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中文摘要

本文主要在驗證目前被廣泛應用的深度學習方法，即利用類神經網路所

建構的機器學習模型，在自然語言處理領域中之成效。同時，我們對各式

模型進行了一系列的強健性分析，其中主要包含了觀察這些模型對於對抗

性（adversarial）輸入擾動之抵抗力。更進一步來說，本文所進行的實驗對

象，包含了近期受到許多注目的 Transformer模型，也就是建構在自我注意

力機制之上的一種類神經網路，以及目前常用的，基於長短期記憶 (LSTM)

細胞所搭建的遞歸類神經網路等等不同網路架構，觀察其應用於自然語言

處理上的結果與差異。在實驗內容上，我們囊括了許多在自然語言處理領

域中最常見的工作，例如：文本分類、斷詞及詞類標註、情緒分類、蘊含

分析、文件摘要及機器翻譯等。結果發現，基於自我注意力的 Transformer

架構在絕大多數的工作上都有較為優異的表現。除了使用不同網路架構並

對其成效進行評估，我們也對輸入之資料加以對抗性擾動，以測試不同模

型在可靠度上的差異。另外，我們同時提出一些創新的方法來產生有效的

對抗性輸入擾動。更重要的是，我們基於前述實驗結果提出理論上的分析

與解釋，以探討不同類神經網路架構之間強健性差異的可能來源。

關鍵字：自我注意力機制、對抗性輸入、遞歸類神經網路、長短期記

憶、強健性分析
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Abstract

In this work, we focus on investigating the effectiveness of current deep

learning methods, also known as neural network-based models, in the field of

natural language processing. Additionally, we conduct robustness analysis of

various neural model architectures. We evaluate the neural network’s resis-

tance to adversarial input perturbations, which in essence is replacing the input

words so that the model might produce incorrect results or predictions. We

compare the differences between various network architectures, including the

Transformer network based on the self-attention mechanism, and the commonly

employed recurrent neural networks using long short-term memory cells (LSTM).

We conduct extensive experiments that include the most common tasks in the field

of natural language processing: sentence classification, word segmentation and

part-of-speech tagging, sentiment classification, entailment analysis, abstractive

document summarization, and machine translation. In the process, we evaluate

their effectiveness as compared with other state-of-the-art approaches. We then

estimate the robustness of different models against adversarial examples through

five attack methods. Most importantly, we propose a series of innovative methods

to generate adversarial input perturbations, and devise theoretical analysis from our

iv
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observations. Finally, we attempt to interpret the differences in robustness between

neural network models.

Keywords: Robustness, Adversarial Input, RNN, LSTM, Self Attention
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Chapter 1

Introduction

1.1 Motivation

Research on Artificial Intelligence (AI) has been increasingly influential in recent years.

In particular, Natural Language Processing (NLP), a field that combines linguistic theories and

techniques in computer science, is poised to become the center of all AI applications. It is not

surprising, since the ability to utilize language is a crucial part of the human life as well as

intelligence. Without NLP, integrating machines with the human intelligence would be very

infeasible. Meanwhile, machine learning (ML) methods have been widely applied to a broad

spectrum of problems in this field.

Currently, prominent ML models rely on neural network-based architectures to obtain

state-of-the-art outcomes on many NLP jobs, e.g., classification of documents, sentiments,

and machine translation (MT). Notably, self-attention-based models are receiving a surge of

recognition in the past few years. This type of models, including Transformer [70] as well as

“Bidirectional Encoder Representations from Transformers,” or BERT [18], rely on the attention

mechanism [46] to learn a context-dependent word representation. In particular, BERT is

1
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proposed more recently in an attempt to encode even richer contextual information into the vector

representation of words.

Compared with recurrent neural networks (RNN), these Transformer-based models have

a more efficient encoding speed while maintaining the capacity of incorporating a broader

contextual information. A common pre-training method of this type of models involves a uni-

directional language model objective, whereas BERT exploits a new process that randomly drops

some of the input words and an alternative objective that tries to determine the missing ones using

only its neighboring tokens. Particularly, BERT is pre-trained in the way that utilizes multiple

goals to force its encoding capability. This novel design prompts the model to learn a combined

representation that fuses both the left and right context, creating a bidirectional feature extractor.

In addition, the alternative “next sentence prediction” objective is also included, where the model

has to classify whether a pair of input sentences is extracted from two consecutive locations in

the training corpus. Subsequently, this pre-trained model can be easily tuned to perform a wide

variety of down-stream tasks. The BERT model obtains state-of-the-art results on numerous

NLP problems, e.g., classification and question answering. Oftentimes, we see it surpassing

task-specific models that are carefully engineered. Thus, it is fast becoming a core element in

solving a wide variety of NLP tasks.

Nevertheless, the structure, i.e., self-attention, underlying BERT and Transformer requires

a further investigation. Given their success, the robustness of these model against adversarial

attacks compared with other neural networks is yet to be studied. An adversarial attack involves

the application of tiny perturbations on the input of the model, thereby creating a so-called

adversarial example where the change is humanly imperceptible. This example can trick the

model into making an error in prediction [24]. Unlike those in computer vision research, it is

challenging to come up with a textual adversarial example that is not easily detected by humans

2
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and misguides the machine [3, 39, 54, 82]. However, some recent work unveil that these models

are vulnerable to adversarial examples with acceptable quality [5, 37]. The adversarial inputs can

be precisely recognized by human evaluation, and at the same time trick ML models to produce

incorrect results. For example, a review that says “We had a great experience 6 months ago, but

last night was strikingly different.” It is imaginable that this review is implying that the author

did not have a positive sentiment. However, a machine can be easily fooled by the majority of

positive-sounding words in the sentence, and therefore determine that this is a positive sentence.

The fragility of statistical machine learning models resembles even the traditional rule-based

ones. They can be unaware of the meaning of novel data that was not present in the training

set. In other words, the generality of these models is not guaranteed. These problems urge us to

investigate the robustness of current deep learning models when applied to NLP applications.

1.2 Research Objectives

The main focus of the current dissertation pertains to evaluating the capabilities of deep

neural networks when used for a number of fundamental tasks in natural language processing.

Particularly, we investigate neural networks with different structures, including recurrent and

self-attentional models. The goal of this work is manifold. Most importantly, we attempt to

answer the following research question:

1. When compared with traditional recurrent networks, are self-attentive (Transformer)

models more robust to adversarial examples?

2. Why does one network structure outperform the other with regards to robustness?

3
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3. Can we use the attention weights in self-attentive neural networks to exploit vulnerability

in these models?

In short, this work verifies the robustness of recurrent and self-attentive models. This is

accomplished through performing adversarial attacks and analyzing their effects on the model

prediction. Besides, we evaluate the possibility of employing these context-dependent word

representations to devise metrics for measuring the semantic similarity between adversarial and

actual input sentences. The experiments in this dissertation include two common self-attentive

neural networks, (a) Transformer for neural machine translation, and (b) BERT for sentiment

and entailment classification. The compared methods are mainly recurrent neural networks.

This work is unique in a number of aspects. First, we examine the robustness of uni- and

bi-directional self-attentive model as compared to RNNs. We provide detailed observations

of the internal variations of models under attack. And, we devise novel attack methods that

take advantage of the embedding distance to maximize semantic similarity between real and

adversarial examples.

To the best of our knowledge, this work brings forth the following contributions.

1. We conduct comprehensive experiments to examine the robustness of LSTM, Trans-

former, and BERT. Our results show that both self-attentive models, whether pre-trained

or not, are more robust than LSTM models.

2. We propose novel algorithms to generate more natural adversarial examples that both

preserve the semantics and mislead the classifiers.

3. We provide theoretical explanations to support the statement that self-attentive structures

are more robust to small adversarial perturbations.

4
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1.3 Outline

The remaining chapters are organized as follows. Chapter 2 begins by mentioning a

spectrum of essential knowledge which help the reader to grasp the main concepts of this

dissertation. They include prior work on machine learning, especially regarding neural networks,

methods and tasks that are prominent in natural language processing. Next, Chapter 3

contains descriptions of our approaches for adapting pre-trained models on various NLP-related

tasks, including classification, sequence labeling, sentiment analysis, entailment, and machine

translation. Subsequently, the experiments on these tasks are presented in Chapter 4. We provide

some discussions on the theoretical aspect of the experiments on the robustness of self-attentive

models as compared with recurrent neural networks in Chapter 5. Finally, we conclude this work

with Chapter 6, in which we summarize the results from previous chapters as well as propose

advances that can be made in the future.

1.4 Publications

The current dissertation is based upon many previous work by the author and other

collaborators. They are listed below.

1. Yu-Lun Hsieh, Minhao Cheng, Da-Cheng Juan, Wei Wei, Wen-Lian Hsu, Cho-Jui Hsieh,

“On the Robustness of Self-Attentive Models,”, in Proceedings of the 57th Annual Meeting

of the Association for Computational Linguistics (ACL 2019).

2. Yu-Lun Hsieh, Yung-Chun Chang, Nai-Wen Chang, Wen-Lian Hsu, “Identifying Protein-

protein Interactions in Biomedical Literature using Recurrent Neural Networks with Long

Short-Term Memory,” in Proceedings of the Eighth International Joint Conference on
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Natural Language Processing (IJCNLP 2017).

3. Yu-Lun Hsieh, Yung-Chun Chang, Yi-Jie Huang, Shu-Hao Yeh, Chun-Hung Chen, Wen-

Lian Hsu, “MONPA: Multi-objective Named-entity and Part-of-speech Annotator for

Chinese using Recurrent Neural Network,” in Proceedings of the Eighth International

Joint Conference on Natural Language Processing (IJCNLP 2017).

4. Yu-Lun Hsieh, Shih-Hung Liu, Kuan-Yu Chen, Hsin-Min Wang, Wen-Lian Hsu, Berlin

Chen, “Exploiting Sequence-to-Sequence Generation Framework for Automatic Abstrac-

tive Summarization,” in Proceedings of the 28th International Conference on Computa-

tional Linguistics and Speech Processing (ROCLING 2016).

Other work that are related to this topic includes:

5. Yu-Lun Hsieh, Yung-Chun Chang, Chun-Han Chu, Wen-Lian Hsu, “How Do I Look?

Publicity Mining From Distributed Keyword Representation of Socially Infused News

Articles”, in Proceedings of The Fourth International Workshop on Natural Language

Processing for Social Media (collocated with EMNLP 2016).

6. Yu-Lun Hsieh, Shih-Hung Liu, Yung-Chun Chang, Wen-Lian Hsu, “Neural Network-

Based Vector Representation of Documents for Reader-Emotion Categorization,” in

Proceedings of the 2015 IEEE International Conference on Information Reuse and

Integration (IRI), pp. 569–573, San Francisco, CA, USA, 2015.

7. Yu-Lun Hsieh, Shih-Hung Liu, Yung-Chun Chang, Wen-Lian Hsu, “Distributed Key-

word Vector Representation for Document Categorization,” in Proceedings of the 2015

Conference on Technologies and Applications of Artificial Intelligence (TAAI), pp. 245–

251, 2015.
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The following publications are also completed during the course of the Ph.D.

