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Abstract: In a multi-receiver encryption system, a sender chooses a set of authorized
receivers and sends them a message securely and efficiently, as the message is well
encrypted and only one ciphertext corresponding to the message is generated no matter how
many receivers the sender has chosen. It can be applied to video conferencing systems,
pay-per-view channels, remote education, and so forth. Due to privacy considerations,
an authorized receiver may not expect that his identity is revealed. In 2010, anonymous
multi-receiver identity-based (ID-based) encryption was first discussed, and furthermore,
many works on the topic have been presented so far. Unfortunately, we find that all of those
schemes fail to prove the chosen ciphertext attacks (CCA) security in either confidentiality
or anonymity. In this manuscript, we propose the first anonymous multi-receiver ID-based
authenticated encryption scheme with CCA security in both confidentiality and anonymity.
In the proposed scheme, the identity of the sender of a ciphertext can be authenticated by
the receivers after a successful decryption. In addition, the proposed scheme also is the first
CCA-secure one against insider attacks. Moreover, only one pairing computation is required
in decryption.

Keywords: anonymity; multi-receiver encryption; chosen-ciphertext attacks; identity-based
encryption; bilinear pairing
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1. Introduction

Multi-receiver encryption makes it possible for a sender to compute and transmit only one ciphertext
corresponding to a message for multiple receivers. It greatly decreases communication cost, so that it is
popular among some advanced services, such as video conferencing, pay-per-view TV [1–3] and remote
education. In order to prevent unauthorized access, messages are encrypted, and the encryption keys
change every session. When a new member joins the communication group, the system will assign a
long-term key to him, and the key will be revoked once the member leaves the group. The system must
deal with key management effectively. Another important issue in such services is the authentication of
the sender, which can guarantee the source and legality of the digital products. Many researchers focused
on this topic and have proposed interesting results [4–6].

In 2001, Boneh and Franklin [7] first proposed an ID-based encryption scheme from the Weil pairing.
In 2005, Du et al. [6] presented an ID-based broadcast encryption scheme for key distribution. They used
matrix operations for encryption and decryption. In 2005, Wang and Wu [5] proposed an ID-based
multicast encryption scheme, which has a key generation center and a group center. No users need
any computation during the rekeying process. However, the sender must be the group center. In the
same year, Baek et al. [4] proposed a multi-receiver ID-based encryption scheme along with a formal
definition and security model for this kind of scheme. They proved the security in the selective ID model
using random oracles [8]. Their second scheme was employed in the REACT technique proposed by
Okamoto and Pointcheval [9].

In some situations, such as ordering sensitive TV programs, the customers may expect that their
identities are not revealed. In consideration of protecting users’ privacy, Fan et al. [10] first introduced
the concept of anonymous mutli-receiver ID-based encryption (AMRIBE) in 2010. They also proposed
a multi-receiver ID-based encryption scheme using Lagrange interpolating polynomials in order to
achieve anonymity for every receiver such that nobody knows who the receivers are except the sender.
However, Chien [11] pointed out that Fan et al.’s scheme does not hold the anonymity. An attacker can
identify the identity of a receiver. Chien indicated that the security model defined in [10] does not cover
all of the multi-receiver environments. Additionally, he also proposed an improved AMRIBE scheme.

Recently, many results of AMRIBE have been proposed [11–31]. After examining these results,
however, we find that none of them satisfies the CCA (chosen ciphertext attacks) security in both
confidentiality and anonymity. A major reason is that they are vulnerable to the insider attacks in
anonymity, that is a selected receiver, called an insider, can derive the identities of the other receivers
selected by the sender in those schemes.

Therefore, in view of the aforementioned reasons, we propose a novel type of multi-receiver
encryption called anonymous multi-receiver identity-based authenticated encryption (AMRIBAE).
A concrete encryption scheme has also been proposed, which achieves the CCA security in both
confidentiality and anonymity, such that it is immune to not only outsider (i.e., unselected receiver)
but insider attacks, as well. Let t be the number of the selected receivers of a ciphertext. In our
scheme, even if the unselected receivers collude with any (t − 1) selected receivers, the anonymity
of the non-colluding selected receiver is still preserved. Furthermore, we also prove that the proposed
scheme achieves sender authentication, i.e., the identity of the sender of a ciphertext can be confirmed
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by the selected receivers. In addition, we provide complete proofs with problem reduction to formally
demonstrate the CCA security. Furthermore, our scheme is decryption efficient due to only one pairing
computation.

Anonymous Multi-Receiver ID-Based Encryption vs. Anonymous Dynamic Broadcast
ID-Based Encryption

In [32], Delerablée et al. introduced the concept of dynamic broadcast encryption. In a dynamic
broadcast encryption system, a sender can arbitrarily select some or all of the users who have enrolled
in the system as the receivers of a ciphertext that he or she is about to generate, and it is unnecessary for
the system to re-compute the private keys of the enrolled users whenever a new user joins the system.
A multi-receiver encryption system can also achieve this; however, a non-dynamic broadcast encryption
system cannot. In a non-dynamic system, all of the enrolled users should be the receivers of every
ciphertext in the system, that is the receiver set contains all enrolled users, and it is always fixed for
every ciphertext. In addition, the receiver set should be determined before private key generation, which
will imply that the private keys of all enrolled users must be re-computed whenever a new user joins the
non-dynamic system. Although a non-dynamic broadcast encryption scheme [33–35] might not be as
flexible as a dynamic one, those schemes usually provide shorter ciphertext or constant-size ciphertext.
Besides, in an ID-based encryption system, the identities of the users also act as their public keys, which
will largely simplify the management of the public keys as compared to a non-ID-based one, such as [36].

This research will aim at anonymous multi-receiver ID-based encryption, which can be regarded as
anonymous dynamic broadcast ID-based encryption. In this manuscript, we will discuss dynamic and
ID-based schemes [10,11,14,16,18–21,23,25–29,31] and compare them to our work.

2. Related Works

In order to protect users’ privacy, Fan et al. [10] first introduced anonymous multi-receiver
identity-based encryption (AMRIBE) in 2010. Their scheme was constructed by using Lagrange
interpolating polynomials. However, it cannot achieve anonymity against outside and inside attackers.
The cryptanalysis on Fan et al.’s scheme [10] has been presented in [11,13,25].

In 2012, Wang et al. proposed an AMRIBE scheme [25] by improving Fan et al.’s scheme.
Unfortunately, their scheme did not achieve anonymity against inside attackers. The cryptanalysis
on Wang et al.’s scheme [25] has been shown in [17,29]. In the same year, Tseng et al. proposed
an AMRIBE scheme and claimed that their scheme is CCA secure in both confidentiality and
anonymity [21,22]. However, we found that they demonstrated the security without considering all
possible attackers. In the proof of the security, they assume that the attacker must compute the symmetric
encryption/decryption key corresponding to the challenge ciphertext before it wins the CCA game. That
is to say, the proof does not cover the type of attackers that win the CCA game, but have not computed
the key of the challenge ciphertext. The details are shown in the Appendix.

