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Abstract
As the rising popularity of Bitcoin, people tend to use Bitcoin wallets to manage the keys for spending or receiving funds.
Instead of generating randomly pairs of keys, which may need higher space complexity for key management, hierarchical
deterministic (HD) wallets derive all the keys from a single seed, which is sufficient to recover all the keys, to reduce the
complexity of key management. In an HD wallet, it allows users to generate child public keys from the parent public keys
without knowing any of the corresponding private keys. This feature allows a permitted auditor to derive all the public keys
for auditing. However, this feature makes HD wallets suffered from so-called privilege escalation attacks, where the leakage
of any child private key along with its parent public key will expose the other child private keys. To confront with this security
flaw, we propose a novel HD wallet scheme that gives out a signature with trapdoor hash functions instead of directly giving
private keys for signing. Since it conceals private keys from any child nodes, it can prevent from privilege escalation attacks.
Nevertheless, the proposed scheme also provides unlinkability between two public keys to achieve anonymity of user identities
and high scalability to the derivations of huge amount of keys. Thus, the proposed scheme achieves user anonymity, public
key derivation, and high scalability.

Keywords Bitcoin · HD wallets · BIP032 · Privilege escalation attacks · Schnorr signature · Trapdoor hash function

1 Introduction

As Bitcoin was first introduced in 2008 [16], more and more
people intend to use this state-of-the-art decentralized cur-
rency since its benefits are significant [19]. A Bitcoin system
can simply be viewed as an implementation of a public
key signature system combined with blockchain technology,
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where no trusted third party is necessary. In such a system,
each of transaction is kept and shared simultaneously across
plenty of nodes in a distributed ledger which is publicly
maintained by the whole group of Bitcoin network users,
called “miners”. Compared to e-Cash [21], Bitcoin is totally
decentralized, since the miners benefit from an incentive
mechanism which encourages them to support the network
without any central authority. The advantage of decentraliza-
tion inBitcoin is that all transactions are transparentwhile the
users’ personal identities are hidden [3,8]. Furthermore, the
users do not require to trust any third party [15] to exchange
funds among them, thus a single point of failure [13] can be
avoided [2].

In a Bitcoin system, numerous pairs of keys will be ran-
domly generated by users to pay or receive funds. In order to
achieve anonymity, each key is used only once to make the
transactions unlinkable. However, this mechanism makes it
more complex for key managements, especially when a user
may own many pairs of keys. To confront with the key man-
agement issue, several different programs called “Bitcoin
wallets” have been created. Bitcoin wallets can be separated
into different ways according to protection mechanisms for
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securing private keys [9]. One simple method supported by
the original Bitcoin client is to store private keys in a local
wallet file. Nevertheless, a malware may lead to the loss of
funds in an infected computer or local storage device since
all of the key would be leaked once the computer/device has
been hacked. Because of the malicious intent of illegal users,
password-protected wallets is much more preferable, which
allow users to encrypt their wallet files using a key gener-
ated by their passwords. Another shortcoming is that a new
key needs to be generated for each new transaction since key
reuse would cause the linkability. Therefore, each key must
be backed up frequently to ensure that it can still be accessed
once the wallet file is compromised.

In order to simplify the backup procedures, wallets with
password-derived keys, known asHierarchical Deterministic
(HD)Wallets, are proposed in BIP32 standard [23]. In an HD
wallet mechanism, a master key will first be derived from a
random seed, and the extend it to all the child keys. A seed
can be easily stored in any offline key storage (e.g., paper
wallet) for backup, thus frequent backups are avoided. Hier-
archical deterministic wallets allow the parent keys to extend
child keys and the child keys extend grandchild keys, and so
on. That makes an HD wallet being able to be presented a
tree-like structure. A more impressive feature of HD wallets
is that a child’s public key can be derived from a parent pub-
lic key without any private information. This feature allows
one to issue a chain of receive-only addresses in an untrusted
environment. Those addresses will be used to receive pay-
ments in an insecure server, but it would not be allowed to
access the merchant’s account to spend funds. This mech-
anism seems convenient for key management; however, it
suffers from one kind of attack, called privilege escalation
attack [6]. In such attack, once a derived child private key
alongwith a parent extended public key at any level is leaked,
it will lead to the leakage of all the child private keys. What’s
more, the master private key might also be recovered to the
adversary due to the reversible relationship between child
keys and parent keys. Privilege escalation attacks are widely
discussed in several Bitcoin forums [5] and research com-
munity [11] and are mentioned in the specification of BIP32
[23] as well. We refer the reader to [5,6,11] for more details
about privilege escalation attacks.

