
Design Patterns for Blockchain-assisted Accountable Data
Dissemination between IoT Devices and Edge Server
CHUN-AN LIN, Department of Computer Science, National Chengchi University
CHUN-FENG LIAO, Department of Computer Science and Program in Digital Content and Technologies, National Chengchi University
KUNG CHEN, Department of Management Information Systems and Department of Computer Science, National Chengchi University

There is an increasing number of software developers that want to take advantage of blockchain technology in their projects. Among various
kinds of applications, IoT (Internet of Things) is recognized as one of the most promising domain to employ blockchain technology due to
the highly distributed nature of blockchain. Therefore, many blockchain-driven IoT services (B-IoT) have been developed in recent years.
Unfortunately, when running a blockchain, a lot of computational power and storage is used. Owning to the limitation of the power and
hardware capacity, IoT devices are usually implemented with none or only part of the functionalities of a full blockchain endpoint, resulting
in the advantages of the B-IoT not fully leveraged. With the increase in network bandwidth, advancements in hardware capability, and new
blockchain endpoint protocol for low-capacity environments, it is now feasible to locate more functions of a blockchain endpoint on an IoT
device. We present the empirical lessons of the authors from building several B-IoT systems in the last few years. We observe that there are
several design issues and design decisions to be considered. In this paper, we report two patterns related to the design disseminating
accountable data from IoT devices to the blockchain in the edge environments. To explain how these patterns work, we also introduce an
“Intelligent Refrigerated Shipping Containers” scenario.

Categories and Subject Descriptors: D.2.11 [Software Engineering]: Software Architectures—Patterns;
General Terms: Design

Additional Key Words and Phrases: blockchain, IoT, Edge computing, Design pattern
ACM Reference Format:

C.A. Lin, C.F. Liao, K.Chen “Design Patterns for Blockchain Assisted Accountable Data Dissemination between the IoT Device and the Edge
Server”, 2019. Procs. Asian PLoP'20, March 4- 6, Taipei, Taiwan. 16 pages.

1. INTRODUCTION

Blockchain is the core underlying technology of digital cryptocurrency systems such as Bitcoin (Nakamoto 2008).
A blockchain is a decentralized platform with an immutable, transparent and traceability ledger. The trustless
peers in a blockchain network can reach consensus based on pre-determined algorithms (e.g., Proof-of-Work or
Proof-of-Stake). Recent development of the blockchain platform, such as Ethereum(Buterin 2014), also brings
about a new idea called Smart Contract, which is essentially a piece of executable programming logic used to
verify or to settle the transactions among parties. Moreover, to retrieve and filter the state change of smart
contracts from the blockchain platform efficiently, Ethereum provides a logging mechanism for the smart
contract, known as Event. Due to the highly distributed and scalable nature, IoT (Internet of Things) is recognized
as one of the most promising domain to employ the blockchain technology. It is reported that there are already
50 billion IoT devices interconnected over the world, and this number is increasing. The rapid growth of the
number of connected things brings about new issues on scalability, security, and privacy (Evans 2011). Hence,
blockchain can be used as a highly scalable peer-to-peer message exchanging and distributed transaction
processing infrastructure. Besides, the blockchain can also provide a secure billing layer so that it is
straightforward to build a peer-to-peer marketplace among things being interconnected by the blockchain

This work is partially supported by Ministry of Science and Technology, Taiwan, under grant 108-2221-E-004-002, 108-2221-E-
004-003 and 108-2218-E-004-001.
Author's address: C.A. Lin, Dept. Computer Science, National Chengchi University, Taipei, Taiwan; email: 107753020@nccu.edu.tw; C.F. Liao,
Dept. Computer Science, National Chengchi University, Taipei, Taiwan; email: cfliao@nccu.edu.tw ; K.Chen, Dept. MIS, National Chengchi
University, Taipei, Taiwan; email: chenk@nccu.edu.tw
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission. A preliminary version of this papers was presented in a
writers' workshop at the Asian Conference on Pattern Languages of Programs (Asian PLoP'20, March 4-6, Taipei,
Taiwan. Copyright 2020 is held by the author(s). HILLSIDE XXX-X-XXXXXXXX

mailto:cfliao@nccu.edu.tw
mailto:chenk@nccu.edu.tw

Design Patterns for Blockchain-assisted Accountable Data Dissemination between the IoT Device and the Edge
Server: Page - 2

network (Christidis and Devetsikiotis 2016). As a result, many Blockchain-driven IoT services (B-IoT) have been
proposed in recent years.