In 2013, Zhang and Takagi proposed two AMRIBE schemes [31]. They designed a deployment in
an e-mail delivery system and provided some experimental results. However, their first scheme cannot
achieve anonymity against inside attackers [28], and they did not provide any security proof for their
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second scheme. Besides, Zhang and Mao proposed an improved AMRIBE scheme [28] based on
Zhang et al.’s scheme [31] in 2013. They claimed that their scheme has the CCA security. However, we
have found some mistakes in their security proofs due to the inconsistency between a hash function and
the hash oracle corresponding to the function, where the details are shown in the Appendix.

In 2014, there were three AMRIBE schemes [23,26,27] proposed by Tseng et al., Wang and
Zhang et al., respectively. Nevertheless, we have found some mistakes in their security proof, and
the details are shown in the Appendix.

The other works [11,12,14,16,18–20,29] either have the CPA (chosen plaintext attacks) security only
or have not provided the proof for the security. The security of all of the above schemes has been
summarized in Section 6 Table 3.

3. Preliminaries

In this section, we define anonymous multi-receiver ID-based authenticated encryption and review
some hard problems and assumptions. In addition, we propose a modified decisional bilinear
Diffie–Hellman (DBDH) assumption, called the M-DBDH assumption, and prove that the assumption
holds if the 1-weak decisional bilinear Diffie–Hellman inversion (1-wDBDHI) problem is hard.

Definition 1. An anonymous multi-receiver identity-based authenticated encryption (AMRIBAE)
scheme consists of the following algorithms:

- Setup is an algorithm that takes as input a security parameter l. It returns a master secret key msk

and system parameters params.
- KeyExtract is an algorithm that takes as input params, msk and a user’s identity IDi ∈ {0,1}∗

and then returns the secret key di of the user.
- Encrypt is an algorithm that takes as input params, a message M , the identity IDs of the sender,

the private key ds of the sender and an identity set {ID1, ID2, . . . , IDt} and returns a ciphertext
C. We write C = Encrypt(params, IDs, ID1, ID2, . . . , IDt,M, ds).

- Decrypt is an algorithm that takes as input params, a ciphertext C and the secret key di of user
IDi and returns a message M . We write M =Decrypt(params,C, di).

Let G1 and G2 be two cyclic groups of prime order q, P be a generator of G1 and e ∶ G1 ×G1 → G2

be a bilinear mapping.

Definition 2 (The Bilinear Diffie–Hellman (BDH) Problem). Given (P, aP, bP, cP ) for some random
a, b, c ∈ Z∗

q , compute e(P,P )abc.

Definition 3 (The Decisional Bilinear Diffie–Hellman (DBDH) Problem). Given (P, aP, bP, cP,Z) for
some random a, b, c ∈ Z∗

q and Z ∈R {e(P,P )abc, Y ∈R G2/e(P,P )abc}, decide if Z = e(P,P )abc.

Definition 4 (The DBDH Assumption [7]). Define that an algorithm A with output β ∈ {0,1} has
advantage ε in solving the DBDH problem if:

∣Pr[A(P, aP, bP, cP, e(P,P )abc) = 1] − Pr[A(P, aP, bP, cP,Z) = 1]∣ ≥ ε
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where a, b, c ∈R Z∗

q and Z ∈R {e(P,P )abc, Y ∈R G2/e(P,P )abc}. We say that the DBDH assumption
holds if no polynomial-time algorithm has a non-negligible advantage in solving the DBDH problem.

Definition 5 (The l-Weak Decisional Bilinear Diffie–Hellman Inversion (l-wDBDHI) Problem [37]).
Given (P,Ð⇀Y , cP,Z), where Z ∈R {e(P,P )bl+1c, Y ∈R G2/e(P,P )abc} and

Ð⇀
Y = (bP, b2P, . . . , blP ),

decide if Z = e(P,P )bl+1c.

Definition 6 (The l-Weak Decisional Bilinear Diffie–Hellman Inversion (l-wDBDHI) Assumption [37]).
Define that an algorithm A with output β ∈ {0,1} has advantage ε in solving the l-wDBDHI

problem if:
∣Pr[A(P,Ð⇀Y , cP, e(P,P )bl+1c) = 1] − Pr[A(P,Ð⇀Y , cP,Z) = 1]∣ ≥ ε.

We say that the l-wDBDHI assumption holds if there exists no polynomial-time adversary that has a
non-negligible advantage in solving the l-wDBDHI problem.

Definition 7 (The Modified Decisional Bilinear Diffie–Hellman (M-DBDH) Problem). Given
(P, aP, bP, cP, e(P,P )b2c, Z) for some random a, b, c ∈ Z∗

q and Z ∈R {e(P,P )abc, Y ∈R G2/e(P,P )abc},
decide if Z = e(P,P )abc. Define that an algorithm A with output β ∈ {0,1} has advantage ε in solving
the M-DBDH problem if:

∣Pr[A(P, aP, bP, cP, e(P,P )b2c, e(P,P )abc) = 1] − Pr[A(P, aP, bP, cP, e(P,P )b2c, Z) = 1]∣ ≥ ε

where a, b, c ∈R Z∗

q and Z ∈R {e(P,P )abc, Y ∈R G2/e(P,P )abc}.

Theorem 8. No polynomial-time algorithm has a non-negligible advantage in solving the M-DBDH
problem if the 1-wDBDHI assumption holds.

Proof. If there exists a polynomial-time algorithm A with non-negligible advantage ε in solving the
M-DBDH problem, then we can construct a polynomial-time algorithm B with non-negligible advantage
in solving the 1-wDBDHI problem as follows. Given a 1-wDBDHI instance (P, bP, cP,Z), B forms an
M-DBDH instance via the following operations:

1. Randomly choose a ∈ Z∗

q , and compute aP .
2. Compute Z1 = e(bP, cP )a.
3. Set the M-DBDH instance as (P, aP, bP, cP,Z,Z1), and input it into A.

Let β be the output of A. B will confirm that Z = e(P,P )b2c by outputting one as the answer of
the 1-wDBDHI instance if β = 1; otherwise, B will output zero.

Since:

∣Pr[A(P, aP, bP, cP, e(P,P )b2c, e(P,P )abc) = 1] − Pr[A(P, aP, bP, cP, e(P,P )b2c,W ) = 1]∣ ≥ ε

where W ∈R {e(P,P )abc,X ∈R G2/e(P,P )abc},

∣Pr[A(P, aP, bP, cP, e(P,P )b2c, e(P,P )abc) = 1] − 1

2
∣

≥ ∣Pr[A(P, aP, bP, cP, e(P,P )b2c, e(P,P )abc) = 1] − Pr[A(P, aP, bP, cP, e(P,P )b2c,W ) = 1]∣ ≥ ε.
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Let T ∈R {e(P,P )b2c,X ∈R G2/e(P,P )abc}. Thus, we have that:

∣Pr[B(P, bP, cP, e(P,P )b2c) = 1] − Pr[B(P, bP, cP,T ) = 1]∣

= ∣Pr[A(P, aP, bP, cP, e(P,P )b2c, e(P,P )abc) = 1]

−(1

2
Pr[B(P, bP, cP, e(P,P )b2c) = 1]

+1

2
Pr[B(P, bP, cP,X) = 1])∣

= ∣1
2
Pr[A(P, aP, bP, cP, e(P,P )b2c, e(P,P )abc) = 1] − 1

4
∣ ≥ ε

2
.