In this paper, we survey the related works [7,10,12,23]
that attempted to fix the vulnerability cause by privilege
escalation attacks. In BIP32 standard [23], the risk of par-
ent key leakage has been resolved by adding hardened key
derivation functions in the recent changes. The hardened key
derivation functions combine parent private extended keys
with an index to derive the child key rather than using the
parent public key. However, this kind of derivation breaks
the relationship between parent public and child extended
keys. Therefore, it is unable to generate the child public
key without knowing the parent private key, which shall

be an important feature of HD wallets. In 2015, Gutoski
et al. proposed a new HD wallet scheme [12] which tol-
erates key leakage. Instead of deriving all keys from one
single master key, in their scheme,m master keys are used to
derive child keys so that it is allowed to tolerate the leak-
age of up to m private keys. Nevertheless, they sacrifice
the flexibility of generating child keys since the number
of m is determined once a wallet is created. Furthermore,
it would encounter an exponential growth of public key
size. In the same year, Goldfeder et al. [10] presented a
threshold signature scheme that realizes deterministic wal-
lets for shared addresses. In their scheme, the master private
key is secretly shared among t participants. Thus, partic-
ipants can generate their new public and private keys via
the derivation of their shares. Nevertheless, once more than
t participants collude with each other, they are able to
reconstruct the master private key. In 2017, Courtois et al.
[7] proposed a key management technique combined with
two distinct elliptic curve cryptography (ECC) arithmetic
properties (i.e., addition and multiplication) to derive keys.
However, their scheme is still suffered from privilege esca-
lation attacks, since the construction is similar to the original
one.

To deal with the aforementioned issues, we proposed a
hierarchical deterministic wallet based on Schnorr signature
[20] and trapdoor hash functions. In our wallet scheme, when
a user wants to withdraw a fund, she/he needs to prove the
ownership of the public key associated to the fund. There-
fore, instead of giving a private key to the child node, i.e.,
the child key holder in the tree-like structure, we give the
child node a signature associated to the corresponding pub-
lic key of the child node. This is how we achieve security
against privilege escalation attacks, since no private keys
are given to the child nodes. Moreover, the unforgeability
of Schnorr signature implies that the private keys cannot
be recovered from signatures. Furthermore, our scheme also
owns the feature of public derivability, i.e., deriving child
public keys from parent public key. Thus our scheme can
be deployed in untrusted surroundings, and even remain
secure against an untrusted third-party auditor who may
intend to view every transaction related to the wallet in
detail.

2 Preliminaries

We present some preliminaries in this section, including
Schonorr signature scheme [20], trapdoor hash function [22],
hash-based message authentication code [4] and hierarchical
key derivation function.
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2.1 Schnorr signature

A Schnorr signature is said to be a secure signature scheme
if discrete logs is secure and H is modeled as random oracle
[17].

Definition 1 Let G be a group of large prime order q, with
generator g, i.e., gq = 1 mod p. q is chosen as a subgroup
of Z

×
p , a multiplicative cyclic groups of integers modulo

prime p, such that q | p − 1. An one-way hash function
H : {0, 1}∗ → Zq .

– KeyGen: Choose a secret signing key x ∈ Z
×
q and

compute corresponding public key y = gx ∈ G for pub-
licly verification. A public-private key pair is denoted as
(gx , x).

– Signing: To sign a message M ∈ {0, 1}∗, choose a ran-
dom k ∈ Z

×
q , r = gk mod p. Let the signature signed

on M denoted as the pair (s, e), where e = H(r ‖ M)

mod p (note that r is represented as {0, 1}∗) and s =
k − xe mod q.

– Verifying: Let rv = gs ye mod p and ev = H(rv ‖ M).
Check if ev = e then the signature pair (s, e) is verified,
else ⊥.

– Correctness: The proof of correctness can be computed
to see if the signedmessage ev equals the verifiedmessage
e as follows:

rv = gs ye

= gk−xegxe

= gk

= r .

2.2 Trapdoor hash function

A trapdoor hash function is a provably secure one-way hash
function which is collision resistant and non-reversible (i.e.,
it is hard to find its inverse value) without any special infor-
mation or a secret key. While for a trapdoor holder, he can
take anymessage as input andfind any collisionwith the same
hash value.A trapdoor hash function scheme consists of three
generating algorithms (KeyGen, HashGen, ColGen) and has
two properties. A trapdoor hash function can be defined as
follows:

Definition 2 Let HK be a publicly known hash key and TK
be a private trapdoor key of the trapdoor hash function. Any-
one can compute a trapdoor hash function with the public
hash key HK, denoted by THHK (). There are three generat-
ing algorithms:

– KeyGen: The probabilistic polynomial-time (PPT) algo-
rithm takes a security parameter λ as input. It outputs a
pair of trapdoor hash keys (HK, TK).

– HashGen: The PPT algorithm takes a messagem, a ran-
dom number r , and public keyHK as input. It outputs the
hash value THHK (m, r).

– ColGen: The PPT algorithm takes the message m, the
random number r and an message m′, that m′ �= m and
private trapdoor key TK. It outputs a collision value c
which can be taken as input and compute the same hash
value with the public key HK, such that

THHK (m, r) = THHK (m′, c).

Definition 3 A trapdoor hash function has the following
properties.

– Collision resistant:There does not exist a PPT algorithm
A that inputs a message m, a random number r and the
public keyHK outputs the collision pair (m′, c) satisfying

THHK (m, r) = THHK (m′, c).

– Semantic security:A trapdoor hash function is said to be
semantically secure if it does not disclose any information
about message m, even if a trapdoor hash value C is
given. That is, THHK (m, r) = C and THHK (m′, c) are
computationally indistinguishable.