Nevertheless, owing to blockchain-related technologies still under active development and rapidly
changing, many design issues are not mature. Therefore, the construction of a high-quality B-IoT system is
difficult. When developing a B-IoT system, the strategy for deploying blockchain nodes differs according to the
desired degree of decentralization. To join a blockchain network, an edge server (or an IoT device) has to arm
with a node, referred to as a blockchain endpoint (e.g., Go-ethereum (Viktor Trón 2014) or Parity (Parity
Technologies 2016)) in the sequel, which realizes the underlying consensus mechanism, synchronizes and
verifies the block data, manages the smart contracts, and processes the transactions. However, a blockchain
endpoint is burdened with computation (transaction processing and mining) and storage loads (block data).
Unfortunately, computation and storage are the most limited and precious resources of typical IoT devices. Thus,
the IoT device usually implements none or part of the functionalities of a blockchain endpoint, and delegates the
remaining tasks to an adaptation node located on the edge or cloud server (Liao, Hung et al. 2019). Nevertheless,
it is worth mentioning that with the advancements of technology in the recent year, a blockchain endpoint is
more feasible to be located on an IoT device due to the following reasons: (1) with the maturity of 5G, network
coverage and transmission speed increases significantly (Andrews, Buzzi et al. 2014); (2) with the advancement
of wafer processing technology, the cost of high-performance computing hardware and storage for IoT data
storage has been decreased significantly; (3) To allow the low-capacity environments(e.g., smartphones,
embedded smart property environments) to maintain high-security assurance about the current state of
blockchain network or verify the transaction data, a new type of lightweight blockchain endpoint called the Light
client (Antonopoulos and Wood 2018) has been proposed. IoT devices serving the Light client is possible to
directly participate in the blockchain network without having to synchronize the whole block data and
participate in the mining process. (i.e., validating transactions and adding new blocks to the blockchain) In
generally, a Light client has to rely on a trusted full node, namely, a fully functional blockchain endpoint) for
synchronizing the block data and emitting the transactions. From software architecture’s perspective, this design
of B-IoT system belongs to the Distributed Things (Liao et al. 2019) style (see Figure 1).

More design issues appear when constructing a B-IoT system. For instance, because most of the consensus
algorithm of the blockchain, like Proof-of-Work or Proof-of-Stake (Antonopoulos and Wood 2018), lead to
considerable resource consumption, different endpoints deployment strategies or transmission methods
between devices have a significant impact on non-functional qualities of B-IoT system (Sun, Hua et al. 2018).
Therefore, developers need to spend a lot of time to handle these design issues in the early stages of blockchain
technology. In response to the above challenges, it has been pointed out that a design pattern helps developers
to solve the problems that are often encountered in the software design process in a more efficient and high-
quality way. Moreover, it can also reduce development time and improve the quality of the system when faced
with similar problems. Several blockchain patterns have been reported (Wöhrer and Zdun 2018) (Eberhardt
and Tai 2017) (Xu, Pautasso et al. 2018). However, few of them concentrate on the blockchain-IoT integration
issues. In the previous work (Liao, Hung et al. 2019), we have proposed various styles(including Fully Centralized,
Pseudo Distributed Things, Distributed Things and Fully Distributed) for the B-IoT systems form a software
architecture’s perspective. As mentioned, among the four architectural styles, the Distributed Things style is
probably the most viable as it strikes a balance between constrained resources and the coverage of blockchain
endpoints. In Distributed Things, Edge is mainly responsible for collecting the sensing data obtained by IoT
devices. On the other hand, by deploying a blockchain light client as an endpoint on a high-end IoT device, it can
communicate directly with the edge server through the blockchain network. Compared with the less
decentralized architecture style(i.e., Fully Centralized and Pseudo Distributed Things), in Distributed Things, the
edge server can directly use the blockchain transmission mechanism to collect the data of IoT devices to reduce
the risk of malicious third-party attacks.

Design Patterns for Blockchain-assisted Accountable Data Dissemination between the IoT Device and the Edge
Server: Page - 3

Figure 1: A B-IoT system with the Distributed Things style

At design level, there are a couple of issues when constructing a B-IoT system following the Distributed
Things style. The objective of this paper is to present two patterns at the design level for such a style. Specifically,
how the blockchain-assisted accountable data dissemination mechanism works between the IoT device and the
edge server serving as blockchain endpoints. This paper presents two design patterns: On-chain Edge-initiated
Invocation (OEI) and OFF-chain Edge-initiated Invocation (OFEI). In each pattern, we explore the problems and
forces faced by the edge server when collecting accountable data from IoT devices in different contexts and
consider not only the features of on-chain (dispatching and transmitting data using the blockchain) and off-chain
(dispatching and transmitting data without blockchain) transmission method but also transmission data. Then,
we propose a concrete solution to deal with the problems and to balance the forces. Patterns provided by this
paper could be useful for B-IoT developers under specific contexts when designing B-IoT systems following the
Distributed Things architectural style.

2. SCENARIO

In order to illustrate how design patterns provided in this paper works in the real world, we adopt the use case
of "Intelligent Refrigerated Shipping Containers" (Dittmer, Veigt et al. 2012). The goods are kept in a ship hauling
intelligent “reefers” (refrigerated containers) and their environmental factors are tracked to ensure the
condition of goods during the shipping process. However, when shipping "high-priced goods", it is necessary to
ensure the security of transmission data. The scenarios used in this paper are detailed below.