It turns out that the polynomial-time algorithm B has a non-negligible advantage ε
2 in solving the

1-wDBDH problem.

Definition 9 (The M-DBDH Assumption). We say that the M-DBDH assumption holds if no
polynomial-time algorithm has non-negligible advantage in solving the M-DBDH problem.

By Theorem 8, the M-DBDH assumption holds.

4. Our Scheme

In this section, we will present an anonymous multi-receiver identity-based authenticated encryption
scheme with provable CCA security in both confidentiality and anonymity against not only outsider, but
also insider attacks. Our scheme can be viewed as a key encapsulation mechanism. The notations used
in the proposed scheme are defined in Table 1.

Table 1. The notations.

Notation Meaning

G1 a cyclic additive group of prime order q
G2 a cyclic multiplicative group of prime order q
e a bilinear mapping; e ∶ G1 ×G1 → G2

P a generator of G1

KGC the key generation center
Ppub the public key of KGC
M a message
IDi the identity of user i
Qi the hashed value of IDi

di the private key of IDi

The proposed scheme is described as follows.

• Setup
The key generation center (KGC) performs the following operations:
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1. Choose an integer α ∈ Z∗

q randomly as the master secret key, and set Ppub = αP .
2. Choose three cryptographic one-way hash functions, H ∶ {0,1}∗ → G1, H1 ∶ G2 → Z∗

q ,
and H2 ∶ {0,1}∗ ×Z∗

q → Z∗

q .
3. Compute Ω = e(P,P ).
4. Publish the system parameters params = {G1,G2, e, q, P,Ppub,H,H1,H2,Ω} and keep

the master key α secret.

• KeyExtract
When user i joins the system, KGC will compute Qi = H(IDi) and the private key di = αQi of
the user, and then, KGC will send di to user i in a secure manner.

• Encrypt
A sender, say IDs, produces the ciphertext of a message by performing the following steps:

1. Choose a message M ∈ G2, and select a set of t receivers {ID1,⋯, IDt}.
2. Choose k ∈ Z∗

q at random, and compute r =H2(M,k).
3. For i = 1 to t, compute Qi =H(IDi) and vi =H1(e(rQi, ds)).

4. Compute f(x) = k −
t

∏
i=1

(x − vi) =
t−1

∑
i=0

cix
i + xt mod q.

5. Compute U = rP,V = rQs and W =M ⋅Ω−k.
6. Set the ciphertext C = (c0, c1, . . . , ct−1, U, V,W, IDs).

• Decrypt
After receiving the ciphertext C = (c0, c1, . . . , ct−1, U, V,W, IDs), a selected receiver, say IDi,
can decrypt C as follows.

1. Compute v′i =H1(e(V, di)).

2. Compute k′ = f(v′i) =
t−1

∑
j=0

cj(v′i)j + (v′i)t mod q.

3. Compute M ′ =W ⋅Ωk′ .
4. Accept M ′ if U = H2(M ′, k′)P . If the receiver wants to authenticate the identity of

the sender, he can check whether e(U,H(IDs)) = e(V,P ).

The proposed scheme also is illustrated in Figure 1, and the correctness is demonstrated as follows.

v′i =H1(e(V, di))
=H1(e(rQs,αQi))
=H1(e(rQi,αQs))
=H1(e(rQi, ds))
= vi

and
k′ = f(v′i) = f(vi) = k.

Thus, the selected receiver IDi can successfully recover the message by computing M ′ = W ⋅ Ωk′ =
W ⋅Ωk =M , so that U =H2(M,k)P =H2(M ′, k′)P .
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After successfully recovering the message, we have e(V, di) = (rH(ID′

s),αQi) = e(rQi,αQs) =
e(rQi, ds) for some identity ID′

s, which convinces the receiver that the ciphertext is encrypted with the
private key of ID′

s. Additionally, the equation e(U,H(IDs)) = e(V,P ) can guarantee that V = rQs =
rH(IDs), which means ID′

s = IDs. This feature makes it possible for the receivers to authenticate
the sender of the ciphertext they received. Besides, according to [38], in an anonymous multi-receiver
encryption scheme, the length of a ciphertext will at least linearly grow with the number of the receivers.
Thus, the ciphertext length of our scheme might be optimal in the aspect of [38].

  

KGC

User i KGC

Sender    

Receiver      

Receiver      Receiver      Receiver      Receiver      

Figure 1. The proposed anonymous multi-receiver identity-based authenticated encryption
(AMRIBAE) scheme.
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5. Security Models and Proofs

In this section, we will define the security models and the security notions for anonymous
multi-receiver identity-based authenticated encryption. The security notions are the “indistinguishability
of encryptions under selective multi-ID, chosen-ciphertext attacks” (IND-sMID-CCA) and the
“anonymous indistinguishability of encryptions under selective multi-ID, chosen-ciphertext attacks”
(Anon-sMID-CCA). We then will prove that our proposed scheme is provably CCA secure in
confidentiality and anonymity against insider and outsider attacks.

Definition 10 (The IND-sMID-CCA Game). Let A be a polynomial-time attacker. A interacts with
a simulator S in the following game.

Initialization. A chooses a set of identities ID∗ = {ID∗

1 , ID
∗

2 , . . . , ID
∗

t } and sends ID∗ to S .
Setup. S runs the Setup algorithm to generate params and msk. S then sends params to A.
Phase 1. A issues the following queries.

- Hash query: S operates hash functions on the inputs given by A and returns the hashed values.
- KeyExtract (IDi): A sends an identity IDi to S and S returns the private key of IDi where

KeyExtract (IDj) cannot be queried if IDj ∈ ID∗.
- Encrypt (IDs, ID1,⋯, IDu,M ): A sends a sender’s identity IDs, a receiver set {ID1,⋯, IDu}

and a message M to S . S returns a ciphertext C to A.
- Decrypt (C, IDi): A sends an identity IDi and a ciphertext C to S , and S returns the message M .

Challenge. A submits a sender’s identity IDs and (M0,M1) to S , with restrictions that M0,M1 are two
distinct messages of the same length, IDs ∉ ID∗, and KeyExtract (IDs) has not been queried before.
S then randomly chooses β ∈ {0,1} and generates C∗ = Encrypt (IDs, ID∗

1 , . . . , ID
∗

t ,Mβ). Finally, S
sends C∗ to A.
Phase 2. A issues the queries defined in Phase 1, excluding the Decrypt queries with C = C∗ and
IDi ∈ ID∗ and the query KeyExtract (IDs).
Guess. Finally, A outputs β′ ∈ {0,1} and wins the game if β′ = β.

The advantage of A winning the game is defined as:

AdvIND-sMID-CCA(A) = ∣Pr[β′ = β] − 1

2
∣.

