
a,d and a bijection mapping f : E — {1,2, ..., |E|} such that the induced mapping gy : V. — N
defined by g;(v) = >_ c1y f(€), v €V, where I(v) = {e € E | e is incident to v}, is injective

and g¢(v) form an arithmetic progression with initial value a and common differences d.

Remark 1.2. Every (a,d)-antimagic graph is antimagic, but the converse is not true. For
example, P, is antimagic, which can be seen by the labeling shown in Figure 1.1, but it is
not (a, d)-antimagic, which can be seen by simply checking all 6 labelings from its edge set into
the set {1,2,3} (In fact, we only need to check 3 types of labeling due to symmetry), as shown in

Figure 1.2, or by a theorem which will be given later.

Figure 1.1: P, is antimagic
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Figure 1.2: P, is not (a, d)-antimagic

In [1], Bodendiek and Walther introduced the concept of an (a, d)-antimagic graph, and

also give the following necessary condition for a graph to admit an (a, d)-antimagic labeling.

Theorem 1.3. (Theorem 1. of [1])
IfG = (V,E),

Vli=n2>3,

E| =m > 2is an (a, d)-antimagic graph, where a,d € N,

then a, d satisfy the following conditions:
1. a,d € N are positive solutions of the equation 2an + n(n — 1)d = 2m(m + 1).
2.a>142+...4+0=00+1)/2 where ¢ is the minimum degree of G

Proof. Since g(v) form an arithmetic progression with initial value a and common differences
d,wehave ) . g7(v) = a+(a+d)+...4+[a+(n—1)d]. Also,every edge label was used twice in
the vertex sum. Thatis, > .\, gf(v) =23 . f(e). Therefore, a+(a+d)+...+a+(n—1)d] =
2(1 4+ 2+ ... +m), and this is clearly equivalent to the first condition. The second condition

follows from the fact that every vertex of (7 is incident to at least J edges.
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Chapter 2

Examples

In this chapter, we examine a few types of graph to see if they are (a, d)-antimagic, most
of the examples in Chapter 2 has been discussed in [1], some of them without going into detail,

we fill up some of the proofs in this Chapter.

2.1 Cycles, Paths, and Stars

In this section, we examine whether cycles, paths, and stars are (a, d)-antimagic.

Example 2.1. Ifn € N is even, then C,, is not (a, d)-antimagic.

Proof. It follows from the fact that C,, has n vertices and n edges, so Theorem 1.3 implies that if
C,, is an (a, d)-antimagic graph, then we must have 2a+ (n—1)d = 2(n+1) and a > 3. Because
nis even, 2a + (n — 1)d = 2(n + 1) implies d is even, Therefore, 2(n + 1) = 2a + (n — 1)d >
6+ (n—1)2 = 2n+ 4 = 2(n + 2), which is impossible. Therefore, every even cycle is not

(a, d)-antimagic.

Example 2.2. Every odd cycles Coy1,k > 1is (k + 2, 1)-antimagic.

Proof. Since n = m = 2k + 1, Theorem 1.3 implies that a + kd = 2k + 2 and a > 3,
a + kd = 2k + 2 is equivalent to k(2 — d) = a — 2. Since a > 3, we have a — 2 > 1, which
implies that d can only be 1, so the only possible solution is (a,d) = (k + 2,1). See Figure 2.1
for the actual (k + 2, 1)-antimagic labeling of Coy 1 .
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Figure 2.1: Cyyyq is (k + 2, 1)-antimagic

Example 2.3. If'n € N is even, then the path P, with n vertices is not (a, d)-antimagic.

Proof. Since P, has n vertices and n—1 edges, Theorem 1.3 implies that 2a+(n—1)d = 2(n—1)
anda > 1,2a + (n — 1)d = 2(n — 1) is equivalent to 2a = (n — 1)(2 — d), which implies that
d = 1, and we get 2a = n — 1,which is impossible since 2a is even and n — 1 is odd. Therefore,

every even path is not (a, d)-antimagic.

Example 2.4. Every path Py 1,k > 1is (k, 1)-antimagic.

Proof. Similarly, since n = 2k + 1, m = 2k, Theorems 1.3 implies that « = k(2 — d) and
a > 1,which implies that d = 1, and the only solution is (a,d) = (k, 1). See Figure 2.2 for the

actual (k, 1)-antimagic labeling of Py 1.

Example 2.5. If'k is odd, then the stars Sy with k+ 1 vertices and k edges is not (a, d)-antimagic.

Proof. The star Sy, has k + 1 vertices and k edges, so Theorem 1.3 implies that 2a = k(2 — d)
and a > 1, which implies that d = 1,but d = 1 implies 2a = k, which is impossible since 2a is

even and k is odd.
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Figure 2.2: Py 41 is (k, 1)-antimagic

Example 2.6. If k > 2 is even, then the stars Sy with k + 1 vertices and k edges is not (a, d)-

antimagic.

