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Abstract

There are many standard mathematical methods for solving nonlinear
equations. But when it comes to equations in high dimension with infinite solutions,
the results from current methods are quite limited. We present a simple fast
way which could tell the distribution of these infinite solutions and is capable of
finding accurate approximations. In the same time, we also want to have a visual
understanding about the roots. Using the features of SVM, we have developed a

new method that achieves the above goals.

Keywords: nonlinear equations, SVM
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Chapter 1

Introduction

In physics, chemistry and engineering, many problems appear in the form of nonlinear
equations. But even for relatively simple example like polynomial equations, there is no formula
for radical solutions to degree 5 or higher. Not to mention those equations of transcendental
functions like f(r) = e —2z—1or f(x) = sin~' x+2?—1. However, using numerical methods,
the solutions can be computed to a desired degree of accuracy. Therefore in this chapter, we will
introduce some numerical methods for solving nonlinear equations f(x) = 0 where f : R — R

or f:R" — R.

1.1 Nonlinear equations of one variable

For equations with one variable, we already have many tools to obtain the approximation
of roots. For example, two-point bracketing method like Bisection method [1] and false position
method(or Regula falsi) [2]. Also we have Fixed-point iteration [1] and its improved version
Wegstein’ s method [3] [5]. Besides, we cannot fail to mention the most famous Newton’s
method which can be seen as a special case of fixed-point iteration. Newton’s method has many
extensions and variations. For example, secant method [6] and Steffensen’s method [7] [8] both
replace the derivative in Newton’s method by the slope of secant line but with different step
size. And Halley’s method [9] [10] uses second order of Taylor series instead of first order linear
approximation in Newton’s method. Now, to begin this section, suppose that f : [a,b] — R is
continuous on [a,b] C R and that z* is the only root of f(z) = 0 in [a, b]. Then we may try

these following methods to obtain a numerical approximation of the root.
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1.1.1 Bisection method

In bisection method, first we need an interval which contains the root z*. Suppose that
[ag, bo] is such an interval. That is, ag < by in [a,b] and f(ag)f(by) < 0. Let zy = %t
be the initial approximation of x*. Then we decide the next interval and approximation by the

following procedures:
1. Iff(ao)f(l’o) < 0, then set a; = aop, b1 =Xy and I = (112;{)1.
2. Iff(l’o)f(bo) < 0, then set a; = Zo, by = b() and z; = al—;bl.
3. If none of the above happens, that means f(xy) = 0 and we have found the root.

Continue the above iteration and we will get {z,, }, a sequence of approximations of the root z*.
When the absolute value of f(z,,) is sufficiently small, return z,, and stop iterating. See Figure

1.1.

Figure 1.1: Bisection method.

And from [1, p. 5], bisection method has the following pros and cons:
+ It is simple and straightforward.

* It can be applied to non-analytic functions.
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* It needs first an interval that contains the root.
* It cannot be applied to double roots.
+ It cannot be applied to multiple equations.

* The absolute error is halved at each step so the method converges linearly, which is

comparatively slow.

1.1.2 False position method (or Regula falsi)

In bisection method, the successive approximation z,, is the midpoint of a,, and b,,. Now in
false position method, the middle point is replaced by the intersection of x-axis and the secant

line constructed by (a,,, f(a,)) and (b,, f(b,)). See Figure 1.2.

Figure 1.2: False position method.

So the procure is modified as follows:
1. Find ay < by in [a, b] such that f(ag)f(by) < 0.

2. Replace y by 0 in the equation

y — f(ao) o f(bo) — f(ao)

T — Qo bo—ao
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and we have
i ao f(bo) — bo f(ao) —
f(bo) — f(ao) '

3. Hence the iterative formula is

. _ anf(bn) — b f(ay)
o fn) = flan)

n>0

And by [2], the rate of convergence of false position method is about %5 ~ 1.6, higher

than bisection method, but it could be inefficient in some extreme cases. See Figure 1.3.

Figure 1.3: An extreme case of false position method.

1.1.3 Fixed-point iteration

This method comes from the fixed-point theorem [1, p. 6]:

Suppose that g : [a,b] — R is continuous on [a,b] C R. If g(|a,b]) C [a,b], then g

has at least one fixed point in [a, b].
Moreover, in https://en.wikipedia.org/wiki/Banach_fixed-point theorem we have:

If g is differentiable on (a,b) and |¢'(x)| < K for some positive constant K < 1,

then g has exactly one fixed point in [a, b).

So first, we write f(x) = 0 as the form 2 = g(x). For example:
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1. f(z) =€" — 22 — 2 and from f(z) = 0 we can obtain g(z) in several ways:
s r = (e —2) = o)
s =20+2=2=I2zr+2)=g(x)
2. flx)=a®—20—-5=0
¢ a= 3t 5) = g(a)
cx =2 +5=g(x)

c P =2r+2=0=2=g(z)

N

Or we could always obtain g by setting x = x + Af(z) = g(x) where A # 0. Geometrically, it
is to find the intersection of y = x and y = g(x). Next, we try to find the root 2* through the

iterative process
Ty =g(xy_1),n>1 where x is arbitrary in [a, b]

see Figure 1.4. Notice that {z,,} doesn’t always converge, see Figure 1.5. So “the challenge lies

in choosing a proper g such that {z,,} converges and does it as quickly as possible” [1, p. 7].

¥ Xy Xy Xg x X1 x* Xy X T
(a) zigzag towards the root when 0 < ¢'(x) < 1  (b) spiral towards the root when —1 < ¢/(z) < 0

Figure 1.4: Convergent cases of fixed-point iteration.
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y = g(x)

& Y : >

* *
x XO X1 X2 xTr X2 X0 €T X1 €T

(a) zigzag away from the root when ¢’(x) > 1  (b) spiral away from the root when ¢'(x) < —1

Figure 1.5: Divergent cases of fixed-point iteration.

Furthermore, fixed-point iteration is at least of linear convergence as explained below. Let
en = T, —x*. From z; 11 = g(z;) and 2* = g(z*), we have ¢; 11 = x;11 — z* = g(z;) — g(z*).

s@)=9(@) oo

T, —x* ’

By mean value theorem, there exists £ between z; and z* such that ¢'(§) =
eir1 = g (§)(z; — z*) = ¢'(§)e;, which indicates the linear convergence. By choosing g wisely,

the rate of convergence can be improved as we will see in section 1.1.5.

