
‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202001843

國立政治大學應用數學系

碩士學位論文

SVM在解非線性方程式的應用
The Application of SVM in Solving Nonlinear Equations

指導教授：曾正男 博士

吳柏林 博士

研究生：林雨鵷 撰

中 華 民 國 109 年 12 月

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202001843

致謝

衷心地感謝指導教授曾正男老師及吳柏林老師，在論文寫作期間，正

男老師對於論文的方向制定及內容修改皆給予細心的指導，柏林老師提供

寶貴的建議及暖心的支持。同時他們的教學精神及生活態度也令我敬佩，

正男老師授課認真嚴謹，課餘對偏鄉教育及數位學習的推動不遺餘力，柏

林老師著作等身，有著幽默及平易近人的人格魅力，這些都成為我學習的

榜樣及目標。此外，還要感謝晉維、以洵等同學在 LaTeX、Python方面的

熱情協助，有了老師及同學們的指導和幫助，這篇論文才能順利完成。

工作多年後又再次回到校園，如今這兩年多的驚奇旅程即將告一段落，

覺得自己好像學到了一點，卻又發現其實自己不懂的更多，感謝可愛的政

大師生，也感謝親愛家人的支持，讓我擁有再當一次學生的幸福時光。

i

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202001843

中文摘要

解非線性方程式雖然有許多數學標準方法，但是在高維度的求解以及

有無窮多解的問題上，現有的方法可以計算出來的結果仍然非常有限，我

們希望可以提出一個簡單快速的方法，可以了解無窮多解的分布狀況，並

且在局部區域也能找出精確解，同時希望對這些解有可視化的了解。我們

利用 SVM的特性開發了一個新的方法，可以同時達到以上目標。

ii

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202001843

Abstract

There are many standard mathematical methods for solving nonlinear

equations. But when it comes to equations in high dimensionwith infinite solutions,

the results from current methods are quite limited. We present a simple fast

way which could tell the distribution of these infinite solutions and is capable of

finding accurate approximations. In the same time, we also want to have a visual

understanding about the roots. Using the features of SVM, we have developed a

new method that achieves the above goals.

Keywords: nonlinear equations, SVM

iii

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202001843

Contents

致謝 i

中文摘要 ii

Abstract iii

Contents iv

List of Tables vi

List of Figures vii

1 Introduction 1

1.1 Nonlinear equations of one variable . 1

1.1.1 Bisection method . 2

1.1.2 False position method (or Regula falsi) 3

1.1.3 Fixedpoint iteration . 4

1.1.4 Wegstein’s method . 6

1.1.5 Newton’s method . 8

1.1.6 Secant method . 10

1.1.7 Steffensen’s method . 11

1.1.8 Halley’s method . 12

1.2 Nonlinear equations of several variables . 14

1.2.1 Directional Newton Method . 15

1.2.2 Directional Secant Method . 15

1.2.3 Broyden Method . 16

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202001843

2 Methodology 18

2.1 Support Vector Machine (SVM) . 19

2.2 A New Method . 22

3 Results 28

4 Conclusion 38

Bibliography 40

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202001843

List of Tables

3.1 Test results of example 1 with Code 1: root(f,1,3,1,1,1000,tol=10**(12)). . . 29

3.2 Test results of example 2 with Code 1: root(f,1,1,1,1,1000,tol=10**(12)). . . 30

3.3 Test results of example 2 with Code 1: root(f,50,51,50,51,1000,tol=10**(12)). 31

3.4 Raise the standard of tolerance. 32

3.5 Test results of g with Code 1: root(g,0,1,0,1,1000,tol=10**(15)). 33

3.6 Approximations of roots of f in [50, 51]× [50, 51]. 34

3.7 Test results of example 4 with Code 2: root(f,0.9,1,10,250,10**(12)). 36

3.8 One test result in different dimensions. 36

3.9 The statistics of operation time of 10 consecutive test results in different

dimensions. 37

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202001843

List of Figures

1.1 Bisection method. 2

1.2 False position method. 3

1.3 An extreme case of false position method. 4

1.4 Convergent cases of fixedpoint iteration. 5

1.5 Divergent cases of fixedpoint iteration. 6

1.6 Wegstein’s method. 7

1.7 Newton’s method. 8

1.8 Failed cases of Newton’s method. 9

1.9 Secant method. 10

1.10 Divergent cases of secant method. 11

1.11 A spiral. 14

2.1 Distinguish between apples(red and green dots) and oranges(orange dots). . . . 19

2.2 Determine the hyper plane. 20

2.3 Soft margin. 20

2.4 Kernel trick. 21

2.5 Multiclass: OneversusRest. 21

2.6 Multiclass: OneversusOne. 22

3.1 Graph of example 1. 28

3.2 Roots founded by Code 1. 29

3.3 Graph of example 2. 30

3.4 Roots of example 2 in different scales. 31

3.5 Graph of example 3. 34

3.6 Dimension and operation time. 37

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202001843

Chapter 1

Introduction

In physics, chemistry and engineering, many problems appear in the form of nonlinear

equations. But even for relatively simple example like polynomial equations, there is no formula

for radical solutions to degree 5 or higher. Not to mention those equations of transcendental

functions like f(x) = ex−2x−1 or f(x) = sin−1 x+x2−1. However, using numerical methods,

the solutions can be computed to a desired degree of accuracy. Therefore in this chapter, we will

introduce some numerical methods for solving nonlinear equations f(x) = 0 where f : R → R

or f : Rn → R.

1.1 Nonlinear equations of one variable

For equations with one variable, we already have many tools to obtain the approximation

of roots. For example, twopoint bracketing method like Bisection method [1] and false position

method(or Regula falsi) [2]. Also we have Fixedpoint iteration [1] and its improved version

Wegstein＇s method [3] [5]. Besides, we cannot fail to mention the most famous Newton’s

method which can be seen as a special case of fixedpoint iteration. Newton’s method has many

extensions and variations. For example, secant method [6] and Steffensen’s method [7] [8] both

replace the derivative in Newton’s method by the slope of secant line but with different step

size. And Halley’s method [9] [10] uses second order of Taylor series instead of first order linear

approximation in Newton’s method. Now, to begin this section, suppose that f : [a, b] → R is

continuous on [a, b] ⊆ R and that x∗ is the only root of f(x) = 0 in [a, b]. Then we may try

these following methods to obtain a numerical approximation of the root.

1

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202001843

1.1.1 Bisection method

In bisection method, first we need an interval which contains the root x∗. Suppose that

[a0, b0] is such an interval. That is, a0 < b0 in [a, b] and f(a0)f(b0) < 0. Let x0 = a0+b0
2

be the initial approximation of x∗. Then we decide the next interval and approximation by the

following procedures:

1. If f(a0)f(x0) < 0, then set a1 = a0, b1 = x0 and x1 =
a1+b1

2
.

2. If f(x0)f(b0) < 0, then set a1 = x0, b1 = b0 and x1 =
a1+b1

2
.

3. If none of the above happens, that means f(x0) = 0 and we have found the root.

Continue the above iteration and we will get {xn}, a sequence of approximations of the root x∗.

When the absolute value of f(xn) is sufficiently small, return xn and stop iterating. See Figure

1.1.

Figure 1.1: Bisection method.

And from [1, p. 5], bisection method has the following pros and cons:

• It is simple and straightforward.

• It can be applied to nonanalytic functions.

2

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202001843

• It needs first an interval that contains the root.

• It cannot be applied to double roots.

• It cannot be applied to multiple equations.