Proof. Similarly, the only possible solution is (a,d) = (k/2,1), but k > 2 implies that a > 1,

which is impossible since there must be one leaf v, of S such that g;(vy) = 1.

2.2 Complete graphs K,

In this section, we introduce a theorem to help us examine whether a complete graph K,
is (a, d)-antimagic.
Notice that in a complete graph K,,, there are m = (n — 1)n/2 edges, apply Theorem 1.3

we get the following theorem:
Theorem 2.7. Consider the complete graph K, ,we have the following properties:

1. For K,,,n = 4k,k > 1, all possible a,d € N such that K, is (a,d)-antimagic are
(a,d) = (n(n—1)/2+(n—1)h,n(n—3)/24+1—2h), where h = 0,1,2,...,n(n—3)/4.

2. For K,,n = 4k + 2,k > 1, all possible a,d € N such that K, is (a,d)-antimagic are
(a,d) = (n(n—1)/2+(n—1)h,n(n—3)/2+1—-2h), whereh = 0, 1,2, ..., [n(n—3)—2] /4.

3. For K,,n = 2k + 1,k > 1, all possible a,d € N such that K, is (a,d)-antimagic are
(a,d) = (n(n—1)/24+(n—1)h/2,n(n—3)/2+1—h), whereh = 0,1,2,...,n(n—3)/2.

DOI:10.6814/NCCU202000786



Proof. We only consider the first case, the other two cases are similar.

Consider K,,,n = 4k,k > 1, which has n vertices and m = (n — 1)n/2 edges, Theorem
1.3 implies that 2an + n(n — 1)d = n(n — 1)[n(n — 1)/2 4+ 1} and a > (n — 1)n/2. For
a = (n — 1)n/2, we have d = n(n — 3)/2 + 1, which is a positive integer since n = 4k is
even, therefore, d < n(n — 3)/2 + 1, and every time d decrease by 1, a increase by (n — 1)/2.
Because n is even, n — 1 is odd, that is, (n — 1)/2 is not an integer, so we get a new set of
solutions for (a, d) whenever d decrease by 2, and the smallest positive integer d can be is 1, so

there are |[{1, 3, ...,n(n — 3)/2+ 1}| = n(n — 3)/4 + 1 possible solutions for (a, d).

Remark 2.8. With the help of Theorem 2.7, we will be able to identify all the candidates for
(a,d) for a complete K, to be (a, d)-antimagic without having to solve the equation in Theorem
1.3. However, these candidates may not be true for K,. For example, by Theorem 2.7, all the
possible candidate for Ky are (6,3) and (9,1), but K, is neither (6, 3)-antimagic nor (9, 1)-

antimagic, the proof will be given in the next chapter.
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Chapter 3

Main results

In this chapter, we will show that K is not (a, d)-antimagic, and we will present a theorem

with stronger restrictions to the choice of (a, d) for a complete graph K.

3.1 K, is not (a,d)-antimagic

In this section, we prove in detail that the complete graph K, is not (a, d)-antimagic. The

method being used in the proof will play an important role in the theorem we are going to present.

Proposition 3.1. K is not (a, d)-antimagic.

Proof. By Theorem 2.7, the only possible solutions for (a, d) are (6, 3) and (9, 1). We discuss

the two cases below:

1. If K, is (6, 3)-antimagic, then the set of all g;(v),v € Vis {6,9,12,15}. Letv, € V be
the vertex with g;(v;) = 6, then the only possible edges incident to v, are edges with label
1,2, 3. Without lose of generality, say vy, v3,v4 € V such that f(vive) = 1, f(viv3) = 2,
and f(vivy) = 3, see Figure 3.1 below. Now, consider vy, v3,v4 € V, because each
v;, 4 = 2, 3,4 is incident to v; and two other vertices, the largest possible value for g (v2)
is 1 + 5+ 6 = 12, the largest possible value for gs(vs) is 2 + 5 + 6 = 13, g¢(v4) is
3+ 54 6 = 14, contradict to the fact that in a (6, 3)-antimagic labeling, one of the vertex
v € V must have g¢(v) =6 +3 + 3+ 3 = 15.