1.1.4 Wegstein’s method

“This method is a modification for accelerating the rate of convergence in fixed-point
iteration and capable of producing solutions even in those cases where the fixed-point iteration

diverges” [3, p. 9]. In fixed-point iteration, the iterative procedure is

Tp=g(xp_1),n>1 where 1z is arbitrary in [a, b

Now we change the successive values of x,, in the following way [4, p. 22,23]:

1. Choose arbitrary zg in [a, b] and let x; = g(zo).
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2. Find the intersection of the line y = x and the line constructed with the points (¢, g(o))
and (z1,g(z1)). And let x5 be the x coordinate of the intersection. That is, denote g(z)
by go and g(x1) by g1, and replace y with x in the equation

Y—9 _ 91— Y90
T — 2o 1 — 2o

which yields
= T190 — 91Zo —
= =2
(21 —20) — (91 — 90)

3. So we have the iterative formula

Tndn—1 — GnTn—1 n>1

Tnt1 = =
> (xn B l’n,1) Z_ (gn - gn—l)’
\ ¥ =9()
\‘\.
Y )
.\‘\ y ]
\
\.
\
\.
\v
\.
Dy
I
N
N
i N
i N
X1 X2 m* XO w>

Figure 1.6: Wegstein’s method.

Figure 1.6 explains how Wegstein’s method finds the next approximation. And by [5, p. 4], the

advantages of this method are:
* A derivative is not used.

* The rate of convergence is nearly quadratic. (Greater than %5 [5,p. 9]
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* The condition that |¢/(x)| < 1 near the root is not required.
+ A less accurate first guess can be tolerated.

* In many cases, it will make otherwise divergent cases convergent.

1.1.5 Newton’s method

This is the most discussed method in finding the approximation of a root by an iterative
way and it has many variations. In short, Newton’s method uses the intersection of tangent line
at (x,, f(x,)) and z-axis to find the successive value. See Figure 1.7. Now suppose that f is

differentiable on (a, b). Newton’s method works as follows:
1. Choose zg in (a, b). The tangent line at (o, f(z0)) is y = f(x0) + f'(x0)(x — x0).

2. Find the intersection of the tangent line and the x-axis. And the successive approximation

is the z-coordinate of the intersection: z; = xg — ){'((Z%))'

3. Hence the iterative formula is

Figure 1.7: Newton’s method.

Newton’s method also has some weaknesses, one is that we need to compute the derivative

of f which could be complicated or take a lot of time. Another is that not all the choice of initial
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value xq will lead to the root 2*. See Figure 1.8. So the challenge is to find a proper xy or we

simply try another x, when it doesn’t converge.

/1;* XO /XZ X1\ T

(a) out of range (b) divided by zero

(c) divergent (d) stuck in a loop

Figure 1.8: Failed cases of Newton’s method.

From the iterative formula of Newton’s method, we can see that it is a special case of

f(x)

fixed-point iteration where g(z) = = — e

. Moreover, it achieves quadratic convergence as
explained below:

Since Taylor series of f(z) at x,, is

fl/(f‘)

f(@) = f(zn) + f(xn)(x — x0) + o ( — x,)? for some & between x and x,,
Let x = 2* and we have
0= fw) + ) —z)+ D@ a2 (11.1)
9
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On the other hand,
0= f(zn) + f'(2n)(@ns1 — 0) (1.1.2)

Denote x* — x; by e; for all positive integer ¢ and subtract (1.1.2) from (1.1.1):

0= f/($n>en+1 + f2—(!§)(en)2

So

|en+1| :l f”<€)
|en|? 2f"(wn)

Which implies quadratic convergence. Notice that if * is a multiple root, then we only have

linear convergence.

1.1.6 Secant method

The idea of secant method is to replace the tangent line of f at (z,,, f(z,)) in Newton’s
method with the secant line that passes (2,1, f(zn-1)) and (2, f(2,)) when in some cases we
can’t compute f’(x) explicitly. That is, we use the slope of the secant line as an approximation
of the slope of the tangent line. See Figure 1.9. So first we need two initial values, and the

iterative formula becomes

Lp — Tp-1

f(xn) = f(zp-1)

xn+1:xn_f(xn) , o, L1 € [a,b],nZl

y = f(x)

*

/ / X2éx1 )é(o T

Figure 1.9: Secant method.

10
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We can see that the secant method is very much like the false position method, and actually

“they have the same order of convergence 1+Tf” [6]. And like Newton’s method, we may

encounter some divergent cases. See Figure 1.10.

(a) stuck in a loop (b) divergent

Figure 1.10: Divergent cases of secant method.

1.1.7 Steffensen’s method

“Steffensen’s method is similar to Newton’s method. It also achieves quadratic convergence,
but without using derivatives” [7]. To apply this method, as in the fixed-point iteration, first
we write f(z) = 0 in the form of x = ¢(z). Let z,,;1 = g(x,) where n > 1 and z,
is given. In https://en.wikipedia.org/wiki/Steffensen%27s_method explains how Steffensen’s
method works:

Assume that three consecutive values of the sequence {x,} are known, say z,,, =, and
Tn12. Then we can use Aitken’s delta-squared process to accelerate convergence of the sequence

{z,}. Since fixed-point iteration is linearly convergent, for n large enough, we have

* *
LTpt1 — X _ Lpto — X

X, —I* Tpy1 — TF

then
2
[~ TnTnt2 = Tpiq
Tpn — 2xn+1 + Tni2
or
2
Tpn+t1 — T
TR X, — (Zntr = 20) (1.1.3)

Tpn — 2wn-i—l + Tni2
11
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And the root x* given by (1.1.3) is the successive approximation in Steffensen’s method.

Another form of Steffensen’s method is introduced in [8]:

n>0 (1.1.4)

If we write (1.1.4) as

$n+1 - xn o f($n+h)_f(xn)
h

where h = f(x,)

then clearly (1.1.4) is just replacing the derivative f’(x,) in Newton’s method by the slope of
secant line near (x,,, f(z,)) with step size f(x,).
To explain (1.1.3) and (1.1.4), observe the second term in the right hand side, for the

numerator, notice that for large n,

f(xn) ~ g(a:n) —Tp = Tpt1 — Ty

And for the denominator,

Tn — 2Tpy1 + Tng2 = (Toyz = Tny1) — (Tpy1 — T0)
f(@ns1) = f(xn)

= f(g(xn)) — f(xn)

f(@n +f(zn)) = f(zn)

Q

Q

Hence (1.1.3) and (1.1.4) do have the same meaning.

