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摘要	

為了向用戶提供合適的商品推薦，推薦系統已在市場中廣泛應用。儘管市場

上衝刺著各種可以使用的數據分析，但是冷啟動（Cold	Start）問題對於新進用戶

來說仍然是一個大問題。許多最新的推薦算法在假設用戶和商品保持線性關係的

前提下設計了演算法，而實際上大多數情況下兩者間存在非線性關係。這項研究

開發了一種使用神經網絡（NN）和情境式是推薦的演算法來處理非線性特徵和

探索利用的權衡。推薦系統可以有效地預測新進用戶的喜好，還可以快速探索快

速變化的喜好。通過將貝葉斯網絡（Bayesian	networks）和自動編碼器（AE）集

成到NN中，我們的系統,	NN	Contextual	Bandit（NNCB）可以利用不同程度的探

索和開發。因此，我們的系統能快速適應情境的變化。我們採用真實世界中的影

片評分數據集來證明所提出系統的有效性，與傳統的情境是推薦演算法相比，該

系統大約4％的優於就演算法。	 	

關鍵字:	 情境式推薦,	 多選項推薦,	 神經網路,	 推薦系統	
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ABSTRACT 

Recommendations have been wildly applied in marketplaces to provide right items 

to users. While various heterogeneous data available in marketplaces, the cold start 

problem is still a big issue for newcomers. Many state-of-the-art recommendation 

algorithms were designed on the assumption that users and items remain a linear 

relationship, while most cases exist nonlinear relationship in reality. This study 

develops an algorithm using neural network (NN) and contextual bandit to deal with 

nonlinear context and explore-exploit tradeoff. The recommendation system could 

effectively predict newcomers’ preferences and also provide quick exploration for fast- 

changing preferences. By integrating Bayesian networks and AutoEncoder (AE) in the 

NN, our system, NN Contextual Bandit (NNCB), could leverage different levels of 

exploration and exploitation. Thus, the proposed recommendation can quickly adapt to 

the real-time context. We adopt real-world video rating dataset to demonstrate the 

effectiveness of the proposed system which improve 4% regret as the conventional 

bandit algorithms. 

 
 
 
 
 
 

 
  

 

Keyword: contextual bandit, multi-armed bandit, neural network, 

recommendation system 
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CHAPTER 1 INTRODUCTION 

With the development of new technologies, handling big data generated by 

customers has become one of the most important issues for 91% of Fortune 1000 

companies (Akter & Wamba, 2016; Kiron, Prentice, & Ferguson, 2014). Nowadays, e-

commerce sites in succession to adopt recommendation systems for improving 

customers’ shopping experience (Schafer, Konstan, & Riedl, 2001). Since it is easy for 

customers to find plenty of low-cost competitors, it leads to the result that customers 

have low royalty (Sivapalan, Sadeghian, Rahnama, & Madni, 2014). To be more 

successful, building a personalized recommendation system for e-commerce is crucial.  

In this kind of recommendation system, a significant number of visitors are likely 

to be newcomers with no historical data, this is known as a cold-start situation (Li, Chu, 

Langford, & Schapire, 2010). This makes the recommendation system difficult to learn 

the relation between newcomers and products and to provide newcomers good user 

experience. To deal with the cold-start problem, the multi-armed bandit is widely 

applied to balance the tradeoff between exploration and exploitation in 

recommendation systems (Liu, Wei, Zhang, Yan, & Yang, 2018). The multi-armed 

bandit is by using different models or algorithms to eliminate other fewer performance 

choices in order to maximize their expected gain when each choice's properties are only 

partially known the response of the selected prosperities at the time without the 

information of other none-chosen properties. With time passing by, the multi-arm 

bandit has a better understanding of users’ choices while allocating resources to users’ 

final choices. Such recommendation support usually involves two fundamental 

strategies: “Exploration”, where gathering more information that might lead to better 

decisions in the future or “Exploitation”, where making the best decision given current 

information. This is also named as an exploitation-exploration dilemma. There are some 
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classic algorithms to solve this kind of problem (Auer & Ortner, 2010). For example, 

Upper Confidence Bound (UCB) is an algorithm that chooses an arm adding by the 

estimate reward and confidence bound of each arm. UCB is an easy way to provide a 

good recommendation without users’ historical data. With the use of user features as 

context, LinUCB has made a more precise prediction when the data are sparse (Li et 

al., 2010). LinUCB assumes that the data are in a linear relationship, so we want to 

extend it to solve those data in a nonlinear relationship.  