8. Zheng-Wen Lin, Yung-Chun Chang, Chen-Ann Wang, Yu-Lun Hsieh, Wen-Lian Hsu

“CIAL at IJCNLP-2017 Task 2: An Ensemble Valence-Arousal Analysis System for

Chinese Words and Phrases,” in Proceedings of the IJCNLP 2017, Shared Tasks.

9. Shih-Hung Liu, Kuan-Yu Chen, Yu-Lun Hsieh, Berlin Chen, Hsin-Min Wang, Hsu-Chun

Yen, Wen-Lian Hsu, “Exploiting graph regularized nonnegative matrix factorization for

extractive speech summarization,” in Proceedings of APSIPA 2016.

10. Shih-Hung Liu, Kuan-Yu Chen, Yu-Lun Hsieh, Berlin Chen, Hsin-Min Wang, Hsu-

Chun Yen, Wen-Lian Hsu, “Exploring Word Mover’s Distance and Semantic-Aware

Embedding Techniques for Extractive Broadcast News Summarization.” in Proceedings

of INTERSPEECH 2016.

11. Ting-Hao Yang, Yu-Lun Hsieh, You-Shan Chung, Cheng-Wei Shih, Shih-Hung Liu,

Yung-Chun Chang, Wen-Lian Hsu, “Principle-Based Approach for Semi-Automatic

Construction of a Restaurant Question Answering System from Limited Datasets,” in

Proceedings of the 2016 IEEE International Conference on Information Reuse and

Integration (IRI), pp. 520–524, Pittsburgh, PA, 2016.

12. Nai-Wen Chang, Hong-Jie Dai, Yu-Lun Hsieh, Wen-Lian Hsu, “Statistical Principle-

Based Approach for Detecting miRNA-Target Gene Interaction Articles,” in Proceedings

of the 2016 IEEE 16th International Conference on Bioinformatics and Bioengineering

(BIBE), 2016.
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Chapter 2

Background and Related Work

In this chapter, we briefly review the basis of natural language processing research, which is

the main target of this research. Then, we describe fundamental technologies that is later utilized

in the rest of this work. We also introduce the readers to more details of the essential model, i.e.,

neural networks, that is under investigation of this dissertation.

2.1 Natural Language Processing

Natural language processing (NLP) has been an essential part of the development of

artificial intelligence since as early as the 1950s [69]. The main aim of this field is to design

models and methods for a computer, or any machinery, to store, process, and eventually

understand human languages.

There are many levels of processing when dealing with language. Depending on the

language, one may need to perform lemmatization or stemming first. These steps break up words

into smaller, meaningful parts. Another related work is called “word segmentation,” where

one has to find word boundaries within a sentence in which they are not obvious. Languages

8
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like Chinese, Japanese, and Thai are some of the examples of this category. Part-of-speech

(POS) labeling, or tagging, refers to assigning a label that represents the part-of-speech for each

word. POS are classes of a word for the purpose of grammatical description. Some of those

classes include: the verb, the noun, the pronoun, the adjective, the adverb, the preposition, the

conjunction, the article, and the interjection [29]. Other major components of NLP include:

Syntactic (constituency) parsing involves creating a structured representation of the syntactic

relationships of the words.

Dependency parsing aims at identifying the subject, object, and predicates of a sentence. It

is done by labeling the relationship between one word and another.

Named entity recognition mainly focuses on finding the entities in a sentence, including

persons, places, organizations, etc.

Sentiment analysis or opinion mining, refers to identify the affective content in text. It is

commonly employed to analyze product reviews, survey responses, social media, etc., for use in

applications such as marketing or customer service.

Entailment detection targets to find out the directional relationship between statements. We

define a piece of text T and a hypothesis H . If T entails H , it is understood as if one reads T ,

one would infer that H is very likely to be true. The directionality factor means that the reverse

does not hold, i.e., H does not necessarily entail T .

Machine translation model generates the translation of one language to another based on the

training data in a bilingual corpus. It can be traced back to the idea proposed by Weaver [72]

9
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that a machine can be utilized to handle this task. Traditionally, statistical machine translation

was the common approach. In recent years, the application of neural networks has boosted the

performance to a new peak.

Summarization In the past, more attention has been paid to extractive summarization, while

abstractive summarization are rather rare. In view of the recent success of deep learning, the

research on abstractive summarization has been growing. Recent literature has preliminarily

verified the effectiveness of RNN on rewritten summarization of documents. Moreover, the

contribution of the attention mechanism is also noticed by many. The characteristic of this

mechanism is that it can increase the weight of key segments while generating text, thereby

composing a better summary.

2.2 Neural Networks

The NLP community is widely adopting Artificial Neural Networks (ANN) for various

topics in this field. Thus, we begin this section by supplying an overview of neural networks and

its elementary ingredients.

An ANN can be regarded as a series of functions that are strung together, in which the

majority are non-linear. It is important to note that, an ANN can learn to replicate linear or

logistic regression, as well as other fundamental statistical machine learning models [40]. To

illustrate, we consider the logistic regression problem an example here. A multi-class logistic

regression can be represented as:

f(x) = Wx+ b

g(y) = softmax(y)

(2.2.1)

10
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where W ∈ RC×d denotes the weights in an ANN in matrix form, x ∈ Rd the input vector,

b ∈ RC the bias, and y ∈ RC . C is the number of classes and d is the dimensionality of the

input. We subsequently use θ as a shorthand to denote {W ,b}, the set of parameters of this

ANN. As such, g(f(x)) represents the logistic regression in the form of a composition of f and

g. When we use ANN as an approach to this, the f is modeled by a fully connected NN, and g

an activation function, in this case, softmax. Note that the activation function of ANNs is non-

linear. Technically, an ANN contains more than one “layer” of the above computation, therefore

called “deep neural networks,” or DNN. These layers are connected or stacked together, with

the output of one of them being the input of the next. The “hidden” layers, or the ones that are

between the input and output, typically use activation functions other than the softmax, e.g.,

ReLU, tanh. For the output layer, the softmax and sigmoid functions are commonly used, due

to the assumption that the output layer of an ANN can be considered as categorical or Bernoulli

distribution. Thus, the linear as well as logistic regression can be approximated by an ANN

with just one layer, in which the former uses the identity function and the latter non-linear

activation function. Note that fully connected feed-forward ANN can sometimes be referred

to as a multilayer perceptron (MLP) [64].

h = σ(W1x+ b1)

y = softmax(W2h+ b2),

(2.2.2)

where the σ denotes the activation function. It is worthy of mentioning that the layers can

typically have independent weight matrices. Here, the first hidden layer contains a weight matrix

W1 and bias b1. The process of obtaining h, or the output of the layer, and feeding to the

following layer as its input is called the “forward propagation”. As a result, the output of the

11
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final layer, i.e., y, can be thought of as the output of the whole ANN. Recall that, mathematically

the composition of more than one linear functions is equivalent to another linear function. It is

perceivable that the model only has limited expressive power if we build it in this manner. Thus,

the use of non-linear activation functions is at the heart of the success of deep neural networks.

However, some more advanced ANNs can be designed to share those weights, sometimes

referred to as “weight tying.” It is often used as a way of reducing the number of parameters in

a model, as well as having the benefit of creating an inductive bias. Such bias may increase the

ability of the model to generalize, and has been examined in previous work [62]. For example, a

general pre-trained model can be transferred to various down-stream tasks due to the generality.

This technique is widely used in current deep learning models.

2.2.1 Activation Functions

Activation functions are mathematical equations that determine the output of a cell in a

neural network. Much like a real neural network in organisms, this function is imposed upon

each neuron in the network so that the output value represents the activated state. In addition,

this function can sometimes act as a regularization of the output.

For current ANNs, we require an extra characteristic of the activation function, which is

that it must be differentiable. One of the most common functions is the sigmoid, denoted by the

following:

σ(x) =
1

1 + e−x
(2.2.3)

Another function, the softmax, is one that takes as input a vector of K real numbers, and

normalizes it into a probability distribution consisting of K probabilities proportional to the

12
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exponentials of the input. Specifically,

softmax(x) =
exi∑K
j=1 e

xj

for i = 1, . . . , K and x = (x1, . . . , xK) ∈ RK (2.2.4)

The sigmoid and softmax are generally adopted at the last, i.e., output layer, of the ANN.

As for the hidden layers in between, we mostly employ the rectified linear unit (ReLU) function.

It is written as the following:

ReLU(x) = max(0,x) (2.2.5)

Yet another activation function, the hyperbolic tangent or tanh, is clearly defined and

requires no further explanation. It outputs values in the range (−1, 1).

Recently, other functions such as the Exponential Linear Units (ELU) and the Gaussian

Error Linear Unit (GELU) [19, 30] has been proposed. ELU is aimed at speeding up the learning

process of deep neural networks and at the same time retaining a high classification accuracy.

Part of the ELU is similar to ReLU, where the identity function is used to handle the positive

section of the input values, in order to tackle the vanishing gradient problem. On the other hand,

ELU has the unique property of allowing negative values. This trait serves as a normalization

factor very similar to the batch normalization process, which shifts the average activation of the

units towards zero. But, unlike batch normalization, it requires no extra computation overhead.

2.2.2 Recurrent Neural Networks

Among different types of ANNs, the recurrent neural network (RNN) is one that is suitable

for learning sequential input [21]. Recurrent neural networks have recently become a popular

solution for single sequence as well as sequence-to-sequence tasks. In particular, prominent

13
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network structures such as the ‘seq2seq’ proposed by [4, 15, 65] are increasingly being applied

to a wide variety of problems. Moreover, some tasks that were considered as difficult are seeing

explosive advances, including machine translation (MT) and language modeling (LM), when

deep neural networks are incorporated. [38, 46] Typically, an encoder-decoder scheme is adopted

to deal with these tasks, where the input sequence is encoded by an encoder, and the subsequent

decoder generates a (sequential) output.

Alternatively, we can view RNNs as a feed-forward neural network in which all layers share

the same set of parameters. But, note that, rather than a fixed number of layers, the ‘depth’ (or

number of layers) of this type of NN is dependent on the length of the input sequence. We can

see that each element in the input sequence can be treated as the input of each layer. To be more

formal, we can define an RNN as maintaining a vector Whxt, which is a hidden state or memory

to store at each time step t. Then, upon receiving input at time step t, the network updates its

state as the following:

ht = σh(Whxt +Uhht1 + bh)

yt = σy(Whxt + by)

(2.2.6)

where σh and σy are activation functions. We can see from the above formulation that the weights

Uh is to transform the previous hidden state ht1, andWh the current input xt. A bias term bh can

also be added. These calculations update the state vector ht. Subsequently, the RNN produces

an output yt. However, an RNN can be less effective when modeling a sequential input if the

number of time steps exceeds a certain amount, as we can induce from the above formulation.

Nevertheless, an RNN depends on the previous calculation results to produce the next one.

So, an increasing amount of efforts have been devoted to find a mechanism that can replace

recurrence. One possible direction of research is to use attention [4]. The motivation behind

this approach is that it can combine the efficiency of attention computation with the ability to

14
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learn positional information. It has been shown [70] to achieve outstanding performances on a

multitude of language pairs in MT. We will introduce attention-based models later in this chapter.

2.2.3 Long Short-term Memory

A neural network cell named Long Short-term Memory, or LSTM, is proposed in an attempt

to solve the deficiency of simple RNNs in learning a sequence of a longer length [27, 31]. It is

evidences by the experimental results that LSTM can remember a longer span of the sequential

input, as compared to traditional RNNs. This trait is important especially for NLP applications.