1.1.8 Halley’s method

“Halley’s method applies for functions with a continuous second derivative and the rate of
convergence is cubic” [9]. Like Newton’s method, Halley’s method starts with an initial guess

xo, and then produces a sequence of approximations by the iterative formula:

Tpil = Ty — 2f(z,) f'(2n)
n+ n 2(f'(zo))2 — f(zn) " (2n)

n>0 (1.1.5)

12
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One way to obtain (1.1.5) is using Taylor series. In Newton’s method, the tangent line of
y= f(x)atx =z, is

y=f(zn) + f'(zn)(z — 20)

which can be seen as a linear approximation of y = f(z) at x = z,,. That is, Newton’s method

uses first order of Taylor series:

f(x) = f(zn) + f(xn)(x — 2) + ...

If we use second order of Taylor series:

Fo) = Flaa) P - o) + 0
we have
0= fa) + ) e — ) + ) 0y 2
write as
0= fla) + (@t —m)f ) + 2,y — )
0
()

xn—l—l =Tp — 17
f'(zn) + %(l’n—i—l — Ty)

then use the result of Newton’s method:

i ( f(xn>

T T P ()
n

to replace 1 — x, gives (1.1.5).

“Halley’s method can also be derived by applying Newton’s method to g(x) = J‘cj(cfc()z)l ?
[10]. Notice that a root of g(x) is a root of f(x). So with initial value z, and use iterative
formula

o g(=)
T )
with
g/(fl:> _ Q(f/(x))Q — f([li)f”(l’)
2f"(@)\/1f" ()]
gives (1.1.5) as well.
13
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1.2 Nonlinear equations of several variables

When we consider higher dimension, the bisection method and the false position method

no longer work since the intermediate value theorem fails. For example, the spiral :

(

x = 0.5tcos(4t)

y = 0.5tsin(4t) 0<t<2rm

z=0.25t2 - 0.8
\

Although A(0.79,0, —0.18) and B(—1.18,0,0.59) are points of the graph in different sides of

Figure 1.11: A spiral.

xy plane, there is no root between segment AB.

Hence for nonlinear equations of several variables, we don’t have much reference. The
methods we use 1s mainly modifications of Newton’s method. In [11], Yuri Levin and Adi
Benlsrael introduce directional Newton method for differentiable f : R™ — R with limitations
for direction vectors, gradient of f, and second derivative (Hessian matrix) of f to reach
quadratic convergence. In [12], HengBin An and ZhongZhi Bai present directional secant
method, “a variant of directional Newton method, which also reaches quadratic convergence
under suitable assumptions and has better numerical performance”. In [13], HengBin An and
ZhongZhi Bai give Broyden method. “It is more efficient, especially in high dimensions.
Under suitable assumptions, Broyden method is locally superlinearly convergent and hence is a

powerful alternative to directional Newton method and directional secant method.”

14
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1.2.1 Directional Newton Method

In [11], Yuri Levin and Adi Ben-Israel introduce the directional Newton method as follows:
Suppose that f : R® — R is differentiable. Given a point 2° and a direction vector d with

|| d ||= 1, the successive iteration is

2 m 0 f(=%)
T Vf(x0)-d

where V f(2°) - d is the directional derivative of f at 2° along d. Continuing this iteration, the

formula is

k
x =z —f(xk) 7 0,1,...

For d* sufficiently close to the gradient V f(x*) and f satisfies the assumptions:
* The gradient of f is not ‘too small’.
* The second derivative (Hessian matrix) of f is not ‘too large’.

directional Newton method reaches quadratic convergence.
Another choice of d” is the unit vector ¢”*) where m(k) is the index of the component of

Vf(a* ) which has maximal absolute value. In this case, the formula becomes

k
k1. .k f(@") mk) 1. _
T i= —Vf(:ck)-em(k)e Jk=0,1,...

1.2.2 Directional Secant Method

In some situations, the function f(x) may not be differentiable or the gradient V f(z)
is uncomputable. So in [12], Heng-Bin An and Zhong-Zhi Bai present the directional secant
method, “a variant of directional Newton method, which also reaches quadratic convergence
under suitable assumptions and has better numerical performance”.

In directional secant method, V f(2*) - d* in directional Newton method is replaced by its

[P +tpd®)— f(zF)
tx

approximation where ¢, is a prescribed step size. Hence the iterative formula

becomes

k
il =gk — bfa”) " k=0,1,..

f(@b + tpdt) — f(2*)

In [12], the authors also demonstrate some examples to compare directional Newton

15
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method and directional secant method. In these examples, d* = |I§2H where

O (R O R (G B (G (G CO R (G}
7" o 7a")

is near to V f(z*) when f(2*) # 0 and f(2*) ~ 0. The results show that:
* The choice of initial point is very important.
» Directional secant method needs a little more iteration numbers.

* Directional Newton method costs much more computing time especially when n becomes

larger.

All these show the feasibility and efficiency of directional secant method.

1.2.3 Broyden Method

In directional Newton method and directional secant method, we need to compute gradient
or difference quotient at each iteration in order to obtain direction vector d*, which is time
consuming and inconvenient. Hence in [13], Heng-Bin An and Zhong-Zhi Bai present Broyden
method. “It is more efficient, especially in high dimensions. Under suitable assumptions,
Broyden method is locally superlinearly convergent and hence is a powerful alternative to
directional Newton method and directional secant method”. Broyden Method works as follows:

For f(x) = 0 where f : R™ — R" is differentiable, the classical Broyden method can be
described as follows: given initial value 2° € R", initial matrix A, € R™*", and tolerance e.

Setk = 0. If || f(a*) ||> ¢, then
1. sk = —A 1 f(2F)
2. okl =gk 4 gF

3.yt = f(a*) = fb)

4. Apyy = Ay + GZASINT g SEHDENT

(sF)Tsk — 4k (sF)T sk

5. k=k+1

16
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where A;, is an approximation of the Jacobi matrix of f at z*. In one dimension, it is simply
secant method since A, 5" = yF.
Now apply the above to f(x) = 0 where f : R" — R. Given initial value 2° € R", initial

matrix AT € R, and tolerance €. Set k = 0. If | f(z*)| > ¢, then we have
1. s = —Al f(z")
2. gkt = gb 4 gF

3. yF = f(a*t) — f(a*)

4. Ay = Ay + W= Apst)(sM)T A+ Flah 1) ()T

(k)T sk (sF)T sk
5. k=k+1

where AL is the Moore-Penrose inverse of Ay.

