
‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202001541

國立政治大學商學院資訊管理學系

碩士學位論文

以類神經網路解決情境式推薦問題

A Neural Network Approach to the Contextual-Bandit Problem

指導教授: 林怡伶博士 蕭舜文博士

研究生：陳高欽 撰

中 華 民 國 109 年 7月

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202001541

i

Acknowledgement

To my family,

To my advisor, Dr. Yi-Ling Lin & Dr. Shun-Wen Hsiao, giving me guidance and helping me

to complete my research,

To the thesis committee, Dr. Chien-Chin Chen,

To the community that is exploring contextual bandit and neural network.

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202001541

ii

摘要	

為了向用戶提供合適的商品推薦，推薦系統已在市場中廣泛應用。儘管市場

上衝刺著各種可以使用的數據分析，但是冷啟動（Cold	Start）問題對於新進用戶

來說仍然是一個大問題。許多最新的推薦算法在假設用戶和商品保持線性關係的

前提下設計了演算法，而實際上大多數情況下兩者間存在非線性關係。這項研究

開發了一種使用神經網絡（NN）和情境式是推薦的演算法來處理非線性特徵和

探索利用的權衡。推薦系統可以有效地預測新進用戶的喜好，還可以快速探索快

速變化的喜好。通過將貝葉斯網絡（Bayesian	networks）和自動編碼器（AE）集

成到NN中，我們的系統,	NN	Contextual	Bandit（NNCB）可以利用不同程度的探

索和開發。因此，我們的系統能快速適應情境的變化。我們採用真實世界中的影

片評分數據集來證明所提出系統的有效性，與傳統的情境是推薦演算法相比，該

系統大約4％的優於就演算法。	 	

關鍵字:	 情境式推薦,	 多選項推薦,	 神經網路,	 推薦系統	

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202001541

iii

ABSTRACT

Recommendations have been wildly applied in marketplaces to provide right items

to users. While various heterogeneous data available in marketplaces, the cold start

problem is still a big issue for newcomers. Many state-of-the-art recommendation

algorithms were designed on the assumption that users and items remain a linear

relationship, while most cases exist nonlinear relationship in reality. This study

develops an algorithm using neural network (NN) and contextual bandit to deal with

nonlinear context and explore-exploit tradeoff. The recommendation system could

effectively predict newcomers’ preferences and also provide quick exploration for fast-

changing preferences. By integrating Bayesian networks and AutoEncoder (AE) in the

NN, our system, NN Contextual Bandit (NNCB), could leverage different levels of

exploration and exploitation. Thus, the proposed recommendation can quickly adapt to

the real-time context. We adopt real-world video rating dataset to demonstrate the

effectiveness of the proposed system which improve 4% regret as the conventional

bandit algorithms.

Keyword: contextual bandit, multi-armed bandit, neural network,

recommendation system

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202001541

iv

Table of Contents

CHAPTER 1 INTRODUCTION ... 1

CHAPTER 2 LITERATURE REVIEW ... 3

2-1 Multi-Armed Bandits (MAB) ... 3

2-2 Contextual Bandits .. 3

CHAPTER 3 The Proposed Framework .. 5

3-1 Design .. 5

3-2 NNCB using Bayes by Backprop (NNCB-BNN) ... 6

3-3 NNCB using VAE (NNCB-VAE) ... 9

3-4 Implementation Environment .. 11

CHAPTER 4 Experimental Results .. 12

4-1 Dataset .. 12

4-2 Comparison between Different Algorithms .. 13

4-3 Dealing with Sorted Data .. 14

4-4 Dealing with Balanced Data ... 17

CHAPTER 5 Conclusion and Future Work .. 19

REFERENCE ... 21

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202001541

v

List of Tables

Table 2.1 Comparison between UCB, LinUCB, NNCB ... 4

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202001541

vi

 List of Figures

Figure 3-1 The structure of NNCB-BNN .. 6
Figure 3-2 The structure of NNCB-VAE .. 9
Figure 4-1 The regret of different algorithms .. 13
Figure 4-2 The regret of different algorithms in sorted data 14
Figure 4-3 The sorted data according and the distribution of recommendations 16
Figure 4-4 The regret of different algorithms in balanced data 17
Figure 4-5 The balanced data according and the distribution of recommendations 18