In essence, an LSTM is an augmented RNN with extra weights to determine the amount of

information to “remember” as well as “forget.” They are done through the implementation of a

forget gate ft, an input gate it, and an output gate ot. The values of all these gates are dependent

on the input xt and previous memory ht. In this way, the cell learns to determine the portion of

its state to keep or discard through the forget gate. Formally, we recall the current input xt, the

previous output ht−1, and the current cell state ct as defined in the previous paragraph. Using

the following formulas, we enable the model to learn what to forget in the past and remember in

the moment.

it = σ(Wixt +Uiht−1 + bi)

ft = σ(Wfxt +Ufht−1 + bf )

ot = σ(Woxt +Uoht−1 + bo)

c̃t = tanh(Wcxt +Ucht−1 + bc)

ct = ft ◦ ct−1 + it ◦ c̃t

ht = ot ◦ tanh(ct)

(2.2.7)

where σ designates the sigmoid function and “◦” means the element-wise product between
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vectors.

Graves et al. [26] proposed an intuitive extension to the LSTM, called the Bidirectional

LSTM, or BiLSTM. In essence, it involves creating two separate LSTMs, of which one receives

the original input sequence and the other a reversed sequence. These two LSTMs learn to model

the sequential input separately and independently. This model is later widely used in virtually

all NLP models [79].

2.2.4 Training

The training (learning) phase of a neural network currently relies on stochastic gradient

descent. However, a typical network consists of more than one layer, preventing us from calcu-

lating the gradient of the loss function. Thus, a dynamic process named “back propagation,” or

“backprop (BP)”. is commonly adopted [63].

BP adopts the chain rule of calculus to determine the gradient of vectors. Let x ∈ Rm be

the input to a neural network, y ∈ Rn be the output of the penultimate layer, we can formulate

the network as:

y = g(x)

z = f(y) = f(g(x))

(2.2.8)

where z is a scalar output of the network. The gradient of z with respect to every element xi in

x can be written as:

∂z

∂xi

= Σj
∂z

∂yj
× ∂yj

∂xi

(2.2.9)

Since we are using vectors as input, the gradients ∇xz can be computed by the following

multiplication:

∇xz =

(
∂y

∂x

)⊤

∇yz (2.2.10)
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where the Jacobian matrix of g is denoted by
∂y

∂x
, and

∂y

∂x
∈ Rn×m. This matrix contains all

partial derivatives. As described in [25], for all operations in the forward pass of the NN, the BP

derives the Jacobian-gradient product. Let function

J = L(ŷ,y) (2.2.11)

be the loss function of a certain task performed by a neural network that we need to minimize.

This NN has K layers with weights Wk and biases bk, where k ∈ {1, · · · , K}. First we perform

forward calculation using the input x starting from the first layer and ending at the last one

(output), yielding the output vector ŷ. Then, we obtain the loss by J . BP is therefore acting

in a reversed order. It starts by calculating the gradients ∇ŷJ with respect to the output ŷ.

Subsequently for all previous layers, it obtains the partial derivatives of parameters Wk and bk

for each layer until the first one is reached. It is perceivable that, in such a process, the derivatives

of the deeper layers (close to the output) must be obtained first before the shallower layers can be

considered. This is due to the fact that the values of deep layers depend on those from shallow

layers. Finally, the SGD algorithm applies the gradients onto the parameters and completes

the optimizing step. Typically, this procedure is repeated for a certain amount of “epochs,” or

traversals of the entire training dataset.

Note that, when training RNNs, the gradients should be passed along the time step axis

and not through the depth-wise procedure of other types of NNs. To do that, we must employ a

technique known as back-propagation through time (BPTT) [73]. But the practical limitation of

hardware prevent us from doing BP indefinitely. So, we normally set a certain window on the

time axis for BP to operate in. Interestingly, one might think a wider window can help the RNN

to see and model a wider context. Whereas in practice, we often find that the network is unable
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to learn anything. After careful inspection, it is found that the problem of exploding or vanishing

gradients exists in these situations. Consider for a moment the forward operation of an RNN,

in which the state vector is continuously being updated by multiplication of the weights. Thus,

when BP is in action, the gradients would also undergo the same process multiple times. It is

imaginable that these gradients may become exceedingly large (explode) or small (vanish). As a

result, the network is unable to be optimized. Therefore, the LSTM (mentioned in Section 2.2.3)

is proposed to alleviate the exploding or vanishing gradient problem.

2.3 Attention Mechanisms

The “attention” in neural networks can be thought of as a type of weighting. There are

multiple functions to obtain attention scores, but the additive method [4] and multiplicative

method [46] are among the most widely used ones. The multiplicative method is sometimes

factored by 1√
dk

, which is used in BERT-related models. In particular, the form that is commonly

used is called “Scaled Dot-Product Attention”. Consider that, in an attention block, the input is a

series of vectors named “queries” and “keys” with dimension dk, and “values” of dimension dv.

Then, the dot product between a query and all keys are calculated and normalized by dividing

with
√
dk. Finally, the softmax function is applied and the weights on the values can be output.

Note that, we can parallelize the attention calculation by computing them on a batch of inputs at

the same time. More specifically, the query, key, and value vectors are collated into matrices Q,

K, V , respectively. We then perform matrix operations to obtain outputs as:

Attention(Q,K,V ) = softmax(
QKT

√
dk

)V (2.3.1)

18



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU202001426

Conceptually, attention function can be described as mapping a query and a set of key-value pairs

to an output, where the query, keys, values, and output are all vectors. The output is computed

as a weighted sum of the values, where the weight assigned to each value is computed by a

compatibility function of the query with the corresponding key.

On the other hand, additive attention employs a fully connected NN to determine the

compatibility or similarity between two vectors. The score of additive attention is calculated

as follows:

Attentionadd(st,hi) = v⊤
a tanh(Wa[st;hi]) (2.3.2)

where s,h are state vectors and v,W are parameters that the model needs to learn. We can

observe the above definitions and find that multiplication in dot-product attention can take

advantage of modern GPU hardware to perform fast calculations. This is one of the main reasons

for recent improvements in using attention for language modeling.

2.3.1 Self-Attention

Recently, Vaswani et al. [70] proposed the “Transformer” model, which is a novel method

that solely depends on self-attention to learn vector representations of a sequence. The heart of

Transformer is a unit of multi-head self-attention mechanism. It transforms the input vectors

into a representation formed by multiple mixtures learned by the model. For each head, The

input is first linearly projected by a set of three weight matrices as in the previous section to

three vectors, (Q,K, V ). Then, an attention weight is calculated using the dot-product attention

in Eq. 2.3.1. The reason it is called the “self”-attention is that the attended elements are the

input sequence itself. Moreover, note that the number of head effectively indicates the number

of weight matrix sets. Figure 2.1 shows a schematic of the Transformer model. The trait of

19



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU202001426

Transformer

Scaled dot-product attention

hi

Embedding

Q K V

×	WQ ×	WK ×	WV

n h
ea

ds
concat

×	Wo

output

Multi-head 
self attention

Layer 
normalization

Feed-forward
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⊕

⊕

Figure 2.1: The multi-head attention module in a Transformer block.

this type of models is that it frees us from the recurrent part of previous neural networks or

even convolution calculations. The Transformer model utilize entirely the attention weights to

denote global correspondence between input and output symbols (words). Thus, the degree

of parallelization can be much higher than RNNs. The performance is indicated by training a

machine translation system that achieves state-of-the-art outcomes in just 12 hours.

However, this type of model does not come without weaknesses. First, it cannot directly

learn the order of the input due to the fact that there is no recurrent state or convolution. So,

another new type of embedding, Position Embedding, is incorporated to represent the relative

order of the elements in the input sequence. They are defined as follows.

xi = (embwordi⊕ embtagi) + embposi (2.3.3)

where embposi is called the Position Embedding of the i-th position. We use the sine and cosine
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functions of different frequencies to compose position embeddings as stated in [70]. It is added

to the word embeddings which represent linguistic information of the words, with dimensions

identical to other embeddings so that they are compatible.

Specifically, these functions are used to encode the position information [70]:

embpos2i = sin(pos/100002i/dmodel)

embpos2i+1 = cos(pos/100002i/dmodel)

(2.3.4)

where pos is the position and i is the dimension. We can interpret this formulation as using a

sinusoid to encode one dimension with position embedding. The wavelengths denoted by these

functions constitute a geometric sequence (a sequence of numbers where each one is determined

by multiplying the previous one by a fixed, non-zero value) from 2π to (10000 · 2π). It is

hypothesized that this formulation can incorporate the relative position of the input elements

into the embeddings. The reason is explained as follows. Suppose we have a word embedding

embpos, the embedding of a word that is k steps away can be denoted by a linear combination of

embpos+k.

It is worthy of noting that there are various means of learning positional information [23].

The learned positional embeddings [23] are examined and the results showed that they have

virtually no difference [70]. The sine and cosine functions are eventually selected due to their

potential in modeling the indefinitely long sequence that may not be present in the training data.

The characteristics of these functions can help the network extrapolate to unseen lengths.
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2.4 Adversarial Attack

Robustness of neural network models has been a prominent research topic since Szegedy

et al. [66] discovered that CNN-based image classification models are vulnerable to adversarial

examples. An abundant amount of work has been dedicated to investigating the robustness

of CNN models against adversarial attacks [7, 12, 24, 54]. However, attempts to examine the

robustness of NLP models are relatively few and far between. Previous work on attacking neural

NLP models include using Fast Gradient Sign Method [24] to perturb the embedding of RNN-

based classifiers [43, 53], but they have difficulties mapping from continuous embedding space

to discrete input space. Ebrahimi et al. [20] propose the ‘HotFilp’ method that replaces the

word or character with the largest difference in the Jacobian matrix. Li et al. [41] employ

reinforcement learning to find the optimal words to delete in order to fool the classifier. More

recently, Yang et al. [77] propose a greedy method to construct adversarial examples by solving

a discrete optimization problem. They show superior performance than previous work in terms

of attack success rate, but the greedy edits usually degrade the readability or significantly change

the semantics. Alzantot et al. [3] propose to use a pre-compiled list of semantically similar words

to alleviate this issue, but leads to lower successful rate as shown in our experiments. We thus

include the latest greedy and list-based approaches in our comparisons.

In addition, the concept of adversarial attacks has also been explored in more complex

NLP tasks. For example, Jia and Liang [37] attempt to craft adversarial input to a question

answering system by inserting irrelevant sentences at the end of a paragraph. Cheng et al. [14]

develop an algorithm for attacking seq2seq models with specific constraints on the content of the

adversarial examples. Belinkov and Bisk [5] compare typos and artificial noise as adversarial

input to machine translation models. Also, Iyyer et al. [35] propose a paraphrase generator

22



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU202001426

model to generate legitimate paraphrases of a sentence. However, the semantic similarity is

not guaranteed. In terms of comparisons between LSTM and Transformers, Tang et al. [67]

show that multi-headed attention is a critical factor in Transformer when learning long distance

linguistic relations.