T
By Al = ”;‘4# and AkAL = 1, through some computations, [13] rewrites the above in a
more concise way: given initial value 2° € R", initial matrix A] € R", and tolerance €. Set

Ay = —f(2°) and k = 0. If | f(2*)| > ¢, then
1. gF+l = 2F 4+ ALAD
2. yf = @) — fa¥)

3. Ak+1 _ f(ackJrl)Ak

yk

4. k=k+1

which is the final form of Broyden method.

Compared to directional Newton method and directional secant method, numerical
examples show that “although Broyden method needs more iteration numbers to reach the
desired degree of accuracy, it takes much less computing time. The difference is significant
when n gets larger or the initial point is not ideal. This shows the superiority of Broyden method
in high dimensions”.

Later in chapter 2, we will give an overview of Monte Carlo method and Support Vector
Machine (SVM), then introduce a new method attached with two Python programming codes.
And then in chapter 3, we will apply the new method to some examples to see its performance
and limitations. Finally in chapter 4, we will summarize the results in chapter 3 and draw a

conclusion about the pros and cons of the new method.
17
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Chapter 2

Methodology

The methods for solving nonlinear equations of several variables introduced in Chapter 1
need the assumption that f is differentiable. Hence they can’t be applied to functions which don’t
satisfy the condition. Moreover, during the iterative process, when we need to compute gradient
or difference quotient, it could be complicated, time consuming or even unable to calculate.
Sometimes it is also tricky to find a suitable initial value and direction vector. Furthermore,
every time we apply those methods to our target, only one single root is found. We don’t have a
whole picture of our solutions. To avoid the above disadvantages, we try a new method which
combines Monte Carlo method and Support Vector Machine (SVM) to find roots.

First we give a basic introduction of Monte Carlo method. Its concept is using repeated
random sampling and statistical analysis to obtain numerical results. It is often used in the
fields of physics and mathematics. One main usage is simulating systems with randomness or
modeling phenomena with significant uncertainty. Another usage is transforming the solution
of unsolved problem to a parameter (such as expectation) of some kind of random distribution.
In mathematics, the most common application of Monte Carlo method is in integration and
optimization. Especially when the number of function evaluations grows exponentially in
high dimensions. It is useful and powerful for obtaining numerical solutions to problems too
complicated to solve analytically. Next in 2.1, we will introduce SVM, a classical algorithm in

machine learning.
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2.1 Support Vector Machine (SVM)

SVM is a well-known algorithm in machine learning. It is easy to understand intuitively
and also has a solid theoretical basis. SVM has a wide range of application. It can be used
in categorization of text and hypertext, classification of images, recognition of hand-written
characters and classification of proteins in medicine. So whatis SVM? It is a supervised learning
model and basically it is a binary linear classifier. To apply SVM, first we have to provide a
set of training data to the model. These data are already marked as belonging to one class or
the other according to some valued features. Then SVM model “’learns” how to classify from
these training data by creating a hyper plane in the feature space. With the hyper plane, the
rules of classification it learned, SVM model can assign new data to one of the two classes. For
example, say we want to distinguish between apples and oranges. We may choose two features:
color and weight. And the hyperplane in two-dimensional feature space is simply a straight line

as showed in Figure 2.1.

weight

® © g  hyperplane

o]
..
o @ ee

..

» color

Figure 2.1: Distinguish between apples(red and green dots) and oranges(orange dots).

The key to this method is to find an optimal hyper plane. To determine the hyper plane,
our goal is to maximize the margins between two classes. And the data on the boundary of the

margins are called support vectors. Two-dimensional case is showed in Figure 2.2.
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Figure 2.2: Determine the hyper plane.

But in real world, the data are unlikely being classified perfectly. So we may tolerate some
deviations within certain extent. These deviations are called slack variables and we try to find
the hyper plane with minimum deviations. This case is called soft margin. Also we can put
a penalty parameter to adjust the influence of these deviations. That is, to control the weights

between “maximum margins” and “minimum deviations”.

\

N %
“maximum ™. X  support vectors
margins/"-.,x

.
"
.
.,
.
3,
.
)

optimal hyper plane

Figure 2.3: Soft margin.

In addition to linear classification, using the skill called “kernel trick”, SVM is capable of

performing nonlinear classification. The way it works is mapping featured data into a higher
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dimension space to apply a linear classification. For example, two-dimensional nonlinear data

could be linearly classified in three-dimensional space with a plane as showed in Figure 2.4.

10 e L. e g
e . .. ..
.. b
05 o' a?
.
. = ® .
L .
00 * » -$ . ...
.
. *
- .
. .
=05
... . .5
- * . ’
L] . *
=1.0 C. - .
T T T v T T T
-15 -1.0 -05 00 05 10 15

Figure 2.4: Kernel trick.

Finally, we can also apply SVM to multi-class problems by distinguish between one class
and the rest (One-Versus-Rest) or between every pair of classes (One-Versus-One). The former
approach OVR uses fewer classifications, but the numbers of data may be imbalanced and hence

fails to classify them. The latter approach OVO is less sensitive to imbalance, but uses more

classifications.

Figure 2.5: Multi-class: One-versus-Rest.
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Figure 2.6: Multi-class: One-versus-One.

2.2 A New Method

Now we introduce another method for solving nonlinear equations of several variables.
Suppose f : D C R™ — R is continuous. First we choose a desired region in the domain
and randomly select sample points in the region. As to region we refer to a rectangle in two
dimensional space, a cuboid in three dimensional space, etc. Compute the function values of
these sample points. If we get only positive or negative values, then chances are high that there is
no root in this region unless the number of sample points is too small. Now consider the case that
we’ve got both positive and negative function values. Here these sample points are like training
data with n features, and SVM model classifies them into two classes according to the sign
of their function values. Now with the trained SVM model, the hyper plane could be seen as a
rough approximation of the roots. Also we have a number of support vectors in each class. These
support vectors are supposed to be ”close” to the roots in the region. Then we randomly select the
same number of sample support vectors in each class and make them into pairs. From every pair
we can obtain a "hyper cuboid” by letting each coordinate of the 2" vertices to be the minimum
or maximum in each dimension of the paired support vectors. Take n = 2 for example, suppose
(a,b) and (c, d) are paired support vectors from different classes, then we can obtain a hyper
cuboid (here it is only a rectangle) with the following four vertices: (min{a, c}, min{b,d}),
(max{a, c}, min{b, d}), (max{a,c}, max{b,d}) and (min{a, c}, max{b,d}). Now, to decide

which hyper cuboid leads to a better opportunity for finding roots, we consider the following
22
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factors:

* Let r; be the volumetric ratio of the hyper cuboid to the region. We expect small r;.