2.3 Hash-basedmessage authentication code
(HMAC)

Ahash-basedmessage authentication code (HMAC) is a spe-
cific type of message authentication code (MAC) scheme
based on cryptographic hash function. Different from pub-
lic hash functions in common use which any person can
compute without any secret key involved in the calcula-
tion, HMAC can utilize any cryptographic hash function
like SHA-2 or MD5 to combine with MAC mechanism
which is used to authenticate a message using a secret key.
The HMAC scheme enjoys several significant advantages of
security properties such as collision resistance or protection
against some kinds of attacks like birthday attacks, extension
attacks, and key recovery attacks.

Definition 4 HMAC has the following properties.

– One-way property: It is computationally infeasible to
find M from H(M).

– Weak collision resistance: For any given M , it is com-
putationally infeasible to determine another different
message M ′ such that H(M ′) = H(M).

– Strongcollision resistance:It is computationally infeasi-
ble to determine amessagepairM, M ′ such thatH(M) =
H(M ′).
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2.4 Hierarchical deterministic key derivation

In order to avoid the requirement of backups frequently,
deterministic wallets permit that one can generate a mas-
ter key to derive all the other keys from a single seed. A
seed is generated from a pseudo-random number generator
and stored in an offline key storage secretly. In determin-
istic wallets, only a single backup for the seed at creation
time is sufficient to recover all the derived keys. However,
deterministic wallets only perform a single chain of keys that
are not proper to some use cases since deterministic wal-
lets does not allow partial reveal of keys. Hence, in BIP32
standards, hierarchical deterministicwallets (HDwallets) are
proposed to derive keys in a tree structure so that HD wallets
perform many chains of keys for the additional business pur-
poses. BIP32 implements hierarchical key derivations using
secp256k1’s elliptic curve to calculate the derivation of keys.
In the following, we will show how to extend child keys in
the defined key derivation (CKD) functions.

Definition 5 There is a 32-byte nonce called chain code used
to extend keys, denoted as c. Given an extended private key
represented as (k, c) and index i , with k the normal pri-
vate key, and c the chain code, it is possible to compute
corresponding private child extended key. In the same way,
given extended public key (K , c) and an index i , correspond-
ing public child extended key can be computed. Point(p) is
defined as the coordinate pair resulting from EC point mul-
tiplication of the secp256k1 base point with the integer p.

– Master key generation: A pair of master key (m, M) is
generated from a seed of chosen length between 128 and
512bits.

1. Generate a seed r fromapseudo-randomnumber gen-
erator (PRNG) of length between 128 and 512bits
(256bits is advised).

2. Let I = HMAC-SHA512 (s, r), where s = “Bitcoin
seed” is a byte string.

3. Let IL , IR be left sequence and right sequence of I ,
respectively, after splits I into two32-byte sequences.

4. IL is the master secret key m.
5. IR is the master chain code.
6. Master public key M = Point(m).

– ((Kpar , cpar ), i) → (Ki , ci ): The function computes a
child extendedpublic key from theparent extendedpublic
key.

1. Let I = HMAC-SHA512 (cpar , Kpar ‖ i).
2. Let IL , IR be left sequence and right sequence of I ,

respectively, after splits I into two32-byte sequences.
If IL is invalid in case of IL ≥ n, where n is the order
of G of secp256k1, one should choose another value
of i .

3. Returned child key Ki = Point(IL) + Kpar . Note
that the next value for i should be proceeded if Ki is
the point of ∞.

4. Returned chain code ci = IR .

– ((kpar , cpar ), i) → (ki , ci ): The function computes a
child extended private key from the parent extended pri-
vate key.

1. Let I = HMAC-SHA512 (cpar ,Point(kpar ) ‖ i).
2. Let IL , IR be left sequence and right sequence of I ,

respectively, after splits I into two32-byte sequences.
If IL is invalid in case of IL ≥ n, where n is the order
of G of secp256k1, one should choose another value
of i .

3. Returned child key ki = IL +kpar . Note that the next
value for i should be proceeded if ki equals to zero.

4. Returned chain code ci = IR .

2.5 Privilege escalation attack

Aprivilege escalation attack in BitcoinHDwallets is a severe
attack that a collusion between a child key owner and the
auditor may cause all keys in the wallet compromised. In
the following, we will present a Bitcoin HD wallet in BIP32
suffered from a privilege escalation attack.

Definition 6 For a given child private key ki , parent public
extended key (Kpar , c) and the corresponding index i , the
adversary can recover parent private key kpar by computing

kpar = ki − IL ,

where HMAC-SHA512(cpar , Kpar ‖ i) = (IL ‖ IR).

3 The proposed algorithm

In a hierarchical deterministic wallet, all of the child keys are
derived from a single master secret key. However, the mas-
ter secret key might be disclosed to adversary if any single
derived key and master public key are leaked. We propose
a new hierarchical wallet signature algorithm secure against
a collusion between the auditor and any delegated child key
owner. In the proposed algorithm, we adopt Schnorr signa-
ture rather than the original elliptic curve digital signature
(ECDSA) and choose the same parameters as Schnorr signa-
ture. We distribute the signature value containing a trapdoor
hash value which is changeable for a trapdoor key holder in
substitute for giving out any child key to a specific child. The
notations used in our algorithm are defined in Table 1. We
will describe our algorithm in details as follows.