2.4.1 Pre-training and Multi-task Learning

The widely adopted workflow for BERT-related models involves two steps, i.e., pre-training

(self-supervised) and fine-tuning (supervised). The first pre-training procedure involves two

targets, i.e., masked language modeling (MLM) and next sentence prediction (NSP). MLM

regards the prediction of randomly masked input words, and NSP aims at predicting the

relationship of two input sentences, namely, does the latter follow the former in the original

corpus. Subsequently, the model is fine-tuned for different downstream tasks, where fully-

connected networks are added after the final encoding layer per the requirements of various

end tasks.

Such a scheme can be regarded as a type of multi-task learning. In recent ML research,

this approach has been proven successful for a wide spectrum of applications that go beyond

NLP [16]. Traditionally, ML model focuses on a single task in the training process. In doing

so, we are stripping it of information potentially useful for other tasks as well. If the supervised

goal of another task contains knowledge which can assist the model to learn quicker and better,

it is helpful to train both tasks together. Therefore, recent approaches attempt to construct a

common, general representation scheme for all tasks before specifying the supervised goals.

As the experiments showed, MTL can boost the model’s ability to generalize across different

tasks [8]. More specifically for NLP tasks, pre-training the word representation models such as

ELMo or GPT-2 [60, 61] have been verified to greatly boost their effectiveness in a broad variety
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of applications. Note that, the pre-training loss of these models may be different. But, as long

as it is designed to incorporate helpful auxiliary information such as linguistic knowledge, the

resulting model can be stronger when learning a new task.

2.5 Evaluation Metrics

Throughout this dissertation, we use standard metrics in NLP to evaluate the performance

of our models. Binary classification typically adopts the accuracy measurement, defined as:

Acc =
TP + TN

TP + FP + TN + FN
, (2.5.1)

where TP, TN, FP, and FN are the number of true positives, true negatives, false positives, and

false negatives respectively. For multi-class classification, where each input sample is classified

as one of many classes, the F1-score is typically used. It is defined as:

F1-score =
2× Precision× Recall

Precision + Recall
, (2.5.2)

where Precision and Recall are defined as:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

(2.5.3)

For machine translation, it is typical to use the BLEU (bilingual evaluation understudy)

score to evaluate the quality of the translated text [55]. It is designed to measure the

correspondence between the output of a machine learning model and the golden translation.

BLEU was one of the first metrics to obtain a high correlation with human judgments of quality,
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and remains one of the most popular automatic as well as cost-effective metrics. Evaluation of

the score involves calculating the similarity between pieces of the translation individually and

the reference text. Then, the overall score is the mean over the entire corpus. It should be noted

that grammaticality, intelligibility, semantic quality cannot be evaluated in this manner. The

value of BLEU score lies between 0 and 1, where 1 indicates that the automatic translation is

identical to a segment in the golden translations.

For automatic summarization, we adopt the commonly used “Recall-Oriented Understudy

for Gisting Evaluation” (ROUGE) scores [44]. The ROUGE method aims at calculating the ratio

of the unit overlap between the generated results and the golden summary. The unit used here

can be N-gram or character sequences. Specifically, we use three ROUGE calculation methods:

ROUGE-1 (unigram), ROUGE-2 (bigram), and ROUGE-L (Longest Common Subsequence)

scores. To improve legibility, we will abbreviate them as R-1, R-2 and R-L henceforth.

Intuitively, R-1 can be thought of as to represent the amount of information of automatic

summaries, whereas R-2 is to evaluate the overall fluency of said summaries. Finally, R-L can

be regarded as the coverage rate of the summary over the original article.
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Chapter 3

Methods

This chapter provides descriptions of various neural architectures and how to adapt them

for the downstream tasks, which include sequence classification, part-of-speech tagging, named

entity recognition, sentiment analysis, entailment, translation, and summarization.

3.1 Neural Networks

Artificial neural networks (ANN) have become a prominent tool for natural language

processing in recent years. As a result, a wide variety of network structures are used as the

basis of models for the experiments in this work. Before going into details of each task, the

model architectures are briefly described in the following sections.

3.1.1 Recurrent Neural Networks

In essence, natural language inputs consist of a sequence of words or sub-word tokens, in

which the order cannot be freely alternated. Therefore, RNNs emerge as an intuitive choice.

We propose an approach for identifying protein-protein interaction (PPI) in biomedical
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literature using RNN with LSTM cells. We employ a straightforward extension named

Bidirectional RNN, which encodes sequential information in both directions (forward and

backward) and concatenate the final outputs. In this way, the output of one time step will contain

information from its left and right neighbors.

For classification tasks including sentiment analysis and entailment detection, we use

a Bidirectional LSTM [31] with an attention [4] layer as the sentence encoder, and a fully

connected layer for the classification task. Similarly, for tasks such as POS and NER where the

label of one character can be determined by its context, bidirectional learning can be beneficial.

For machine translation, we employ a common seq2seq model [65], in which both the

encoder and decoder are a 2-layer stacked Bi-LSTM with 512 hidden units.

For abstractive summarization, we use a layer of LSTM network with attention mechanism,

and compare the difference between uni-directional and bi-directional networks, as well as the

impact of the LSTM cell dimension, word vector dimension and other parameters.

3.1.2 Self-Attentive Models

Self-attentive models including Transformer [70] and “Bidirectional Encoder Representa-

tions from Transformers,” shortened as BERT [18], rely on the attention mechanism [46] to learn

a context-dependent representation, or encoding. As such, self-attention has been successfully

applied in several tasks. Similar to bidirectional LSTM, this type of encoder takes x0,x1, · · · ,xn

as the input, and produces context-aware word representations ri of all positions 0 ⩽ i ⩽ n. We

employ a stack of N identical self-attention layers, each having independent parameters.

The classification problems adopt the BERT model with an identical setup to the original

paper, in which BERT is used as an encoder that represents a sentence as a vector. This vector

is then used by a fully connected neural network for classification. Note that models are tuned
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“ [SEP] ”
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(a) Single sentence classification
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“ [SEP] ”
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(b) Sentence pair classification

Figure 3.1: Classification of sentence and sentence pair using BERT
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Figure 3.2: Named entity recognition using BERT

separately for each task. Figure 3.1 denotes how to model BERT model for classification tasks.

Figure 3.2 denotes how to perform sequence labeling, such as NER, using BERT. Figure 3.3

illustrates the approach for building a question answering system with BERT.

In addition, we tried to determine the effect of pre-training by testing a compact version of

BERT, named BERTnopt. It comprises of three self-attention layers instead of 12.

To the best of our knowledge, machine translation models do not typically employ BERT.

Therefore, for our MT experiments, a Transformer encoder-decoder model is utilized.

3.2 Adversarial Attack Methods

In order to test the robustness of various neural models, we include five methods for

generating adversarial examples (attacks). These methods have a common goal, which is to

find and replace only one of the elements in an input sequence such that the prediction of the

model is incorrect. They are introduced in this section.

The first method is based on random word replacement, which serves as the baseline. The
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Figure 3.3: Question answering using BERT

second (list-based) and third (greedy) methods are adapted from previous work [3, 14]. The

fourth (constrained greedy) and fifth (attention-based) are proposed by the current work.

3.2.1 Random Attack

This basic attack method selects a word in the original sequence and replaces it with another

one in the vocabulary, both randomly. In order to fairly estimate the effect of randomness,

this attack is repeated for 105 trials and averaged to obtain the overall score. It is denoted as

RANDOM.

3.2.2 List-based Attack

The second method is recently proposed by Alzantot et al. [3], denoted as LIST. LIST

employs a list of semantically similar words (i.e., synonyms), and manages to replace a word in

the input sentence with another from the list to construct adversarial examples. In other words,
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Table 3.1: Illustrative examples of semantically similar words.

Word Similar Words

abandon forgo, renounce, relinquish, forego, forswear, forsake, abdicate, waive,
abandons, abandoning, renounces

abate lessen, downsize, reduce, shortening, mitigate, mitigating, reducing,
mitigation, curtail, lighten, alleviate, minimize, shorten

· · ·

zucchini spinach, broccoli, eggplant, celery, leeks, onion, artichokes, cauliflower,
tomatoes, chard, eggplants, sauteed, tomato, artichoke, courgettes,
radishes, shallots, okra, arugula, beets

the list is used to replace a word with one of its synonyms; this process is repeated for every

word in the input sentence until the target model makes an incorrect prediction. That is, for every

sentence, we start by replacing the first word with its synonyms, each forming a new adversarial

example. If none of these successfully misleads the model, we move to the next word (and the

first word remains unchanged), and repeat this process until either the attack succeeds or all

words have been tried.

A list of semantically similar words can be found in Table 3.1. We can see that this list

enables us to find very closely related words (synonyms) to perform attacks.

3.2.3 Greedy Select & Greedy Replace

The third method (denoted as GS-GR) greedily searches for the weak spot of the input

sentence [77] by replacing each word, one at a time, with a “padding” (a zero-valued vector)

and examining the changes of output probability. After determining the weak spot, GS-GR then

replaces that word with a randomly selected word in the vocabulary to form an attack. This

process is repeated until the attack succeeds or all words in the vocabulary are exhausted.
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3.2.4 Greedy Select with Embedding Constraint

Although the GS-GR method potentially achieves a high success rate, the adversarial

examples formed by GS-GR are usually unnatural; sometimes GS-GR completely changes the

semantics of the original sentence by replacing the most important word with its antonym, for

example: changing “this is a good restaurant” into “this is a bad restaurant.” This cannot

be treated as a successful attack, since humans will notice the change and agree with the

model’s output. This is because GS-GR only considers the classification loss when finding the

replacement word, and largely ignore the actual semantics of the input sentence.

To resolve this issue, we propose to add a constraint on sentence-level (not word-level)

embedding: the attack must find a word with the minimum L1 distance between two embeddings

(from the sentences before and after the word change) as the replacement.

This distance constraint requires a replacement word not to alter the sentence-level

semantics too much. This method is denoted as GS-EC. In the experimental results, we show

that the GS-EC method achieves a similar success rate as GS-GR in misleading the model, while

being able to generate more natural and semantically-consistent adversarial sentences.

3.2.5 Attention-based Select

We conjecture that self-attentive models rely heavily on attention scores, and changing

the word with the highest or lowest attention score could substantially undermine the model’s

prediction. Therefore, this attack method exploits and also investigates the attention scores as a

potential source of vulnerability. This method first obtains the attention scores and then identifies

a target word that has the highest or lowest score. Target word is then replaced by a random

word in the vocabulary, and this process is repeated until the model is misled by the generated
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adversarial example. These methods are denoted as ASMIN-GR that replaces the word with the

lowest score, and ASMAX-GR with the highest score.

Furthermore, the constraint on the embedding distance can also be imposed here for finding

semantically similar adversarial examples; these methods are referred as ASMIN-EC and ASMAX-

EC, respectively. As a pilot study, we examine the attention scores on the first and last layers of

the BERT model for understanding the model’s behavior under attacks.
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Chapter 4

Experiments

4.1 Text Sequence Classification in Biomedical Literature

W1
Word Embedding

Bidirectional
LSTM

Output
O ∈ { Positive, Negative }

W2 Wn......

◦ ◦ ◦ ◦ ◦ ◦  

■■ 

Fully connected

●●●●●●●

◦ ◦ ◦ ◦ ◦ ◦  ◦ ◦ ◦ ◦ ◦ ◦  

●●●●●●● ●●●●●●●

“A” “kinase” “activation”

......