The major contributions of this study are that a) exploring non-linear relation 

between context and recommendations by using the NN structure; b) designing a novel 

training process with multiple NNs to control the effectiveness of exploration and 

exploitation. Since there is massive data producing by customers over time might have 

various of relation, using contextual bandit with that base on linear relation will meet 

some limits that couldn’t solve nonlinear context. With the use of NNs, we could 

capture users’ interests and improve the relevance of recommendations when the 

context is most of the time in a nonlinear situation. By integrating the concept of a 

contextual bandit with NN, we design a new algorithm that it cannot only deal with 

nonlinear data in a recommendation system but also highly control the different ratios 

between explore-exploit tradeoff. This paper provides a new NN based contextual 

bandit that performs as well as the other conventional algorithms. When setting 

different hyperparameters, the explore and exploit ratio is easily managed by the 

proposed algorithm. And with the design in this paper, not like the conventional 

algorithms the result of NNCB can be use in separate situation. 

Chapter 2 includes the backgrounds and the related works. The design concept of 

NNCB and details are shown in Chapter 3. Chapter 4 shows the evaluation of NNCB 

with some conventional algorithms. The last section concludes our work and discuss 

the future works of this study. 
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CHAPTER 2 LITERATURE REVIEW 

2-1 Multi-Armed Bandits (MAB) 

MAB is a simple but powerful framework for algorithms that make decisions over 

time under uncertainty (Zhou & Brunskill, 2016). It is a more complex version of A/B 

testing that uses machine learning algorithms to dynamically allocate traffic to 

variations. It produces faster results since it has a better way to solve explore-exploit 

tradeoff dilemma (Zhou & Brunskill, 2016). The purpose of MAB is to maximize its 

total reward. To understand which algorithms performed better, one standard approach 

is to compare the algorithm’s cumulative reward to the actual best reward that the user 

could get the cumulative number is named as regret (Slivkins, 2019).  

A classic MAB approach is UCB, which chooses an arm in each round by 

summing up the average reward and adjusting the confidence radius of each arm. When 

the arm is chosen with a high reward, this arm has been well exploited. When the arm 

is with large confidence radius, it shows that this arm has not been explored much. Both 

reasons make this arm worth chosen. UCB’s average reward represents for exploitation 

and confidence radius represents for exploration so this make summing them up is a 

natural way to deal with the exploitation-exploration dilemma  (Slivkins, 2019). 

2-2 Contextual Bandits 

In a real-world scenario, choosing various actions in a MAB situation, may 

sometimes have data that can help inform decision making like the user personal 

information or their previous decision. This information in the environment is called 

the context and the bandit problem became a contextual bandit. In some website 

optimization, contextual bandits use incoming user context data as it can be used to help 
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make better algorithmic decisions in real-time. For example, a contextual bandit can be 

used to select a piece of content or ad to display on a website and the click-through rate 

can be used for counting regret. The context could be any information that a user gave 

to the algorithms, such as previously visited pages, past purchase information, device 

information, or geolocation. If you have news customers, and you know that a previous 

person with similar context coming to the site has read entertainment articles, you can 

select your top entertainment article to display at the top of the page for them (Chu, Li, 

Reyzin, & Schapire, 2011).  

LinUCB extends the UCB algorithm to contextual cases. This algorithm is to 

compute the expected reward of each arm by finding a linear combination of the 

previous rewards of the arm (Li et al., 2010). Each arm is associated with a feature 

vector. For example, in news recommendation, articles read by users could be the 

feature vectors. LinUCB assumes that the expected reward of an arm is linear with 

respect to its feature vector and applies ridge regression to get a coefficient. 