An anonymous multi-receiver identity-based authenticated encryption scheme is said to be
IND-sMID-CCA secure if there exists no polynomial-time attacker that can win the IND-sMID-CCA
game with non-negligible advantage. The model of this game is shown in Figure 2.
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The M-DBDH problem

Figure 2. The indistinguishability of encryptions under selective multi-ID, chosen-ciphertext
attacks (IND-sMID-CCA) game.

Definition 11 (The Anon-sMID-CCA Game). Let A be a polynomial-time attacker. A interacts with a
simulator S in the following game.

Initialization. A chooses two identities {ID∗

0 , ID
∗

1} and sends them to S .
Setup. S runs the Setup algorithm to generate params and msk. S then sends params to A.
Phase 1. A issues the following queries.

- Hash query: S operates hash functions on the inputs given by A and returns the hashed values.
- KeyExtract (IDi): A sends an identity IDi to S , and S returns the private key of IDi where neither

KeyExtract (ID∗

0 ) nor KeyExtract (ID∗

1 ) can be queried.
- Encrypt (IDs, ID1,⋯, IDu,M ): A sends a sender’s identity IDs, a receiver set {ID1,⋯, IDu}

and a message M to S . S returns a ciphertext C to A.
- Decrypt (C, IDi): A sends an identity IDi and a ciphertext C to S , and S returns the message M .

Challenge. A submits a sender’s identity IDs, a message M and a set of identities {ID2, ID3, . . . , IDt}
to S with restrictions that IDs ∉ {ID∗

0 , ID
∗

1} and KeyExtract (IDs) has not been queried before. S then
randomly chooses β ∈ {0,1} and generates C∗ = Encrypt (IDs, ID∗

β, ID2, . . . , IDt,M). Finally, S
sends C∗ to A.
Phase 2. A issues the queries defined in Phase 1, excluding Decrypt (C∗, ID∗

0 ), Decrypt (C∗, ID∗

1 ) and
KeyExtract (IDs).
Guess. Finally, A outputs β′ ∈ {0,1} and wins the game if β′ = β.

The advantage of A winning the game is defined as:

AdvAnon-sMID-CCA(A) = ∣Pr[β′ = β] − 1

2
∣.
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An anonymous multi-receiver identity-based authenticated encryption scheme is said to be
Anon-sMID-CCA secure if there exists no polynomial-time attacker that can win the Anon-sMID-CCA
game with non-negligible advantage. The model of this game is shown in Figure 3.

Note that there is a restriction that KeyExtract (IDs) cannot be queried in both the IND-sMID-CCA
game and the ANON-sMID-CCA game. This is to model that the adversary cannot collude with the
sender, since the confidentiality and the anonymity will be meaningless when the collusion happens.

  

The M-DBDH problem

Figure 3. The anonymous (Anon)-sMID-CCA game.

Definition 12 (The Sender Authentication Game). Let A be a polynomial-time attacker. A interacts
with a simulator S in the following game.

Initialization. A chooses two identities {ID∗

s , ID
∗

R} and sends them to S .
Setup. S runs the Setup algorithm to generate params and msk. S then sends params to A.
Phase 1. A issues the following queries.

- Hash query: S operates hash functions on the inputs given by A and returns the hashed values.
- KeyExtract (IDi): A sends an identity IDi to S and S returns the private key of IDi where neither

KeyExtract (ID∗

s ) nor KeyExtract (ID∗

R) can be queried.
- Encrypt (IDs, ID1,⋯, IDu,M ): A sends a sender’s identity IDs, a receiver set {ID1,⋯, IDu}

and a message M to S . S returns a ciphertext C to A.
- Decrypt (C, IDi): A sends an identity IDi and a ciphertext C to S , and S returns the message M .

Forgery. A outputs a ciphertext C∗ with restrictions that the sender is ID∗

s and ID∗

R is one of the
receivers, and C∗ was not outputted by querying the Encrypt oracle. A wins the game if C∗ is a
valid ciphertext.
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The advantage of A winning the game is defined as:

AdvSA(A) = Pr[Decrypt(C, ID∗

R) ≠ �].

An anonymous multi-receiver identity-based authenticated encryption scheme is said to satisfy sender
authentication if there exists no polynomial-time attacker that can win the sender authentication game
with non-negligible advantage. The model of this game is shown in Figure 4.

  

The DBDH problem

Figure 4. The sender authentication game.

Theorem 13. (Confidentiality) The proposed AMRIBAE scheme is IND-sMID-CCA secure in the
random oracle model if the M-DBDH assumption holds.

Proof. The basic concept of the proof is a proof by contradiction. Assume that the proposed
scheme is not IND-sMID-CCA secure, i.e., there exists a polynomial-time adversary A that wins the
IND-sMID-CCA game with non-negligible advantage. Then, we will construct a polynomial-time
algorithm S that has non-negligible advantage in solving the M-DBDH problem.

First, S is given < q,G1,G2, e, P, aP, bP, cP, e(P,P )b2c, Z >, which is an instance of the M-DBDH
problem. S simulates the game for A as follows:

Initialization. A outputs a target identity set ID∗ = {ID∗

1 ,⋯, ID∗

t }.
Setup. S sets Ppub = cP , computes Ω = e(P,P ) and outputs {G1,G2, e, q, P,Ppub,H,H1,H2,Ω} as the
public parameters where H,H1 and H2 are three random oracles controlled by S .
Phase 1. S maintains H-list, H1-list and H2-list to store the results of querying H,H1 and H2,
respectively. In this phase, A can issue the following queries:
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- H-query:
This oracle takes an identity IDj ∈ {0,1}∗ as input. If there exists a record (IDj,Qj, qj) in H-list,
return Qj . Otherwise, do the following:

1. Randomly select qj ∈ Z∗

q .
2. If IDj ∈ ID∗, compute Qj = qj(bP ); else Qj = qjP .
3. Return Qj , and add (IDj,Qj, qj) into H-list.

- H1-query:
This oracle takes Xj as input, where Xj ∈ G2. If there exists a record (Xj, vj) in H1-list, return vj .
Otherwise, do the following:

1. Randomly choose vj ∈ Z∗

q .
2. Add (Xj, vj) to H1-list.
3. Return vj .

- H2-query:
This oracle takes Mj ∈ G2 and an integer kj ∈ Z∗

q as input. If there exists a record (Mj, kj, rj, Uj)
in H2-list, return rj . Otherwise, do the following:

1. Randomly choose rj ∈ Z∗

q , and compute Uj = rjP .
2. Add (Mj, kj, rj, Uj) to H2-list.
3. Return rj .

- KeyExtract:
This oracle takes an identity IDj as input. Call H(IDj) and retrieve qj from H-list. Then, S does
the following:

– If IDj ∈ ID∗, return “reject”.
– Otherwise, compute dj = qj(cP ) and return dj .

- Encrypt:
This oracle takes u+ 1 identities (IDs, ID1, . . . , IDu) and a message M as input. Upon receiving
an Encryptquery, S does the following:

1. Choose k, r ∈ Z∗

q at random, and set H2(M,k) = r.
2. For i = 1 to u,

– if IDs ∉ ID∗, compute vi = H1(e(Qi, ds)r), where ds is the private key of the
sender IDs;

– if IDs ∈ ID∗ and IDi ∉ ID∗, compute vi = H1(e(di,Qs)r), where di is the private key
of the receiver IDi;

– if IDs, IDi ∈ ID∗, compute vi =H1((e(P,P )b2c)rqsqi).