• The absolute error is halved at each step so the method converges linearly, which is

comparatively slow.

1.1.2 False position method (or Regula falsi)

In bisection method, the successive approximation xn is the midpoint of an and bn. Now in

false position method, the middle point is replaced by the intersection of xaxis and the secant

line constructed by (an, f(an)) and (bn, f(bn)). See Figure 1.2.

Figure 1.2: False position method.

So the procure is modified as follows:

1. Find a0 < b0 in [a, b] such that f(a0)f(b0) < 0.

2. Replace y by 0 in the equation

y − f(a0)

x− a0
=

f(b0)− f(a0)

b0 − a0

3

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202001843

and we have

x =
a0f(b0)− b0f(a0)

f(b0)− f(a0)
= x1

3. Hence the iterative formula is

xn+1 =
anf(bn)− bnf(an)

f(bn)− f(an)
, n ≥ 0

And by [2], the rate of convergence of false position method is about 1+
√
5

2
≈ 1.6, higher

than bisection method, but it could be inefficient in some extreme cases. See Figure 1.3.

Figure 1.3: An extreme case of false position method.

1.1.3 Fixedpoint iteration

This method comes from the fixedpoint theorem [1, p. 6]:

Suppose that g : [a, b] → R is continuous on [a, b] ⊆ R. If g([a, b]) ⊆ [a, b], then g

has at least one fixed point in [a, b].

Moreover, in https://en.wikipedia.org/wiki/Banach_fixedpoint_theorem we have:

If g is differentiable on (a, b) and |g′(x)| ≤ K for some positive constant K < 1,

then g has exactly one fixed point in [a, b].

So first, we write f(x) = 0 as the form x = g(x). For example:

4

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202001843

1. f(x) = ex − 2x− 2 and from f(x) = 0 we can obtain g(x) in several ways:

• x = 1
2
(ex − 2) = g(x)

• ex = 2x+ 2 ⇒ x = ln(2x+ 2) = g(x)

2. f(x) = x3 − 2x− 5 = 0

• x = 1
2
(x3 − 5) = g(x)

• x = 3
√
2x+ 5 = g(x)

• x3 = 2x+ 2 ⇒ x = 2x+2
x2 = g(x)

Or we could always obtain g by setting x = x+ λf(x) = g(x) where λ ̸= 0. Geometrically, it

is to find the intersection of y = x and y = g(x). Next, we try to find the root x∗ through the

iterative process

xn = g(xn−1), n ≥ 1 where x0 is arbitrary in [a, b]

see Figure 1.4. Notice that {xn} doesn’t always converge, see Figure 1.5. So “the challenge lies

in choosing a proper g such that {xn} converges and does it as quickly as possible” [1, p. 7].

(a) zigzag towards the root when 0 < g′(x) < 1 (b) spiral towards the root when −1 < g′(x) < 0

Figure 1.4: Convergent cases of fixedpoint iteration.

5

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202001843

(a) zigzag away from the root when g′(x) > 1 (b) spiral away from the root when g′(x) < −1

Figure 1.5: Divergent cases of fixedpoint iteration.

Furthermore, fixedpoint iteration is at least of linear convergence as explained below. Let

en = xn − x∗. From xi+1 = g(xi) and x∗ = g(x∗), we have ei+1 = xi+1 − x∗ = g(xi)− g(x∗).

By mean value theorem, there exists ξ between xi and x∗ such that g′(ξ) = g(xi)−g(x∗)
xi−x∗ , so

ei+1 = g′(ξ)(xi − x∗) = g′(ξ)ei, which indicates the linear convergence. By choosing g wisely,

the rate of convergence can be improved as we will see in section 1.1.5.

1.1.4 Wegstein’s method

“This method is a modification for accelerating the rate of convergence in fixedpoint

iteration and capable of producing solutions even in those cases where the fixedpoint iteration

diverges” [3, p. 9]. In fixedpoint iteration, the iterative procedure is

xn = g(xn−1), n ≥ 1 where x0 is arbitrary in [a, b]

Now we change the successive values of xn in the following way [4, p. 22,23]:

1. Choose arbitrary x0 in [a, b] and let x1 = g(x0).

6

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202001843

2. Find the intersection of the line y = x and the line constructed with the points (x0, g(x0))

and (x1, g(x1)). And let x2 be the x coordinate of the intersection. That is, denote g(x0)

by g0 and g(x1) by g1, and replace y with x in the equation

y − g0
x− x0

=
g1 − g0
x1 − x0

which yields

x =
x1g0 − g1x0

(x1 − x0)− (g1 − g0)
= x2

3. So we have the iterative formula

xn+1 =
xngn−1 − gnxn−1

(xn − xn−1)− (gn − gn−1)
, n ≥ 1

Figure 1.6: Wegstein’s method.

Figure 1.6 explains how Wegstein’s method finds the next approximation. And by [5, p. 4], the

advantages of this method are:

• A derivative is not used.

• The rate of convergence is nearly quadratic. (Greater than 1+
√
5

2
[5, p. 9])

7

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202001843

• The condition that |g′(x)| < 1 near the root is not required.

• A less accurate first guess can be tolerated.

• In many cases, it will make otherwise divergent cases convergent.

1.1.5 Newton’s method

This is the most discussed method in finding the approximation of a root by an iterative

way and it has many variations. In short, Newton’s method uses the intersection of tangent line

at (xn, f(xn)) and xaxis to find the successive value. See Figure 1.7. Now suppose that f is

differentiable on (a, b). Newton’s method works as follows:

1. Choose x0 in (a, b). The tangent line at (x0, f(x0)) is y = f(x0) + f ′(x0)(x− x0).

2. Find the intersection of the tangent line and the xaxis. And the successive approximation

is the xcoordinate of the intersection: x1 = x0 − f(x0)
f ′(x0)

.

3. Hence the iterative formula is

xn+1 = xn −
f(xn)

f ′(xn)
, n ≥ 1

Figure 1.7: Newton’s method.

Newton’s method also has some weaknesses, one is that we need to compute the derivative

of f which could be complicated or take a lot of time. Another is that not all the choice of initial

8

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202001843

value x0 will lead to the root x∗. See Figure 1.8. So the challenge is to find a proper x0 or we

simply try another x0 when it doesn’t converge.

(a) out of range (b) divided by zero

(c) divergent (d) stuck in a loop

Figure 1.8: Failed cases of Newton’s method.

From the iterative formula of Newton’s method, we can see that it is a special case of

fixedpoint iteration where g(x) = x − f(x)
f ′(x)

. Moreover, it achieves quadratic convergence as

explained below:

Since Taylor series of f(x) at xn is

f(x) = f(xn) + f ′(xn)(x− xn) +
f ′′(ξ)

2!
(x− xn)

2 for some ξ between x and xn

Let x = x∗ and we have

0 = f(xn) + f ′(xn)(x
∗ − xn) +

f ′′(ξ)

2!
(x∗ − xn)

2 (1.1.1)

9

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202001843

On the other hand,

0 = f(xn) + f ′(xn)(xn+1 − xn) (1.1.2)

Denote x∗ − xi by ei for all positive integer i and subtract (1.1.2) from (1.1.1):

0 = f ′(xn)en+1 +
f ′′(ξ)

2!
(en)

2

So
|en+1|
|en|2

= | f ′′(ξ)

2f ′(xn)
|

Which implies quadratic convergence. Notice that if x∗ is a multiple root, then we only have

linear convergence.