Table 2.1 Comparison between UCB, LinUCB, NNCB 

Name Feature Contextual/Type Regret 

UCB Use upper confidence bound to control 

explore-exploit tradeoff 

No/NA High 

LinUCB Use ridge regression to control explore-

exploit tradeoff 

Yes/Linear Medium 

NNCB Use NN to control explore-exploit tradeoff Yes/Linear & non-linear Low 
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CHAPTER 3 The Proposed Framework 

We design a new algorithm of contextual bandit, basically by replacing the concept 

of matrix computing in LinUCB to Neural Network. With neural network, we can now 

deal with not only linear data but also non-linear data. Also, in our research that we find 

out NNCB in most cases can has a lower regret. 

3-1 Design 

In a contextual bandit problem, the most important task is to choose which arm 

(i.e., option) is the optimal under the real-time context (i.e., the features of a particular 

user). We plan to utilize multiple NNs to predict the optimal option.  

The basic structure of NNCB (Neural Network Contextual Bandit, shown in 

Figure 1) is to dedicated NN for each option while a user context is served as the input 

vector of each NN which are attached after an autoencoder (AE), an artificial neural 

network used to learn a representation for a set of data (Goodfellow et al. 2016). The 

AE then reduces the dimensions of the input vector, and we adopt the latent vector 

inside the AE as the input of the dedicated NN for each option. The idea of using 

multiple NNs is that we are not able to obtain all the training labels for an input training 

data in the contextual bandit problem; rather, we can only obtain the label for the chosen 

option. A user can accept multiple options, but he or she only responds to one option at 

a time while training. Therefore, it is not appropriate to model a contextual bandit 

problem by using a multi-label classifier (because such a classifier needs all labels for 

input data).Another fundamental design of NNCB is a mechanism that can help to 

compute the confidence interval and the estimate reward for each option. The 

confidence interval can help us to explore more suboptimal option and gather more 

information from them to optimize these options. In our proposed framework we have 
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two different design that can help us compute the confidence interval. One is by 

deployed on Bayes by Backprop mentioned in weight uncertainty in neural networks 

(Blundell, Cornebise, Kavukcuoglu, & Wierstra, 2015), that each time when we 

forward through the NN the output will slightly change. Second is by using variational 

autoencoders (Kingma & Welling, 2013) instead of the regular AE to reduces the 

dimensions of the input vector. Each time when an input vector forward through VAE 

it will be slightly different that could help us explore some other suboptimal options.    

 

3-2 NNCB using Bayes by Backprop (NNCB-BNN) 

 
Figure 3-1 The structure of NNCB-BNN 

The input will go through an AE at the beginning. Then we use the latent vaector 

as the input of the dedicated NN’s input. With the use of Bayes by Backprop in the 

dedicated network we will have several estimated rewards after several runs for each 

option. Then we add the average and the standard deviation caculted from the output in 

the previous step as the final score. Among all options, the option with the highest score 

is chosen for this context (shown as Ensemble Selector in Figure 3-1).  
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The detail of NNCB using bayes by backprop is written in Alogorithm 1. At the 

beginning of the training phase, all the initial weights in each NN are randomized, i.e., 

the output of NN is a random value; thus, the recommendation system tends to explore. 

In each round, the system observes a customer, and its context information is fed into 

the NNs to predict an optimal option for this customer. After providing a 

recommendation to the customer, we then obtain the feedback from the customer to 

check if the recommendation is a hit (1.0) or not (0.0). Since the customer only provides 

the response to the recommendation option, NNCB only trains the corresponding NN 

by using the customer’s context with its response (1.0 or 0.0). Therefore, the more we 

choose the corresponding option we will have the more precise response we will get in 

other words we can exploit this option. Such design embeds the concept of exploration 

and exploitation in the NN training process which is quite important for a contextual 

bandit problem. It helps the NN to select exploited options and explore unchosen  

options at the same time.  