In a shipping process, there are two cooperative but trustless organizations, namely freight forwarder, and
shipping company (see Figure 2). They need to ensure that the environmental factors (e.g., temperature and
humidity) in the reefer where the “high-priced goods” are deposited are in compliance. While shipping, the goods
are stored in a reefer with an IoT device which is equipped with an array of sensors. In the beginning, when the ship
is offshore, due to the weak network signal, the freight forwarder (cloud) needs to authorize the crew to collect the
sensing data in the reefers through the ship's server (edge server) and ensure the security of data. Then, the crew
sends a request to an IoT device through the edge server once he/she wants to access the IoT device’s service to
collect sensor data. After receiving the callback data, Edge starts processing and then store it. Finally, when the ship
is docked at the port, the freight forwarder needs to synchronize the sensing data detected by IoT devices through
the edge server on the ship.

In the scenario, following the Distributed Things style, each component (i.e., the cloud and edge server, the
IoT devices) is assumed to arm with a blockchain endpoint. The IoT device in the reefer is serving a light client.
On the other hand, the cloud and edge server are serving full nodes. In practice, the light node serving on the IoT

Design Patterns for Blockchain-assisted Accountable Data Dissemination between the IoT Device and the Edge
Server: Page - 4

devices have to synchronize the block data from the full node serving on the edge server. Technically, all the
components have to connect with the network to synchronize the data. If there are some network problems that
lead to the blockchain endpoint serving on the component out of synchronizing, it is recommended to make a
buffer (e.g., transaction queue) for the updating data or transactions (common solution in typical IoT system)
locally until the synchronization is continuing. Besides, it is worth mentioning that the B-IoT system following
the Distributed Things style is more robust than the typical IoT system. In the typical IoT system, while the
network link between the cloud and edge server is disconnected, the synchronization would be failed. However,
in the B-IoT system, all the components serve as peers. It means that it is possible for the edge server to
synchronize data with the other edge servers rather than the cloud server. (B-IoT system has more than one
network link while the typical IoT system just has a single link.)

In the following, we will use the scenario mentioned above to illustrate the patterns presented by this paper.

We consider whether the pattern's context and problem are related to a specific case in the scenario, and apply
the pattern's solution to solve the problem in the example. The forces base on the scenario that is considered to
affect solutions of each pattern is listed below.

• The privacy and immutability of the data, as well as the cost and scalability of the B-IoT system,

could be considerably affected when considering the transmission method between the Edge server and
IoT devices.

• The way of the edge server and IoT devices exchanging encryption keys could be affected when
considering using the different types of cryptography. (e.g., symmetric and asymmetric cryptography)

• The authenticity of the system could be affected considering different roles and components of the

scenario. (e.g., crew, freight forwarder, edge server, IoT device) Generally speaking, the blockchain
infrastructure (e.g., Ethereum) provides a public-key-cryptography-based account system. Thus, the
account managed by the blockchain infrastructure can be used to represent the unique ownership of the
individual participants in the system. In this way, each request is verified by the blockchain account to
protect the smart contract from accessed by the illegal parties.

Figure 2: Example of data collection between the edge server and the IoT device

Design Patterns for Blockchain-assisted Accountable Data Dissemination between the IoT Device and the Edge
Server: Page - 5

3. ON-CHAIN EDGE-INITIATED INVOCATION, OEI

3.1 Context

In a typical IoT system, when the edge server needs to collect sensing data, it needs to send a request to the IoT
device. For instance, client, namely, the control program in the edge server, needs to utilize the API provided by
the edge server in order to drive the IoT device to start collecting the data. Then, the IoT device returns the data
via a pre-determined transferring mechanism such as MQTT or COAP. However, the data may be exposed to or
tampered by a malicious third party sniffing the network links between the edge server and the IoT device, either
during or after the transmission process. Therefore, how to transmit the accountable data in a secure way
becomes an important concern.

3.2 Problem

In the B-IoT system, how to make sure the security of the transmission between the IoT device and the edge
server during accountable data dissemination process?

3.2.1 Forces

• Immutability. Compared with transmitting the data off-chain, the on-chain transmission method can

ensure that the data are stored in blockchain without tampering. However, due to the consensus algorithm
of blockchain such as Proof-of-Work, storing data on-chain can lead to a considerable cost and low
throughput.

• Extensibility. Typically, a smart contract serves as the logical shared buffer for transferring data among

blockchain endpoints. In the B-IoT context, to initialize a data collecting session, the edge server first needs
to send a (data) request to the target IoT device via a smart contract and then the IoT device responds to
the request by transmitting its data via the same smart contract. In this case, the IoT device needs to know
the reference of the smart contract in advance. Apparently, there exists a locational coupling (i.e., the
reference of the smart contract) between each data request/response pair (the edge server and the IoT
device). Whenever a new smart contract is created for a data transmission task, the IoT devices need to
know and store the contract reference in advance, which is infeasible in practice. Obviously, the situation
mentioned above leads to an inextensible system.