△ △ △ △ △ △ △ △ △ △ △ △ △ △ △ △ △ △

◦ ◦ ◦ ◦ ◦ ◦  △ △ △ △ △ △

Forward

Backward

Figure 4.1: Recurrent neural network-based PPI classification model.

This experiment concerns with evaluating an approach to the problem of classifying the

textual description of protein-protein interaction (PPI) in biomedical literature. It is one of the

essential parts of this field, especially because it can serve as the basis of building a knowledge

base and/or ontology for the entities such as molecules and cells within the sentence [52]. The
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Table 4.1: Descriptive Statistics of AIMed and BioInfer, the two largest PPI corpora.

Corpus Number of Sentences Number of Positive/Negative Protein Pairs

AIMed 1,955 1,000 / 4,834

BioInfer 1,100 2,534 / 7,132

rapid growth of the amount of research papers in the world strengthens the need for this task,

and newer methods are much in demand.

Here we based on RNNs to capture the long-term relationships among words in order to

identify PPIs. The proposed model is evaluated on two largest PPI corpora, i.e., AIMed [6] and

BioInfer [58] using cross-validation (CV) and cross-corpus (CC) settings. Figure 4.1 illustrates

the structure of this neural network. The descriptive statistics of the datasets used in this

experiment is listed in Table 4.1

We adopt 10-fold cross-validation (CV) and cross-corpus (CC) testing schemes for evalu-

ation. The evaluation metrics are the precision, recall, and F1-score for both schemes.

Compared methods include the shortest dependency path-directed constituent parse tree

(SDP-CPT) method [59], in which the tree representation generated from a syntactic parser

is refined by using the shortest dependency path between two entity mentions derived from a

dependency parser; A knowledge-based approach PIPE [10] that extracts linguistic interaction

patterns and learned by a convolution tree kernel; A composite kernel approach (CK) [51] which

combines several different layers of information from a sentence with its syntactic structure by

using several parsers; and a graph kernel method (GK) [2] that integrates parse structure sub-

graph and a linear order sub-graph. We further compare with recent NN-based approaches:

sdpCNN [34] which combines CNN with shortest dependency path features; McDepCNN [57]

that uses positional embeddings along with word embeddings as the input, and a tree kernel using
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various word embeddings labeled as TK+WE [42]. We also evaluate the effect of pre-training

of word embeddings by comparing randomly initialized and pre-trained embeddings, labeled as

LSTMrand and LSTMpre, respectively.

4.1.1 Experimental Setup

To ensure the generalization of the learned model, the protein names recognized in the

text are replaced with “PROTEIN1”, “PROTEIN2”, or “PROTEIN”, where “PROTEIN1”

and “PROTEIN2” are the pair of interest, and other non-participating proteins are marked as

“PROTEIN”. An example is given as follows. The sentence “Thymocyte activation induces

the association of phosphatidylinositol 3-kinase and pp120 with CD5” contains three proteins,

namely, “phosphatidylinositol 3-kinase”, “pp120”, and “CD5”. In the three possible pairs of

proteins, two of them are in interaction relations. Therefore, there are three variants of this

sentence with proteins being replaced by the special labels in the data, and two of them are

marked as “positive” while the other one as “negative”. During testing, all the variants will be

scored. The maximum sentence length is set to 100, where longer sentences are truncated and

shorter sentences padded with zeros. We use 200-dimension embeddings and 400-dimension

LSTM cells. The dropout rate is set to 0.5. The RMSProp optimizer [68] with default learning

rate settings are applied. We implement the model using keras with tensorflow [1]

backend 1. With a batch size of 16, training one epoch on one Titan X GPU takes approximately

one minute. The throughput of the inference stage is around 130 KiB of text per second.

1Code can be downloaded from https://github.com/ylhsieh/ppi_lstm_rnn_keras.
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Table 4.2: Ten-fold cross-validation of the performance of various PPI classification models on
corpora AIMed and BioInfer. Metrics are precision, recall, and F-score (in %) and standard
deviation in parentheses. The bold numbers highlight the best performance of a column.

Method
AIMed BioInfer

Precision Recall F-score Precision Recall F-score

GK 52.9 61.8 56.4 56.7 67.2 61.3

SDP-CPT 59.1 57.6 58.1 - - 62.4

CK 55.0 68.8 60.8 65.7 71.1 68.1

PIPE 57.2 64.5 60.6 68.6 70.3 69.4

McDepCNN 67.3 60.1 63.5 62.7 68.2 65.3

sdpCNN 64.8 67.8 66.0 73.4 77.0 75.2

TK+WE - - 69.7 - - 74.0

LSTMrand 70.1 (6.5) 70.4 (6.4) 70.1 (5.5) 83.6 (2.4) 83.3 (2.7) 83.4 (2.3)

LSTMpre 78.8 (5.6) 75.2 (5.0) 76.9 (4.9) 87.0 (2.3) 87.4 (2.3) 87.2 (1.9)

4.1.2 Results

Ten-fold cross-validation results on AIMed and BioInfer are listed in Table 4.2. Kernel-

based methods can achieve decent F-scores of 61% and 69%. All NN-based methods outperform

kernel-based ones by up to 10% on AIMed and 5% on BioInfer. When using randomly initialized

embeddings, RNN exhibits similar performance as other NN models. However, by taking

advantage of pre-trained embeddings, RNN further advances F-scores by 7% and 13% on AIMed

and BioInfer, respectively. In other words, pre-training contribute to relative improvements of

10% and 18%. These results demonstrate that, even though kernel-based methods all include

syntactic or semantic structures and carefully crafted features, neural networks are capable of

automatically capturing contextual information that is crucial for identifying PPIs. Moreover,

we can see that the standard deviations of the performance by RNN on the larger corpus,

37



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU202001426

i.e., BioInfer, is much lower than that of the smaller corpus (5 vs. 2). Besides, the relative

improvement of RNN over compared methods on BioInfer is greater as well (10% and 18%).

This suggests that richer context information in a larger corpus may be difficult to be manually

modeled via feature engineering or rule creation, but is a well-suited learning source for neural

networks.

Table 4.3: Cross-corpus evaluation of the F-score (in %) of various PPI classification models on
corpora AIMed and BioInfer. The bold numbers highlight the best performance of a column.

Method Train on AIMed,
Test on BioInfer

Train on BioInfer,
Test on AIMed

GK 47.1 47.2

CK 53.1 49.6

PIPE 58.2 52.1

McDepCNN 48.0 49.9

LSTM 49.3 50.7

Table 4.3 shows the cross-corpus results, in which different methods are trained on one

corpus and tested on the other. We observe that, although RNN performs slightly better

than McDepCNN, CK and PIPE methods are much more robust when learning on different

corpora. We postulate that knowledge may play an important role in this scenario, and effective

incorporation of such information into RNN can be a promising direction for future research.
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Figure 4.2: Architecture of MONPA: multi-objective named entity & POS annotator.

4.2 Sequence Labeling

This experiment regards using an encoder-decoder [65] structure with the attention mech-

anism [46] to perform sequence labeling with multi-task objectives. In particular, we conduct

Chinese word segmentation, part-of-speech (POS), and named entity (NE) labeling simultane-

ously. The input is a sequence of Chinese characters that may contain named entities, and the

output is a sequence of POS tags and possibly NEs in the form of ‘BIES’ tags.

The model that are used in this task mainly consists of: embedding layer, recurrent encoder

layers, attention layer, and decoder layers. The embedding layer converts characters into

embeddings [50], which are dense, low-dimensional, and real-valued vectors. They capture

syntactic and semantic information provided by its neighboring characters. In this work,

we utilize pre-trained embeddings using word2vec and over 1 million online news articles.

The recurrent encoder layers use LSTM cells, which have been shown to capture long-term

dependencies in the input sequence.

We employ a straightforward extension named Bidirectional RNN [26], which encodes

sequential information in both directions (forward and backward) and concatenate the final
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outputs. In this way, the output of one time step will contain information from its left and right

neighbors. For tasks such as POS and NER where the label of one character can be determined

by its context, bidirectional learning can be beneficial. The attention layer is proposed by Luong

et al. [46] in an attempt to tackle the problem of finding corresponding words in the source and

target languages when conducting machine translation. Finally, the recurrent decoder layers take

the sequence of output from the attention layer and project them onto a V -dimensional vector

where V equals the number of possible POS and NE tags. The overview of the complete model

is shown in Figure 4.2. The loss of the model is defined as the averaged cross-entropy between

an output sequence and true label sequence.

Test corpora from five previous SIGHAN shared tasks, which have been widely adopted for

Traditional Chinese word segmentation and NER, were used to evaluate the proposed system.

Besides the participating systems in the above shared tasks, we also compare with existing word

segmentation toolkits Jieba and CKIP [32]. The word segmentation datasets were taken from

SIGHAN shared tasks of years 2003–2008, and NER dataset is from 2006. We follow the

standard train/test split of the provided data, where 10,000 sentences of the training set are used

as the validation set. Details of the word segmentation and NER datasets are shown in Table 4.4

and 4.5, respectively. Three metrics are used for evaluation: precision, recall, and F1-score. For

word segmentation, a token is considered to be correct if both the left and right boundaries match

those of a word in the gold standard. For the NER task, both the boundaries and the NE type

must be correctly identified.

4.2.1 Experimental Setup

In order to obtain multi-objective labels of the training data, we first merge datasets from

the 2006 SIGHAN word segmentation and NER shared tasks. Since rich context information is
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Table 4.4: Statistics of the number of words in two word segmentation datasets.

Year
AS CityU

Train Test Train Test

2003 5.8M 12K 240K 35K

2005 5.45M 122K 1.46M 41K

2006 5.5M 91K 1.6M 220K

2008 1.5M 91K - -

Table 4.5: Statistics of the number of words in the 2006 NER dataset.

#Train/Test Words

Person Location Organization

36K / 8K 48K / 7K 28K / 4K

able to benefit deep learning-based approach, we augment the training set by collecting online

news articles2. There are three steps for annotating the newly-created dataset. We first collect a

list of NEs from Wikipedia and use it to search for NEs in the corpus, where longer NEs have

higher priorities. Then, an NER tool [75] is utilized to label NEs. Finally, CKIP is utilized to

segment and label the remaining words with POS tags. Three variants of the proposed model

are tested, labeled as RNNCU06, RNNYA, and RNNCU06+YA. RNNCU06 is trained using only

word segmentation and NER datasets from the 2006 City University (CU) corpus; RNNYA is

trained using only online news corpus, and RNNCU06+YA is trained on a combination of the

above corpora.

We implemented the RNN model using pytorch3. The maximum sentence length is set

to 80, where longer sentences were truncated and shorter sentences were padded with zeros. The

forward and backward RNN each has a dimension of 300, identical to that of word embeddings.
2News articles are collected from the Yahoo News website and contains about 3M words.
3https://github.com/pytorch/pytorch
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There are three layers for both encoder and decoder. Dropout layers exist between each of the

recurrent layers. The training lasts for at most 100 epochs or when the accuracy of the validation

set starts to drop.