3. Compute f(x) = k −
u

∏
i=1

(x − vi) =
u−1

∑
i=0

cix
i + xu mod q.

4. Compute U = rP,V = rQs, and W =M ⋅ e(P,P )−k.
5. Set the ciphertext C = (c0, c1, . . . , cu−1, U, V,W, IDs), and return C.
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- Decrypt:
This oracle takes an identity IDj and a ciphertext C as input. Upon receiving a Decryptquery,
denoted by Decrypt(C, IDj) where C = (c0, . . . , cu−1, U, V,W, IDs), S does the following:

1. Search H2-list to get (Mi, ki, ri, Ui) with Ui = U . If not found, return “reject”.
2. Search H-list to get (IDs,Qs, qs) with e(U,Qs) = e(P,V ). If not found, return “reject”.
3. This step can be separated into three cases:

– if IDs ∉ ID∗, compute vj =H1(e(Qj, ds)ri);
– if IDs ∈ ID∗ and IDj ∉ ID∗, compute vj =H1(e(dj,Qs)ri);
– if IDs, IDj ∈ ID∗, compute vj =H1((e(P,P )b2c)riqsqj).

4. Compute k = c0 + c1vj + ⋅ ⋅ ⋅ + cu−1vu−1j + vuj mod q.
5. Check whether ki = k and Mi =W ⋅Ωk or not. If not, return “reject”. Otherwise, return Mi.

Challenge. A sends (M0,M1) and a sender’s identity IDs to S , with restrictions that M0,M1 are two
distinct messages with the same length, IDs ∉ ID∗, and KeyExtract (IDs) has never been queried. S
performs the following operations:

1. Choose β ∈ {0,1} randomly.
2. For i = 1 to t, call H(ID∗

i ), and retrieve q∗i from H-list.
3. Call H(IDs), and retrieve qs from H-list.
4. Choose k ∈ Z∗

q , and set U∗ = aP and V ∗ = qs(aP ).
5. For i = 1 to t, compute vi =H1(Zq∗i qs).

6. Compute f(x) = k −
t

∏
i=1

(x − vi) =
t−1

∑
i=0

cix
i + xt mod q and W ∗ =Mβ ⋅Ω−k.

7. Set the ciphertext C∗ = (c0, c1, . . . , ct−1, U∗, V ∗,W ∗, IDs), and send C∗ to A.

Phase 2. A makes queries as those in Phase 1. However, if A issues a Decrypt query with input C = C∗

and IDi ∈ ID∗ or the query KeyExtract (IDs), S will return “reject”.
Guess. Finally, A outputs β′ ∈ {0,1}. If β′ = β, then S outputs one. Otherwise, S randomly chooses
β̄ ∈ {0,1} and outputs β̄.

If Z = e(P,P )abc, then Zq∗i qs = e(P,P )abcq∗i qs = e(q∗i (bP ), qs(cP ))a = e(Q∗

i , ds)a for i = 1 to t.
Therefore, C∗ is a correct ciphertext. Otherwise, Z is an element randomly chosen in G2. As the
construction above, S correctly simulates the IND-sMID-CCA game. If A wins the IND-sMID-CCA
game with non-negligible advantage, at least ε, ∣Pr[β′ = β] − 1

2
∣ ≥ ε under a correct simulation of the

game, i.e., ∣Pr[A(Ω) = β′ = β] − 1
2
∣ ≥ ε, where Ω is a correct AMRIBAE scheme. Thus, we have that:

Pr[S(P, aP, bP, cP, e(P,P )b2c, e(P,P )abc) = 1]

= Pr[A(Ω) = β] + 1

2
(1 − Pr[A(Ω) = β])

= 1

2
Pr[A(Ω) = β] + 1

2

and
Pr[S(P, aP, bP, cP, e(P,P )b2c, Z) = 1]
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= 1

2
Pr[S(P, aP, bP, cP, e(P,P )b2c, e(P,P )abc) = 1]

+1

2
Pr[S(P, aP, bP, cP, e(P,P )b2c,X ∈R G2/e(P,P )abc) = 1]

= 1

2
(1

2
Pr[A(Ω) = β] + 1

2
) + 1

2
(1

2
+ 1

2
⋅ 1

2
)

= 1

4
Pr[A(Ω) = β] + 5

8
.

We can obtain:

∣Pr[S(P, aP, bP, cP, e(P,P )b2c, e(P,P )abc) = 1] − Pr[S(P, aP, bP, cP, e(P,P )b2c, Z) = 1]∣

= ∣1
4
Pr[A(Ω) = β] − 1

8
∣ = 1

4
∣Pr[A(Ω) = β] − 1

2
∣ ≥ ε

4
.

Therefore, S solves the M-DBDH problem with non-negligible advantage ε
4 within polynomial time.

Theorem 13 ensures the CCA security of confidentiality against the outside attackers (unselected
receivers). In confidentiality, no inside attackers exist (selected receivers), because every selected
receiver can decrypt the ciphertext.

Theorem 14. (Anonymity) The proposed AMRIBAE scheme is Anon-sMID-CCA secure in the random
oracle model if the M-DBDH assumption holds.

Proof. Assume that the proposed scheme is not Anon-sMID-CCA secure, that is there exists
a polynomial-time adversary A that wins the Anon-sMID-CCA game with non-negligible advantage.
We will construct a polynomial-time algorithm S that has non-negligible advantage in solving the
M-DBDH problem.

First, S is given < q,G1,G2, e, P, aP, bP, cP, e(P,P )b2c, Z >, which is an instance of the M-DBDH
problem. S simulates the game for A as follows:

Initialization. A outputs a target identity set ID∗ = {ID∗

0 , ID
∗

1}.
Setup. S sets Ppub = cP , computes Ω = e(P,P ) and outputs {G1,G2, e, q, P,Ppub,H,H1,H2,Ω} as the
public parameters, where H,H1 and H2 are three random oracles controlled by S .
Phase 1. S maintains H-list, H1-list and H2-list to store the results of querying H,H1 and H2,
respectively. In this phase, A can issue the H , H1, H2, KeyExtract, Encrypt and Decrypt queries. The
simulations are the same as those in the proof of Theorem 13.
Challenge. A sends a message M , t−1 receivers’ identities {ID2, ID3, . . . , IDt} and a sender’s identity
IDs to S with restrictions that IDs ∉ ID∗ and KeyExtract (IDs) has never been queried. S does
the following:

1. Choose β ∈ {0,1} randomly.
2. For i = 2 to t, call H(IDi), and retrieve qi from H-list.
3. Call H(ID∗

β), and retrieve q∗β from H-list.
4. Call H(IDs), and retrieve qs from H-list.
5. Choose k ∈ Z∗

q , and set U∗ = aP and V ∗ = qs(aP ).
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6. For i = 2 to t, compute vi =H1(e(qiU∗, qs(cP ))).
7. Compute vβ =H1(Zq∗βqs).