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202001541

1

CHAPTER 1 INTRODUCTION

With the development of new technologies, handling big data generated by

customers has become one of the most important issues for 91% of Fortune 1000

companies (Akter & Wamba, 2016; Kiron, Prentice, & Ferguson, 2014). Nowadays, e-

commerce sites in succession to adopt recommendation systems for improving

customers’ shopping experience (Schafer, Konstan, & Riedl, 2001). Since it is easy for

customers to find plenty of low-cost competitors, it leads to the result that customers

have low royalty (Sivapalan, Sadeghian, Rahnama, & Madni, 2014). To be more

successful, building a personalized recommendation system for e-commerce is crucial.

In this kind of recommendation system, a significant number of visitors are likely

to be newcomers with no historical data, this is known as a cold-start situation (Li, Chu,

Langford, & Schapire, 2010). This makes the recommendation system difficult to learn

the relation between newcomers and products and to provide newcomers good user

experience. To deal with the cold-start problem, the multi-armed bandit is widely

applied to balance the tradeoff between exploration and exploitation in

recommendation systems (Liu, Wei, Zhang, Yan, & Yang, 2018). The multi-armed

bandit is by using different models or algorithms to eliminate other fewer performance

choices in order to maximize their expected gain when each choice's properties are only

partially known the response of the selected prosperities at the time without the

information of other none-chosen properties. With time passing by, the multi-arm

bandit has a better understanding of users’ choices while allocating resources to users’

final choices. Such recommendation support usually involves two fundamental

strategies: “Exploration”, where gathering more information that might lead to better

decisions in the future or “Exploitation”, where making the best decision given current

information. This is also named as an exploitation-exploration dilemma. There are some

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202001541

2

classic algorithms to solve this kind of problem (Auer & Ortner, 2010). For example,

Upper Confidence Bound (UCB) is an algorithm that chooses an arm adding by the

estimate reward and confidence bound of each arm. UCB is an easy way to provide a

good recommendation without users’ historical data. With the use of user features as

context, LinUCB has made a more precise prediction when the data are sparse (Li et

al., 2010). LinUCB assumes that the data are in a linear relationship, so we want to

extend it to solve those data in a nonlinear relationship.

The major contributions of this study are that a) exploring non-linear relation

between context and recommendations by using the NN structure; b) designing a novel

training process with multiple NNs to control the effectiveness of exploration and

exploitation. Since there is massive data producing by customers over time might have

various of relation, using contextual bandit with that base on linear relation will meet

some limits that couldn’t solve nonlinear context. With the use of NNs, we could

capture users’ interests and improve the relevance of recommendations when the

context is most of the time in a nonlinear situation. By integrating the concept of a

contextual bandit with NN, we design a new algorithm that it cannot only deal with

nonlinear data in a recommendation system but also highly control the different ratios

between explore-exploit tradeoff. This paper provides a new NN based contextual

bandit that performs as well as the other conventional algorithms. When setting

different hyperparameters, the explore and exploit ratio is easily managed by the

proposed algorithm. And with the design in this paper, not like the conventional

algorithms the result of NNCB can be use in separate situation.

Chapter 2 includes the backgrounds and the related works. The design concept of

NNCB and details are shown in Chapter 3. Chapter 4 shows the evaluation of NNCB

with some conventional algorithms. The last section concludes our work and discuss

the future works of this study.