4.2.2 Results and Discussion

Note that since we combined external resources, performances of the compared methods

are from the open track of the shared tasks. Table 4.6a lists the results of the RNN-based models

and top-performing systems for the word segmentation subtask on the Academia Sinica (AS)

dataset. First of all, RNNs exhibit consistent capabilities in handling data from different years

and is comparable to the best systems in the competition. In addition, it is not surprising that the

RNNYA model perform better than RNNCU. Nevertheless, our method can be further improved

by integrating the CU06 corpus, demonstrated by the results from the RNNCU06+YA model. This

indicates that RNN can easily adapt to different domains with data augmentation, which is an

outstanding feature of end-to-end models. As for the CU dataset listed in Table 4.6b, all of

the RNN models show considerable decrease in F-score. We postulate that it may be due to

the training data, which is processed using an external tool focused on texts from a different

linguistic context. It is also reported by [75] that segmentation criteria in AS and CU datasets

are not very consistent. However, by fusing two corpora, the RNNCU06+YA can even surpass the

performances of CKIP. Finally, comparison with Jieba validates that the RNN model can serve

as a very effective toolkit for NLP researchers as well as the general public.

Table 4.7 lists the performances of proposed models and the only system that participated

in the open track of the 2006 SIGHAN NER shared task. We can see that RNNCU06 outperforms

the model from Yu et al. [78], confirming RNN’s capability on jointly learning to segment and

recognize NEs. Interestingly, RNNYA obtains a much lower F-score for all NE types. And
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Table 4.6: Word segmentation performance (% F-score) of various systems on different years of
SIGHAN shared tasks, split into the Academia Sinica (AS) and City University (CU) datasets.
The best performance in a column is marked bold.

(a) AS dataset, open track

System
F-score

2003 2005 2006 2008

Gao et al. [22] 95.8

Yang et al. [76] 90.4

Low et al. [45] 95.6
Chen et al. [11] 94.8

Zhao et al. [81] 95.9
Jacobs and Wong [36] 95.7

Wang et al. [71] 95.3

Chan and Chong [9] 95.6
Mao et al. [49] 93.6

Jieba 83.0 80.9 81.3 81.8

CKIP 96.6 94.2 94.6 94.9

RNNCU06 88.4 86.8 87.1 87.4

RNNYA 94.4 92.8 93.0 93.3

RNNCU06+YA 94.6 93.2 93.6 93.8

(b) CU dataset, open track

System
F-score

2003 2005 2006

Ma and Chen [47] 95.6
Gao et al. [22] 95.4

Peng et al. [56] 94.6

Yang et al. [76] 87.9

Low et al. [45] 96.2
Chen et al. [11] 94.5

Zhao et al. [81] 97.7
Wang et al. [71] 97.7

Jacobs and Wong [36] 97.4

Jieba 80.3 81.2 82.4

CKIP 89.7 89.0 89.8

RNNCU06 87.6 85.8 87.8

RNNYA 88.0 87.2 88.5

RNNCU06+YA 91.5 90.1 91.7

RNNCU06+YA can only obtain a slightly better F-score for person recognition but not the overall

performance of RNNCU06, even with the combined corpus. We believe that boundary mismatch

may be a major contributing factor here. We also observe that there are a large number of one-

character NEs such as abbreviated country names, which can not be easily identified using solely

character features.
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Table 4.7: NER performance (% F-score) of different systems on the 2006 SIGHAN NER shared
task (open track). The best performance in a column is marked bold.

System
F-score

PER LOC ORG Overall

Yu et al. [78] 80.98 86.04 68.01 80.51

RNNCU06 81.13 86.92 68.77 80.68
RNNYA 70.54 67.80 31.35 52.62

RNNCU06+YA 83.01 82.46 54.57 75.28

4.3 Sentiment Analysis

Sentiment analysis attempts to detect the information regarding the attitude or view of a

piece of text, through the implementation of some computational methods. For example, one

may want to know the emotion that is expressed in a short online product review. Unlike using

statistics of the surface words to successfully determine the topic or category of a news article,

sentiment analysis may be faced with more challenges. As we can imagine, a positive review may

contain positive keywords such as “best” or “awesome,” but a negative one can have absolutely

no such clue.

In this experiment, we evaluate the robustness of LSTM, BERT, and BERTnopt models on

sentiment analysis using the Yelp dataset [80]. This dataset includes predefined training and test

sets. Models under attack have accuracies of 93.7%, 87.3% and 90.7% for fine-tuned BERT

model, BERTnopt and LSTM, respectively, on the test set.

For attention-based attacks (i.e., ASMIN-GR, ASMAX-GR, ASMIN-EC, and ASMAX-EC), the

average of the first (i.e., the one that is closest to the model input) attention layer from all 12

heads in BERT and BERTnopt are used for our attacks. It is worth mentioning that, as a pilot

study, we tested using the last layer during ASMAX-EC attack. However, experimental results
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Figure 4.3: Comparison of the distribution of attention scores in a model when the input is (a)
the original input, (b) ASMIN-EC, and (c) ASMAX-EC attacks. The word that is selected by the
attack is indicated by red boxes. Note how the selection of the target word is based on the lowest
or highest attention score, as defined by ASMIN-EC, and ASMAX-EC. Both attacks successfully
changed the prediction of the model from positive to negative.

exhibited a < 10% success rate. Therefore, only the results from using the first attention layer

are included.

4.3.1 Results

To illustrate how adversarial attacks work, Fig. 4.3 shows the results from ASMAX-EC and

ASMIN-EC methods that select a word to change based on the attention scores of the original

sentence.

A comprehensive quantitative comparison can be found in Table 4.8, from which we make

the following observations.

1. Greedy-based attacks consistently achieve higher successful rate than other attacks. The

proposed GS-EC method can achieve almost identical success rates with GS-GR while
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Model
Attack Method LSTM BERT BERTnopt

RANDOM 1.1% 0.8% 1%

LIST 27% 6% 15%

ASMIN-GR 16% 11% 32%

ASMAX-GR 62% 17% 35%

ASMIN-EC 16% 10% 32%

ASMAX-EC 62% 17% 35%

Best attention attack(A∗) 62% 17% 35%

GS-GR 79% 52% 53%
GS-EC 78% 50% 53%

Table 4.8: Effectiveness (% success) of different attacks on sentiment analysis models. The
highest attack rate in a column is marked bold.

restricting the search space based on the embedding distances. We will further show that

GS-EC leads to higher quality adversarial examples in Section 4.3.2.

2. We found that using attention, especially ASMAX-GR and ASMAX-EC methods, can easily

break the LSTM model. However, the same vulnerability does not exist in BERT or

BERTnopt models. Since different types of attention-based attacks are suitable for different

models, we summarize the best attention-based attack performance as A∗ in the table,

which takes the maximum over four different types of attention-based attacks.

3. Self-attentive models (BERT and BERTnopt) consistently lead to lower attack successful

rates compared with the LSTM model, under RANDOM, LIST, attention-based attacks

and greedy-based attacks.

We demonstrate the robustness of BERT model under GS-EC attack in Fig 4.4. By
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Figure 4.4: Shift of attention scores under GS-EC attack on (a) LSTM and (b) BERT models.

observing the shift in attention when a model is under attack, we can infer the strength of

different models. It is shown that, although the GS-EC attack successfully changes the sentiment

prediction from positive to negative for both models, the distribution of attention scores of the

models are different. In particular, scores remain stable for BERT model, whereas the LSTM

suffers from a large shift in attention distribution.

4.3.2 Quality of Adversarial Examples

We conduct experiments to assess the naturalness of adversarial examples. First, Table 4.9

compares the quality of the results generated by GS-GR and GS-EC attacks on a BERT model.

Here we see that constraints imposed by GS-EC make it superior than GS-GR in terms of

retrieving words that are coherent with the context.
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Method Sentence

GS-GR Pizzeria Bianco was a such never a nice treat that was [...]

GS-EC Pizzeria Bianco was a such ostensibly a nice treat that was [...]

GS-GR The desserts here are absolutely great 0 ! [...]

GS-EC The desserts here are absolutely great soluble ! [...]

Table 4.9: Example of adversarial attacks on BERT sentiment analysis models, as generated by
GS-GR and GS-EC approaches. These attacks can change the output of the model such that
the opposite sentiment is predicted. Notably, attacks by GS-EC utilize words that are locally
coherent and fluent, possibly due to the constraint on embedding similarity. On the other hand,
GS-GR attacks are more incoherent.

Furthermore, we organize a large-scale human evaluation on Amazon Mechanical Turk

regarding the qualities of adversarial examples generated by different methods. Each sample

is voted by 3 turkers. Recall that, we previously defined “Readability” and “Human accuracy.”

The former is regarded as the relative naturalness of the adversarial examples (normalized to the

maximum between the two), and the latter is the percentage of human responses that matches

the true label.

Table 4.10 is a comparison of LSTM and BERT models using the GS-EC attack. It

shows that the distance in embeddings space of BERT can better reflect semantic similarity and

contribute to more natural adversarial examples. And, in Table 4.11, we compare using GS-GR

and GS-EC method on BERT model. Again, we see that the GS-EC method, which restricts the

distance between sentence embeddings of original and adversarial inputs, can produce superior

adversarial examples.
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Model Readability Human Accuracy

LSTM 0.6 52.1%

BERT 1.0 68.8%

Table 4.10: Human evaluations of the quality of attacks on LSTM and BERT models using
GS-EC attack.

Method Readability Human Accuracy

GS-GR 0.55 64.6%

GS-EC 1.0 68.8%

Table 4.11: Human evaluations of GS-GR and GS-EC attacks on BERT model for sentiment
analysis.

4.4 Textual Entailment

We conduct evaluations on MultiNLI [74] dataset for textual entailment with approaches

similar to the ones in the last section. MultiNLI is one of the many datasets that see major

improvements by BERT. The BERT model is trained to achieve 83.5% accuracy and LSTM

76%. BERTnopt is excluded from this experiment since it cannot reach a satisfactory accuracy.

4.4.1 Results

Results from entailment models fall into the same pattern as those from sentiment analysis,

which is listed in Table 4.12.

Our findings are summarized as follows:

1. The entailment task is more difficult than single-sentence classification, as evidenced by

the higher success rates of attacks among all models and attacks.

2. The greedy-based attacks consistently achieve higher success rates.
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Model
Attack Method LSTM BERT

RANDOM 17.8% 9.2%

LIST 63% 56%

ASMIN-GR 57% 53%

ASMAX-GR 78% 54%

ASMIN-EC 55% 52%

ASMAX-EC 78% 51%

Best attention attack(A∗) 78% 54%

GS-GR 95% 75%
GS-EC 95% 75%

Table 4.12: Rate of success (%) of different attacks on LSTM and BERT for the MultiNLI
models (dev set). The highest attack rate in a column is marked bold.

3. ASMAX-GR and ASMAX-EC methods continue to be superior than ASMIN-GR and ASMIN-

EC, although the difference here is not as drastic as in the previous experiment.

4. BERT model remains more robust compared with LSTM.

4.4.2 Quality of Adversarial Examples

Samples illustrated in Table 4.13 show that the GS-EC method can find more coherent

words for the attack, as opposed to GS-GR.

For instance, changing the word “great” to “vast” can cause the model to misjudge the

entailment relation in the second example. Unfortunately due to budget constraints, we did not

conduct large scale human experiments on this dataset.
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Label Sentence 1 Sentence 2

Contradiction
→Neutral

No, I don’t know. (Original)Yes , I know.