1.1.6 Secant method

The idea of secant method is to replace the tangent line of f at (xn, f(xn)) in Newton’s

method with the secant line that passes (xn−1, f(xn−1)) and (xn, f(xn)) when in some cases we

can’t compute f ′(x) explicitly. That is, we use the slope of the secant line as an approximation

of the slope of the tangent line. See Figure 1.9. So first we need two initial values, and the

iterative formula becomes

xn+1 = xn − f(xn)
xn − xn−1

f(xn)− f(xn−1)
, x0, x1 ∈ [a, b], n ≥ 1

Figure 1.9: Secant method.

10

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202001843

We can see that the secant method is very much like the false position method, and actually

“they have the same order of convergence 1+
√
5

2
” [6]. And like Newton’s method, we may

encounter some divergent cases. See Figure 1.10.

(a) stuck in a loop (b) divergent

Figure 1.10: Divergent cases of secant method.

1.1.7 Steffensen’s method

“Steffensen’smethod is similar toNewton’smethod. It also achieves quadratic convergence,

but without using derivatives” [7]. To apply this method, as in the fixedpoint iteration, first

we write f(x) = 0 in the form of x = g(x). Let xn+1 = g(xn) where n ≥ 1 and x0

is given. In https://en.wikipedia.org/wiki/Steffensen%27s_method explains how Steffensen’s

method works:

Assume that three consecutive values of the sequence {xn} are known, say xn, xn+1 and

xn+2. Then we can use Aitken’s deltasquared process to accelerate convergence of the sequence

{xn}. Since fixedpoint iteration is linearly convergent, for n large enough, we have

xn+1 − x∗

xn − x∗ ≈ xn+2 − x∗

xn+1 − x∗

then

x∗ ≈
xnxn+2 − x2

n+1

xn − 2xn+1 + xn+2

or

x∗ ≈ xn −
(xn+1 − xn)

2

xn − 2xn+1 + xn+2

(1.1.3)

11

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202001843

And the root x∗ given by (1.1.3) is the successive approximation in Steffensen’s method.

Another form of Steffensen’s method is introduced in [8]:

xn+1 = xn −
(f(xn))

2

f(xn + f(xn))− f(xn)
n ≥ 0 (1.1.4)

If we write (1.1.4) as

xn+1 = xn −
f(xn)

f(xn+h)−f(xn)
h

where h = f(xn)

then clearly (1.1.4) is just replacing the derivative f ′(xn) in Newton’s method by the slope of

secant line near (xn, f(xn)) with step size f(xn).

To explain (1.1.3) and (1.1.4), observe the second term in the right hand side, for the

numerator, notice that for large n,

f(xn) ≈ g(xn)− xn = xn+1 − xn

And for the denominator,

xn − 2xn+1 + xn+2 = (xn+2 − xn+1)− (xn+1 − xn)

≈ f(xn+1)− f(xn)

= f(g(xn))− f(xn)

≈ f(xn + f(xn))− f(xn)

Hence (1.1.3) and (1.1.4) do have the same meaning.

1.1.8 Halley’s method

“Halley’s method applies for functions with a continuous second derivative and the rate of

convergence is cubic” [9]. Like Newton’s method, Halley’s method starts with an initial guess

x0, and then produces a sequence of approximations by the iterative formula:

xn+1 = xn −
2f(xn)f

′(xn)

2(f ′(xn))2 − f(xn)f ′′(xn)
n ≥ 0 (1.1.5)

12

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202001843

One way to obtain (1.1.5) is using Taylor series. In Newton’s method, the tangent line of

y = f(x) at x = xn is

y = f(xn) + f ′(xn)(x− xn)

which can be seen as a linear approximation of y = f(x) at x = xn. That is, Newton’s method

uses first order of Taylor series:

f(x) = f(xn) + f ′(xn)(x− xn) + ...

If we use second order of Taylor series:

f(x) = f(xn) + f ′(xn)(x− xn) +
f ′′(xn)

2
(x− xn)

2 + ...

we have

0 = f(xn) + f ′(xn)(xn+1 − xn) +
f ′′(xn)

2
(xn+1 − xn)

2

write as

0 = f(xn) + (xn+1 − xn)[f
′(xn) +

f ′′(xn)

2
(xn+1 − xn)]

so

xn+1 = xn −
f(xn)

f ′(xn) +
f ′′(xn)

2
(xn+1 − xn)

then use the result of Newton’s method:

xn+1 − xn = − f(xn)

f ′(xn)

to replace xn+1 − xn gives (1.1.5).

“Halley’s method can also be derived by applying Newton’s method to g(x) = f(x)√
|f ′(x)|

”

[10]. Notice that a root of g(x) is a root of f(x). So with initial value x0 and use iterative

formula

xn+1 = xn −
g(x)

g′(x)

with

g′(x) =
2(f ′(x))2 − f(x)f ′′(x)

2f ′(x)
√

|f ′(x)|

gives (1.1.5) as well.

13

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202001843

1.2 Nonlinear equations of several variables

When we consider higher dimension, the bisection method and the false position method

no longer work since the intermediate value theorem fails. For example, the spiral :
x = 0.5tcos(4t)

y = 0.5tsin(4t) 0 ≤ t ≤ 2π

z = 0.25t2 − 0.8

Although A(0.79, 0,−0.18) and B(−1.18, 0, 0.59) are points of the graph in different sides of

Figure 1.11: A spiral.

xy plane, there is no root between segment AB.

Hence for nonlinear equations of several variables, we don’t have much reference. The

methods we use is mainly modifications of Newton’s method. In [11], Yuri Levin and Adi

BenIsrael introduce directional Newton method for differentiable f : Rn → R with limitations

for direction vectors, gradient of f , and second derivative (Hessian matrix) of f to reach

quadratic convergence. In [12], HengBin An and ZhongZhi Bai present directional secant

method, “a variant of directional Newton method, which also reaches quadratic convergence

under suitable assumptions and has better numerical performance”. In [13], HengBin An and

ZhongZhi Bai give Broyden method. “It is more efficient, especially in high dimensions.

Under suitable assumptions, Broyden method is locally superlinearly convergent and hence is a

powerful alternative to directional Newton method and directional secant method.”

14

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202001843

1.2.1 Directional Newton Method

In [11], Yuri Levin and Adi BenIsrael introduce the directional Newton method as follows:

Suppose that f : Rn → R is differentiable. Given a point x0 and a direction vector d with

∥ d ∥= 1, the successive iteration is

x1 := x0 − f(x0)

∇f(x0) · d
d

where ∇f(x0) · d is the directional derivative of f at x0 along d. Continuing this iteration, the

formula is

xk+1 := xk − f(xk)

∇f(xk) · dk
dk, k = 0, 1, ...

For dk sufficiently close to the gradient∇f(xk) and f satisfies the assumptions:

• The gradient of f is not ‘too small’.

• The second derivative (Hessian matrix) of f is not ‘too large’.

directional Newton method reaches quadratic convergence.

Another choice of dk is the unit vector em(k) wherem(k) is the index of the component of

∇f(xk) which has maximal absolute value. In this case, the formula becomes

xk+1 := xk − f(xk)

∇f(xk) · em(k)
em(k), k = 0, 1, ...

1.2.2 Directional Secant Method

In some situations, the function f(x) may not be differentiable or the gradient ∇f(x)

is uncomputable. So in [12], HengBin An and ZhongZhi Bai present the directional secant

method, “a variant of directional Newton method, which also reaches quadratic convergence

under suitable assumptions and has better numerical performance”.