• Authenticity. To avoid malicious requests or attacks, it is necessary to validate the access request send by

the edger server and make sure that only the specific IoT Device is allowed to update the related data. If
there is no access control mechanism implemented in the smart contract, according to the transparency
feature of blockchain, all the participants in the blockchain network can access the smart contract.

3.3 Solution

In order to ensure integrity and immutability, the on-chain transmission method is a great choice in order to
leverage the advantage of the decentralization feature of the blockchain. In the blockchain, there is a lack of the
peer-to-peer transfer mechanism. All data transmission on-chain needs to invoke the function of the smart
contract by sending a transaction to the blockchain network. In practice, the data disseminated on-chain
between endpoints can make good use of the Event mechanism in smart contracts (see Figure 3).

Design Patterns for Blockchain-assisted Accountable Data Dissemination between the IoT Device and the Edge
Server: Page - 6

Figure 3: Structure of the OEI

3.3.1 Structure

In this pattern, the mechanism for registration, data storage and event of data requests need to be implemented
as a method in smart contracts. First, to solve the issue of system extensibility, a centralized registration
mechanism implemented in the smart contract, called RequestRegistry contract (see Figure 4), is needed
(Logically, the RequestRegistry contract is a centralized design. However, it is realized using a smart contract. As
a result, there is a copy of the RequestRegistry contract in each blockchain node. In this view, the RequestRegistry
contract is physically decentralized.) In this way, instead of storing the reference of every new smart contract,
the IoT devices only need to store the reference of one smart contract, namely, the RequestRegistry contract. The
extensibility can thus be increased because now that the reference stored in the IoT devices doesn’t need to be
updated upon contract deployment. In addition, the RequestRegistry contract registers all access requests from
other smart contracts (invoked by the edge server) and plays the role of the IoT devices’ owner to protect the
IoT data from illegal access by verifying the blockchain account on behalf of allowed individual, such as IoT
devices and the Consumer contract (see Figure 4), to make sure the authenticity. The RequestRegistry contract
can label all the access requests with sequence numbers to keep tracks of the ordering of all access requests. The
RequestRegistry contract also takes charge of recording all data sent from the IoT devices. Each Consumer
contract instance represents a data accessor acquiring data from an IoT device. For instance, in the example
mentioned above, goods served by different (Consumer) smart contracts are allocated in the same reefer, but
each reefer is equipped with only one IoT device. Besides, the Consumer contract also implements an access
control mechanism (e.g., verifying the blockchain account) that makes sure the transaction is sent by the edge
server.

Design Patterns for Blockchain-assisted Accountable Data Dissemination between the IoT Device and the Edge
Server: Page - 7

Figure 4: Class diagram of the OEI

3.3.2 Dynamics

The process of OEI can be divided into two stages. The first stage is Registration (see Figure 5). In this stage,
data accessors (typically the edge server) express the intentions to access the sensor data by registering the
“data request” to RequestRegistry contract. Technically, this process is realized by sending a blockchain
transaction to invoke the requestRegister method of RequestRegistry contract. Firstly, the data accessor invokes
the access method of the corresponding Consumer contract. Then, the Consumer contract verifies the identity
(blockchain account) of the data accessor. If the identity is valid, the Consumer contract registers the request to
the RequestRegistry contract (by invoking the requestRegister method). Meanwhile, RequestRegistry contract
verifies the address of the Consumer contract to ensure the invocation is legal. Otherwise, the request is rejected
and a rollback operation is performed. Next, the RequestRegistry contract emits an AccessRequest event. The
AccessRequest event contains the desired data types and the identifier of the request. Finally, the event logs are
stored in the blockchain.

The second stage is Data Delivery and Recording (see Figure 6). After the AccessRequest event being
received, the corresponding IoT device starts to collect the desired data. The data are delivered by means of
invoking the callback function of the RequestRegistry contract. Besides, the identifier of the request is also
presented to RequestRegistry contract so that it can be stored as an index to the data delivery record. Finally,
the requested data are sent to the data accessor by means of a contract event of the Consumer contract.

Design Patterns for Blockchain-assisted Accountable Data Dissemination between the IoT Device and the Edge
Server: Page - 8

Figure 5: Sequence diagram of the Registration stage in OEI

Figure 6: Sequence diagram of the data delivery and recording stage in OEI

3.4 Implementation

• Deploy blockchain endpoints on the IoT device and edge server. In this pattern, the two-way

transmission is executed on-chain. First, blockchain endpoints must be served on both the edge server and
the IoT device. Because the blockchain endpoint served by the IoT device is assumed as a Light client, it
must synchronize the block data from the full node served by the edge server. If the edge server and the
device are trustless, the edge server must be verified by the IoT device before starting to synchronize the
block data.