Algorithm 1 NNCB using Bayes by Backprop 
0: Inputs: user context U; recommendation 
options A;the user response rt,u,a 
 Outputs: a trained model Na  for each 
option a 
1: for all Na  do 
2:  Initialize Wa  
3:  end for 
4:  for t = 1, 2, 3, …, T do 
5:  Observe a user context ut at t using AE  
6:   MaxS ← 0 //current maximal score 
7:  IndA ← null //the option index of 
current MaxS 
8:  for i =1, 2, 3, …, |A| do 
9:   for j=1,2, 3, …, M do 
10:    ai ←  Ai 
11:    Sa,u,j = N(ut) 
12:   end for 
13:   MeanSa,u ←Mean( Sa,u,1, Sa,u,2, 
Sa,u,3,…, Sa,u,M ) 
14:   StdSa,u ←Std( Sa,u,1, Sa,u,2, Sa,u,3,…, 
Sa,u,M ) 
15:   EstSa,u ← MeanSa,u + StdSa,u 
16:   if (EstSa,u >  MaxS) then 

17:     MaxS ← Sa,u 
18:     IndA ← i 
19:   end if 
20:  end for 
21:  Option a* = AIndA if IndA is not null 
else a* = rand(|A|)  
22:  Observe a real-world binary response 
rt,u,a 
23:  // Activator  
24:  Update the AE  
25:  for i =1, 2, 3, …, |A| do 
26:   a ← Ai 
27:   if a = a* then 
28:    Update Na with ua as input  
    and (rt,u,a,, 1.0 - rt,u,a) as output 
29:   else  
30:    Update Na with ua as input  
    and (0.5, 0.5) as output 
31:   end if 
32:  end for 
33: end for 
34: Output N 
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 Assume a recommendation problem has |A| options (a ∈ A) and NNCB 

deploys a neural network, Na, for an option a. The trainable parameters of the neural 

network, Na, is Wa. A user context is denoted as u (u ∈ U), and the dimension of user 

context is |u|. A neural network, Na, accepts a user context as input and output score Sa,u, 

i.e., Na(u) = Sa,u. Sa,u is the confidence level (a.k.a. score) of recommending a for u. Due 

to the use of Bayes by Backprop the Sa,u will be slightly different each time. Let M be 

the total time we want to sample the result from N(a,u). Let T be the number of discrete 

trials of the recommendation process. The real-world response for an option a under 

context u is rt,u,a (t ∈ T) and rt,u,a is a binary indicator whether u selects option a (i.e., 1) 

or not (i.e., 0). The training process of NNCB is shown in Algorithm 1.  

The inputs of NNCB algorithm are the recommendation options, the collected user 

contexts and their responses. At the beginning of the training phase, the parameter Wa 

of each NN is randomized (line 1-3). With randomized parameters, the output score of 

NN could be any value, which makes it possible to explore different options at the 

beginning phase. After the initialization, for each iteration (t), we first put the user 

context into the AE and we define two variables that MaxS stores the current highest 

recommendation score and IndA stores the index of option with highest score. We uses 

the latent vector inside the AE as the input of the NN in the each option. We then 

iteratively calculate the recommendation scores of each option with the latent vector 

produce from current user context (ut) that hausing the dedicated neural networks (Na) 

(line 11). And each dedicate NN will have M trial. After M trial we then calculate the 

corresponding MeanSa,u and StdSa,u, after that we added these two number to get  

EstSa,u.If the confidence level of recommending each option for the user EstSa,u is larger 

than MaxS (line 16), then we will update MaxS and IndA. After iterating all the options, 

if MaxS has never been updated (i.e., no option is recommended), then we will choose 

a random arm as the recommendation option. Otherwise, NNCB will recommend the 
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IndA option which has the highest score (line 21). Then, NNCB receives the response 

of the recommendation. With the response, we then update the AE and neural networks 

for each option. For the option, a, that we recommend to the user, u, at time t, we receive 

its response, rt,u,a, (either a hit (1.0) or not (0.0)) that can be directly used for updating 

the neural network (line 27-28). For the rest of the options, NNCB use a value of 0.5 as 

both recommendation and not recommendation score to update its corresponding NN 

(line 29-30).   