* Let n; and ny be the numbers of support vectors of the two classes in the hyper cuboid

respectively. Let r, =

e Letd = L

max{ni,n2}
min{nl,ng} .

2
volumn of the hyper cuboid

We expect large d.

We expect small r5.

be the density of support vectors in the hyper cuboid.

Consider the value ry + ro + %z of each hyper cuboid. The smaller it is, the higher probability

that we could find roots in that hyper cuboid. So we can choose several candidates to continue.

Or as in our Python programming codes, we choose hyper cuboid with the smallest value to be

the new region in the next iteration. And it’s center point is an approximation of a root in this

iteration. Continue the process, we can shrink the hyper cuboid and improve our approximation

until it satisfies demanded accuracy. Now we demonstrate the method by the following Python

programming codes.

Code 1 is for f : R? — R in region [a;,bi] X [as,bs]. The outputs are: approximation

of a root in the region, function value of the approximation, number of iterations, and time of

operations. If number of iterations is too large(>100), the iterative procedure will stop.

>>> import numpy as np

>>> import numpy.random as rn
>>> jmport random

>>> from sklearn import svm
>>>  import time

# n: number of sample points, tol: tolerance of diagonal of the rectangle

>>> defroot(f,al,bl,a2,b2,n,tol):

start = time.process_time( )
11=0 # number of iterations

while np.sqrt((bl-al)**2+(b2-a2)**2) > tol and i1 <= 100:

X=[]

for 1 in range(n):
x1 =rn.rand( )*(bl-al) +al
x2 =r.rand( )*(b2-a2) + a2
X.append([x1,x2])

X = np.array(X)

Y =[]
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for i in range(n):
if fX[1][0],X[i][1]) > O:
Y.append(1)
else:
Y.append(-1)
Y = np.array(Y)

clf = svm.SVC(C=500,gamma="scale’ kernel="rbf”)
clf.fit(X,Y)

sv = clf.support_vectors  # support vectors
sv_n=clf.n_support  # numbers of support vectors in each class

cl =sv[:sv_n[0]] # support vectors in class 1
c2 =sv[sv_n[0]:] # support vectors in class 2

# take k(<=3) sample support vectors in each class

k = min(int(sv_n[0]/ 2),3)

cl_spl = random.sample(list(c1),k)

c2_spl = random.sample(list(c2),k)

cl spl=np.array(cl spl) # sample support vectors in class 1
c2_spl =np.array(c2 spl) # sample support vectors in class 2

den rto=[] # density and ratio of k small rectangles
for i in range(k):
aal =min(cl_spl[i][0],c2_spl[i][0])
bbl =max(cl_spl[i][0],c2 spl[i][0])
aa2 = min(cl_spl[i][1],c2_spl[i][1])
bb2 = max(cl spl[i][1],c2 spl[i][1])

nl =0 #number of support vectors of class 1 in the i-th small rectangle
for t in range(len(cl)):
if aal <=cl[t][0] <=Dbbl and aa2 <= cl[t][1] <= bb2:
nl+=1

n2=0 #number of support vectors of class 2 in the i-th small rectangle
for t in range(len(c2)):
if aal <= c2[t][0] <=bbl and aa2 <= c2[t][1] <= bb2:
n2+=1

# density of support vectors in the i-th small rectangle

den = (n1+n2) / ((bbl-aal)*(bb2-aa2))

# volumetric ratio of the i-th small rectangle to the region
rtol = ((bbl-aal)*(bb2-aa2)) / ((b1-a2)*(b2-a2))

# the ratio of numbers of support vectors in different classes
rto2 = max(nl,n2) / min(nl,n2)

den_rto.append(rtol + rto2 + 1/den) # the smaller the better
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d = np.argsort(den_rto)[0] # index of the smallest value in den_rto
# 4 vertices of the most recommended small rectangle

al =min(cl_spl[d][0],c2_spl[d][0])

bl =max(cl_spl[d][0],c2_spl[d][0])

a2 =min(cl_spl[d][1],c2 spl[d][1])

b2 =max(cl_spl[d][1],c2_spl[d][1])

ii+=1
end = time.process_time( )
return [(al+bl)/2,(a2+b2)/2], f((al+b1)/2,(a2+b2)/2), ii, end - start

m
N
7 N

Code 2 is for f : R™ — R in region [a,b] X [a,b] X --- X [a,b]. The outputs are:

approximation of a root in the region, function value of the approximation, number of iterations,

and time of operations. Moreover, in order to reduce operation time, we minus number of sample

points along with the increase in number of operations.

>>>
>>>
>>>
>>>
>>>

>>>

import numpy as np

import numpy.random as rn
import random

from sklearn import svm
import time

# m: dimension, n: number of sample points, tol: tolerance of diagonal of hyper cuboid
root(f,a,b,m,n,tol):

x=[]
for j in range(m):
x.append((a+b)/2)

11=0 # number of iterations
start = time.process_time( )

# every p iterations minus q sample points (output ii < p*(r-1) and n > q*(r-1))

p=15
q=1
r=200

while np.sqrt(m*(b-a)**2) > tol:

for i in range(1,r):
if il == p*i:
n-=q
break
else:
pass
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X=[1
for i in range(n):
x=[]
for j in range(m):
x.append(rn.rand()*(b-a)+a)
X.append(x)
X = np.array(X)

Y=[]
for i in range(n):
if f(X[i]) > 0:
Y.append(1)
else:

Y.append(-1)
Y = np.array(Y)

clf = svm.SVC(C=500,gamma="scale’ kernel="rbf”)
clf.fit(X,Y)

sv = clf.support_vectors  # support vectors
sv_n=clf.n _support  # numbers of support vectors in each class

cl =sv[:sv_n[0]] # support vectors in class 1
c2 =sv[sv_n[0]:] # support vectors in class 2

k=1 # take k=1 sample support vectors in each class

cl_spl =random.sample(list(c1),k)

c2_spl = random.sample(list(c2),k)

cl_spl=np.array(cl_spl) # k sample support vectors in class 1
c2_spl=np.array(c2_spl) # k sample support vectors in class 2

den rto=[] # density and ratio of k hyper cuboid
for i in range(k):

# number of support vectors of class 1 in the i-th hyper cuboid

nl=0
for t in range(len(cl)):
s=0

for j in range(m):