In directional secant method, ∇f(xk) · dk in directional Newton method is replaced by its

approximation f(xk+tkd
k)−f(xk)

tk
where tk is a prescribed step size. Hence the iterative formula

becomes

xk+1 := xk − tkf(x
k)

f(xk + tkdk)− f(xk)
dk, k = 0, 1, ...

In [12], the authors also demonstrate some examples to compare directional Newton

15

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202001843

method and directional secant method. In these examples, dk = pk

∥pk∥ where

pk = (
f(xk + f(xk)e1)− f(xk)

f(xk)
, ...,

f(xk + f(xk)en)− f(xk)

f(xk)
)

is near to ∇f(xk) when f(xk) ̸= 0 and f(xk) ≈ 0. The results show that:

• The choice of initial point is very important.

• Directional secant method needs a little more iteration numbers.

• Directional Newton method costs much more computing time especially when n becomes

larger.

All these show the feasibility and efficiency of directional secant method.

1.2.3 Broyden Method

In directional Newton method and directional secant method, we need to compute gradient

or difference quotient at each iteration in order to obtain direction vector dk, which is time

consuming and inconvenient. Hence in [13], HengBin An and ZhongZhi Bai present Broyden

method. “It is more efficient, especially in high dimensions. Under suitable assumptions,

Broyden method is locally superlinearly convergent and hence is a powerful alternative to

directional Newton method and directional secant method”. Broyden Method works as follows:

For f(x) = 0 where f : Rn → Rn is differentiable, the classical Broyden method can be

described as follows: given initial value x0 ∈ Rn, initial matrix A0 ∈ Rn×n, and tolerance ϵ.

Set k = 0. If ∥ f(xk) ∥> ϵ, then

1. sk = −A−1
k f(xk)

2. xk+1 = xk + sk

3. yk = f(xk+1)− f(xk)

4. Ak+1 = Ak +
(yk−Aks

k)(sk)T

(sk)T sk
= Ak +

f(xk+1)(sk)T

(sk)T sk

5. k := k + 1

16

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202001843

where Ak is an approximation of the Jacobi matrix of f at xk. In one dimension, it is simply

secant method since Ak+1s
k = yk.

Now apply the above to f(x) = 0 where f : Rn → R. Given initial value x0 ∈ Rn, initial

matrix AT
0 ∈ Rn, and tolerance ϵ. Set k = 0. If |f(xk)| > ϵ, then we have

1. sk = −A†
kf(x

k)

2. xk+1 = xk + sk

3. yk = f(xk+1)− f(xk)

4. Ak+1 = Ak +
(yk−Aks

k)(sk)T

(sk)T sk
= Ak +

f(xk+1)(sk)T

(sk)T sk

5. k := k + 1

where A†
k is the MoorePenrose inverse of Ak.

By A†
k =

AT
k

∥Ak∥2
and AkA

†
k = 1, through some computations, [13] rewrites the above in a

more concise way: given initial value x0 ∈ Rn, initial matrix AT
0 ∈ Rn, and tolerance ϵ. Set

∆0 = −f(x0) and k = 0. If |f(xk)| > ϵ, then

1. xk+1 = xk +∆kA
†
0

2. yk = f(xk+1)− f(xk)

3. ∆k+1 =
f(xk+1)

yk
∆k

4. k := k + 1

which is the final form of Broyden method.

Compared to directional Newton method and directional secant method, numerical

examples show that “although Broyden method needs more iteration numbers to reach the

desired degree of accuracy, it takes much less computing time. The difference is significant

when n gets larger or the initial point is not ideal. This shows the superiority of Broyden method

in high dimensions”.

Later in chapter 2, we will give an overview of Monte Carlo method and Support Vector

Machine (SVM), then introduce a new method attached with two Python programming codes.

And then in chapter 3, we will apply the new method to some examples to see its performance

and limitations. Finally in chapter 4, we will summarize the results in chapter 3 and draw a

conclusion about the pros and cons of the new method.

17

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202001843

Chapter 2

Methodology

The methods for solving nonlinear equations of several variables introduced in Chapter 1

need the assumption that f is differentiable. Hence they can’t be applied to functions which don’t

satisfy the condition. Moreover, during the iterative process, when we need to compute gradient

or difference quotient, it could be complicated, time consuming or even unable to calculate.

Sometimes it is also tricky to find a suitable initial value and direction vector. Furthermore,

every time we apply those methods to our target, only one single root is found. We don’t have a

whole picture of our solutions. To avoid the above disadvantages, we try a new method which

combines Monte Carlo method and Support Vector Machine (SVM) to find roots.

First we give a basic introduction of Monte Carlo method. Its concept is using repeated

random sampling and statistical analysis to obtain numerical results. It is often used in the

fields of physics and mathematics. One main usage is simulating systems with randomness or

modeling phenomena with significant uncertainty. Another usage is transforming the solution

of unsolved problem to a parameter (such as expectation) of some kind of random distribution.

In mathematics, the most common application of Monte Carlo method is in integration and

optimization. Especially when the number of function evaluations grows exponentially in

high dimensions. It is useful and powerful for obtaining numerical solutions to problems too

complicated to solve analytically. Next in 2.1, we will introduce SVM, a classical algorithm in

machine learning.

18

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202001843

2.1 Support Vector Machine (SVM)

SVM is a wellknown algorithm in machine learning. It is easy to understand intuitively

and also has a solid theoretical basis. SVM has a wide range of application. It can be used

in categorization of text and hypertext, classification of images, recognition of handwritten

characters and classification of proteins in medicine. So what is SVM? It is a supervised learning

model and basically it is a binary linear classifier. To apply SVM, first we have to provide a

set of training data to the model. These data are already marked as belonging to one class or

the other according to some valued features. Then SVM model ”learns” how to classify from

these training data by creating a hyper plane in the feature space. With the hyper plane, the

rules of classification it learned, SVM model can assign new data to one of the two classes. For

example, say we want to distinguish between apples and oranges. We may choose two features:

color and weight. And the hyperplane in twodimensional feature space is simply a straight line

as showed in Figure 2.1.

Figure 2.1: Distinguish between apples(red and green dots) and oranges(orange dots).

The key to this method is to find an optimal hyper plane. To determine the hyper plane,

our goal is to maximize the margins between two classes. And the data on the boundary of the

margins are called support vectors. Twodimensional case is showed in Figure 2.2.

19

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202001843

Figure 2.2: Determine the hyper plane.

But in real world, the data are unlikely being classified perfectly. So we may tolerate some

deviations within certain extent. These deviations are called slack variables and we try to find

the hyper plane with minimum deviations. This case is called soft margin. Also we can put

a penalty parameter to adjust the influence of these deviations. That is, to control the weights

between ”maximum margins” and ”minimum deviations”.

Figure 2.3: Soft margin.

In addition to linear classification, using the skill called ”kernel trick”, SVM is capable of

performing nonlinear classification. The way it works is mapping featured data into a higher

20

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202001843

dimension space to apply a linear classification. For example, twodimensional nonlinear data

could be linearly classified in threedimensional space with a plane as showed in Figure 2.4.

Figure 2.4: Kernel trick.

Finally, we can also apply SVM to multiclass problems by distinguish between one class

and the rest (OneVersusRest) or between every pair of classes (OneVersusOne). The former

approach OVR uses fewer classifications, but the numbers of data may be imbalanced and hence

fails to classify them. The latter approach OVO is less sensitive to imbalance, but uses more

classifications.

Figure 2.5: Multiclass: OneversusRest.

21

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202001843

Figure 2.6: Multiclass: OneversusOne.

2.2 A New Method

Now we introduce another method for solving nonlinear equations of several variables.