3-3 NNCB using VAE (NNCB-VAE) 

 
Figure 3-2 The structure of NNCB-VAE 

 Instead of using Bayes by Backprop we use the regular NN in this design and 

replace the AE to VAE. The input will go through an VAE at the beginning. Then we 

use the latent vaector as the input of the dedicated NN’s input. For the NNCB using 

VAE we no longer use Bayes by Backprop to explore the suboptimal options. 

Fortunately, there is an efficiency way to generate the uncertainty result to help us 

caclute the confidence inteval when using VAE, that is when each time we passed the 

data through the VAE, we sample multiple number from a normal distribution that 
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could help us generate different latent vector even with the same input. All of these 

different latent vector will be then passed to the dedicted NN for each option to calcute 

the the average and the standard deviation and added as the final score. Among all 

options, the option with the highest score is chosen for this context (shown as Ensemble  

Selector in Figure 3-2).  

The initial part of NNCB-VAE algorithm is same as the NNCB using bayes by 

backprop. After the initialization, for each iteration (t), we define two variables that 

MaxS stores the current highest recommendation score and IndA stores the index of 

option with highest score. We then pass the current user context (ut) through the VAE 

for M times. We then iteratively calculate the recommendation scores of each option 

using the latent vectors that generate from the previous step as the input to the dedicated 

neural networks (Na). And each dedicate NN will have uses have M latent vector 

generate from VAE. After passing M latent vector through the NN, we then calculate 

Algorithm 2 NNCB using VAE 
0: Inputs: user context U; recommendation 
options A;the user response rt,u,a 
 Outputs: a trained model Na  for each 
option a 
1: for all Na  do 
2:  Initialize Wa  
3:  end for 
4:  for t = 1, 2, 3, …, T do 
5:   MaxS ← 0 //current maximal score 
6:  IndA ← null //the option index of 
current MaxS 
7:  for j=1,2, 3, …, M do   
8:   Observe a user context ut at t using 
VAE  
9:   for i =1, 2, 3, …, |A| do 
10:    ai ←  Ai 
11:    Sa,u,j = N(ut) 
12:   end for 
13:   MeanSa,u ←Mean( Sa,u,1, Sa,u,2, 
Sa,u,3,…, Sa,u,M ) 
14:   StdSa,u ←Std( Sa,u,1, Sa,u,2, Sa,u,3,…, 
Sa,u,M ) 
15:   EstSa,u ← MeanSa,u + StdSa,u 
16:   if (EstSa,u >  MaxS) then 

17:     MaxS ← Sa,u 
18:     IndA ← i 
19:   end if 
20:  end for 
21:  Option a* = AIndA if IndA is not null 
else a* = rand(|A|)  
22:  Observe a real-world binary response 
rt,u,a 
23:  // Activator  
24:  Update the VAE  
25:  for i =1, 2, 3, …, |A| do 
26:   a ← Ai 
27:   if a = a* then 
28:    Update Na with ua as input  
    and (rt,u,a,, 1.0 - rt,u,a) as output 
29:   else  
30:    Update Na with ua as input  
    and (0.5, 0.5) as output 
31:   end if 
32:  end for 
33: end for 
34: Output N 
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the corresponding MeanSa,u and StdSa,u, after that we added these two number to get  

EstSa,u.If the confidence level of recommending each option for the user EstSa,u is larger 

than MaxS (line 16), then we will update MaxS and IndA. After iterating all the options, 

if MaxS has never been updated (i.e., no option is recommended), then we will choose 

a random arm as the recommendation option. Otherwise, NNCB will recommend the 

IndA option which has the highest score (line 21). Then, NNCB receives the response 

of the recommendation. With the response, we then update the VAE and neural 

networks for each option as what we do at the algorithm 1. 