In the proposed algorithm, any user will have a position
in the hierarchy defined by the index of users, denoted as
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Table 1 The notations

Notation Meaning

Eindex A user with a position in the hierarchy tree defined
by the index

param The public parameters (G, p, q, g)

msk The master secret key

mpk The master public key

THHK () A secure trapdoor hash function

THK A pair of trapdoor hash key

i The index in hierarchy tree

sski A child private extended key

spki A child public extended key

xi A child private signing key

yi A child public verification key

m An arbitrary message

c, d, k The random numbers

m̃ A message containing information of receiver’s
address and payment.

σ A signature for Bitcoin payment or used to
delegation

Eindex. We assume that (E0, Et , En, T ) represents a root
KGC, lower-level KGCs, regular users, and a auditor, respec-
tively. The root KGC is the highest-level ancestor of all users
in the hierarchy tree who has capability to derive all his
descendants. The lower-level KGCs are delegated to gen-
erate the signature of his child while he must receive his own
signature value and some parameters from the root KGC.
However, any lower-level KGC is not permitted to generate
the signatures of his parents and siblings. A regular user is
only allowed to generate his own signature. An auditor is per-
mitted to derive public keys of all users for auditing without
knowing any private key.

3.1 Initialization(1�) → (param)

This algorithm takes security parameter 1λ as input and com-
pute G to be a group of large prime order q ∈ Z

∗
p, where

q | p−1, |p| = K , with a generator g ofG. System parame-
ters (G, p, q, g) are publicly distributed, denoted as param.

3.2 Setup(param)→ (msk,mpk, THK0, n, e0)

The root KGC (i.e., an HD wallet owner) performs the fol-
lowing steps:

1. Choose a 64 bytes root seed s ∈ Zp froma secure pseudo-
random generator.

2. Select master private key x = s mod q and compute
master public key y = gx mod p.

3. Randomly pick k ∈ Z
∗
q , c, d ∈ {0, 1}256.

4. Compute κ = gk

5. Generate THK0 = (HK0,TK0), where HK0 is publicly
distributed. Let THHK0() : {0, 1}∗ → Zq be a secure
trapdoor hash function.

6. Select r ∈ Z
∗
q , M ∈ {0, 1}∗ and compute e0 =

THHK0(r , M).
7. Set n = (c, d, κ).

3.3 HMAC(k,m) → (hL ‖ hR)

1. Compute h = HMAC-SHA512 (k,m).
2. Split h into two 256-bits sequences hL and hR .
3. Return (hL ‖ hR).

3.4 Set-Child-Private-Key(sskpar, i) → sski

Let the i th child be denoted as Ei and Ei ’s parent be denoted
as Epar . The root KGC performs the following steps:

1. If Ep is the root KGC, set ssk par = (x, c), if not, set
ssk par = (xpar , cpar ).

2. Compute (IL ‖ IR) = HMAC (cpar , i).
3. Compute xi = xpar + IL mod q.
4. Set child chain code ci = IR .
5. Return sski = (xi , ci ).

3.5 Set-Child-Public-Key(spkpar, i) → spki

Let the i th child be denoted as Ei and Ei ’s parent be denoted
as Epar . One can compute the corresponding public key of
Ei in the following:

1. If Epar is the root KGC, set spk par = (y, c), if not, set
spk par = (ypar , cpar )

2. Compute (IL ‖ IR) = HMAC (cpar , i).
3. Compute

yi = ypar × gIL = gxpar × gIL = gxpar+IL mod p.

4. Return spki = (yi , ci ).

3.6 Root-KGC-SigGen-For-
Child(m, THK0, x, n, e0, i) →
(�i, THKi)

The root KGC E0 can generate a signature σi on an arbi-
trary message m ∈ {0, 1}∗ using private signing key xi of Ei

derived from master secret key msk in the following steps:

1. Let Ei ’s parent be denoted as Epar . If Epar is the root
KGC, set (xpar , n par ) = (x, n).

2. Compute (DL ‖ DR) = HMAC (dpar , i) and set di =
DR .
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3. Compute ki = kpar + DL mod q and then compute
κi = gki .

4. Generate i th child trapdoor hash keyTHKi =(HKi ,TKi )

and trapdoor hash function using public hash key HKi is
denoted as THHKi ().

5. Select γi ∈ Z
∗
q and compute Mi = THHKi (γi , (κi ‖ m)).

6. Use TK0 to find the collision ri ∈ Z
∗
q

ei = THHK0(ri , Mi ) = THHK0(r , M) = e0.

7. Compute the signature σi = (ei , si , ri , γi ,m), such that

ei = THHK0(ri , Mi ),

si = ki − xi · ei mod q.

8. If Ei is a regular user, output (TKi , κi , σi ).
9. If Ei is a designated lower-KGC, output (TK0,TKi ,

ni , σi ).