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202001541

3

CHAPTER 2 LITERATURE REVIEW

2-1 Multi-Armed Bandits (MAB)

MAB is a simple but powerful framework for algorithms that make decisions over

time under uncertainty (Zhou & Brunskill, 2016). It is a more complex version of A/B

testing that uses machine learning algorithms to dynamically allocate traffic to

variations. It produces faster results since it has a better way to solve explore-exploit

tradeoff dilemma (Zhou & Brunskill, 2016). The purpose of MAB is to maximize its

total reward. To understand which algorithms performed better, one standard approach

is to compare the algorithm’s cumulative reward to the actual best reward that the user

could get the cumulative number is named as regret (Slivkins, 2019).

A classic MAB approach is UCB, which chooses an arm in each round by

summing up the average reward and adjusting the confidence radius of each arm. When

the arm is chosen with a high reward, this arm has been well exploited. When the arm

is with large confidence radius, it shows that this arm has not been explored much. Both

reasons make this arm worth chosen. UCB’s average reward represents for exploitation

and confidence radius represents for exploration so this make summing them up is a

natural way to deal with the exploitation-exploration dilemma (Slivkins, 2019).

2-2 Contextual Bandits

In a real-world scenario, choosing various actions in a MAB situation, may

sometimes have data that can help inform decision making like the user personal

information or their previous decision. This information in the environment is called

the context and the bandit problem became a contextual bandit. In some website

optimization, contextual bandits use incoming user context data as it can be used to help

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202001541

4

make better algorithmic decisions in real-time. For example, a contextual bandit can be

used to select a piece of content or ad to display on a website and the click-through rate

can be used for counting regret. The context could be any information that a user gave

to the algorithms, such as previously visited pages, past purchase information, device

information, or geolocation. If you have news customers, and you know that a previous

person with similar context coming to the site has read entertainment articles, you can

select your top entertainment article to display at the top of the page for them (Chu, Li,

Reyzin, & Schapire, 2011).

LinUCB extends the UCB algorithm to contextual cases. This algorithm is to

compute the expected reward of each arm by finding a linear combination of the

previous rewards of the arm (Li et al., 2010). Each arm is associated with a feature

vector. For example, in news recommendation, articles read by users could be the

feature vectors. LinUCB assumes that the expected reward of an arm is linear with

respect to its feature vector and applies ridge regression to get a coefficient.

Table 2.1 Comparison between UCB, LinUCB, NNCB

Name Feature Contextual/Type Regret

UCB Use upper confidence bound to control

explore-exploit tradeoff

No/NA High

LinUCB Use ridge regression to control explore-

exploit tradeoff

Yes/Linear Medium

NNCB Use NN to control explore-exploit tradeoff Yes/Linear & non-linear Low

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202001541

5

CHAPTER 3 The Proposed Framework

We design a new algorithm of contextual bandit, basically by replacing the concept

of matrix computing in LinUCB to Neural Network. With neural network, we can now

deal with not only linear data but also non-linear data. Also, in our research that we find

out NNCB in most cases can has a lower regret.

3-1 Design

In a contextual bandit problem, the most important task is to choose which arm

(i.e., option) is the optimal under the real-time context (i.e., the features of a particular

user). We plan to utilize multiple NNs to predict the optimal option.

The basic structure of NNCB (Neural Network Contextual Bandit, shown in

Figure 1) is to dedicated NN for each option while a user context is served as the input

vector of each NN which are attached after an autoencoder (AE), an artificial neural

network used to learn a representation for a set of data (Goodfellow et al. 2016). The

AE then reduces the dimensions of the input vector, and we adopt the latent vector

inside the AE as the input of the dedicated NN for each option. The idea of using

multiple NNs is that we are not able to obtain all the training labels for an input training

data in the contextual bandit problem; rather, we can only obtain the label for the chosen

option. A user can accept multiple options, but he or she only responds to one option at

a time while training. Therefore, it is not appropriate to model a contextual bandit

problem by using a multi-label classifier (because such a classifier needs all labels for

input data).Another fundamental design of NNCB is a mechanism that can help to

compute the confidence interval and the estimate reward for each option. The

confidence interval can help us to explore more suboptimal option and gather more

information from them to optimize these options. In our proposed framework we have

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202001541

6

two different design that can help us compute the confidence interval. One is by

deployed on Bayes by Backprop mentioned in weight uncertainty in neural networks

(Blundell, Cornebise, Kavukcuoglu, & Wierstra, 2015), that each time when we

forward through the NN the output will slightly change. Second is by using variational

autoencoders (Kingma & Welling, 2013) instead of the regular AE to reduces the

dimensions of the input vector. Each time when an input vector forward through VAE

it will be slightly different that could help us explore some other suboptimal options.