8. Compute f(x) = k − (x − vβ)
t

∏
i=2

(x − vi) =
t−1

∑
i=0

cix
i + xt mod q and W ∗ =M ⋅Ω−k.

9. Set the ciphertext C∗ = (c0, c1, . . . , ct−1, U∗, V ∗,W ∗, IDs) and send C∗ to A.

Phase 2. A makes queries as those in Phase 1. However, if A issues a Decrypt query with input C = C∗

and IDi ∈ ID∗ or KeyExtract (IDs), S will return “reject”.
Guess. Finally, A outputs β′ ∈ {0,1}. If β′ = β, then S outputs one. Otherwise, S randomly chooses
β̄ ∈ {0,1} and outputs β̄.

If Z = e(P,P )abc, then Zq∗βqs = e(P,P )abcq∗βqs = e(q∗β(bP ), qs(cP ))a = e(Q∗

β, ds)a for β ∈ {0,1}.
Therefore, C∗ is a correct ciphertext. Otherwise, Z is an element randomly chosen in G2. As the
construction above, S correctly simulates the Anon-sMID-CCA game. If A wins the game with
non-negligible advantage at least ε, ∣Pr[β′ = β] − 1

2
∣ ≥ ε under a correct simulation of the game, i.e.,

∣Pr[A(Ω) = β′ = β] − 1
2
∣ ≥ ε, where Ω is a correct AMRIBAE scheme. Thus, we have that:

∣Pr[S(P, aP, bP, cP, e(P,P )b2c, e(P,P )abc) = 1 − Pr[S(P, aP, bP, cP, e(P,P )b2c, Z) = 1]∣

= ∣(1

2
Pr[A(Ω) = β] + 1

2
) − (1

4
Pr[A(Ω) = β] + 5

8
)∣

= ∣1
4
Pr[A(Ω) = β] − 1

8
∣ = 1

4
∣Pr[A(Ω) = β] − 1

2
∣ ≥ ε

4
.

Therefore, S solves the M-DBDH problem with non-negligible advantage ε
4 within polynomial time.

Theorem 14 guarantees the CCA security of anonymity against both the outside attackers (unselected
receivers) and the inside attackers (selected receivers) in the proposed scheme. In other words, even
if an adversary compromises with any t − 1 receivers, the anonymity of the remaining receiver is still
preserved in the proposed scheme. In this proof, we do not cover the following extreme case. Assume
that the total number of users in the system is N . The extreme case occurs when a user (sender) encrypts
a message for other N −2 selected users (receivers), so that there would be only one unselected user, and
this unselected user can no doubt figure out the identities of the N − 2 receivers.

Theorem 15. (Sender authentication) The proposed AMRIBAE scheme satisfies sender authentication
in the random oracle model if the DBDH assumption holds.

Proof. Assume that there exists a polynomial-time adversary A that wins the sender authentication
game with non-negligible advantage. Then, we will construct a polynomial-time algorithm S that has
non-negligible advantage in solving the DBDH problem.
First, S is given < q,G1,G2, e, P, aP, bP, cP,Z >, which is an instance of the DBDH problem. S
simulates the game for A as follows:

Initialization. A outputs an identity set ID∗ = {ID∗

s , ID
∗

R}.
Setup. S sets Ppub = cP , computes Ω = e(P,P ) and outputs {G1,G2, e, q, P,Ppub,H,H1,H2,Ω} as the
public parameters, where H,H1 and H2 are three random oracles controlled by S .
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Phase 1. S maintains H-list, H1-list and H2-list to store the results of querying H,H1 and H2,
respectively. In this phase, A can issue the following queries:

- H-query:
This oracle takes an identity IDj ∈ {0,1}∗ as input. If there exists a record (IDj,Qj, qj) in H-list,
return Qj . Otherwise, do the following:

1. Randomly select qj ∈ Z∗

q .
2. If IDj = ID∗

s , compute Qj = qj(aP ); else if IDj = ID∗

R, compute Qj = qj(bP ); else
Qj = qjP .

3. Return Qj and add (IDj,Qj, qj) into H-list.

- The simulation of H1-query and H2-query are the same as those in the proof of Theorem 13.
- KeyExtract:

This oracle takes an identity IDj as input. Call H(IDj), and retrieve qj from H-list. Then, S does
the following:

– If IDj ∈ ID∗, return “reject”.
– Otherwise, compute dj = qj(cP ), and return dj .

- Encrypt:
This oracle takes u+ 1 identities (IDs, ID1, . . . , IDu) and a message M as input. Upon receiving
an Encrypt query, S does the following:

1. Choose k, r ∈ Z∗

q at random, and set H2(M,k) = r.
2. For i = 1 to u,

– if IDs ∉ ID∗, compute vi = H1(e(Qi, ds)r), where ds is the private key of the
sender IDs;

– if IDs ∈ ID∗ and IDi ∉ ID∗, compute vi = H1(e(di,Qs)r), where di is the private key
of the receiver IDi;

– if IDs, IDi ∈ ID∗, compute vi =H1(Zrqsqi).

3. Compute f(x) = k −
u

∏
i=1

(x − vi) =
u−1

∑
i=0

cix
i + xu mod q.

4. Compute U = rP,V = rQs and W =M ⋅Ω−k.
5. Set the ciphertext C = (c0, c1, . . . , cu−1, U, V,W, IDs), and return C.

- Decrypt:
This oracle takes an identity IDj and a ciphertext C as input. Upon receiving a Decrypt query,
denoted by Decrypt (C, IDj), where C = (c0, . . . , cu−1, U, V,W, IDs), S does the following:

1. Search H2-list to get (Mi, ki, ri, Ui) with Ui = U . If not found, return “reject”.
2. Search H-list to get (IDs,Qs, qs) with e(U,Qs) = e(P,V ). If not found, return “reject”.
3. This step can be separated into three cases:

– if IDs ∉ ID∗, compute vj =H1(e(Qj, ds)ri);
– if IDs ∈ ID∗ and IDj ∉ ID∗, compute vj =H1(e(dj,Qs)ri);
– if IDs, IDj ∈ ID∗, compute vj =H1(Zriqsqj).

4. Compute k = c0 + c1vj + ⋅ ⋅ ⋅ + cu−1vu−1j + vuj mod q.
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5. Check whether ki = k and Mi =W ⋅Ωk or not. If not, return “reject”. Otherwise, return Mi.

Forgery. Finally, A outputs C∗ = (c0, c1, . . . , ct−1, U∗, V ∗,W ∗, ID∗

s ), where C∗ was not outputted by
querying the Encrypt oracle. Then, S performs the following.

1. Search H2-list to get (Mi, ki, ri, Ui) with Ui = U∗.
2. Call H(ID∗

s ) and H(ID∗

R) to retrieve q∗s and q∗R from H-list.
3. Compute v =H1(Zq∗s q

∗

Rri).
4. Compute k = c0 + c1v + ⋅ ⋅ ⋅ + ct−1vt−1 + vt mod q.
5. Check whether ki = k and Mi =W ⋅Ωk or not. If it is, A wins the game.