3.7 Lower-level-KGC-SigGen-For-
Child(mj, THK0, nt, j) →
(�j, THKj)

The lower-level KGC Et can use its own signature value
σt = (et , st , rt , γt ,mt ) with nt to generate the signature σ j

of its child E j on an arbitrary message m j ∈ {0, 1}∗ in the
following steps:

1. Compute (I j L ‖ I j R) = HMAC (ct , j), (DjL ‖ DjR) =
HMAC (dt , j).

2. Compute c j = ct + I j L mod q, and set c j = I j R .
3. Compute κ j = κt · gDjL mod q, and set d j = DjR .
4. Generate the j th child trapdoor hash key THK j =

(HK j ,TK j ) and trapdoor hash function using public
hash key HK j is denoted as THHK j ().

5. Select γ j ∈ Z
∗
q and compute Mj = THHK j (γ j , (κ j ‖

m j )).
6. Use TK0 to find the collision r j ∈ Z

∗
q

e j = THHK0(r j , Mj ) = et

7. Compute the signature σ j = (e j , s j , r j , γ j ,m j )

e j = THHK0(r j , Mj ),

s j = st + DjL − I j L · e j mod q
= kt − xt · e j + DjL − I j L · e j mod q
= kt + DjL − (xt + I j L) · e j mod q
= k j − x j · e j mod q.

8. If E j is a regular user, output (TK j , κ j , σ j ).
9. If E j is a designated lower-KGC, output (TK0,TK j ,

n j , σ j ).

3.8 UserSigGen(m̃,�i,�i, THKi) → �̃

A user can generate his own signature σ̃ on a message m̃ ∈
{0, 1}∗ for Bitcoin payment using the given signature value
σi = (ei , si , ri , γi ,mi ), κi and TKi in the following steps:

1. Find the collision γ̃ ∈ Z
∗
q using TKi .

2. Compute the signature σ̃ = (ẽ, s̃, ri , γ̃ , m̃), where

ẽ = THHK0(ri ,THHKi (γ̃ , (κi ‖ m̃)))

= THHK0(ri ,THHKi (γi , (κi ‖ mi ))) = ei ,
s̃ = si .

3.9 Verifying(pk,�) = 1/0

Tocheck if the signatureσ = (e, s, r , γ,m) is valid, a verifier
using public verification key pk = y, and public hash key
(HK0,HKi ) for verification:

1. Let rv = gs ye.
2. Let ev = THHK0(r ,THHKi (γ, (rv ‖ m))).
3. The verifier outputs 1 if ev = e, else 0.

3.10 Correctness

The correctness computation is shown below:

rv = gs ye

= gk−xegxe

= gk .

Thus,

ev = THHK0(r ,THHKi (γ, (rv ‖ m)))

= THHK0(r ,THHKi (γ, (gk ‖ m))) = e.

4 The proposed HDwallet system

The construction of our hierarchical deterministic Bitcoin
wallet (HD wallet) scheme based on Schnorr Signature con-
sists is presented in this section. Our scheme consists of
nine algorithms: Initialization, Setup, HMAC, Set-Child-
Private-Signing-Key, Set-Child-Public-Key, Root-KGC-
SigGen-For-Child, Lower-level-KGC-SigGen-For-Child,
UserSigGen, Verify. We consider a scenario of our scheme
that a HDwallet owner (i.e., the root KGC) wants to delegate
his ability to use his child signing key to generate a signature
(i.e., the ability of paying his certain part of money) and a
auditor would like to view every detailed transaction of the
wallet. Rather than giving out the child signing key to the
delegated user, the owner computes the signature of his child
and send it along with some secret value to the delegated one
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Table 2 The comparisons
between others and our scheme

Privilege escalation
attack resistant

Without n-of-
t threshold

Public key
derivation

High scalability Master public
key size

[23] Yes Yes No No O(1)

[12] Yes No Yes No O(t)

[10] Yes No Yes No O(1)

[7] No Yes Yes Yes O(1)

Ours Yes Yes Yes Yes O(1)

t : the amount of shares of the secret key
n: the amount of participants sharing the secret key

so that the delegated one can recompute the child signature
on a new message. The wallet owner also needs to reveal his
master public key and the secret value to the auditor in order
that the auditor can compute the corresponding public key
of every transaction of the wallet. A delegated user can be a
lower-level KGC or a regular user. A lower-level KGC is able
to compute the signature of his own or his child on amessage;
besides, it can delegate his ability of using his child signing
key to sign to another lower-level KGC below him or a regu-
lar user. A regular user only has the capability of generating
the signature of his own on a message. After the scenario of
our scheme is presented, the construction of our scheme is
also illustrated in Fig. 1. We describe the construction of our
scheme in details as follows.

– Setup

(a) The root KGC executes Initialization(1λ) to gener-
ate system parameters param and publishes param
to all users.

(b) The root KGC executes Setup(param) to generate
master key pair (msk,mpk) = (x, y), trapdoor hash
key (HK0,TK0), secret random values n = (c, d, κ).
The root KGC sends extend public key spk = (y, c)
to the auditor while keeps extend private key ssk =
(x, c) and (d, κ) as secret. Then the root KGC pub-
lishesHK0 to all users. In the following, allHKwould
be public known for everyone.