3-2 NNCB using Bayes by Backprop (NNCB-BNN)

Figure 3-1 The structure of NNCB-BNN

The input will go through an AE at the beginning. Then we use the latent vaector

as the input of the dedicated NN’s input. With the use of Bayes by Backprop in the

dedicated network we will have several estimated rewards after several runs for each

option. Then we add the average and the standard deviation caculted from the output in

the previous step as the final score. Among all options, the option with the highest score

is chosen for this context (shown as Ensemble Selector in Figure 3-1).

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202001541

7

The detail of NNCB using bayes by backprop is written in Alogorithm 1. At the

beginning of the training phase, all the initial weights in each NN are randomized, i.e.,

the output of NN is a random value; thus, the recommendation system tends to explore.

In each round, the system observes a customer, and its context information is fed into

the NNs to predict an optimal option for this customer. After providing a

recommendation to the customer, we then obtain the feedback from the customer to

check if the recommendation is a hit (1.0) or not (0.0). Since the customer only provides

the response to the recommendation option, NNCB only trains the corresponding NN

by using the customer’s context with its response (1.0 or 0.0). Therefore, the more we

choose the corresponding option we will have the more precise response we will get in

other words we can exploit this option. Such design embeds the concept of exploration

and exploitation in the NN training process which is quite important for a contextual

bandit problem. It helps the NN to select exploited options and explore unchosen

options at the same time.

Algorithm 1 NNCB using Bayes by Backprop
0: Inputs: user context U; recommendation
options A;the user response rt,u,a
 Outputs: a trained model Na for each
option a
1: for all Na do
2: Initialize Wa
3: end for
4: for t = 1, 2, 3, …, T do
5: Observe a user context ut at t using AE
6: MaxS ← 0 //current maximal score
7: IndA ← null //the option index of
current MaxS
8: for i =1, 2, 3, …, |A| do
9: for j=1,2, 3, …, M do
10: ai ← Ai
11: Sa,u,j = N(ut)
12: end for
13: MeanSa,u ←Mean(Sa,u,1, Sa,u,2,
Sa,u,3,…, Sa,u,M)
14: StdSa,u ←Std(Sa,u,1, Sa,u,2, Sa,u,3,…,
Sa,u,M)
15: EstSa,u ← MeanSa,u + StdSa,u
16: if (EstSa,u > MaxS) then

17: MaxS ← Sa,u
18: IndA ← i
19: end if
20: end for
21: Option a* = AIndA if IndA is not null
else a* = rand(|A|)
22: Observe a real-world binary response
rt,u,a
23: // Activator
24: Update the AE
25: for i =1, 2, 3, …, |A| do
26: a ← Ai
27: if a = a* then
28: Update Na with ua as input
 and (rt,u,a,, 1.0 - rt,u,a) as output
29: else
30: Update Na with ua as input
 and (0.5, 0.5) as output
31: end if
32: end for
33: end for
34: Output N

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202001541

8

 Assume a recommendation problem has |A| options (a ∈ A) and NNCB

deploys a neural network, Na, for an option a. The trainable parameters of the neural

network, Na, is Wa. A user context is denoted as u (u ∈ U), and the dimension of user

context is |u|. A neural network, Na, accepts a user context as input and output score Sa,u,

i.e., Na(u) = Sa,u. Sa,u is the confidence level (a.k.a. score) of recommending a for u. Due

to the use of Bayes by Backprop the Sa,u will be slightly different each time. Let M be

the total time we want to sample the result from N(a,u). Let T be the number of discrete

trials of the recommendation process. The real-world response for an option a under

context u is rt,u,a (t ∈ T) and rt,u,a is a binary indicator whether u selects option a (i.e., 1)

or not (i.e., 0). The training process of NNCB is shown in Algorithm 1.