• Deploy the RequestRegistry contract (see Figure 7) and the Consumer contract (see Figure 8). If the
edge server and IoT devices cannot be trusted, the smart contract should be managed or deployed by a
neutral third party. Besides, the edge server registers the access request and emits the AccessRequest
event to drive the IoT device through the RequestRegistry contract after the edge server invokes the access
function of the Consumer contract. Therefore, while deploying the Consumer contract, the reference
(RequestRegistryAddress) of the deployed RequestRegistry contract must be registered to the contract.

• Define access permission in the RequestRegistry and the Consumer contract. In order to prevent

malicious users from accessing smart contracts, such as DDoS attacks, it is necessary to validate the access
request sent to the smart contract. In the blockchain network, each participant can own at least a key pair
on behalf of his or her identity. Therefore, in a smart contract, the contract owner can pre-establish a
granted-address array. In this pattern, the Consumer contract can be invoked by valid edge servers and the

Design Patterns for Blockchain-assisted Accountable Data Dissemination between the IoT Device and the Edge
Server: Page - 9

RequestRegistry contract can be invoked by valid IoT devices.

• The edge server must obtain the resource information explored by the IoT device in advance. The

edge server must confirm the access method of the resource provided by the IoT device to correctly send
an access request to the specific resource. Moreover, the edge server also needs to know the information
(e.g., resource topic) that needs to be included when sending an access request to prevent the IoT device
from returning redundant data.

• Determining the transmission method according to the features of the transmission data. Although

the data returned by the IoT device is transmitted on-chain based on the solution provided by this pattern,
the raw data can still be transmitted off-chain while it is not appropriate to upload to the blockchain (e.g.,
huge size or confidential data). In practice, the hash value of the raw data can be returned to the smart
contract by the IoT device on behalf of the raw data. Therefore, the edge server can make sure the integrity
after receiving the raw data transmitted off-chain by comparing it with the hash value placed on the smart
contract.

• Subscribe the events from smart contracts in advance. Before the data collection process starts, both

the IoT device and the edge server have to subscribe to the events (AccessRequest and CallbackEvent)
emitted by the smart contract to receive the event at runtime.

Figure 7: Simple contract of the RequestRegistry

Figure 8: Simple contract of the Consumer

contract RequestRegistry {
 bytes32 identifier;
 mapping(bytes32 => bool) validateQueries;
 event AccessRequest(string topic, bytes32 identifier);
 event CallbackEvent(string data);

 function requestRegister(string memory _topic) public returns(bytes32){

 //implement the access control mechanism and provide an identifier for the request
 emit AccessRequest(_topic,identifier);

 return identifier;
 }

 function callback(string memory _data, bytes32 _identifier) public {

 //implement the access control that allow specific device to access
 delete validateQueries[_identifier];
 emit CallbackEvent(_data);

 }
}

contract Consumer{
 address public requestRegistryAddress;

 constructor(address _requestRegistryAddress) public{
 requestRegistryAddress = _requestRegistryAddress;
 }

 //implement the access control function

 function access(string memory _topic) public returns(bytes32){
 //implement the access control mechanism

 RequestRegistry requestRegistry = RequestRegistry(requestRegistryAddress);
 bytes32 identifer = requestRegistry.requestRegister(_topic);

 return identifer;
 }
}

Design Patterns for Blockchain-assisted Accountable Data Dissemination between the IoT Device and the Edge
Server: Page - 10

3.5 Example

In the process of goods shipping, because the shipping company must prove the integrity of the goods to the
freight forwarder, the crew must request the photography service from the IoT device in reefer through the edge
server during the shipping process. In this scenario, in addition to preserving each access request and validating
the identity of the edge server, it is also necessary to confirm the integrity of the photos.

The above scenarios are exactly in line with the problem described in the context of OEI. However, owing
to the large size of the photos, it is not suitable to transmit on-chain. Therefore, by hashing the photos and
obtaining the hash value, the IoT device returns the hash value to the smart contract to leverage the immutability
of the blockchain; on the other hand, the raw data of the photos are transmitted by means of a security channel
off-chain. Finally, the shipping company or the freight forwarder can verify whether the photos have been
tampered with during the transmission process by using the raw data of the photos received by the edge server
and the hash values placed in the smart contract.

3.6 Known uses

• Electric Vehicle Battery Refueling(Sun, Hua et al. 2018). The electric vehicle battery company verifies

the process of battery exchange through the smart contract. In the study, both the edge server and IoT
devices exchange relevant data directly through the blockchain endpoints.

• Chainlink(Chainlink Ltd SEZC 2019). As a middleware for transmission and verification of data in the

blockchain ecosystem, Chainlink's off-chain mechanism aggregates and validates the data requested by the
customer, uploads it to the Chainlink’s contract, and then disseminates to the customer’s contract through
the Chainlink’s contract.