Suppose f : D ⊆ Rn → R is continuous. First we choose a desired region in the domain

and randomly select sample points in the region. As to region we refer to a rectangle in two

dimensional space, a cuboid in three dimensional space, etc. Compute the function values of

these sample points. If we get only positive or negative values, then chances are high that there is

no root in this region unless the number of sample points is too small. Now consider the case that

we’ve got both positive and negative function values. Here these sample points are like training

data with n features, and SVM model classifies them into two classes according to the sign

of their function values. Now with the trained SVM model, the hyper plane could be seen as a

rough approximation of the roots. Also we have a number of support vectors in each class. These

support vectors are supposed to be ”close” to the roots in the region. Thenwe randomly select the

same number of sample support vectors in each class and make them into pairs. From every pair

we can obtain a ”hyper cuboid” by letting each coordinate of the 2n vertices to be the minimum

or maximum in each dimension of the paired support vectors. Take n = 2 for example, suppose

(a, b) and (c, d) are paired support vectors from different classes, then we can obtain a hyper

cuboid (here it is only a rectangle) with the following four vertices: (min{a, c},min{b, d}),

(max{a, c},min{b, d}), (max{a, c},max{b, d}) and (min{a, c},max{b, d}). Now, to decide

which hyper cuboid leads to a better opportunity for finding roots, we consider the following

22

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202001843

factors:

• Let r1 be the volumetric ratio of the hyper cuboid to the region. We expect small r1.

• Let n1 and n2 be the numbers of support vectors of the two classes in the hyper cuboid

respectively. Let r2 = max{n1,n2}
min{n1,n2} . We expect small r2.

• Let d = n1+n2

volumn of the hyper cuboid be the density of support vectors in the hyper cuboid.

We expect large d.

Consider the value r1 + r2 +
1
d
of each hyper cuboid. The smaller it is, the higher probability

that we could find roots in that hyper cuboid. So we can choose several candidates to continue.

Or as in our Python programming codes, we choose hyper cuboid with the smallest value to be

the new region in the next iteration. And it’s center point is an approximation of a root in this

iteration. Continue the process, we can shrink the hyper cuboid and improve our approximation

until it satisfies demanded accuracy. Now we demonstrate the method by the following Python

programming codes.

Code 1 is for f : R2 → R in region [a1, b1] × [a2, b2]. The outputs are: approximation

of a root in the region, function value of the approximation, number of iterations, and time of

operations. If number of iterations is too large(>100), the iterative procedure will stop.

> > > import numpy as np
> > > import numpy.random as rn
> > > import random
> > > from sklearn import svm
> > > import time
. . .
. . . # n: number of sample points, tol: tolerance of diagonal of the rectangle
> > > def root(f,a1,b1,a2,b2,n,tol):
. . . start = time.process_time()
. . . ii = 0 # number of iterations
. . . while np.sqrt((b1a1)**2+(b2a2)**2) > tol and ii <= 100:
. . .
. . . X = []
. . . for i in range(n):
. . . x1 = rn.rand()*(b1a1) + a1
. . . x2 = rn.rand()*(b2a2) + a2
. . . X.append([x1,x2])
. . . X = np.array(X)
. . .
. . . Y = []

23

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202001843

. . . for i in range(n):

. . . if f(X[i][0],X[i][1]) > 0:

. . . Y.append(1)

. . . else:

. . . Y.append(1)

. . . Y = np.array(Y)

. . .

. . . clf = svm.SVC(C=500,gamma=’scale’,kernel=’rbf’)

. . . clf.fit(X,Y)

. . .

. . . sv = clf.support_vectors_ # support vectors

. . . sv_n = clf.n_support_ # numbers of support vectors in each class

. . .

. . . c1 = sv[:sv_n[0]] # support vectors in class 1

. . . c2 = sv[sv_n[0]:] # support vectors in class 2

. . .

. . . # take k(<=3) sample support vectors in each class

. . . k = min(int(sv_n[0] / 2),3)

. . . c1_spl = random.sample(list(c1),k)

. . . c2_spl = random.sample(list(c2),k)

. . . c1_spl = np.array(c1_spl) # sample support vectors in class 1

. . . c2_spl = np.array(c2_spl) # sample support vectors in class 2

. . .

. . . den_rto = [] # density and ratio of k small rectangles

. . . for i in range(k):

. . . aa1 = min(c1_spl[i][0],c2_spl[i][0])

. . . bb1 = max(c1_spl[i][0],c2_spl[i][0])

. . . aa2 = min(c1_spl[i][1],c2_spl[i][1])

. . . bb2 = max(c1_spl[i][1],c2_spl[i][1])

. . .

. . . n1 = 0 # number of support vectors of class 1 in the ith small rectangle

. . . for t in range(len(c1)):

. . . if aa1 <= c1[t][0] <= bb1 and aa2 <= c1[t][1] <= bb2:

. . . n1+=1

. . .

. . . n2 = 0 # number of support vectors of class 2 in the ith small rectangle

. . . for t in range(len(c2)):

. . . if aa1 <= c2[t][0] <= bb1 and aa2 <= c2[t][1] <= bb2:

. . . n2+=1

. . .

. . . # density of support vectors in the ith small rectangle

. . . den = (n1+n2) / ((bb1aa1)*(bb2aa2))

. . . # volumetric ratio of the ith small rectangle to the region

. . . rto1 = ((bb1aa1)*(bb2aa2)) / ((b1a2)*(b2a2))

. . . # the ratio of numbers of support vectors in different classes

. . . rto2 = max(n1,n2) / min(n1,n2)

. . . den_rto.append(rto1 + rto2 + 1/den) # the smaller the better

24

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202001843

. . .

. . . d = np.argsort(den_rto)[0] # index of the smallest value in den_rto

. . . # 4 vertices of the most recommended small rectangle

. . . a1 = min(c1_spl[d][0],c2_spl[d][0])

. . . b1 = max(c1_spl[d][0],c2_spl[d][0])

. . . a2 = min(c1_spl[d][1],c2_spl[d][1])

. . . b2 = max(c1_spl[d][1],c2_spl[d][1])

. . .

. . . ii+=1

. . . end = time.process_time()

. . . return [(a1+b1)/2,(a2+b2)/2], f((a1+b1)/2,(a2+b2)/2), ii, end start

Code 2 is for f : Rm → R in region
m︷ ︸︸ ︷

[a, b]× [a, b]× · · · × [a, b]. The outputs are:

approximation of a root in the region, function value of the approximation, number of iterations,

and time of operations. Moreover, in order to reduce operation time, weminus number of sample

points along with the increase in number of operations.

> > > import numpy as np
> > > import numpy.random as rn
> > > import random
> > > from sklearn import svm
> > > import time
. . .
. . . # m: dimension, n: number of sample points, tol: tolerance of diagonal of hyper cuboid
> > > root(f,a,b,m,n,tol):
. . .
. . . x = []
. . . for j in range(m):
. . . x.append((a+b)/2)
. . .
. . . ii = 0 # number of iterations
. . . start = time.process_time()
. . .
. . . # every p iterations minus q sample points (output ii < p*(r1) and n > q*(r1))
. . . p = 15
. . . q = 1
. . . r = 200
. . .
. . . while np.sqrt(m*(ba)**2) > tol:
. . .
. . . for i in range(1,r):
. . . if ii == p*i:
. . . n=q
. . . break
. . . else:
. . . pass

25

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202001843

. . .