The inputs of NNCB algorithm are the recommendation options, the collected user

contexts and their responses. At the beginning of the training phase, the parameter Wa

of each NN is randomized (line 1-3). With randomized parameters, the output score of

NN could be any value, which makes it possible to explore different options at the

beginning phase. After the initialization, for each iteration (t), we first put the user

context into the AE and we define two variables that MaxS stores the current highest

recommendation score and IndA stores the index of option with highest score. We uses

the latent vector inside the AE as the input of the NN in the each option. We then

iteratively calculate the recommendation scores of each option with the latent vector

produce from current user context (ut) that hausing the dedicated neural networks (Na)

(line 11). And each dedicate NN will have M trial. After M trial we then calculate the

corresponding MeanSa,u and StdSa,u, after that we added these two number to get

EstSa,u.If the confidence level of recommending each option for the user EstSa,u is larger

than MaxS (line 16), then we will update MaxS and IndA. After iterating all the options,

if MaxS has never been updated (i.e., no option is recommended), then we will choose

a random arm as the recommendation option. Otherwise, NNCB will recommend the

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202001541

9

IndA option which has the highest score (line 21). Then, NNCB receives the response

of the recommendation. With the response, we then update the AE and neural networks

for each option. For the option, a, that we recommend to the user, u, at time t, we receive

its response, rt,u,a, (either a hit (1.0) or not (0.0)) that can be directly used for updating

the neural network (line 27-28). For the rest of the options, NNCB use a value of 0.5 as

both recommendation and not recommendation score to update its corresponding NN

(line 29-30).

3-3 NNCB using VAE (NNCB-VAE)

Figure 3-2 The structure of NNCB-VAE

 Instead of using Bayes by Backprop we use the regular NN in this design and

replace the AE to VAE. The input will go through an VAE at the beginning. Then we

use the latent vaector as the input of the dedicated NN’s input. For the NNCB using

VAE we no longer use Bayes by Backprop to explore the suboptimal options.

Fortunately, there is an efficiency way to generate the uncertainty result to help us

caclute the confidence inteval when using VAE, that is when each time we passed the

data through the VAE, we sample multiple number from a normal distribution that

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202001541

10

could help us generate different latent vector even with the same input. All of these

different latent vector will be then passed to the dedicted NN for each option to calcute

the the average and the standard deviation and added as the final score. Among all

options, the option with the highest score is chosen for this context (shown as Ensemble

Selector in Figure 3-2).

The initial part of NNCB-VAE algorithm is same as the NNCB using bayes by

backprop. After the initialization, for each iteration (t), we define two variables that

MaxS stores the current highest recommendation score and IndA stores the index of

option with highest score. We then pass the current user context (ut) through the VAE

for M times. We then iteratively calculate the recommendation scores of each option

using the latent vectors that generate from the previous step as the input to the dedicated

neural networks (Na). And each dedicate NN will have uses have M latent vector

generate from VAE. After passing M latent vector through the NN, we then calculate

Algorithm 2 NNCB using VAE
0: Inputs: user context U; recommendation
options A;the user response rt,u,a
 Outputs: a trained model Na for each
option a
1: for all Na do
2: Initialize Wa
3: end for
4: for t = 1, 2, 3, …, T do
5: MaxS ← 0 //current maximal score
6: IndA ← null //the option index of
current MaxS
7: for j=1,2, 3, …, M do
8: Observe a user context ut at t using
VAE
9: for i =1, 2, 3, …, |A| do
10: ai ← Ai
11: Sa,u,j = N(ut)
12: end for
13: MeanSa,u ←Mean(Sa,u,1, Sa,u,2,
Sa,u,3,…, Sa,u,M)
14: StdSa,u ←Std(Sa,u,1, Sa,u,2, Sa,u,3,…,
Sa,u,M)
15: EstSa,u ← MeanSa,u + StdSa,u
16: if (EstSa,u > MaxS) then