3.7 Consequences

3.7.1 Benefits

• Integrity and immutability. Through the transmission on-chain, the blockchain mechanism can

effectively ensure the integrity and immutability during and after the transmission process.

• Transparency. Due to the features of the blockchain, the data transmitted on-chain is stored in a
transparent way. All the blockchain participants can track the logged historical data through the blockchain
endpoint.

3.7.2 Drawbacks

• Cost. If the public blockchain is used, it costs real money while storing data on the blockchain. When the
transmission frequency is high and the size of data is large, the cost increases. On the other hand, because
of the consensus mechanism of the blockchain, such as Proof-of-Work, the block data are replicated into
multiple pieces and thus the cost of storage also increases.

• Privacy. All the participants of the blockchain network can access the historical transaction information.
Therefore, the data transmitted on-chain needs to be secured by encryption mechanisms.

• Scalability. Due to most of the consensus algorithm (e.g., Proof-of-Work) of the blockchain, the transaction

per second (TPS) are not significantly improved with the increase of miners. It means the throughput
compared to the off-chain transmission are significantly lower.

Design Patterns for Blockchain-assisted Accountable Data Dissemination between the IoT Device and the Edge
Server: Page - 11

3.8 Related patterns

• Oracle(Antonopoulos and Wood 2018). The off-chain Oracle mechanism subscribes to the event from

the smart contract. When receiving a specific event, the Oracle starts to collect the relevant information
and then returns it back to the smart contract.

• Ownership(Wöhrer and Zdun 2018). Authorizing the smart contract’s owner to modify the data in a

smart contract by setting the ownership.

• Adapter(Gamma 1995). Converting an object with the incompatible interface into an expected one to

collaborate with.

4. OFF-CHAIN EDGE-INITIATED INVOCATION, OFEI

4.1 Context

In some cases of data collection between the edge server and the IoT device, the frequency of the edge server
sending the access request is high or the data returned by the IoT device is low-value(trivial) and private. If the
data is transmitted on-chain, the efficiency is reduced and the cost considerably increases because more and
more transactions are taking place in the blockchain.

4.2 Problem

In the B-IoT system, how to disseminate accountable data between the edge server and the IoT device in a cost-
effective and secure way?

4.2.1 Forces

• Cost. Owing to the features of the blockchain, if the data is collected through the blockchain (such as the

OEI), it gives rise to a considerable cost, including hardware and energy resource consumption as well as
blockchain verification fee. However, the data transmitted through the blockchain can take full advantage
of the blockchain such as immutability and traceability.

• Security and privacy. In the process of private data transmission, it is important that the data must be

transmitted in a secure way (e.g., secure transmission channel) and should not leak to third parties.
However, implementing a secure transmission channel will increase the complexity of B-IoT system

• The exchange of encryption keys. If the developer is considering transmitting the accountable data by

means of the off-chain method, the secure transmission channel is needed. Therefore, before the data
collection process, both sides of the parties could exchange the keys which are used to encrypt the
accountable data. There are two general cryptography methods. The asymmetric cryptography is suitable
for sharing a key in the public, but it is leak of scalability. In contrast, the symmetric cryptography is the
opposite to the asymmetric cryptography.

4.3 Solution

When starting the data collection process, the edge server should send the access request to the IoT device
through the smart contract to validate the edge server and also leverage the immutability of the blockchain; On
the other hand, due to the considerable cost, it is not appropriate to transmit low-value or trivial data by means

Design Patterns for Blockchain-assisted Accountable Data Dissemination between the IoT Device and the Edge
Server: Page - 12

of the on-chain transmission method. On the contrary, utilizing the secure transmission method off-chain can
not only help to improve the scalability but also reduce the cost of data transmission (see Figure 9).

Figure 9: Structure of the OFEI

4.3.1 Structure

In order to leverage the advantages of the decentralization of the blockchain, this pattern validates and manages
the access requests through the smart contract (see Figure 10). The access requests sent by the specific
blockchain’s user account or contract address are allowed to access the service of the IoT device. Consequently,
the service of the IoT device can be protected from being accessed by malicious requests through the unknown
blockchain endpoint.

To ensure the security and privacy of the accountable data dissemination, the use of the peer-to-peer
secure network link is needed. On the other hand, to establish a secure off-chain channel, the edge server should
inform the IoT device about which transmission method and format are used. It is important to note that the IoT
device has to make sure that only the specific edge server is allowed to obtain the (plaintext) information. Taking
the transparency of blockchain and the above reason into account, the use of Asymmetric Cryptography as the
encryption method of the off-chain transmission is an effective solution.