. . . X = []

. . . for i in range(n):

. . . x = []

. . . for j in range(m):

. . . x.append(rn.rand()*(ba)+a)

. . . X.append(x)

. . . X = np.array(X)

. . .

. . . Y = []

. . . for i in range(n):

. . . if f(X[i]) > 0:

. . . Y.append(1)

. . . else:

. . . Y.append(1)

. . . Y = np.array(Y)

. . .

. . . clf = svm.SVC(C=500,gamma=’scale’,kernel=’rbf’)

. . . clf.fit(X,Y)

. . .

. . . sv = clf.support_vectors_ # support vectors

. . . sv_n = clf.n_support_ # numbers of support vectors in each class

. . .

. . . c1 = sv[:sv_n[0]] # support vectors in class 1

. . . c2 = sv[sv_n[0]:] # support vectors in class 2

. . .

. . . k = 1 # take k=1 sample support vectors in each class

. . . c1_spl = random.sample(list(c1),k)

. . . c2_spl = random.sample(list(c2),k)

. . . c1_spl = np.array(c1_spl) # k sample support vectors in class 1

. . . c2_spl = np.array(c2_spl) # k sample support vectors in class 2

. . .

. . . den_rto = [] # density and ratio of k hyper cuboid

. . . for i in range(k):

. . .

. . . # number of support vectors of class 1 in the ith hyper cuboid

. . . n1 = 0

. . . for t in range(len(c1)):

. . . s = 0

. . . for j in range(m):

. . . if min(c1_spl[i][j],c2_spl[i][j]) <= c1[t][j] <= max(c1_spl[i]
[j],c2_spl[i][j]):
. . . s+=1
. . . if s == m:
. . . n1+=1
. . .
. . . # number of support vectors of class 2 in the ith hyper cuboid

26

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202001843

. . . n2 = 0

. . . for t in range(len(c2)):

. . . s = 0

. . . for j in range(m):

. . . if min(c1_spl[i][j],c2_spl[i][j]) <= c2[t][j] <= max(c1_spl[i]
[j],c2_spl[i][j]):
. . . s+=1
. . . if s == m:
. . . n2+=1
. . .
. . . V = 1
. . . for j in range(m):
. . . # volume of the ith hyper cuboid
. . . V = V * (max(c1_spl[i][j],c2_spl[i][j]) min(c1_spl[i][j],c2_spl[i]
[j]))
. . .
. . . # density of support vectors in the ith hyper cuboid
. . . den = (n1 + n2) / V
. . . # volumetric ratio of the ith hyper cuboid to the region
. . . rto1 = V / (ba)**m
. . . # ratio of numbers of support vectors in different classes
. . . rto2 = max(n1,n2) / min(n1,n2)
. . . den_rto.append(rto1 + rto2 + 1/ den) # the smaller the better
. . .
. . . d = np.argsort(den_rto)[0] # index of the smallest value in den_rto
. . .
. . . x = []
. . . for j in range(m):
. . . # the center point of the most recommended hyper cuboid
. . . x.append((min(c1_spl[d][j],c2_spl[d][j]) + max(c1_spl[d][j],c2_spl[d]
[j])) / 2)
. . .
. . . aa = []
. . . for j in range(m):
. . . aa.append(min(c1_spl[d][j],c2_spl[d][j]))
. . . bb = []
. . . for j in range(m):
. . . bb.append(max(c1_spl[d][j],c2_spl[d][j]))
. . . a = min(aa)
. . . b = max(bb)
. . .
. . . ii+=1
. . . end = time.process_time()
. . . t = end start
. . . return x, f(x), ii, t

27

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202001843

Chapter 3

Results

Now we apply the method in chapter 2 to some examples and see how it works. The

equipment we use is a laptop with Intel(R) Core(TM) i58265U CPU 1.60GHz up to 1.80GHz

and RAM 8.00 GB.

Example 1. f(x, y) =
√

x2 + y2 − 1 + ln(4− x2 − y2)

Figure 3.1: Graph of example 1.

The roots of f on xy plane is similar to a circle with radius a little less than 2. Now we use

Code 1: root(f,1,3,1,1,1000,tol=10**(12)) to find roots in [1, 3] × [−1, 1] with 1000 sample

points in each iteration and with tolerance of diagonal of the rectangle 10−12. Table 3.1 is the

28

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202001843

results of 10 consecutive tests and is presented in the order of approximation of a root, function

value of the approximation, number of iterations, and time of operations.

Table 3.1: Test results of example 1 with Code 1: root(f,1,3,1,1,1000,tol=10**(12)).

approximation function value number time

(1.8393485316192288, 0.6556725842999632) 5.114131340633321e12 27 0.484375

(1.8404225031688544, 0.6526519504314735) 4.672262576832509e12 33 0.59375

(1.941254269782079, 0.21128515949820706) 2.9465319073551655e13 41 0.71875

(1.7597515054678885, 0.8463948236929669) 3.2591707110896095e12 32 0.453125

(1.8555758543841576, 0.6082333492989722) 7.824629832953178e12 32 0.515625

(1.9291048578468786, 0.3027606414355924) 2.4069635173873394e12 39 0.640625

(1.8859593483090873, 0.5062281057965792) 7.256639733554948e12 37 0.625

(1.8806978984805065, 0.5254378871203835) 4.381828233590568e12 37 0.703125

ValueError: The number of classes has to be greater than one; got 1 class

(1.8191277005208264, 0.7098478483235422) 1.8112178423734804e12 38 0.546875

Table 3.1 shows that out of 10 test results, we have found 9 roots(approximations). Each

root takes less than 1 seconds. And we have one ”ValueError: The number of classes has to be

greater than one; got 1 class”. That means during the process of iteration, function values of

sample points in the rectangle have the same sign. If we draw these roots in Table 3.1 on xy

plane, we may obtain a very rough contour of the roots in [1, 3]× [−1, 1].

Figure 3.2: Roots founded by Code 1.

29

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202001843

Example 2. f(x, y) = x2 − 2y2 + xy − 30 sin(x+ y) + 20 cosxy

(a) Graph of the function (b) Roots on xy plane

Figure 3.3: Graph of example 2.

Similarly, we use Code 1: root(f,1,1,1,1,1000,tol=10**(12)) to find roots in [−1, 1] ×

[−1, 1] with 1000 sample points in each iteration and with tolerance of diagonal of the rectangle

10−12. Test results are as follows.

Table 3.2: Test results of example 2 with Code 1: root(f,1,1,1,1,1000,tol=10**(12)).

approximation function value number time

(0.46993790636813626, 0.2622453677771487) 1.7763568394002505e14 33 0.65625

(0.7684688297613869, 0.012505477809996928) 3.5136338283336954e12 40 0.484375

(0.22176752901561408, 0.48857630079124126) 9.78772618509538e12 30 0.46875

IndexError: index 0 is out of bounds for axis 0 with size 0

(0.005547432373856567, 0.6929394537660047) 2.9096725029376103e12 46 0.8125

(0.5621218361256275, 0.17890958192506992) 3.7196912217041245e12 37 0.703125

(0.25695433093787506, 0.8894629520497923) 7.059242079776595e12 32 0.5

(0.8050933184240345, 0.04871131491812492) 7.226219622680219e12 35 0.578125

(0.42833405733942814, 0.29992808858241676) 1.0043521569969016e11 25 0.359375

(0.46601152390386, 0.265797865621633) 4.764189043271472e12 32 0.65625

One of the test results is ”IndexError: index 0 is out of bounds for axis 0 with size 0”, that

means the code can’t find the most recommended rectangle during the iterations.