(GS-GR) Yes, I 0.

(GS-EC) Yes, I renovated.

Neutral→
Contradiction

That’s it. The girl looked at him, then
passed her hand across her forehead.

(Original)The girl looked at him with
great interest.

(GS-GR) The girl looked at him with !
interest.

(GS-EC) The girl looked at him with
vast interest.

Entailment
→Neutral

(Original)Workers are also represented
in civil rights and retaliation
claims.

Some workers are represented in civil
rights and retaliation claims.

(GS-GR) Workers are also represented
in civil rights and ? claims.

(GS-EC) Workers are also represented
in civil rights and targets
claims.

Table 4.13: Adversarial examples generated by GS-GR and GS-EC attacks for BERT entailment
classifier.
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Table 4.14: Statistics of the LCSTS corpus.

Training Test

Number of articles 2,400,591 725

Mean number of chars in an article 103.7 108.1

Mean number of chars in a summary 17.9 18.3

4.5 Abstractive Summarization

Recent work verified the effectiveness of RNNs in abstractive (rewriting) automatic

summarization. This section explores the effect of adding attention mechanism into an RNN.

The main advantage of the attention mechanism is that it can place higher attention weights on

key segments while generating text, thereby composing a more natural summary. In addition,

we investigate the difference between uni-directional and bi-directional LSTM neural networks.

The corpus used in this article is the Large-scale Chinese Short Text Summarization dataset

(LCSTS) [33]. It is a collection of short text from Sina Weibo, a social media website, posted by

a news agency. Each post contains a summary and the body of a brief news story. Descriptive

statistics of the LCSTS corpus is listed in Table 4.14.

4.5.1 Experimental Setup

In this experiment, each post in the training data is fed into the model in the form of a

sequence of Chinese characters. That is, without word segmentation. The upper limit of the

number of characters in the dictionary is the first 4,000 most frequent characters in the corpus,

which is consistent with previous studies. We use a layer of LSTM network with attention

mechanism, and compare the difference between uni-directional and bi-directional networks, as

well as the impact of the LSTM cell dimension, word vector dimension and other parameters.
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The remaining hyperparameters are set as follows. We select Stochastic Gradient Descent (SGD)

as the optimization method, with the learning rate set as 1. The model is trained for at most 20

epochs. We also set a schedule for learning rate decay that will decrease it by 90% for every

epoch. The maximum gradient norm is set to be 5. The complete training time of a set of

hyperparameter combination is about 48 hours on a single GPU.

4.5.2 Results

The focus of this experiment on generating abstractive summarization is to evaluate the

fluency of the summary, which is a very important indicator of readability, so the metrics that

we are most interested in is the ROUGE-2 or R-2 scores defined in Section 2.5.

First, we explore the influence of hyperparameters including the dimensions and direction-

ality of the neural network on the quality of the summary. The word vectors are set as 128 or

300 dimensions, and the dimensions of the memory cell in LSTM as 128 or 300. Additionally,

unidirectional or bidirectional networks are compared. Note that, due to hardware limitations,

we can only select a few combinations of these settings instead of doing an exhaustive search.

The results are shown in Table 4.15. Regardless of whether unidirectional or bidirectional

network is used, the increased dimension can bring forth considerable benefits. This indicates

that when learning sequential information, the higher-dimension LSTM cell can capture more

abundant information. However, we can also find that if the dimension of the LSTM unit is low,

increasing the dimension of the word vector will not be beneficial.

In addition, under the same dimension setting, we observe that the effect of using a

bidirectional LSTM network is notably better than a unidirectional one. This implies that when

generating abstractive summaries, it is necessary to consider a wider context in the original

article. In other words, relying on only unilateral information can yield sub-par results. In
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Table 4.15: Effects of directionality and dimension on ROUGE scores of abstractive summaries
using the LCSTS corpus.

Directionality Dim Word Vec Dim RNN R-1 R-2 R-L

Uni 128 128 0.305 0.188 0.280

Uni 128 300 0.328 0.206 0.303

Uni 300 128 0.315 0.193 0.285

Uni 300 300 0.348 0.222 0.320

Bi 128 128 0.324 0.207 0.305

Bi 128 300 0.360 0.235 0.335

Bi 300 128 0.332 0.213 0.311

Bi 300 300 0.369 0.243 0.343

conclusion, the most outstanding automatic summaries can be achieved by using neurons with

appropriate dimensions in a bidirectional LSTM network.

We then compare the best performing hyperparameter setting with two methods from

previous work. The first is the method proposed by Hu et al. [33], in which a unidirectional

RNN without attention mechanism (referred to as HU) is employed. The other one utilized a

bidirectional, multilayer RNN with the distraction mechanism [13] (referred to as CHEN). In

particular, CHEN compared with the architecture proposed by this research, in addition to the

deep neural network and higher dimensions, its distraction mechanism is also more complicated,

and the unit used is GRU, which is different from LSTM used in this article.

From the results in Table 4.16, we can first observe that the bidirectional RNN from CHEN’s

work has greatly improved compared to the baseline method by HU. This again shows that

a bidirectional network can effectively learn more contextual information. As for the model

proposed in this research, using a simpler attention mechanism than the method by CHEN,

combined with a lower-dimensional LSTM, we can exceed the existing state-of-the-art result
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Table 4.16: Compare ROUGE on the LCSTS corpus using different methods.

Method Directionality Dim Word Vec Dim RNN R-1 R-2 R-L

Hu et al. [33] Uni - - 0.299 0.174 0.272

Chen et al. [13] Bi 500 500 0.352 0.226 0.325

Our approach Bi 300 300 0.369 0.243 0.343

in three different evaluation indicators. Notably, the R-2 score obtains an improvement of more

than 2%.

We further postulate that this phenomenon may represent that when the dimension of the

neural cells is too high, over-fitting occurs which results in a greater difference between the

automatic and golden summary. In addition, it may also be due to the different cell structure

(LSTM and GRU) used.

Next, we list some illustrative examples to demonstrate the automatic summaries generated

by our model for the readers to make subjective and qualitative analysis. Then, they can verify

the correctness and readability of the content.

In order to find exemplar instances, we first sort the generated summaries according to the

R-2 score from high to low, and then select those with the highest value (R-2 score higher than

0.8) and the lower (R-2 score equals 0) for this comparison.

Table 4.17 lists some better examples of automatic summaries with R-2 scores higher than

0.8. It can be said that our method can generate legible and fluent summaries that covers

important content in the original article. However, parts of the details are sometimes omitted. A

case such as “81.4” and “81” in the first example is one of those instances. Another case as in the

second example is the inclusion of terms “six” and “jointly”, which leads to a slightly lowered

R-2 score. Although slight modifications occur, they do not impair our understanding of the

essential information in the original text. These instances show that the summarization model
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proposed in this article can achieve satisfactory results and can indeed create natural abstracts

very similar to those written by real human.

Original 正處於風口浪尖的國內奶粉行業出現大交易。蒙牛乳業（02319.HK）以
及雅士利（01230.HK）昨日發佈公告稱，蒙牛乳業將斥資 81.4億港元收
購雅士利約 65.4% 股權。業界稱，此舉有助於蒙牛乳業補上奶粉短板，
以期重新超越伊利成為行業領頭羊。

Predicted 蒙牛 81億港元收購雅士利

Answer 蒙牛 81.4億港元收購雅士利

Original 27日，六名全國人大代表聯名向全國人大發出建議書，建議取消徵收社
會撫養費。建議書認為，徵收社會撫養費，是把「提倡」變成了「強制
要求」，侵犯了公民的合法權益。根據不完全統計，全國每年徵收的社會
撫養費超過 200億元。

Predicted 六位全國人大代表聯名建議取消社會撫養費

Answer 全國人大代表建議取消社會撫養費

Table 4.17: Examples of higher-quality abstractive summaries generated by our method. Some
differences between the generated and golden summary are marked by underlines.

On the other hand, Table 4.18 lists some examples that are regarded as low quality (R-

2 score equals 0). We take a closer look at these cases. First of all, we can see that this

model may produce unreasonable abstract sentences (such as the first example in Table 4.18).

Although it still seems to be a plausible sentence, the semantics is completely unrecognizable.

This kind of error is quite common with current machine-generated language. We speculate

that it is due to the fact that the beam search is based on the overall probability, and does not

take into account other linguistic characteristics such as grammar or semantics. In the future,

we may consider integrating features such as syntactic and semantic intelligibility into model

training to avoid such problems. Additionally, we can observe that the lengths of the summary

in these examples are too restricted. This is because we normally set it to stop as long as the

generated word is “eos”, which indicates “end of sentence,” during the generation. The purpose
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of this setting is to increase the chance of producing complete sentences, but it may also lead

to insufficient length of some sentences. One possible remedy in the future would be to ignore

the special symbol and keep the generation as long as possible to achieve better results. Next,

we can observe another phenomenon from the second example in Table 4.18. At first glance,

we consider the automatic summary to be reasonable, yet the score is low because of advanced

writing techniques that reporters and writers usually employ. Such skills including metaphors

or idioms transforms the original text into completely different wordings of the summary. The

current machine learning models cannot easily capture this unique ability of humans. It also

indicates that there is still much room for improvement and development in the field of automatic

abstractive summarization.

Original 症狀表現：頭疼胸悶、手心出汗，心緒不寧。常會自言自語：到底選哪
款好，怎麼辦，幾款我都好喜歡！小編認為，最重要的第一步是狠狠地
深呼吸，除了為使在大戰中頭腦清醒外，還能順便提前「倒吸一口涼
氣」，因為您的錢包又要被掏空了。

Predicted 你的錢包好喜歡

Answer 雙十一攻略：當網購狂遇上「選擇困難症」時

Original 李克強此次東歐之行，為中國與中東歐國家傳統友誼的延伸鋪路架橋，
為雙方互利共贏的經貿合作穿針引線，為中歐戰略夥伴關係的全面發展
添火加柴。經過三年「16+1」機制的運作，當前中國與中東歐的合作成
效初顯。

Predicted 李克強與中東歐合作初顯

Answer 地理上的「遠親」心靈上的「近鄰」

Table 4.18: Examples of abstractive summaries with lower ROUGE scores generated by our
method.

In the end, we claim that the summary produced by the proposed method has been signifi-

cantly improved, especially when we look at its coverage and readability. Therefore, we verify

that an RNN can successfully identify and produce a satisfactory abstractive summarization.
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4.6 Machine Translation

We implement LSTM and Transformer machine translation models using OpenNMT [48]4.

Specifically, for the LSTM model, we train it with 453,000 pairs from the Europarl corpus of

German-English WMT 15 Task5, common crawl, and news-commentary. The LSTM model

is a two-layer bidirectional LSTM with 512 hidden units together with an attention layer. We

use the default hyper-parameters, and reproduce the performance reported by Ha et al. [28].

For the Transformer, we use a public pre-trained model with 6 self-attention layers provided by

OpenNMT that reproduces the performance reported by Vaswani et al. [70].

Unlike the classification tasks, in machine translation the attack goal is harder to define.