– KeyGen

(a) With the index i , the root KGC extends i th child pri-
vate signing keys xi , child chain code ci by executing
Set-Child-Private-Signing-Key (ssk par , i), where
ssk par is parent extended private key and keeps xi as
secret. Note that the i th child chain code ci can also be
computed by the auditor executing HMAC(cpar , i).

(b) With the index i , users extend i th child public signing
key yi byexecutingSet-Child-Public-Key(spk par , i),
where ypar , spk par is parent extended public key. All
users can take hash of yi as Bitcoin address to publish
for receiving funds.

– Delegation

(a) The root KGC can run Root-KGC-SigGen-For-
Child(m,THKi , x, n, e0, i) to output a signature σi
of i th child Ei on a messagem and parameters di , κi .
Let the lower-level KGC be Et where the index is
t in the hierarchy tree. When the root KGC wants
to delegate his ability to generate child signature
of Et ’s child, Et ’s grandchild and so on. He sends
(TK0,TKt , nt , σt ) to a lower-level KGC Et . If the
root KGC just intend to give out his ability to gener-
ate a signature of i th child on a message m, he sends
(TKi , κi , σi ) to the regular user Ei .

(b) With the given ability to generate the child signature,
a lower-level KGC Et can give his child the ability
to sign on a new message. Let E j be Et ’s child with
index j . For given (TK0,TKt , nt , σt ), the delegated
lower-level KGC Et can generate his child signature
σ j on a new message m j by running Lower-level-
KGC-SigGen-for-child (m j ,THK0,THKt , nt , σt , j)
to get (THK j , κ j , σ j ) and sends it to E j .

(c) Suppose Et ′ is another lower-level KGC with index
t ′. If Et ′ is one of Et ’s child where t < t ′, for given
(TK0,TKt , nt , σt ), Et can delegate the ability to gen-
erate the signature of Et ′ ’s child on a new message
m j by executing Lower-level-KGC-SigGen-for-
Child(TK0,TKt , nt , σt , t ′) to get (TK0,TKt ′ , nt ′ , σt ′)
and sends it to Et ′ .

– Paying Bitcoin

(a) Let a message m̃ consisting of an address of the
receiver and some conditions which have to be ful-
filled to include those unspent Bitcoin. While anyone
of HD wallet user publishes his signature on m̃, it is
regarded as paying Bitcoin to the receiver contained
in the signature if it is verified valid.

(b) For the root KGC, he can execute Root-KGC-
SigGen-For-Child algorithm to generate any signa-
ture of his child on m̃.

(c) For a lower-level KGC, he can execute UserSigGen
algorithm to generate his own signature on message
m̃ or he can execute Lower-level-KGC-SigGen-for-
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Fig. 1 The system architecture

Child algorithm to generate the child signature on
message m̃.

(d) For a regular userwho is not permitted to generate any
of child signatures, he runsUserSigGen algorithm to
generate the signature of his own on message m̃.

– Publicly verifying

(a) For a given signature σ , any of other users in Bitcoin
network can execute Verifying(pk, σ ) to verify the
signature provided by its owner. The output is 1 if
valid, else 0.

5 Threat models, security proofs and
analyses

In this section, we prove that the proposed scheme is secure
against adversaries defined in the following threat model.We
focus on an adversary (forger) F who tries to gain as much
information as possible in order that he could forge a signa-
turewhich not belongs to him.Weassume that such adversary
is from within the users we defined in Sect. 3 and from out-
side. Therefore, an adversary in our scheme can be denoted as
one of as follows: malicious lower-level KGCs, a malicious
regular user colludedwith a trustless auditor or other external
users. Considering a malicious lower-level KGC may obtain
more information than malicious regular users, we turn to
model a malicious lower-level KGC to prove the security of
our scheme.With respect to the target for the adversaries try-
ing to forge, we also take the following security analysis to
model the different types of adversaries. In the threat mod-
els, an adversary F , who is a polynomial-time attacker, can
interact with a simulator S.

Fig. 2 The unforgeability game I

5.1 Security againstF1 adversary

5.1.1 Threat model

Let the security game involving an polynomial-time adver-
sary (forger) F1 proceed as follows.

Definition 7 (game I) F1 interacts with a simulator S in the
following game.

– Setup.S generates the parameters param, trapdoor hash
key (HK0,TK0), secret nonce n and sends params =
(param,HK0, n) to F1.

– Query. In this phase, F1 has adaptively query to Public-
Key, Hash-Key, Trapdoor-Key, and Sign.

– Forgery. F1 outputs a forgery (σ ∗,m∗) and wins the
game if the following conditions hold.

– F1 is restricted to querySign(m∗, i∗) andSign(m∗, i ′).
– F1 is restricted to query TraKey(i∗) and TraKey(i ′).
– The forgery is valid, i.e., Verify(pki∗ , σ ∗) = 1.