Ce if min(cl_spl[i][j],c2_spl[i][j]) <= cl[t][j] <= max(c1 spl[i]

[i1,c2_spl[i][j]):

C st=1

ifs=—=m:
nl+=1

# number of support vectors of class 2 in the i-th hyper cuboid
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n2=0
for t in range(len(c2)):
s=0
for j in range(m):
Ce if min(cl_spl[i][j],c2_spl[i][j]) <= c2[t][j] <= max(c1 spl[i]
[i1.¢2_spl[i][j]):
C st=1
if s==m:
n2+=1

V=1
for j in range(m):
# volume of the i-th hyper cuboid
c V=V * (max(cl_spl[i][j],c2_spl[i][j]) - min(cl spl[i][j],c2_spl[i]
L)
# density of support vectors in the i-th hyper cuboid
den=(nl +n2)/V
# volumetric ratio of the i-th hyper cuboid to the region
rtol =V / (b-a)**m
# ratio of numbers of support vectors in different classes
rto2 = max(nl,n2) / min(nl,n2)
den_rto.append(rtol + rto2 + 1/ den) # the smaller the better

d =np.argsort(den rto)[0] # index of the smallest value in den_rto

x=[1]
for j in range(m):
# the center point of the most recommended hyper cuboid
- x.append( (min(cl_spl[d][j],c2_spl[d][j]) + max(cl_spl[d][j],c2_spl[d]
[i)/2)
aa=|]
for j in range(m):
aa.append(min(cl_spl[d][j],c2_spl[d][j]))
bb =[]
for j in range(m):
bb.append(max(cl_spl[d][j],c2_spl[d][j]))
a = min(aa)
b = max(bb)

ii+=1
end = time.process_time( )

t=end - start
return X, f(x), ii, t
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Chapter 3

Results

Now we apply the method in chapter 2 to some examples and see how it works. The
equipment we use is a laptop with Intel(R) Core(TM) 15-8265U CPU 1.60GHz up to 1.80GHz
and RAM 8.00 GB.

Example 1. f(z,y) = /22 + 4% — 1 +1n(4 — 2° — y?)

Figure 3.1: Graph of example 1.

The roots of f on xy plane is similar to a circle with radius a little less than 2. Now we use
Code 1: root(f,1,3,-1,1,1000,tol=10**(-12)) to find roots in [1, 3] x [—1, 1] with 1000 sample

points in each iteration and with tolerance of diagonal of the rectangle 10~!2. Table 3.1 is the
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results of 10 consecutive tests and is presented in the order of approximation of a root, function

value of the approximation, number of iterations, and time of operations.

Table 3.1: Test results of example 1 with Code 1: root(f,1,3,-1,1,1000,tol=10**(-12)).

approximation function value number time
(1.8393485316192288, 0.6556725842999632) | -5.114131340633321e-12 27 0.484375
(1.8404225031688544, -0.6526519504314735) | -4.672262576832509e-12 33 0.59375
(1.941254269782079, 0.21128515949820706) | 2.9465319073551655¢-13 41 0.71875
(1.7597515054678885, -0.8463948236929669) | 3.2591707110896095¢-12 32 0.453125
(1.8555758543841576, -0.6082333492989722) | -7.824629832953178e-12 32 0.515625
(1.9291048578468786, -0.3027606414355924) | 2.4069635173873394e-12 39 0.640625
(1.8859593483090873, -0.5062281057965792) | -7.256639733554948e-12 37 0.625
(1.8806978984805065, 0.5254378871203835) | 4.381828233590568e-12 37 0.703125
ValueError: The number of classes has to be greater than one; got 1 class
(1.8191277005208264, -0.7098478483235422) | -1.8112178423734804¢-12 38 0.546875

Table 3.1 shows that out of 10 test results, we have found 9 roots(approximations). Each

root takes less than 1 seconds. And we have one ’ValueError: The number of classes has to be

greater than one; got 1 class”. That means during the process of iteration, function values of

sample points in the rectangle have the same sign. If we draw these roots in Table 3.1 on xy

plane, we may obtain a very rough contour of the roots in [1, 3] x [—1,1].

_________

_____________

Figure 3.2: Roots founded by Code 1.
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Example 2. f(z,y) = 2% — 2y* + xy — 30sin(z + y) + 20 cos xy

! | |
& L - o - ~ w

z -5.00000 5.00000 -3

(a) Graph of the function

(b) Roots on xy plane

Figure 3.3: Graph of example 2.

Similarly, we use Code 1: root(f,-1,1,-1,1,1000,tol=10**(-12)) to find roots in [—1, 1] x

[—1, 1] with 1000 sample points in each iteration and with tolerance of diagonal of the rectangle

1012, Test results are as follows.

Table 3.2: Test results of example 2 with Code 1: root(f,-1,1,-1,1,1000,tol=10**(-12)).

approximation function value number time
(0.46993790636813626, 0.2622453677771487) | -1.7763568394002505¢-14 33 0.65625
(0.7684688297613869, -0.012505477809996928) | 3.5136338283336954¢-12 40 0.484375
(0.22176752901561408, 0.48857630079124126) | -9.78772618509538e-12 30 0.46875
IndexError: index 0 is out of bounds for axis 0 with size 0
(-0.005547432373856567, 0.6929394537660047) | -2.9096725029376103e-12 46 0.8125
(0.5621218361256275, 0.17890958192506992) | 3.7196912217041245¢e-12 37 0.703125
(-0.25695433093787506, 0.8894629520497923) | 7.059242079776595¢e-12 32 0.5
(0.8050933184240345, -0.04871131491812492) | -7.226219622680219¢-12 35 0.578125
(0.42833405733942814, 0.29992808858241676) | 1.0043521569969016e-11 25 0.359375
(0.46601152390386, 0.265797865621633) 4.764189043271472¢-12 32 0.65625

One of the test results is ”’IndexError: index 0 is out of bounds for axis 0 with size 0, that

means the code can’t find the most recommended rectangle during the iterations.
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When we zoom out to see function f(z,y) = 2* — 2y? + zy — 30 sin(x + y) + 20 cos(zy),
its graph on zy plane behaves like a hyperbola, see Figure 3.4 (a). If we try to find roots in
regions that contain no root, Code 1 will return ”ValueError: The number of classes has to be

greater than one; got 1 class”. Now we try to find roots in regions away from the origin, say

[50, 51] x [50, 51], see Figure 3.4 (b). Table 3.3 is the test results.