17: MaxS ← Sa,u
18: IndA ← i
19: end if
20: end for
21: Option a* = AIndA if IndA is not null
else a* = rand(|A|)
22: Observe a real-world binary response
rt,u,a
23: // Activator
24: Update the VAE
25: for i =1, 2, 3, …, |A| do
26: a ← Ai
27: if a = a* then
28: Update Na with ua as input
 and (rt,u,a,, 1.0 - rt,u,a) as output
29: else
30: Update Na with ua as input
 and (0.5, 0.5) as output
31: end if
32: end for
33: end for
34: Output N

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202001541

11

the corresponding MeanSa,u and StdSa,u, after that we added these two number to get

EstSa,u.If the confidence level of recommending each option for the user EstSa,u is larger

than MaxS (line 16), then we will update MaxS and IndA. After iterating all the options,

if MaxS has never been updated (i.e., no option is recommended), then we will choose

a random arm as the recommendation option. Otherwise, NNCB will recommend the

IndA option which has the highest score (line 21). Then, NNCB receives the response

of the recommendation. With the response, we then update the VAE and neural

networks for each option as what we do at the algorithm 1.

3-4 Implementation Environment

The proposed system is implemented in a PC with an Intel Core i7-7700 CPU (3.6

GHz), a GeForce GTX 1070 Ti and 16 GB DDR4 2400 RAM. The proposed neural

network system is written in python 3.8 with pyTorch 1.1.1. All the comparison

algorithms (including UCB, LinUCB, and Exp3) used in the experiments are modified

from a public available GitHub repository 1 . The hyperparameters in the NN are

optimized by AX2, an automatic experiment platform that help test all the possible

hyperparameters.

1 https://github.com/ntucllab/striatum

2 https://ax.dev/

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202001541

12

CHAPTER 4 Experimental Results

4-1 Dataset

We use Netflix Prize data3 in the evaluation. Netflix held a Netflix Prize open

competition for the best algorithm to predict user ratings for films. We reorganize the

data for video recommendation. First, we sort all the users by the number of watched

films and select the top ten thousand active users as the target users and choose the top

210 most watched films among the chosen users. 200 of them are chosen randomly for

constructing the user context; and the rest 10 of them are used as the films for latter

recommendation. A user’s context is constructed by using his or her historical watching

list among these 200 movies; thus, a user context is a 200-dimension vector (i.e., the

number of input nodes of NNCB is 200) that each dimension specifies whether the user

likes the film or not. In the experiment, we assume that a film rated by a user with at

least 3 stars is considered as “recommend” in the output (i.e., Sa,u = 1.0) or “like” (1.0)

in the 200-dimension inputs by this user, and a film is considered as “not recommend”

(i.e., Sa,u = 0.0) or “dislike” (0.0) when a user rated it with less than 3 stars. For a film

that a user never rates, we set the value to 0.5, and such setting is reasonable for a

contextual bandit problem. For those rating that are 0.5 , if any alogrithm chose these

option we will skip it and chose the second high score that has a static response which

is “like” or “dislike”. In all the following experiments, we compare several

conventional algorithms with NNCB, and show the regret of each algorithms. We create

three situation from theses dataset. The first situation is random selects a random film

among 10 options in each round, that simulate the most cummon situation. The second

3 https://www.kaggle.com/netflix-inc/netflix-prize-data

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202001541

13

situation is named as sorted dataset that we assume that user may be intrest of certain

product because of the trend, so we sort the dataset to make all user has the same interest

in certain amount of time. The third situation is named as balanced dataset that we

discover that some conventinonal alogrithms tends to choose the options that has the

highest excepted value, so we select certain data that makes each options’ excepted

value the same to see how each alogrithms performs.

4-2 Comparison between Different Algorithms

Figure 4-1 The regret of different algorithms

Figure 4-1 shows the regret of different algorithms using Netflix Prize data.