In this model, we assumeF1 be amalicious lower-level KGC
LK1 trying to forge a descendant user’s signature σ ∗ in con-
dition of giving no corresponding trapdoor hash function
key which is actually generated by another lower-level KGC
LK ′. Aiming for the forgery, the LK1 can collude among
lower-level KGCs and regular users to ask for their signa-
tures and secret nonces except his target user and the target
user’s ancestor node LK ′. Besides,LK1 has parameters, pub-
lic hash keys and public verification keys which are publicly
known for all internal users. Our scheme is said to be secure
in this model if there exists no adversary F1 who can forge
the target signature with non-negligible probability (Fig. 2).

5.1.2 Security proof

Theorem 1 Our scheme is secure against F1 adversary
assuming that the trapdoor hash function is collision resis-
tant.
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Proof Assume that there exists a polynomial-time F1 who
can forge a signature with non-negligible probability. Then,
we construct a probabilistic polynomial-time algorithm S
that has non-negligible probability to win the collision-
resistant-trapdoor-hash-function-game (CRTHFG). At first,
F1 sets the index of target to i∗ and sends i∗ to S.
(hk, h,m0, r0) is given to S. S is allowed to make queries
THash(m) = γ to the CRTHFG, such that THhk(m0, r0) =
THhk(m, γ ). In this game,S simulates the oracles to response
all queries for F1 as the following.

– Setup. S executes the Initialization algorithm and Setup
to generate the parameters param = (G, p, q, g)
and (msk,mpk,THK0, n). Then, S sends params =
(param,mpk,HK0, n) to F1.

– Query. In this phase,F1 makes queries as follows and S
records the result of queries corresponding to the index
in a local maintained table T B. IfF1 makes a query with
same index asked before, S looks up its T B to find the
corresponding entry and returns it to F1.

– Public-Key Oracle. Upon receiving a Public-Key
query with index i , S executes Set-Child-Private-
Key to generate a secret key xi and returns public
key pki = gxi to F1.

– Hash-Key Oracle. Upon receiving a Hash-Key query
with index j , S checks if j = i∗, then S sets HK j =
hk and returnsHK j toF1. Else, S generates trapdoor
hash key THK j = (HK j ,TK j ) and returns HK j to
F1.

– Trapdoor-Key Oracle. Upon receiving a Trapdoor-
Key query with index i , where i �= i∗, S returns TKi

to F1.
– Sign Oracle.F1 makes a Sign query with messagem,
index i , where i �= i∗. S executes UserSigGen and
returns σi to F1.

– Forgery. In this phase, F1 tries to make a forgery. If F1

can output a valid forgery σ ∗ = (e∗, s∗, r∗, γ ∗, m̃), such
that

e∗ = THHK0(r
∗, h)

= THHK0(r
∗,THhk(γ

∗, gs
∗ · pki∗e∗ ‖ m̃)).

After receiving the valid σ ∗ = (e∗, s∗, r∗, γ ∗, m̃) from
F1, S can find the collision (γ ∗,m∗), such that

γ ∗ = γ ∗,
m∗ = gs

∗ · pki∗e∗ ‖ m̃.
(1)

Thus, we can win the CRTHFG with the non-negligible
advantage as follows:

AdvS = Pr[(m∗, γ ∗) ← S(hk, h,m0, r0) :
h = THhk(m0, r0) = THhk(m∗, γ ∗)].

5.2 Security analysis

In this section, we present an analysis of the security prop-
erties of our scheme in the following.

5.2.1 Security against privilege escalation attack

Our scheme is considered secure against privilege escala-
tion attack compared to the BIP32 HD wallet. In the BIP32
HD wallet, users need to delegate their derived child private
key to children, thus children can pay the funds correspond-
ing to those keys. However, combination of a derived child
key along with the higher level public key always makes the
recovery of parent keys. Instead of giving any private key to
the child, we give out a signature to the child so that he can
prove the ownership of funds. In our scheme, the private key
used to sign may only be known to the HD wallet owner,
hence it prevents such attack.

5.2.2 The unforgeability of another lower-level KGC’s
signature

Considering a malicious lower-level KGC LK1 trying to
forge a signature of another lower-level KGC LK ′ who is
actually absent in the hierarchy tree, LK1 might collude
among lower-level KGCs and regular users to ask for their
signatures, secret hash keys and secret nonces except his tar-
get LK ′ and LK ′’s ancestor node. Besides, LK1 generates
a pair of trapdoor hash key for the forgery and LK1 has all
public parameters which are publicly known for all internal
users, including group parameters, public hash keys and pub-
lic verification keys. However, a Schnorr signature has been
proved secure. If LK1 makes a valid forgery, it means that
a Schnorr signature can also be forged in condition of no
knowledge of the corresponding private key.

5.2.3 The unforgeability of a trustless auditor

A wallet owner may partially disclose his public keys and
chain code to a auditor who is delegated the ability to derive
certain child public keys from given parent public keys and
chain codes. Considering a trustless auditor T tries to derive a
child public key as his target fromaparent public key inwhich
he has no corresponding parent chain code. In condition of
given no chain code of target’s ancestors, T cannot find the
target more efficiently than a 2256 brute force of HMAC-
SHA512.