Figure 10: Class diagram of the OFEI

Design Patterns for Blockchain-assisted Accountable Data Dissemination between the IoT Device and the Edge
Server: Page - 13

4.3.2 Dynamics

In the data collection process (see Figure 11), the edge server sends an access request which includes the public
key representing the edge server to the IoT device through the smart contract. The smart contract first checks
the identity of the edge server by validating the blockchain account and then emits an AccessRequest event.
When receiving the event emitted from the smart contract, the IoT device drives the process to collect the data
requested by the edge server and establishes the off-chain secure channel with the edge server. At last, the IoT
device returns the accountable data encrypted by the received public key to the edge server constantly through
the secure channel until the edge server invokes the terminate function of the smart contract.

Figure 11: Sequence diagram of the OFEI

4.3.3 Implementation

• Determine a secure transmission method between the IoT device and the edge server. Before

implementing and deploying smart contracts, the developer has to choose an off-chain transmission
method that can ensure the privacy and security of the data. In this case, the P2P Messaging protocols(e.g.,
Ethereum Whisper (Antonopoulos and Wood 2018), Hyperledger fabric Gossip Protocol (Androulaki,
Barger et al. 2018)) provided by the blockchain ecosystem is recommended.

• Deploy the smart contract. In the smart contract (see Figure 12), an access control mechanism must be
implemented. Whenever the edge server invokes requestRegister function, the smart contract should
register and validate the request and then emit the AccessRequest event to drive the IoT device. Moreover,
the developer can implement a public key exchange mechanism for the transmission off-chain. In addition,
the terminate function is responsible for terminating the data collection process.

• Establish the off-chain secure channel between the edge server and the IoT device. In order to
disseminate the accountable data to the edge server through the off-chain transmission method, it is
necessary for the IoT device to establish a secure channel which is chosen by the developer in advance.

Design Patterns for Blockchain-assisted Accountable Data Dissemination between the IoT Device and the Edge
Server: Page - 14

Figure 12: Simple contract of the OFEI

4.4 Example

In the shipping process, in order to monitor the sensing data (e.g., temperature, humidity, navigation data, etc.)
promptly, the IoT device in the reefer should return the sensing data constantly. As a result of the high-frequency
dissemination of the sensing data, the cost of the transmission is a significant increase while the on-chain
transmission method is used. Consequently, the off-chain secure channel is an appropriate choice to substitute
for the on-chain transmission.

4.5 Known uses

• Status(Status Research & Development GmbH 2017). Through the Whisper Protocol provided by the

Ethereum ecosystem, a private peer-to-peer message channel is established between two blockchain
endpoints to transmit messages off-chain mutually.

• Raiden network(brainbot labs Est 2017). Raiden network is an off-chain scaling solution underlying the

Ethereum blockchain. The endpoints establish payment channels that enable transferring value off-chain
to improve the scalability issue of the blockchain.

4.6 Consequences

4.6.1 Benefits

• Privacy and security of the transmission. As disseminated through the off-chain secure channel, the

transmission will not leak to the network. Therefore, the accountable data returned by the IoT device can
avoid being intercepted by malicious third parties.

• Cost. The data transmitted through the off-chain secure channel can reduce the transaction cost on the

blockchain.

• Scalability. Since the transmission off-chain does not need to be verified by the blockchain consensus

algorithm, the throughput of the data transmission is significantly increased.

4.6.2 Drawbacks

• Authenticity. In this pattern, the IoT device returns the data through off-chain transmission method.

contract OFEI{

 event AccessRequest(uint indexed deviceID,string topic,string publicKey);
 event Terminal(uint deviceID,string topic);

 function requestRegister(uint _deviceID,string memory _topic,string memory
 _publicKey) public{
 //implement the access control and the access request registering mechanism
 emit AccessRequest(_deviceID,_topic, _publicKey);
 }

 function terminate(uint _deviceID,string memory _topic) public{
 //implement the access control and the registred request deleting mechanism
 emit Terminal(_deviceID, _topic);
 }
}

Design Patterns for Blockchain-assisted Accountable Data Dissemination between the IoT Device and the Edge
Server: Page - 15

According to the above reason, the edge server cannot effectively identify the IoT device. To solve the above
problem, the off-chain transmission method can be utilized with the digital signature or another
authentication mechanism.

• Immutability. The accountable data disseminated off-chain cannot ensure that the history of the data

collection process is stored, not tampered or lost without using the on-chain transmission method.

• Traceability. Because the data cannot be preserved in the blockchain through the off-chain transmission

method, participants of the blockchain are not feasible to track the history of transmitted data.

4.7 Related patterns

• Off-Chain Signatures(Eberhardt and Tai 2017). Before determining the final trade result and sending

the result to the blockchain, the communication between the two parties is achieved by the establishment
of the private message channel off-chain.

• Off-Chain Data Storage(Xu, Pautasso et al. 2018). The smart object transmits the data which is infeasible

to upload to the blockchain through the off-chain transmission method. On the other hand, the smart object
places the reference information (e.g., hash value) on-chain to verify the integrity of the raw data
transmitted off-chain.