NNCB-BNN has lowest regret and outperforms other algorithms. The optimal

hyperparameters used in NNCB-BNN and NNCB-VAE were test by AX. All other

comparison algorithms use the original version of algorithms and default settings

downloaded from the GitHub repository1. For this specific dataset, to quickly identify

the recommendation films for different user context is important, the NN dropout rate

is set to 0.5 to avoid overfitting serveral features and helps us with faster exploration

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202001541

14

(hence, less exploitation). Since we have 10 options for recommendation,

theoretically, a random selection algorithm will have 0.9 of regret; however, a user may

have multiple preferences (“likes”) among 10 options. Thus, the regret of the random

algorithm for this dataset is about 0.4. It shows that on the average a user “likes” four

films among these 10 options. Comparing to other algorithms, LinUCB considers the

relation between the user context and the recommendation result. Like UCB1, LinUCB

can quickly explore and exploit popular options at the beginning. However, when it

observes more and more different user contexts, the regret increases. We anticipate that

the relation between context and option may not be linear so that LinUCB needs more

efforts in learning to model such non-linear relation by using a liner model. Even more,

the user context in this dataset might be too complex for modeling

4-3 Dealing with Sorted Data

Figure 4-2 The regret of different algorithms in sorted data

As mentioned, the users may not tend to change their preference in a short period

of time, thus the NNCB can quickly capture and predict the recommend option.

However, in real world, film watching may have trend. To simulate trend changing, we

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202001541

15

sorted the users observed in each round (x axis) according to their preferences (y axis)

as shown in Figure 4-3. Each dot means the user “likes” this option. The lower part of

Figure 4-3 shows the recommendations made by NNCB-BNN could better fit the trend

change when trend changes and NNCB-VAE tend to the choose the options that has a

better result in the past. The corresponding regrets on this sorted data are shown in

Figure 4-2. The blue dots in the figure indicates the successful recommendations and

the red dots are the failure recommendations. The learning rate of these dataset find by

AX is 0.01, we anticipate the reason of choosing big step, it can help keep

recommending the same option after only a few rounds of exploration. We also note

that to quickly change the recommendations, NNCB should use a simpler NN structure

(e.g., a smaller number of nodes in each hidden layer or a smaller number of hidden

layers) or use a simpler optimizer (e.g., SGD) (shown in Figure 3). SGD does not have

momentum design which makes it quicker to train the model. This experiment shows

that NNCB could deal with the trend scenario as well.

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202001541

16

Figure 4-3 The sorted data according and the distribution of recommendations

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202001541

17

4-4 Dealing with Balanced Data

Figure 4-4 The regret of different algorithms in balanced data

Since in most experiment the LinUCB could not get the lowest regret, we then

look at the options choose by each algorithm in each round. We find out that the

algorithm tends to choose the options that has the most proportion and could come out

with a relative low regret. So, to reduce these situations, we generate a dataset by

selecting ten option out of 210 movies that has the similar proportion. These make the

strategy of choosing most proportion option useless.

In figure 4-4, the LinUCB and NNCB-VAE is the one with the lowest regret. Exp3

and UCB could not find a good optimal option in the evenly distributed data due to they

donesn’t consider the context only choose the options with the expect values. And the

NNCB-VAE could has a low regret we anticapate these is due the NN structure can

learn the relation between user and the recommend movies.

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202001541

18

Figure 4-5 The balanced data according and the distribution of recommendations

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202001541

19

CHAPTER 5 Conclusion and Future Work

This paper presents a novel neural network-based contextual bandit algorithm for

user recommendations. We deploy a NN for each option to generate its

recommendation sore, because we anticipate that the real-world data not only in linear

situation but also in non-liner, which is applicable for NN to model both situations. We

leverage the initial random weights of the neural network for bandit exploration and

gradually tune the NN weights by the newly observed response for exploitation. The

experiment shows that the regret of NNCB outperforms the conventional contextual

bandit algorithms. In conclusion, this study shows that by applying neural networks

we can better model both linear and non-linear data. By setting different dropout rates

with different optimizers in the neural network, we establish a useful way to help users

to set their own exploration rates. With different needs, we can now set different hyper

parameters that help us best achieve the goal. And with our design of NN structure, one

can easily use the needed NN that recommend options for other use. Unlike LinUCB

the numbers that generate from it it can only be use for comparison inside the matrix,

our NN structure generate a meanningful results, that can use to predict a user like or

dislike to any movies in the options.