5.2.4 The unlinkability of public keys for external users

ABitcoinwallet can be said to have anonymity if it would not
be possible to link addresses to the identity of their owners.
For external users (this means the users not included in the
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hierarchy tree of the wallet), it is not feasible to distinguish
one derived public key from another in our scheme if there is
no information (e.g., chain code) leaked between the parent
public keys and the derived child private keys. For instance,
given public key pk and index i, i ′, the probability of deriv-
ing child public key pk′ is Pr1 = Pr [pk′ = pk · gIL ] or
Pr2 = Pr [pk′ = pk · gI ′

L ], where IL = HMAC(c, i) and
I ′
L =HMAC(c, i ′). Since the chain code involved in HMAC
function is hidden from external users, the hash value is indis-
tinguishable after taking different index as input, and thus the
probabilities of Pr1 and Pr2 should be same in condition of
no knowledge of the chain code c. Consequently, our scheme
provides the unlinkability of public keys for external users.

6 Comparisons

This section discusses the properties of HD wallet schemes
and compares the properties between the proposed scheme
and the other related schemes in Table 2. The properties of
HD wallet schemes are discussed in the following.

– Privilege escalation attack resistant: This kind of attack is
considered a severe vulnerability as mentioned in Sect. 1.
In our scheme, it conceals the corresponding private keys
from child nodes to prevent from privilege escalation
attacks.

– Without n-of-t threshold: This propertymeans that no use
of t-out-of-n threshold can prevent a collusion between
n participants with a threshold of t to recover the mas-
ter private key. Gutoski et al. [12] adopt m-of-m policy
to tolerate the leakage of up to m − 1 private keys.
Goldfeder et al. [10] split the master secret key into n
shares and distribute them to child nodes which is per-
mitted to reconstruct the master private key when at least
t nodes participate. In our scheme, the master private key
or child private keys would never been revealed to any
child nodes.

– Public key derivation: The scheme with this property
allows an auditor to have the capability to derive pub-
lic keys without knowing any private key, thus he can
view every transaction related to those keys. Wuille et
al. adopt a hardened key derivation function to prevent
privilege escalation attacks; however, it breaks the rela-
tionship between parent public key and child public key.
In our scheme, for given (spk par , i), one can compute
the i th child’s public key by executing Sect. 3.5.

– High scalability: The key owner can derive his pub-
lic/private keys and delegate them to child nodes at any
time. One scheme is deemed to be high scalability if it
has the properties of without n-of-t threshold and public
key derivation simultaneously.

Table 3 Computation overhead of our scheme

Algorithm Time complexity Overhead

Root-KGC-SigGen 2Texp + 1.1Tm ≈ 1.85 msa

Lower-KGC-SigGen 1Texp + 1.2Tm ≈ 0.93 ms

UserSigGen 1Texp + 0.1Tm ≈ 0.92 ms

We assume that the trapdoor hash function we adopted is construction
3 [22] and the bit length of modulus is 1024 bits

Table 4 Computation cost of
child key generation in
[7,10,12,23]

Overhead

[7] ≈ 2Th + 1Tm ≈ 8.46 μsa

[10] ≈ 1Th + 1Tm ≈ 7.23 μs

[12] ≈ 1Th ≈ 1.23 μs

[23] ≈ 1Th ≈ 1.23 μs

The computation cost for a SHA-
512 hash operation is from [14]

– Master public key size: It is the size of the master pub-
lic key when the depth of the hierarchy tree does not
exceeds one. Gutoski et al. would encounter an exponen-
tial growth of master public key size if the depth of the
hierarchy tree more than one. However, the master public
key size is still constant in our scheme if the depth more
than one.

We also list the theoretical computation cost for Root-KGC-
SigGen, Lower-KGC-SigGen, UserSigGen algorithms. It is
not straightforward that how to compare the performance of
the proposed scheme with Wuille’s HD wallet [23] or other
existing works [7,10,12]. The reason is that a signature is
given to a child node instead of a derived key. Therefore,
we present computation overhead of our scheme in Table 3
and show the cost of child key generation algorithm for
[7,10,12,23] in Table 4. The implementation ofmodularmul-
tiplication and exponentiation are performed on [1,18]. We
denote the cost of a modular exponentiation and a modu-
lar multiplication as Texp and TTm , respectively. Besides, Th
denotes the cost of a SHA-512 hash operation. Though our
scheme may not take advantage over other existing works
on efficiency, our scheme focuses on solving the problem of
achieving security against privilege escalation attacks with
high scalability and public key derivation property.

7 Conclusion

This work proposes a newHDwallet scheme to prevent from
privilege escalation attacks, which is caused by the insecure
child key derivation in certainHDwallet schemes, in Bitcoin.
In addition, the proposed scheme provides unforgeability by
adopting trapdoor hash functions in the design of the scheme.
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Moreover, the proposed scheme offers an impressive feature
that an auditor is allowed to test the validity of child pub-
lic keys from the master public keys without knowing the
corresponding secrets. Nonetheless, this work shows that the
proposed scheme enjoys more features compared with the
other related schemes.Eventually, thisworkdemonstrates the
security of the proposed scheme by formal security proofs.
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