N
. \ .‘\\
; 3 \\ )\\ LY
e NN
RN « NN \
y o "&\\ . . \\ .,\ \\
' = LN
~ From o W) hY | rom 0
x VGFOOOOD GOTUODO \\\ \ \ X SOFOOOO 512000
& y | -60.0000 60.0000 " \ { y | 50.0000 | 51.0000
c'( ....... Gear] | 2| 100000 | 10.0000 G\\ Lo sse) | 2 [ 1.00000 | 1.00000
(a) Roots in [—60, 60] x [—60, 60] (b) Roots in [50, 51] x [50, 51]

Figure 3.4: Roots of example 2 in different scales.

Table 3.3: Test results of example 2 with Code 1: root(f,50,51,50,51,1000,tol=10%*(-12)).

approximation function value number time

(50.37108241597812, 50.30605405694342) 7.59312612785834e-11 36 0.734375

IndexError: index 0 is out of bounds for axis 0 with size 0

(50.216759062176685, 50.209210588582806) | 4.789209029354424¢-10 25 0.484375
(50.91835623563183, 50.67395719627402) | 3.6215297427588666¢e-10 33 0.484375
(50.08210621719444, 50.15376290895588) | 3.0322144795036365¢e-10 32 0.53125

(50.493655231184896, 50.352278685604674) | 9.49995637711254e-11 32 0.5
(50.76882719293579, 50.64478487427914) 2.929940734475167e-10 29 0.5625
(50.060893746994225, 50.18334780684751) | 1.6474643871333683¢-10 32 0.53125
(50.56335822951033, 50.48002788886255) | -9.930056776852325¢-11 41 0.65625

(50.04464454039062, 50.12500465230691) | 4.3338976851714506e-10 40 0.546875

Compare Table 3.3 with Table 3.2, the accuracy of function values apparently is worse

in Table 3.3 than in Table 3.2. If we raise the standard of tolerance, Code 1 even fails in
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50, 51] x [50, 51], see Table 3.4 where tolerance of diagonal of the rectangle is 10~ and ii
[50, 51] x [50, 51] g g

represents the maximal value allowed in number of iterations.

Table 3.4: Raise the standard of tolerance.

approximation function value number time
Code 1: root(f,-1,1,-1,1,1000,tol=10**(-15)),ii=100
(0.7461596882606241, 0.009033344195159302) | 3.552713678800501e-15 41 0.578125
(0.2376360543484806, 0.4740324090606552) 0.0 34 0.546875
(0.39138819644970957, 0.3334828756138792) | 3.552713678800501e-15 42 0.671875
(0.8130843644528254, -0.056777966137313576) | 7.105427357601002¢-15 52 0.78125
ValueError: The number of classes has to be greater than one; got 1 class
Code 1: root(f,50,51,50,51,1000,tol=10**(-15)),ii=100
(50.6987226809441, 50.52614710988952) 5.950795411990839¢-14 101 2.078125
(50.3123398028162, 50.34944789599142) 7.105427357601002e-13 101 2.234375
(50.29289226163097, 50.258444639339814) -8.219203095904959¢-12 101 1.953125
(50.25733872551366, 50.21940854261966) 2.327027459614328e-12 101 1.9375
(50.204504343031914, 50.29298780543669) -7.545963853772264e-12 101 2.03125
Code 1: root(f,50,51,50,51,1000,tol=10**(-15)),ii=1000
(50.31353419225536, 50.295244027029945) 8.739675649849232¢-13 1001 21.921875
ValueError: The number of classes has to be greater than one; got 1 class
(50.842699814232994, 50.628859347893254) 6.235012506294879¢-13 1001 21.640625
(50.71581863271457, 50.680914087131555) -8.562039965909207e-13 | 1001 22.21875
(50.89625216670158, 50.76244021179818) -6.986411449361185e-12 | 1001 21.90625
Code 1: root(f,50,51,50,51,1000,tol=10**(-15)),ii=5000
(50.735470991990084, 50.62593175023604) 3.984368390774762¢-12 5001 126.84375
IndexError: index 0 is out of bounds for axis 0 with size 0
(50.297804446513624, 50.254821899553995) | 4.4364512064021255¢e-12 | 5001 | 127.078125
(50.30503027546648, 50.30686591842504) 8.107736704232593¢-12 5001 128.3125
(50.762567213039844, 50.589032786249454) 5.153211191100127e-12 5001 129.90625

From Table 3.4, we can see that in region [50,51] x [50, 51], even if we allow number of
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iterations up to 5000 times, Code 1 still failed to obtain an approximation of root that satisfies the
required tolerance and the accuracy of function value doesn’t improve along with the increase
in number of iterations. The reason is that sine and cosine function in Python are approximated
by series of polynomials and rounding errors will accumulate when independent variables are
away from the origin. To avoid this, we can translate the graph so that the independent variables
are near the origin. For example, let g(z,y) = f(z + 50,y + 50) and use the periodic property
of sine and cosine function, we have g(x,y) = 2% + 2y — 2y* + 150z — 150y — 30sin(z + y +
100 — 327) + 20 cos((z + 50)(y + 50) — 7967). Then apply Code 1 to g in [0, 1] x [0, 1] with

tolerance of diagonal of the rectangle 107'°, see Table 3.5.

Table 3.5: Test results of ¢ with Code 1: root(g,0,1,0,1,1000,tol=10**(-15)).

approximation function value number time

(0.46818599428272567, 0.38802043952474363) | 3.952393967665557¢-14 45 1.0625

(0.4462804306335044, 0.41798056459405625) | -2.9309887850104133¢-13 37 0.8125

(0.4691852199445329, 0.38665487925191777) | 2.7533531010703882¢-14 41 0.859375

(0.5605807588099267, 0.48208915471610153) | -5.380584866543359¢-12 55 1.046875

(0.2017860554505237,0.2971099319591042) | -5.5209170568559784¢-12 42 0.6875

(0.37514876948450493, 0.3632664037200196) | -4.413358567489922¢-12 45 1.078125

(0.6542098954593933, 0.5872723444048912) 2.76578759894619¢-12 44 0.8125

(0.12206118061828386, 0.09784852619758204) | 5.53157519789238e-12 44 0.71875

ValueError: The number of classes has to be greater than one; got 1 class

(0.7855399066982386, 0.7079424206421457) -5.346834086594754¢-12 47 0.875

Now move our approximations of roots back to [50, 51] x[50, 51] and compute their function

values, see Table 3.6.
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Table 3.6: Approximations of roots of f in [50, 51] x [50, 51].