3-4 Implementation Environment  

The proposed system is implemented in a PC with an Intel Core i7-7700 CPU (3.6 

GHz), a GeForce GTX 1070 Ti and 16 GB DDR4 2400 RAM. The proposed neural 

network system is written in python 3.8 with pyTorch 1.1.1. All the comparison 

algorithms (including UCB, LinUCB, and Exp3) used in the experiments are modified 

from a public available GitHub repository 1 . The hyperparameters in the NN are 

optimized by AX2, an automatic experiment platform that help test all the possible 

hyperparameters. 

  

 
1 https://github.com/ntucllab/striatum 

2 https://ax.dev/ 
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CHAPTER 4 Experimental Results 

4-1 Dataset 

We use Netflix Prize data3 in the evaluation. Netflix held a Netflix Prize open 

competition for the best algorithm to predict user ratings for films. We reorganize the 

data for video recommendation. First, we sort all the users by the number of watched 

films and select the top ten thousand active users as the target users and choose the top 

210 most watched films among the chosen users. 200 of them are chosen randomly for 

constructing the user context; and the rest 10 of them are used as the films for latter 

recommendation. A user’s context is constructed by using his or her historical watching 

list among these 200 movies; thus, a user context is a 200-dimension vector (i.e., the 

number of input nodes of NNCB is 200) that each dimension specifies whether the user 

likes the film or not. In the experiment, we assume that a film rated by a user with at 

least 3 stars is considered as “recommend” in the output (i.e., Sa,u = 1.0) or “like” (1.0) 

in the 200-dimension inputs by this user, and a film is considered as “not recommend” 

(i.e., Sa,u = 0.0) or “dislike” (0.0) when a user rated it with less than 3 stars. For a film 

that a user never rates, we set the value to 0.5, and such setting is reasonable for a 

contextual bandit problem. For those rating that are 0.5 , if any alogrithm chose these 

option we will skip it and chose the second high score that has a static response which 

is “like” or “dislike”. In all the following experiments, we compare several 

conventional algorithms with NNCB, and show the regret of each algorithms. We create 

three situation from theses dataset. The first situation is random selects a random film 

among 10 options in each round, that simulate the most cummon situation. The second 

 
3 https://www.kaggle.com/netflix-inc/netflix-prize-data  
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situation is named as sorted dataset that we assume that user may be intrest of certain 

product because of the trend, so we sort the dataset to make all user has the same interest 

in certain amount of time. The third situation is named as balanced dataset that we 

discover that some conventinonal alogrithms tends to choose the options that has the 

highest excepted value, so we select certain data that makes each options’ excepted 

value the same to see how each alogrithms performs. 

4-2 Comparison between Different Algorithms  

 

Figure 4-1 The regret of different algorithms 

Figure 4-1 shows the regret of different algorithms using Netflix Prize data. 

NNCB-BNN has lowest regret and outperforms other algorithms. The optimal 

hyperparameters used in NNCB-BNN and NNCB-VAE were test by AX. All other 

comparison algorithms use the original version of algorithms and default settings 

downloaded from the GitHub repository1. For this specific dataset, to quickly identify 

the recommendation films for different user context is important, the NN dropout rate 

is set to 0.5 to avoid overfitting serveral features and helps us with faster exploration 
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(hence, less exploitation).  Since we have 10 options for recommendation, 

theoretically, a random selection algorithm will have 0.9 of regret; however, a user may 

have multiple preferences (“likes”) among 10 options. Thus, the regret of the random 

algorithm for this dataset is about 0.4. It shows that on the average a user “likes” four 

films among these 10 options. Comparing to other algorithms, LinUCB considers the 

relation between the user context and the recommendation result. Like UCB1, LinUCB 

can quickly explore and exploit popular options at the beginning. However, when it 

observes more and more different user contexts, the regret increases. We anticipate that 

the relation between context and option may not be linear so that LinUCB needs more 

efforts in learning to model such non-linear relation by using a liner model. Even more, 

the user context in this dataset might be too complex for modeling 

4-3 Dealing with Sorted Data  

 

Figure 4-2 The regret of different algorithms in sorted data 

As mentioned, the users may not tend to change their preference in a short period 

of time, thus the NNCB can quickly capture and predict the recommend option. 