S outputs 1 if A wins the game. Otherwise, S outputs 0. Assume A wins the game with a
non-negligible advantage at least ε under a correct simulation. To analyze the advantage of solving
the DBDH problem, we define the following events.

E1: The game has been correctly simulated.
E2: A wins the game.

Then, we have that:
Pr[S(P, aP, bP, cP, e(P,P )abc) = 1]

= Pr[E1 ∧E2] = Pr[E1]Pr[E2∣E1]

≥ 1 ⋅ ε = ε

and
∣Pr[S(P, aP, bP, cP, e(P,P )abc) = 1] − Pr[S(P, aP, bP, cP,Z) = 1]∣

= ∣1
2
Pr[S(P, aP, bP, cP, e(P,P )abc) = 1]∣ ≥ 1

2
ε.

Therefore, S solves the DBDH problem with non-negligible advantage ε
2 within polynomial time.

Theorem 15 guarantees that the proposed scheme satisfies sender authentication. In other words, even
if an adversary compromises with any t− 1 receivers, the adversary cannot impersonate a sender to send
a valid ciphertext.

6. Comparisons

In this section, we compare the proposed scheme to [10,11,14,16,18–21,23,25–29] and [31] in
performance and security. According to [39–41] and [42], we can obtain that Tp ≈ 5Te, Ts ≈ 29Tm,
Te ≈ 240Tm, Th ≈ 23Tm and Ta ≈ 0.12Tm, shown in Table 2, which summarizes the comparison in the
computation cost of encryption/decryption and the ciphertext length for multiple receivers. Especially,
our scheme is efficient in decryption.
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The security comparison is shown in Table 3. The schemes of [11,29] and the second scheme
of [31] lack the proofs for confidentiality and anonymity. The scheme [19] did not provide the
proof for anonymity, but it is CPA secure in confidentiality. The schemes [14,16,18] and [20] are CPA
secure in both confidentiality and anonymity, where the proof of [20] is under a standard model. The
scheme [10] is CCA secure in confidentiality, but it is not with anonymity, which has been indicated
in [11,13,25]. The scheme of [25] and the first scheme of [31] are CCA secure in confidentiality and
anonymity against outsider attacks; however, the authors of [17,29] and [28], respectively, have shown
that they are not with anonymity against insider attacks. In addition, we demonstrate that there exist some
problems in the proofs of the schemes [21–23,26–28], where the details are shown in the Appendix. Our
scheme is the first one that can achieve the CCA security under the random oracle model against outside
attackers and inside attackers simultaneously. The confidentiality and anonymity of our scheme have
been formally proven in Section 5.

Table 2. Performance comparison.

Encryption Cost Decryption Cost Ciphertext Length

[10]
(2t + 3)Th + 2tTm + (t2 + 2)Ts 4Th + (t + 2)Ts

+(t2 − t)Ta + tTpoly + Tp + Te +tTa + 2Tp (t + 2)u +w

≈ (29t2 + 48t + 1567)Tm + tTpoly ≈ (29t + 2550)Tm

[11]
(2t + 1)Th + (t + 1)Ts + tTp tTh + tTs + tTp

(t + 2)u +w
≈ (1275t + 52)Tm ≈ 1252tTm

[25]
(2t + 3)Th + 2tTm + (2t2 + t + 1)Ts 4Th + (2t + 2)Ts

+2(t2 − t)Ta + tTpoly + Tp + tTe +2tTa + 2Tp (2t + 2)u +w

≈ (58t2 + 317t + 1298)Tm + tTpoly ≈ (58t + 2550)Tm

[21]
(t + 1)Th + 2Ts + tTp + Tpoly Th + tTm + Tp

t∣q∣ + u +w
≈ (1223t + 81)Tm + Tpoly ≈ (t + 1223)Tm

[18]
(t + 2)Ts + (t + 1)Tp + TCRT Tp

t∣q∣ + 2u +w
≈ (1229t + 1258)Tm + TCRT ≈ 1200Tm

[16]
tTh + (t + 1)Te + (2t + 5)Ts + (t + 1)Te Th + Te + t(2Tp + Te + Ts)

(t + 2)u +w
≈ (1521t + 1585)Tm ≈ (2669t + 1223)Tm

[29]
(2t + 4)Th + 2tTm + (t2 + t + 1)Ts 4Th + (t + 1)Ts

+2(t2 − t)Ta + tTpoly + Tp + tTe +tTa + 2tTp (2t + 2)u +w

≈ (29t2 + 317t + 1233)Tm + tTpoly ≈ (2429t + 121)Tm
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Table 2. Cont.

Encryption Cost Decryption Cost Ciphertext Length

[31]-Scheme 1
(t + 1)Th + 2tTe + 2Ts (t + 1)Th + Ts

+tTa + 2tTp +Ta + 2Tp (t + 2)u +w

≈ (1703t + 1281)Tm ≈ (23t + 2452)Tm

[31]-Scheme 2
(t + 1)Th + 2tTe + 2Ts (t + 1)Th + Ts

+tTa + 2tTp +Ta + 2Tp (t + 2)u +w

≈ (1703t + 1281)Tm ≈ (23t + 2452)Tm

[14]
(2t + 1)Th + (3t + 2)Ts

+Te + nTa t(Tp + Ta + Th) (t + 1)v +w

≈ (133t + 1281)Tm ≈ 1223tTm

[19]
tTh + t2Tm + (t + 4)Ts Th + Tpoly

+(t + 1)Te + Tpoly +2Ta + (t + 1)Ts + 4Tp (t + 3)u + v

≈ (t2 + 1252t + 1316)Tm ≈ (29t + 4852)Tm + Tpoly

[28]
(2t + 1)Th + (t + 1)Tm

+tTe + (2t + 2)Ts (t + 1)Th + (t + 1)Tp + tTs (t + 2)u +w

≈ (1305t + 82)Tm ≈ (1252t + 1223)Tm

[20]
tTh + (t + 1)Tm + (t2 + 1)Ts Th + Tm + Te

+(t2 − t)∣ID∣Ta + Te + tTpoly +tTa + tTs + 2Tp (t + 1)u + v

≈ (29t2 + 24t + 270)Tm + tTpoly ≈ (29t + 2664)Tm

[23]
(3t + 1)Th + 2Ts + tTp 2Th + Te

(t + 1)u + ∣q∣ +w
≈ (1269t + 81)Tm ≈ 1246Tm

[27]
(2t + 2)Th + 4Ts + tTp + Tpoly 3Th + tTm + 3Tp + Ts + Ta

t∣q∣ + 3u + ∣ID∣
≈ (1246t + 162)Tm + Tpoly ≈ (t + 3698)Tm

[26]
(t + 2)Th + (t + 2)Ts + tTp 4Th + tTs + Te

(t + 2)u +w
≈ (1252t + 104)Tm ≈ (29t + 1292)Tm

Ours
(2t + 1)Th + 4Ts + tTp + Tpoly 2Th + tTm + Tp + Ts

t∣q∣ + 2u + v
≈ (1246t + 139)Tm + Tpoly ≈ (t + 1275)Tm

●Tp: the cost of a pairing operation; ●Th: the cost of a hash operation; ●Tm: the cost of a modular
multiplication in Z∗q ; ●Te: the cost of a modular exponentiation in Z∗q ; ●Ts: the cost of a scalar multiplication
in an additive group or an exponentiation in a multiplicative group; ●Ta: the cost of an addition in an additive
group or a multiplication in a multiplicative group; ●Tpoly: the cost of constructing a polynomial; ●TCRT :
the cost of applying the Chinese remainder theorem; ●t: the number of receivers; ●∣ID∣: the bit length of an
identity; ●q: a large prime; ●u: the bit length of an element in an additive group; ●v: the bit length of an
element in a multiplicative group; ●w: the bit length of a symmetric encryption key.
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Table 3. Properties comparison. CPA, chosen plaintext attack.