2. If K, is (9, 1)-antimagic, then the set of all g;(v),v € V is {9,10,11,12}. Letv, € V
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be the vertex with g;(v1) = 9, then the possible edges incident to v; are edges with label
sets {1,2,6}, or {1,3,5}, or {2,3,4}. We have three subcases:

(a)

(b)

(c)

If the edges incident to vy are edges with label sets {1,2,6}, Without lose of
generality, say vs, v3,v4 € V such that f(viv9) = 1, f(v1v3) = 2, and f(v1v4) = 6.
Consider vy, all possible value for g(vy) are 6 +3 +4 = 13,0r 6+ 3 + 5 = 14,
or 6 + 4 +5 = 15, which is impossible for an (9, 1)-antimagic of K, since
13 ¢ {9,10,11,12}, 14 ¢ {9,10, 11, 12}, and 15 ¢ {9,10, 11,12}

If the edges incident to v; are edges with label sets {1,3,5}, Without lose of
generality, say vs, v3,v4 € V such that f(viv9) = 1, f(viv3) = 3, and f(v1v4) = 5.
First, consider vy, all possible value for g¢(v) are 1 +24+4=7,0r1+2+6 =9,
orl+4+6=11,since 7 ¢ {9,10,11,12} and gs(v;) = 9, the only possible value
for g¢(v2) is 11, next, consider vs, all possible value for g¢(vs) are 3+ 2+ 4 = 9,
or3+2+4+6=11,or3+4+6 = 13, since gs(v1) = 9, and 13 ¢ {9, 10, 11,12},

gr(vs) must be 11. We get g¢(v2) = 11 = g(v3), which leads to a contradiction.

If the edges incident to v; are edges with label sets {2,3,4}, Without lose of
generality, say v, v3,v4 € V such that f(viv9) = 2, f(viv3) = 3, and f(v1v4) = 4.
Consider v, all possible value for gf(ve) are 2 +1+5 =8, 0or2+1+6 =9,
or2+5+6 = 13,since 8 ¢ {9,10,11,12}, 13 ¢ {9,10,11, 12}, we must have

gf(v2) =9 = g¢(v1), which leads to a contradiction.
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Using the same method in the proof of Propsition 3.1, we can also show that K5 is neither

(10, 6)-antimagic nor (12, 5)-antimagic.

3.2 Main results

In this section, we will present a theorem with stronger restriction to the choice of (a, d)

for a complete graph K, to be (a, d)-antimagic.

Theorem 3.2. K,,,n > 4 is not (n(n — 1)/2,n(n — 3)/2 + 1)-antimagic.

Proof. Forn > 4, m = (n — 1)n/2 > n. Consider (a,d) = (n(n —1)/2,n(n — 3)/2 + 1).
Suppose K, is (n(n — 1)/2,n(n —3)/2 + 1)-antimagic, then there is a vertex v; € V' such that
gf(v1) = n(n — 1)/2, which can only be the sum of 1, 2, ..., (n — 1), that is, v; must be incident
to the edges with labeling {1,2, ..., (n — 1)} Now, consider any vertex v' € V,v' # vy, since
v" must incidient to vy and (n — 2)’s other vertices, we have g¢(v') > a+d > 1+ [n+ (n +
1)+ ...2n — 3)] = 14 (3n — 3)(n — 2)/2, which implies (n(n —1)/24+n(n —3)/2+1) >
1+ (3n — 3)(n — 2)/2, but this is equivalent to 2(n — 1)> > 2 + 3(n — 1)(n — 2), which is

equivalent to (n — 1)(n — 4) < —2, which is impossible for n. > 4.

Remark 3.3. With Theorem 3.2, we can modify Theorem 1.3 into:
If K,,,n > 4is an (a, d)-antimagic graph, where a,d € N, then a,d satisfy the following

conditions:
1. a,d € N are positive solutions of the equation 2an + n(n — 1)d = 2m(m + 1).
2.a>142+...+0=0(0+1)/2 whered is the minimum degree of G

Corollary 3.4. K, is not (6,3)-antimagic, K is not (10, 6)-antimagic, Kg is not (15,10)-

antimagic, K7 is not (21, 15)-antimagic, etc.

Remark 3.5. In fact, K5 is (14, 4)-antimagic, (16, 3)-antimagic, (18, 2)-antimagic, and (20, 1)-
antimagic; Kg is (25, 6)-antimagic, (30,4)-antimagic, and (35, 2)-antimagic; K7 is (33,11)-
antimagic, (36, 10)-antimagic, (39, 9)-antimagic, (42, 8)-antimagic,..., and (63, 1)-antimagic,
we demonstrate the cases for K5 in Figure3.2 and 3.3, see Figure 6, 8 of [1] for the labeling of

the other cases.
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Figure 3.2: K3 is (20, 1)-antimagic, (18, 2)-antimagic

Figure 3.3: K is (16, 3)-antimagic, (14, 4)-antimagic
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3.3 Conclusion

In this paper we discuss the concept of an (a, d)-antimagic graph, and give some examples
to demonstrate how to verify whether or not a graph is (a, d)-antimagic, and in the end we give
a stronger necessary conditions for a complete graph to admit an (a, d)-antimagic labeling.

However, from the observation such as K is not (9, 1)-antimagic, K5 is not (12,5)-
antimagic, and K is not (20, 8)-antimagic, etc, we have a feeling that there are stricter necessary
conditions for a complete graph K, to be (a, d)-antimagic, and even possibly lead to a necessary

and sufficient condition.
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