30

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202001843

When we zoom out to see function f(x, y) = x2 − 2y2 + xy− 30 sin(x+ y) + 20 cos(xy),

its graph on xy plane behaves like a hyperbola, see Figure 3.4 (a). If we try to find roots in

regions that contain no root, Code 1 will return ”ValueError: The number of classes has to be

greater than one; got 1 class”. Now we try to find roots in regions away from the origin, say

[50, 51]× [50, 51], see Figure 3.4 (b). Table 3.3 is the test results.

(a) Roots in [−60, 60]× [−60, 60] (b) Roots in [50, 51]× [50, 51]

Figure 3.4: Roots of example 2 in different scales.

Table 3.3: Test results of example 2 with Code 1: root(f,50,51,50,51,1000,tol=10**(12)).

approximation function value number time

(50.37108241597812, 50.30605405694342) 7.59312612785834e11 36 0.734375

IndexError: index 0 is out of bounds for axis 0 with size 0

(50.216759062176685, 50.209210588582806) 4.789209029354424e10 25 0.484375

(50.91835623563183, 50.67395719627402) 3.6215297427588666e10 33 0.484375

(50.08210621719444, 50.15376290895588) 3.0322144795036365e10 32 0.53125

(50.493655231184896, 50.352278685604674) 9.49995637711254e11 32 0.5

(50.76882719293579, 50.64478487427914) 2.929940734475167e10 29 0.5625

(50.060893746994225, 50.18334780684751) 1.6474643871333683e10 32 0.53125

(50.56335822951033, 50.48002788886255) 9.930056776852325e11 41 0.65625

(50.04464454039062, 50.12500465230691) 4.3338976851714506e10 40 0.546875

Compare Table 3.3 with Table 3.2, the accuracy of function values apparently is worse

in Table 3.3 than in Table 3.2. If we raise the standard of tolerance, Code 1 even fails in

31

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202001843

[50, 51] × [50, 51], see Table 3.4 where tolerance of diagonal of the rectangle is 10−15 and ii

represents the maximal value allowed in number of iterations.

Table 3.4: Raise the standard of tolerance.

approximation function value number time

Code 1: root(f,1,1,1,1,1000,tol=10**(15)),ii=100

(0.7461596882606241, 0.009033344195159302) 3.552713678800501e15 41 0.578125

(0.2376360543484806, 0.4740324090606552) 0.0 34 0.546875

(0.39138819644970957, 0.3334828756138792) 3.552713678800501e15 42 0.671875

(0.8130843644528254, 0.056777966137313576) 7.105427357601002e15 52 0.78125

ValueError: The number of classes has to be greater than one; got 1 class

Code 1: root(f,50,51,50,51,1000,tol=10**(15)),ii=100

(50.6987226809441, 50.52614710988952) 5.950795411990839e14 101 2.078125

(50.3123398028162, 50.34944789599142) 7.105427357601002e13 101 2.234375

(50.29289226163097, 50.258444639339814) 8.219203095904959e12 101 1.953125

(50.25733872551366, 50.21940854261966) 2.327027459614328e12 101 1.9375

(50.204504343031914, 50.29298780543669) 7.545963853772264e12 101 2.03125

Code 1: root(f,50,51,50,51,1000,tol=10**(15)),ii=1000

(50.31353419225536, 50.295244027029945) 8.739675649849232e13 1001 21.921875

ValueError: The number of classes has to be greater than one; got 1 class

(50.842699814232994, 50.628859347893254) 6.235012506294879e13 1001 21.640625

(50.71581863271457, 50.680914087131555) 8.562039965909207e13 1001 22.21875

(50.89625216670158, 50.76244021179818) 6.986411449361185e12 1001 21.90625

Code 1: root(f,50,51,50,51,1000,tol=10**(15)),ii=5000

(50.735470991990084, 50.62593175023604) 3.984368390774762e12 5001 126.84375

IndexError: index 0 is out of bounds for axis 0 with size 0

(50.297804446513624, 50.254821899553995) 4.4364512064021255e12 5001 127.078125

(50.30503027546648, 50.30686591842504) 8.107736704232593e12 5001 128.3125

(50.762567213039844, 50.589032786249454) 5.153211191100127e12 5001 129.90625

From Table 3.4, we can see that in region [50, 51] × [50, 51], even if we allow number of

32

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202001843

iterations up to 5000 times, Code 1 still failed to obtain an approximation of root that satisfies the

required tolerance and the accuracy of function value doesn’t improve along with the increase

in number of iterations. The reason is that sine and cosine function in Python are approximated

by series of polynomials and rounding errors will accumulate when independent variables are

away from the origin. To avoid this, we can translate the graph so that the independent variables

are near the origin. For example, let g(x, y) = f(x+ 50, y + 50) and use the periodic property

of sine and cosine function, we have g(x, y) = x2 + xy− 2y2 + 150x− 150y− 30 sin(x+ y +

100− 32π) + 20 cos((x+ 50)(y + 50)− 796π). Then apply Code 1 to g in [0, 1]× [0, 1] with

tolerance of diagonal of the rectangle 10−15, see Table 3.5.

Table 3.5: Test results of g with Code 1: root(g,0,1,0,1,1000,tol=10**(15)).

approximation function value number time

(0.46818599428272567, 0.38802043952474363) 3.952393967665557e14 45 1.0625

(0.4462804306335044, 0.41798056459405625) 2.9309887850104133e13 37 0.8125

(0.4691852199445329, 0.38665487925191777) 2.7533531010703882e14 41 0.859375

(0.5605807588099267, 0.48208915471610153) 5.380584866543359e12 55 1.046875

(0.2017860554505237, 0.2971099319591042) 5.5209170568559784e12 42 0.6875

(0.37514876948450493, 0.3632664037200196) 4.413358567489922e12 45 1.078125

(0.6542098954593933, 0.5872723444048912) 2.76578759894619e12 44 0.8125

(0.12206118061828386, 0.09784852619758204) 5.53157519789238e12 44 0.71875

ValueError: The number of classes has to be greater than one; got 1 class

(0.7855399066982386, 0.7079424206421457) 5.346834086594754e12 47 0.875

Nowmove our approximations of roots back to [50, 51]×[50, 51] and compute their function

values, see Table 3.6.

33

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202001843

Table 3.6: Approximations of roots of f in [50, 51]× [50, 51].

approximation of root function value

(50.46818599428272567, 50.38802043952474363) 1.354028000832841e12

(50.4462804306335044, 50.41798056459405625) 1.91491267287347e12

(50.4691852199445329, 50.38665487925191777) 1.0031975250512914e11

(50.5605807588099267, 50.48208915471610153) 2.831068712794149e12

(50.2017860554505237, 50.2971099319591042) 1.950439809661475e12

(50.37514876948450493, 50.3632664037200196) 2.568611989772762e12

(50.6542098954593933, 50.5872723444048912) 3.382183422218077e12

(50.12206118061828386, 50.09784852619758204) 1.6697754290362354e13

ValueError: The number of classes has to be greater than one; got 1 class

(50.7855399066982386, 50.7079424206421457) 2.8919089345436078e12

Example 3. f(x, y) = cos y+1
y−sinx

(a) Graph of the function (b) Projection on yz plane

Figure 3.5: Graph of example 3.