Confidentiality
Anonymity Security Sender

Outsider Insider Model Authentication

[10] CCA △ △ ROM No
[11] – – – – No
[25] CCA CCA △ ROM No

[21,22] △ △ △ ROM No
[18] CPA CPA CPA ROM No
[29] – – – – No
[16] CPA CPA CPA ROM No

[31]-Scheme 1 CCA CCA △ ROM No
[31]-Scheme 2 – – – – No

[14] CPA CPA CPA ROM No
[19] CPA – – ROM No
[28] △ △ △ ROM No
[20] CPA CPA CPA STD No
[23] △ △ △ ROM No
[27] △ △ △ ROM Yes
[26] – △ △ ROM No
Ours CCA CCA CCA ROM Yes

△: the authors claimed that their scheme is CCA secure, but it has some security flaws or there exist some
problems in the security proofs.

7. Conclusions

In consideration of privacy preservation, Fan et al. first introduced the concept of anonymous
multi-receiver identity-based encryption in 2010. Many works on the topic have been proposed recently.
It is an interesting topic and worthy of study in both practical and theoretical aspects, because customers
always pay much attention to their privacy in modern societies.

However, there is no anonymous multi-receiver identity-based encryption scheme proposed in the
literature that possesses complete CCA security. In order to cope with the problem, we have proposed a
new anonymous multi-receiver identity-based encryption scheme, which is provably CCA secure in both
confidentiality and anonymity against not only outside attackers, but also inside attackers. Furthermore,
the proposed scheme has also achieved sender authentication. All of the properties of our scheme are
guaranteed based on the DBDH assumption and the M-DBDH assumption, whose hardness has been
proven in this paper.
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Appendix

A.1. Cryptanalysis to Other AMRIBEs

The notations used in this section are shown in Table 4.

Table 4. The notations.

Notation Meaning

G1 a cyclic groups of prime order q
G2 a cyclic groups of prime order q
e a bilinear mapping; e ∶ G1 ×G1 → G2

P a generator of G1

KGC the key generation center
Ppub the public key of KGC
M the message that the sender wants to send

(Ek,Dk) a secure symmetric encryption scheme with secret key k

Qi the hash value of IDi

A.1.1. Comment on Tseng et al.’S Scheme [21,22]

In 2012, Tseng et al. proposed an AMRIBE scheme with provable security, which is briefly described
and discussed as follows. The detailed description of the scheme and the proofs can be referred to [21].

Comments

The simulation will be terminated when the challenger B receives a five-tuple (P,QIDi, Ppub, cP,Xj)
from the adversary A and e(QIDi, cPpub) = Xj is true. If so, B will solve the gap-BDH problem
by outputting (Xj)u

−1
i , which equals e(P,P )abc. Since U = cP in the challenge phase, if A can

compute Xj , it implies that he or she is capable of computing vi = H1(Xj) and getting the symmetric
encryption/decryption key k = f(vi) corresponding to the challenge ciphertext, and thus, he or she will
be able to win the CCA game. However, the proof only aims at the attackers who are capable of getting
the key, k, before winning the CCA game. The authors have not considered the attackers who can win the
game without getting the key. As a result, their proof does not cover all possible attackers. Besides, the
same problem exists in the proof for anonymity, too. Similar situations happen in the schemes of [23,27].
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A.1.2. Comment on Tseng et al.’s Scheme [23]

In their proofs, the authors have not considered the attackers who can win the game without getting
the key. As a result, their proof does not cover all possible attackers. The comment is similar to that
of [21].

A.1.3. Comment on Zhang et al.’s Scheme [27]

In their proofs, the authors have not considered the attackers who can win the game without getting
the key. As a result, their proof does not cover all possible attackers. The comment is similar to that
of [21].

A.1.4. Comment on Zhang et al.’s Scheme [28]

In 2013, Zhang and Mao proposed an AMRIBE scheme as follows. The details of the scheme and the
proofs can be referred to [28].

Comments

In the proof of confidentiality, the H1 oracle is queried by the adversary with two input elements of G1.
Additionally, the two elements must be recorded in order to simulate the decryption oracle. However,
the hash function H1 has only one input element of G2 in the proposed scheme. Therefore, they cannot
simulate the decryption oracle successfully, and thus, the proof is incorrect. The same mistake also exists
in the proof of anonymity.

A.1.5. Comment on Wang’s Scheme [26]

In 2014, Wang proposed an AMRIBE scheme as follows. The detailed description of the scheme can
be referred to [26].

The Simulation of the CCA Game for Confidentiality

We only show the Decrypt oracle here.
Decrypt: C is given the ciphertext-receiver pair (C, IDj) where C = (R1i , . . . ,Rti , U1i , U2i , Vi). If

IDj does not belong to the challenge identity set Sa, C gets di and decrypts C. If ID ∈ Sa, C looks
for the table TH3 . If there exists the records (∗,R1i , . . . ,Rti , U1i , U2i , l

∗), ∗, l∗ are default. If ∗ = σj ,
C checks whether H(σj)P ?= U2i . If it holds, go to the next step. Otherwise, C checks the next record
until it holds. Suppose that the satisfied record is ∗ = σ∗ and the corresponding hash value is l∗. C
computes M∗ = Dl∗(Vi). If there exists the record (M∗,σ, U1i , U2i , z

∗), where z∗ is default, C returns
M∗. Otherwise, fail.

Comments

An adversary can make the Decrypt oracle perform decryption incorrectly as follows.

1. Choose a receiver set {IDd1 , ID2, . . . , IDt}, where IDd1 is the target identity.
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2. Choose σ, r to compute Rd1 ,R2, . . . ,Rt and U1 as that in the Encrypt algorithm of their scheme.
3. Choose σ′,M , and compute U2 =H(σ′)P , l =H3(σ′,Rd1 ,R2, . . . ,Rt, U1, U2).
4. Query H4(M,σ′, U1, U2).
5. Set V = El(M) and C = (Rd1 ,R2, . . . ,Rt, U1, U2, V ).

The ciphertext C is invalid since σ used to compute Ri and σ′ used to compute l and U2 are not
identical, so that the authorized receivers ID2, . . . , IDt cannot decrypt C. However, if the adversary
queries Decrypt (C, IDd1), the simulator will successfully perform the Decrypt oracle and return M .
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