However, in real world, film watching may have trend. To simulate trend changing, we 
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sorted the users observed in each round (x axis) according to their preferences (y axis) 

as shown in Figure 4-3. Each dot means the user “likes” this option. The lower part of 

Figure 4-3 shows the recommendations made by NNCB-BNN could better fit the trend 

change when trend changes and NNCB-VAE tend to the choose the options that has a 

better result in the past. The corresponding regrets on this sorted data are shown in 

Figure 4-2. The blue dots in the figure indicates the successful recommendations and 

the red dots are the failure recommendations. The learning rate of these dataset find by 

AX is 0.01, we anticipate the reason of choosing big step, it can help keep 

recommending the same option after only a few rounds of exploration. We also note 

that to quickly change the recommendations, NNCB should use a simpler NN structure 

(e.g., a smaller number of nodes in each hidden layer or a smaller number of hidden 

layers) or use a simpler optimizer (e.g., SGD) (shown in Figure 3). SGD does not have 

momentum design which makes it quicker to train the model. This experiment shows 

that NNCB could deal with the trend scenario as well. 
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Figure 4-3 The sorted data according and the distribution of recommendations 
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4-4 Dealing with Balanced Data  

 

Figure 4-4 The regret of different algorithms in balanced data 

Since in most experiment the LinUCB could not get the lowest regret, we then 

look at the options choose by each algorithm in each round. We find out that the 

algorithm tends to choose the options that has the most proportion and could come out 

with a relative low regret. So, to reduce these situations, we generate a dataset by 

selecting ten option out of 210 movies that has the similar proportion. These make the 

strategy of choosing most proportion option useless.  

In figure 4-4, the LinUCB and NNCB-VAE is the one with the lowest regret. Exp3 

and UCB could not find a good optimal option in the evenly distributed data due to they 

donesn’t consider the context only choose the options with the expect values. And the 

NNCB-VAE could has a low regret we anticapate these is due the NN structure can 

learn the relation between user and the recommend movies. 
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Figure 4-5 The balanced data according and the distribution of recommendations 
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CHAPTER 5 Conclusion and Future Work 

This paper presents a novel neural network-based contextual bandit algorithm for 

user recommendations. We deploy a NN for each option to generate its 

recommendation sore, because we anticipate that the real-world data not only in linear 

situation but also in non-liner, which is applicable for NN to model both situations. We 

leverage the initial random weights of the neural network for bandit exploration and 

gradually tune the NN weights by the newly observed response for exploitation. The 

experiment shows that the regret of NNCB outperforms the conventional contextual 

bandit algorithms.   In conclusion, this study shows that by applying neural networks 

we can better model both linear and non-linear data. By setting different dropout rates 

with different optimizers in the neural network, we establish a useful way to help users 

to set their own exploration rates. With different needs, we can now set different hyper 

parameters that help us best achieve the goal. And with our design of NN structure, one 

can easily use the needed NN that recommend options for other use. Unlike LinUCB 

the numbers that generate from it it can only be use for comparison inside the matrix, 

our NN structure generate a meanningful results, that can use to predict a user like or 

dislike to any movies in the options.  

Although our algorithms can provide a lower or similar regret compared to other 

algorithms (i.e., UCB, Exp3, linUCB), there are still limitations due to the resource 

restraints. First, when our highest recommended option weren’t selected by users, we 

just simply skip it and move on to the second high recommended option; thus is real 

world scenario these happens a lot, there’s no guarantee that we have the chance to get 

the response of user to the options that’s not at the first place. Second, the 

hyperparameter are all been test and found by AX. Using AX to find the best 

hyperparameter is time consuming, in real world scenario they may not be sufficient 
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time to use AX to find the optimal hyperparameter. For future works, we will further 

investigate another exploration mechanism for fast changing trend, which can auto 

adopt to the environment. When the trend is stable that we will stop exploration, just 

keep exploitation, and when detected the changing of trend we then activate the model 

for exploration. 
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