By function formula, we know the roots are points on xy plane with ycoordinate

equals to (2k + 1)π where k ∈ Z. However, points around the roots belong to the same

side of xy plane, see Figure 3.5 (b). Therefore, it fails when we apply Code 1 to this

function. For example, Code 1: root(f,1,1,3,4,1000,10**(12)) returns ”ValueError: The

number of classes has to be greater than one; got 1 class”. Moreover, for this function,

on regions that contain discontinuous points, the code may still return an answer, but it’s

34

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202001843

not a root. For example, one test result of Code 1: root(f,1,1,1,1,1000,tol=10**(12)) is

([0.5584914658730595, 0.5299074807530488], 17034614928732.754, 37, 0.765625). The

approximation of root is point (0.5584914658730595, 0.5299074807530488), but it’s function

value is 17034614928732.754, obviously not a root of f(x) = 0.

Example 4. f : Rm → R defined by f(x) =
∑m

i=1 xi exp(1− x2
i) where x = (x1, x2, ..., xm)

Apparently, the origin
m︷ ︸︸ ︷

(0, 0, ..., 0) is a root of f(x) = 0. First, we apply Code 2: root(f,

0.9,1,10,250,10**(12)) to find roots in
10︷ ︸︸ ︷

[−0.9, 1]× [−0.9, 1]× · · · × [0.9, 1] with 250 samples

points in each iteration and with tolerance of diagonal of the hyper cuboid 10−12. Here is the

first test result:

• The approximation of root :

(1.2844263924027142e15, 7.711984581422935e14, 9.976145297340012e14,

1.0961014831765263e14, 1.120713405053965e14, 3.436442229894976e14,

8.308598458235813e14, 9.737252214208976e14, 1.9765518862372757e14,

3.7386907986968744e14)

• Function value of the approximation: 1.2843592136232755e13

• Number of iterations: 310

• Time of operations: 3.328125 seconds.

In Table 3.7, we only list the last three items of outputs since all approximations of roots suggest

the origin.

35

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202001843

Table 3.7: Test results of example 4 with Code 2: root(f,0.9,1,10,250,10**(12)).

function value number time

1.3779698843748291e14 292 3.15625

1.332515734999162e14 317 3.40625

1.1987897774143587e13 322 3.4375

8.386255861714453e14 310 3.34375

1.0989147744968376e13 332 3.515625

2.0372613787811113e13 318 3.40625

4.910130259939433e14 305 3.359375

2.8895734888874934e13 305 3.265625

1.2903165704502644e13 300 3.265625

Next, we apply Code 2: root(f,0.9,1,m,250,10**(12)) in
m︷ ︸︸ ︷

[−0.9, 1]× [−0.9, 1]× · · · × [0.9, 1] with dimension m = 15, 20, 25, 30, 35, 40. Table 3.8 list

one test result of each dimension. Since all test results indicate the same root: the origin, we

still only present the last three items of the outputs.

Table 3.8: One test result in different dimensions.

Dimension function value number time

15 1.1705003069935705e13 471 7.65625

20 2.1807932674276025e13 618 13.109375

25 8.214164474230035e14 767 19.71875

30 1.7075573329547067e13 899 28.546875

35 4.4167018237416875e14 1063 38.828125

40 1.7446726440345464e14 1184 51.265625

In Table 3.8, time of operations increases to over 50 seconds when dimension comes to 40.

If we want to decrease operation time, we may shrink the region and adjust number of sample

points. Now for each dimension m = 10, 15, 20, 25, 30, 35, 40, we take 10 consecutive test

36

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202001843

results and compute the average and standard deviation of operation time, see Table 3.9. Also

we can find a quadratic function to fit these data points as in Figure 3.6.

Table 3.9: The statistics of operation time of 10 consecutive test results in different dimensions.

dimension average of operation time SD of operation time

10 3.35 0.10

15 7.52 0.22

20 13.08 0.41

25 19.72 0.38

30 28.41 0.61

35 38.66 1.58

40 50.82 1.71

Figure 3.6: Dimension and operation time.

37

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202001843

Chapter 4

Conclusion

We propose a new method which combines Monte Carlo method and Support Vector

Machine(SVM) to solve nonlinear equations of several variables. The new method has the

following advantages:

• It only requires function to be continuous, not necessarily differentiable.

• It needs neither to compute gradient or difference quotient nor to find a proper initial value

and direction vector.

• For designated region in the domain, it can tell if there are roots in this region as long as

we throw enough sample points. And it can give several recommended smaller regions

that contain roots and continue to improve the accuracy of roots.

• We can cut the region into partition and work in parallel. This could raise efficiency and

save time.

• Even if it doesn’t achieve the desired accuracy in regions away from the origin because

it takes too many iterations or too much operation time, we still have pretty good

approximations of roots.

• Operation time is not exponentially increasing along with the increase of dimension.

However, the method also has some disadvantages:

• It can’t deal with multiple roots of even multiplicity.

38

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202001843

• For regions contain infinitely many roots, it can’t find all roots since it randomly takes

sample points in the region.

• In high dimensions, it’ll take time to determine suitable number of sample points to have

better performance in operation time.

39

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202001843

Bibliography

[1] Bouchaib Radi and Abdelkhalak El Hami. Advanced Numerical Methods with Matlab 2

Resolution of Nonlinear, Differential and Partial Differential Equations. John Wiley &

Sons, Incorporated, 2018.

[2] D. D. Wall. The order of an iteration formula. Mathematics of Computation, 10(55):167–

168, Jan 1956.

[3] J. H. Wegstein. Accelerating convergence of iterative processes. Communications of the

ACM, 1(6):9–13, Jan 1958.

[4] 張榮興. VISUAL BASIC數值解析與工程應用. 高立圖書, 2002.

[5] Charles Houston. Gutzler. An iterative method of wegstein for solving simultaneous

nonlinear equations, 1959.

[6] J.a. Ezquerro, A. Grau, M. GrauSánchez, M.a. Hernández, and M. Noguera. Analysing

the efficiency of some modifications of the secant method. Computers & Mathematics

with Applications, 64(6):2066–2073, 2012.

[7] G. Liu, C. Nie, and J. Lei. A novel iterative method for nonlinear equations. IAENG

International Journal of Applied Mathematics, 48:444–448, 01 2018.

[8] Manoj Kumar, Akhilesh Kumar Singh, and Akanksha Srivastava. Various newtontype

iterative methods for solving nonlinear equations. Journal of the Egyptian Mathematical

Society, 21(3):334–339, October 2013.

[9] G. Alefeld. On the convergence of halley’s method. The American Mathematical Monthly,

88(7):530, August 1981.

40

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

DOI:10.6814/NCCU202001843

[10] George H. Brown. On halley’s variation of newton’s method. The American Mathematical

Monthly, 84(9):726, November 1977.

[11] Yuri Levin and Adi BenIsrael. Directional newton methods in n variables. Mathematics

of Computation, 71(237):251–263, May 2001.

[12] HengBin An and ZhongZhi Bai. Directional secant method for nonlinear equations.

Journal of Computational and Applied Mathematics, 175(2):291–304, March 2005.

[13] HengBin An and ZhongZhi Bai. 關於多元非線性方程的 broyden方法. Mathematica

Numerica Sinica, 26(4):385–400, November 2004.

41

	致謝
	中文摘要
	Abstract
	Contents
	List of Tables
	List of Figures
	Introduction
	Nonlinear equations of one variable
	Bisection method
	False position method (or Regula falsi)
	Fixed-point iteration
	Wegstein's method
	Newton's method
	Secant method
	Steffensen's method
	Halley's method

	Nonlinear equations of several variables
	Directional Newton Method
	Directional Secant Method
	Broyden Method

	Methodology
	Support Vector Machine (SVM)
	A New Method

	Results
	Conclusion
	Bibliography