approximation of root function value

(50.46818599428272567, 50.38802043952474363) | 1.354028000832841e-12
(50.4462804306335044, 50.41798056459405625) 1.91491267287347e-12
(50.4691852199445329, 50.38665487925191777) | 1.0031975250512914e-11
(50.5605807588099267, 50.48208915471610153) | 2.831068712794149¢-12

(50.2017860554505237, 50.2971099319591042) 1.950439809661475¢e-12
(50.37514876948450493, 50.3632664037200196) | -2.568611989772762¢-12

(50.6542098954593933, 50.5872723444048912) 3.382183422218077e-12
(50.12206118061828386, 50.09784852619758204) | -1.6697754290362354e-13

ValueError: The number of classes has to be greater than one; got 1 class

(50.7855399066982386, 50.7079424206421457) | 2.8919089345436078e-12

cosyt+1
y—sinx

Example 3. f(z,y) =

(a) Graph of the function (b) Projection on yz plane

Figure 3.5: Graph of example 3.

By function formula, we know the roots are points on zy plane with y-coordinate
equals to (2k + 1)m where k € Z. However, points around the roots belong to the same
side of zy plane, see Figure 3.5 (b). Therefore, it fails when we apply Code 1 to this
function. For example, Code 1: root(f,-1,1,3,4,1000,10**(-12)) returns ’ValueError: The
number of classes has to be greater than one; got 1 class”. Moreover, for this function,

on regions that contain discontinuous points, the code may still return an answer, but it’s
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not a root. For example, one test result of Code 1: root(f,-1,1,-1,1,1000,tol=10**(-12)) is
([0.5584914658730595, 0.5299074807530488], 17034614928732.754, 37, 0.765625). The
approximation of root is point (0.5584914658730595, 0.5299074807530488), but it’s function
value is 17034614928732.754, obviously not a root of f(x) = 0.

Example 4. f : R™ — Rdefined by f(x) = > ;" z;exp(l —x7) where z = (1,22, ..., Tr)

. . * . .
Apparently, the origin (0,0, ..., 0) is a root of f(z) = 0. First, we apply Code 2: root(f,-
10

A\
7 \

0.9,1,10,250,10%*(-12)) to find roots in [—0.9, 1] x [—0.9,1] x --- x [0.9, 1] with 250 samples

points in each iteration and with tolerance of diagonal of the hyper cuboid 10~!2. Here is the

first test result:

* The approximation of root :
(11.2844263924027142e-15, 7.711984581422935¢-14, 9.976145297340012¢-14,
-1.0961014831765263¢-14, -1.120713405053965¢-14, 3.436442229894976¢-14,
-8.308598458235813e-14, -9.737252214208976e-14, -1.9765518862372757¢-14,
-3.7386907986968744¢-14 )

* Function value of the approximation: -1.2843592136232755e-13
* Number of iterations: 310
* Time of operations: 3.328125 seconds.

In Table 3.7, we only list the last three items of outputs since all approximations of roots suggest

the origin.
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Table 3.7: Test results of example 4 with Code 2: root(f,-0.9,1,10,250,10%*(-12)).

function value number time

1.3779698843748291e-14 292 3.15625
-1.332515734999162¢-14 317 3.40625
1.1987897774143587e-13 322 3.4375
-8.386255861714453¢-14 310 3.34375
-1.0989147744968376e-13 332 3.515625
-2.0372613787811113e-13 318 3.40625
4.910130259939433¢-14 305 3.359375
2.8895734888874934e-13 305 3.265625
-1.2903165704502644¢-13 300 3.265625

Next, we apply Code 2: root(f,-0.9,1,m,250,10**(-12)) in

A\

~

[—0.9,1] x [-0.9,1] x -+ x [0.9, 1] with dimension m = 15, 20, 25, 30, 35, 40. Table 3.8 list
one test result of each dimension. Since all test results indicate the same root: the origin, we

still only present the last three items of the outputs.

Table 3.8: One test result in different dimensions.

Dimension function value number time
15 -1.1705003069935705e-13 471 7.65625
20 -2.1807932674276025e-13 618 13.109375
25 -8.214164474230035¢e-14 767 19.71875
30 1.7075573329547067¢-13 899 28.546875
35 -4.4167018237416875¢e-14 | 1063 | 38.828125
40 -1.7446726440345464e-14 | 1184 | 51.265625

In Table 3.8, time of operations increases to over 50 seconds when dimension comes to 40.
If we want to decrease operation time, we may shrink the region and adjust number of sample
points. Now for each dimension m = 10, 15,20, 25, 30, 35,40, we take 10 consecutive test
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results and compute the average and standard deviation of operation time, see Table 3.9. Also

we can find a quadratic function to fit these data points as in Figure 3.6.

Table 3.9: The statistics of operation time of 10 consecutive test results in different dimensions.

dimension | average of operation time | SD of operation time
10 3.35 0.10
15 7.52 0.22
20 13.08 0.41
25 19.72 0.38
30 28.41 0.61
35 38.66 1.58
40 50.82 1.71

50

45

40

35

30

25

20

15

10

(40, 50.82)

y = 0.03212% — 0.0356x + 0.6657

(35, 38.66)

(30, 28.41)

(25, 19.72)

(20, 13.08)

(15, 7.52)

10 15 20 25 30 35 40 45

Figure 3.6: Dimension and operation time.
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Chapter 4

Conclusion

We propose a new method which combines Monte Carlo method and Support Vector
Machine(SVM) to solve nonlinear equations of several variables. The new method has the

following advantages:
* It only requires function to be continuous, not necessarily differentiable.

* Itneeds neither to compute gradient or difference quotient nor to find a proper initial value

and direction vector.

* For designated region in the domain, it can tell if there are roots in this region as long as
we throw enough sample points. And it can give several recommended smaller regions

that contain roots and continue to improve the accuracy of roots.

* We can cut the region into partition and work in parallel. This could raise efficiency and

save time.

* Even if it doesn’t achieve the desired accuracy in regions away from the origin because
it takes too many iterations or too much operation time, we still have pretty good

approximations of roots.
» Operation time is not exponentially increasing along with the increase of dimension.
However, the method also has some disadvantages:

¢ It can’t deal with multiple roots of even multiplicity.
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* For regions contain infinitely many roots, it can’t find all roots since it randomly takes

sample points in the region.

* In high dimensions, it’ll take time to determine suitable number of sample points to have

better performance in operation time.
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