Although our algorithms can provide a lower or similar regret compared to other

algorithms (i.e., UCB, Exp3, linUCB), there are still limitations due to the resource

restraints. First, when our highest recommended option weren’t selected by users, we

just simply skip it and move on to the second high recommended option; thus is real

world scenario these happens a lot, there’s no guarantee that we have the chance to get

the response of user to the options that’s not at the first place. Second, the

hyperparameter are all been test and found by AX. Using AX to find the best

hyperparameter is time consuming, in real world scenario they may not be sufficient

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202001541

20

time to use AX to find the optimal hyperparameter. For future works, we will further

investigate another exploration mechanism for fast changing trend, which can auto

adopt to the environment. When the trend is stable that we will stop exploration, just

keep exploitation, and when detected the changing of trend we then activate the model

for exploration.

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202001541

21

REFERENCE

Akter, S., & Wamba, S. F. (2016). Big data analytics in E-commerce: a systematic

review and agenda for future research. Electronic Markets, 26(2), 173–194.

https://doi.org/10.1007/s12525-016-0219-0

Auer, P., & Ortner, R. (2010). UCB revisited: Improved regret bounds for the

stochastic multi-armed bandit problem. Periodica Mathematica Hungarica,

61(1), 55–65. https://doi.org/10.1007/s10998-010-3055-6

Blundell, C., Cornebise, J., Kavukcuoglu, K., & Wierstra, D. (2015). Weight

Uncertainty in Neural Networks. Proceedings of the 32nd International

Conference on Machine Learning, Lille, France, 2015. JMLR: W&CP Volume

37. Copy- Right 2015 by the Author(S)., 37. https://doi.org/10.1002/etc.712

Chu, W., Li, L., Reyzin, L., & Schapire, R. E. (2011). Contextual bandits with linear

Payoff functions. Journal of Machine Learning Research, 15, 208–214.

Kingma, D. P., & Welling, M. (2013). Auto-encoding variational bayes. ArXiv

Preprint ArXiv:1312.6114.

Kiron, D., Prentice, P. K., & Ferguson, R. B. (2014). The Analytics Mandate. MIT

Sloan Management Review, 55(4), 1.

Li, L., Chu, W., Langford, J., & Schapire, R. E. (2010). A contextual-bandit approach

to personalized news article recommendation. Proceedings of the 19th

International Conference on World Wide Web, WWW ’10, 661–670.

https://doi.org/10.1145/1772690.1772758

Liu, B., Wei, Y., Zhang, Y., Yan, Z., & Yang, Q. (2018). Transferable Contextual

Bandit for Cross-Domain Recommendation. Aaai, 3619–3626.

Schafer, J. Ben, Konstan, J. A., & Riedl, J. (2001). E-commerce recommendation

applications. Data Mining and Knowledge Discovery, 5(1–2), 115–153.

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202001541

22

Sivapalan, S., Sadeghian, A., Rahnama, H., & Madni, A. M. (2014). Recommender

systems in e-commerce. World Automation Congress Proceedings, 179–184.

https://doi.org/10.1109/WAC.2014.6935763

Slivkins, A. (2019). Introduction to Multi-Armed Bandits. (January 2017). Retrieved

from http://arxiv.org/abs/1904.07272

Zhou, L., & Brunskill, E. (2016). Latent contextual bandits and their application to

personalized recommendations for new users. IJCAI International Joint

Conference on Artificial Intelligence, 2016-Janua, 3646–3653.