We chose to evaluate the robustness under two types of attacks. In the first type of “targeted

keyword attack” discussed in [14], we attempt to generate an adversarial input sequence such

that a specific keyword appears in the output sequence within the threshold ∆ of number of

word changes we allowed. Empirically, we set ∆ = 3 in these experiments and adopt the most

successful attack, GS-EC, to this case. For the second type of untargeted attack, we consider

perturbing the input to degrade the BLUE score of output sequences with respect to the ground-

truths. For doing this, we conduct a typo-based attack [5]. Specifically, we randomly select one

word in each sentence and change it to a typo predefined in a common typo list. This can be

viewed as an extension of LIST attack to the translation task.

4.6.1 Results

For the targeted keyword attack, the success rates on both models are reported in Table 4.19.

First, we notice that the success rate of the attacks are below 30%, presumably because

4https://github.com/OpenNMT/OpenNMT-py
5http://www.statmt.org/wmt15/translation-task.html
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translation is substantially more complex compared with the aforementioned text classification

tasks. Nevertheless, the attacks on the Transformer model is significantly less successful than

the LSTM-based one.

For the typo-based attack, the BLUE scores before/ after the attack are reported in

Table 4.20. We observe that the Transformer-based model always achieves a higher BLEU

score over LSTM-based model, i.e., have a better translation performance whether the sentences

contain typos or not. We conclude that Transformer-based model exhibits a greater robustness

over LSTM-based model in the case of machine translation. This is consistent with our findings

in the previous experiments on sentiment and entailment classification problems.

In addition, we present some successful adversarial examples in Table 4.21, and see that

the greedy attack can indeed generate natural examples for both models.

Attack Method LSTM Transformer

GS-EC 27.5% 10.5%

Table 4.19: Success rate of targeted attack on translation models using the GS-EC method.

Model Original Adversarial

LSTM 25.10 13.44

Transformer 34.90 26.02

Table 4.20: Comparison of BLEU scores using typo-based attack on translation models built
with LSTM and Transformer models.

4.7 Summary

We conducted six experiments to evaluate the capabilities of neural networks, including

RNNs, BERT, and Transformer. Results show that RNNs can successfully find clues for
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(a) LSTM

(b) Transformer

Figure 4.5: Heatmap of attention scores in LSTM and Transformer models for machine
translation when the input is original and adversarial.
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Org. input There is a fundamental philosophical reason for the differences
between Donald Trump’s and Hillary Clinton’s [...]

LS
TM

Adv. input There is a fundamental philosophical r for the differences between
Donald Trump’s and Hillary Clinton’s [...]

Org. output Es gibt einen grundlegenden philosophischen Grund für die Unter-
schiede zwischen Donald Trump und Hillary Clinton s

Adv. output Es gibt eine grundlegende philosophischer Art , wie Unterschied e
zwischen Donald Trump und Hillary Clinton s

Org. input And in this vein , he passed the prize money of 2 5,000 euros on
straight away

Tr
an

sf
or

m
er

Adv. input And as this vein , he passed the prize money of 2 5,000 euros on
straight away

Org. output Und in diesem Sinne hat er sofort das Preis geld von 2 5.000 Euro
über wiesen

Adv. output Und als diese Art , ging er sofort das Preis geld von 2 5.000 Euro
weiter

LS
TM

Org. input There is no clear consensus on where they can seek common ground
on Syria

Adv. input There is no ” consensus on where they she first common out on year
Org. output Es gibt keine klare Übereinstimmung darüber , wo sie gemeinsame

Boden auf Syrien suchen können

Adv. output Es gibt keinen ” Konsens über die Frage , wo sie sich im Jahr ”
zunächst auf die selben Art befinden

Org. input There is no clear consensus on where they can seek common ground
on Syria

Tr
an

sf
or

m
er

Adv. input There is no clear consensus on where they can seek common would
it Syria

Org. output Es gibt keinen klaren Konsens darüber , wo sie eine gemeinsame
Basis in Syrien suchen können

Adv. output Es gibt keinen klaren Konsens darüber , wo sie nach einer
gemeinsamen Art Syrien suchen können

Table 4.21: Targeted adversarial examples for machine translation models based on LSTM and
Transformer (denoted by TF) with the target keyword “Art.” in the output.
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identifying PPIs in biomedical literature, the sentiment of reviews, and labeling and segment

Chinese words. Using two RNNs as encoder-decoder framework, we can generate natural

abstractive summaries of news articles. Transformer-based models can further surpass the

performances of RNNs in nearly all of the tasks that we have tested. Moreover, the encoding

distance of Transformer-based encoder can be used as the semantic similarity measurement to

find similar sentences for the purpose of adversarial attacks.
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Chapter 5

Discussions

All the above experiments conclude that a self-attentive model exhibits higher robustness

compared to a recurrent one. This is somewhat counter-intuitive—at the first glance one may

assume that the self-attention layer is not robust since perturbation in one word can affect all the

attention scores. We then dive into some theoretical discussions regarding this topic.

5.1 Theoretical Analysis

In this section, we provide some explanation regarding this phenomenon by studying how

error propagates through the self-attention architecture. We show that the perturbation of one

input embedding can only have sparse effects to the attention scores when the input embedding

are scattered enough in the space.

5.1.1 Sensitivity of Self-attention Layer

First, we consider the simple case of one self-attention layer with a single head. Assume

a sentence with n input words, and each word is represented by a d-dimensional embedding

63



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU202001426

vectors, denoted by x1, . . . , xn ∈ Rd. And the matrices WQ,WK ,W V ∈ Rd×k represent the

weights used by query, key, and value transformation calculations. The contribution of each

element j to i is then computed by

sij = xT
i W

Q(WK)Txj, (5.1.1)

and then the i-th embedding at the next layer is obtained by

zi =
∑
j

esij∑
k e

sik
(W V xj), (5.1.2)

Sometimes zi is fed into another linear layer to obtain the embeddings. Now, consider that a

small perturbation is added to a particular index j̄, so xj̄ is changed to xj̄ + ∆x while all the

other {xj | j ̸= j̄} remain unchanged. We study how much will this perturbation affect {zi}i∈[n].

For a particular i (̸= j), the sij is only changed by one term since

s′ij =


sij if j ̸= j̄

sij + xT
i W

Q(WK)T∆x if j = j̄

(5.1.3)

where we use s′ij to denote the value after perturbation. Therefore, with the perturbed input, each

set of {sij}nj=1 will only have one term that is being changed. Furthermore, the changed term in

equation 5.1.3 is the inner product between xi and a fixed vector WQ(WK)T∆x; although

this could be large for some particular xi in the similar direction of WQ(WK)T∆x, if the

embeddings {xi}ni=1 are scattered enough over the space, the inner products cannot be large

for all {xi}ni=1. Therefore, the change to the next layer embedding will be sparse. For instance,

we can prove the sparsity under some distributional assumptions on {xi}:
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Theorem 5.1.1. Assume ∥∆x∥ ≤ δ and {xi}ni=1 are d-dimensional vectors uniformly distributed

on the unit sphere, then E[|s′ij̄ − sij̄|] ≤ Cδ√
d

with C = ∥WQ∥∥WK∥ and P (|s′ij̄ − sij̄| ≥ ϵ) ≤

Cδ
ϵ
√
d
.

Proof. The value E[s′ij̄ − sij̄] = E[xT
i z] where z = WQ(WK)T∆x is a fixed vector, and

it is easy to derive ∥z∥ ≤ ∥WQ∥∥WK∥δ. To bound this expectation, we first try to bound

a1 = E[xT
i e1] where e1 = [1, 0, . . . , 0]. Due to the rotation invariance we can get a1 = · · · = ad

and
∑

i a
2
i = 1, so |a1| = 1√

d
. This implies E[xT

i z] ≤ Cδ√
d
. Using Markov inequality we can then

get the probability results.

Therefore, as the norm of WQ,WK are not too large (usually regularized by L2 during

training) and the dimension d is large enough, there will be a significant amount of i such that

sij is perturbed negligibly.

In contrast, embeddings from RNN-based models are relatively more sensitive to pertur-

bation of one word, as shown below. Similar to the previous case, we assume a sequence

x1, . . . , xn, and a word xj̄ is perturbed by ∆x. For the vanilla RNN model, the embeddings

are sequentially computed as zi = σ(Axi + Bzi−1). If xj̄ is perturbed, then all the {zi}ni=j̄ will

be altered. Thus, the attacker can more easily influence all the embeddings.

5.1.2 Illustration of the Proposed Theory

As an illustration of the proposed theory, we plot a comparison of the degree of embeddings

variation from two models after changing one word in Fig. 5.1. We observe that, for self-

attentive models, the distribution of change on embeddings is sparse after going through the first

self-attention layer (layer 1) and then gradually propagate to the whole sequence when passing

through more layers. In contrast, the embeddings from LSTM exhibit a denser pattern. To
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(a) LSTM

(b) BERT

Figure 5.1: L2 norm of embedding variations within (a) LSTM and (b) BERT when one of the
input words is swapped, as indicated by the red box.

further validate our analysis, we calculate the ratio of the L2 norms of embeddings variation.

Specifically, let z and zadv denote the embeddings of the original sentence and adversarial input,

respectively. We represent relative embedding variation Re = ∥z− zadv∥/∥z∥. For the GS-EC

attack in the sentiment analysis task, embeddings from the LSTM model has an average Re of

0.83 whereas for the BERT model it is 0.56 under the same attack by changing one word. This

supports our claim that the impact of an adversarial example is more severe on the LSTM model

than BERT, which presumably plays an important role in the robustness of self-attentive models.
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Chapter 6

Conclusions

Throughout this dissertation, we have presented multiple applications of neural networks

on various NLP tasks, including classification, sequence generation, and adversarial attacks.

This final chapter contains recapitulation of the approaches, summarization of our experimental

results, and some directions for future research.

6.1 Theoretical Implications

We demonstrate through extensive experiments that neural networks, including recurrent

and self-attentive, can achieve outstanding performances on a wide variety of NLP tasks. More

specifically, sequence classification tasks such as detecting the protein interactions mentioned in

biomedical literature, or the sentiment in short text can be tackled by RNNs and BERT models.

Similarly, sequence-to-sequence learning, which includes translation, summarization, sequence

tagging, etc., can also be modeled by these neural networks. In addtion, our experiments indicate

that self-attentive models, i.e., BERT or Transformers, are more robust to adversarial attacks than

RNNs under small input perturbations.
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Next, we provide theoretical explanations regarding why the self-attention structure leads to

better robustness, as well as illustrative examples that visualize the model’s internal variations.

We also attempt to generate natural adversarial inputs using the embedding distance as a

constraint. Exemplary cases verify that the contextual embeddings from BERT can be used

as a measure for semantic similarity.

6.2 Unsolved Problems

Recent studies find that BERT has some knowledge for semantic roles, entity types, and

relations [61]. However, there remain a wide array of unresolved issues. As mentioned by Devlin

[17], apart from the requirement of large amount of training data and hardware, the learning of

linguistic knowledge is not straightforward. Information such as syntax, semantics, pragmatics,

and co-reference cannot be intuitively fed into the current model. Structural knowledge such

as relation graphs or taxonomy is another struggle for these neural models to try to integrate.

Moreover, how do we as humans understand the inference process of neural networks in order

to extract useful insights, a question that is worthy of our attention. And last but not least, seeing

the wide deployment of BERT-related models in commercial systems, developing a adversarial

training scheme as well as devising a more robust architecture based on our findings are equally

crucial. The current dissertation serves as a steppingstone for further work along these directions.
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