5. CONCLUSION

In order to build a high-quality B-IoT system, developers must carefully evaluate the design issues that were
discussed and make the right decision. This paper presents two design patterns that focus on the context of the
blockchain-assisted accountable data dissemination between the edge server and the IoT devices. In these
patterns, we consider the forces such as security, scalability, privacy, and cost. Although these patterns are
helpful for developers to justify the design decisions of a B-IoT system in a given context, it is important to
mention that there are still other constraints and optimization issues in such systems. We expect the limitation
of constructing the B-IoT system is alleviated with the development of blockchain technology. In the future, we
plan to discuss the B-IoT system when integrating with the cloud server. Also, we will continue to identify and
evaluate more patterns of interactions between the B-IoT components.

REFERENCES

Andrews, J. G., S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. Soong and J. C. Zhang (2014). "What will 5G be?" IEEE
Journal on selected areas in communications 32(6): 1065-1082.
Androulaki, E., A. Barger, V. Bortnikov, C. Cachin, K. Christidis, A. De Caro, D. Enyeart, C. Ferris, G. Laventman and
Y. Manevich (2018). Hyperledger fabric: a distributed operating system for permissioned blockchains.
Proceedings of the Thirteenth EuroSys Conference, ACM.
Antonopoulos, A. M. and G. Wood (2018). Mastering ethereum: building smart contracts and dapps, O'Reilly
Media.
brainbot labs Est. (2017). "Raiden network." from https://raiden.network/.
Buterin, V. (2014). "A next-generation smart contract and decentralized application platform." white paper 3:
37.
Chainlink Ltd SEZC. (2019). "Chainlink." from https://chain.link/.
Christidis, K. and M. Devetsikiotis (2016). "Blockchains and smart contracts for the internet of things." Ieee
Access 4: 2292-2303.
Dittmer, P., M. Veigt, B. Scholz-Reiter, N. Heidmann and S. Paul (2012). The intelligent container as a part of the
Internet of Things. 2012 IEEE International Conference on Cyber Technology in Automation, Control, and
Intelligent Systems (CYBER), IEEE.
Eberhardt, J. and S. Tai (2017). On or off the blockchain? Insights on off-chaining computation and data. European
Conference on Service-Oriented and Cloud Computing, Springer.

https://raiden.network/
https://chain.link/

Design Patterns for Blockchain-assisted Accountable Data Dissemination between the IoT Device and the Edge
Server: Page - 16

Evans, D. (2011). "The internet of things: How the next evolution of the internet is changing everything." CISCO
white paper 1(2011): 1-11.
Gamma, E. (1995). Design patterns: elements of reusable object-oriented software, Pearson Education India.
Liao, C.-F., C.-C. Hung and K. Chen (2019). Blockchain and the Internet of Things: A Software Architecture
Perspective. Business Transformation through Blockchain, Springer: 53-75.
Nakamoto, S. (2008). "Bitcoin: A peer-to-peer electronic cash system."
Parity Technologies. (2016). "Parity." from https://www.parity.io/.
Status Research & Development GmbH. (2017). "Status." from https://status.im/.
Sun, H., S. Hua, E. Zhou, B. Pi, J. Sun and K. Yamashita (2018). Using Ethereum Blockchain in Internet of Things:
A Solution for Electric Vehicle Battery Refueling. International Conference on Blockchain, Springer.
Viktor Trón, F. L. (2014). "Go-ethereum." from https://github.com/ethereum/go-ethereum.
Wöhrer, M. and U. Zdun (2018). Design patterns for smart contracts in the ethereum ecosystem. 2018 IEEE
International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications
(GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), IEEE.
Xu, X., C. Pautasso, L. Zhu, Q. Lu and I. Weber (2018). A Pattern Collection for Blockchain-based Applications.
Proceedings of the 23rd European Conference on Pattern Languages of Programs. Irsee, Germany, ACM: 1-20.

https://www.parity.io/
https://status.im/
https://github.com/ethereum/go-ethereum

	1. INTRODUCTION
	2. Scenario
	3. On-chain Edge-initiated Invocation, OEI
	3.1 Context
	3.2 Problem
	3.2.1 Forces

	3.3 Solution
	3.3.1 Structure
	3.3.2 Dynamics

	3.4 Implementation
	3.5 Example
	3.6 Known uses
	3.7 Consequences
	3.7.1 Benefits
	3.7.2 Drawbacks

	3.8 Related patterns

	4. OFF-chain Edge-initiated Invocation, OFEI
	4.1 Context
	4.2 Problem
	4.2.1 Forces

	4.3 Solution
	4.3.1 Structure
	4.3.2 Dynamics
	4.3.3 Implementation

	4.4 Example
	4.5 Known uses
	4.6 Consequences
	4.6.1 Benefits
	4.6.2 Drawbacks

	4.7 Related patterns

	5. Conclusion
	REFERENCES

