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In this paper, we propose a risk-based model for deposit insurance premiums and provide the closed-
form formula for premiums, including early closure, capital forbearance, interest rate risk, and moral
hazard. Our numerical analysis confirms the proposed pricing formula and the relative impact of the
provisions for deposit insurance premiums. We illustrate how to use credit default swaps (CDSs) to
manage the bank’s asset risk corresponding to the deposit insurance model. A failed bank, Wash-
ington Mutual, is used to demonstrate how to calibrate the model’s parameters and calculate fair
premiums that are consistent with market risks on the basis of our proposed model and credit deriva-
tives. Finally, a numerical experiment is designed to determine the optimal hedge ratio, which can
minimise the variance of cash-flow of the deposit insurance corporations.
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1. Introduction

The management objectives of financial institutions are to
protect the rights and benefits of depositors, to maintain finan-
cial order, and to promote financial stability and development.
Given today’s globalised financial environment, the ex ante
supervision of financial institutions and ex post remedies are
equally vital. Governments must establish reliable and com-
plete financial management systems and offer deposit insur-
ance such as that provided in the United States by the Federal
Deposit Insurance Corporation (FDIC). Deposit insurance
provides basic safeguards against bank runs and contagion
proliferation that can lead to global financial crises. In addi-
tion, the commitments and resulting safety net provided by
deposit insurance corporations can strengthen market confi-
dence for investors and prevent panic, particularly during a
global recession.

The main goal of deposit insurance corporations is to pro-
tect depositors from losses in the event of bank failure so that
the stability of the bank system is maintained. As a supervisor
of the banking system, the deposit insurer’s risk management

*Corresponding author. Email: tfchen@fcu.edu.tw

is vital for maintaining the operations of insurance mecha-
nisms. In this study, we analyse the techniques that deposit
insurers can use to manage the risk of bank failure. The first
instrument is a risk-based deposit insurance premium formula
that incorporates moral hazard, early closure, capital forbear-
ance, and interest rate risk. The second concept involves using
credit default swaps (CDS) of security banks to calibrate the
bank risk in the security market, credit risk, and interest rate
elasticity from the CDS market. On the basis of the proposed
premium formula, we develop a market-based method for cal-
ibrating the model parameters of future bank assets depending
on the security banks’ CDSs and comparing the cash flows
of deposit insurers to demonstrate the effectiveness of CDS
hedging.

Earlier empirical studies show that the CDS spreads have
faster and more efficient information than the bond markets,
stock market, and credit rating agencies (Blanco et al. 2005,
Rodríguez-Moreno and Peña 2013). Also, Liu et al. (2016)
document the CDS is a forward-looking and market-based
measure of bank risk and the CDS spread is an appropriate
measurement to investigate the impact of deposit insurance
schemes on bank’s credit risk. They verify the various deposit
insurance designs can lessen the adverse impact on bank CDS
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spreads. Kanagaretnam et al. (2016) investigate the relations
between accounting information and the bank’s risk-taking
behaviors captured by CDS spread, and they find the bank’s
asset allocation is associated with bank’s CDS spreads. Fol-
lowing the prior literature on the CDS and bank’s risk, we
attempt to construct a credit market-based deposit insurance
premium which can appropriately reflect the bank’s risk.

In this study, we adopt a structural model of bank’s asset
value with derivative pricing techniques to derive fair insur-
ance deposit premiums. Since Merton (1977), deposit insur-
ance has typically been modeled as a European put option;
that is, a put contract that is issued by the deposit insurer and
written on bank assets that features a strike price equal to the
deposit amount and maturity at the audit date. Therefore, the
insurance claim is regarded as the option payoff, which is
the shortfall between the bank’s asset value and the deposit
account, and the premium is calculated under the Black–
Scholes framework (Ronn and Verma 1986, Thomson 1987,
Episcopos 2004). However, this Merton-type setting ignores
the possibility of early closure or capital forbearance. Thus,
the omission of these possibilities is incongruous with reality.

Banks conforming to the risk-based capital standards of
the Basel II regulations can increase their insurance subsidy
by concentrating their lending and off-balance-sheet activi-
ties (Pennacchi 2006). When banks fail to meet the applicable
capital standards, deposit insurers may provide these under-
capitalised financial institutions with capital forbearance and
require them to take prompt corrective actions to recapi-
talise during a limited period or close early (Nagarajan and
Sealey 1995, Hellmann et al. 2000, Kane 2001). Duan and
Yu (1994) propose a multiperiod deposit insurance pricing
model that simultaneously incorporates these capital stan-
dards and the possibility of forbearance. Moreover, Duan and
Yu (1994) employ generalised autoregressive heteroscedas-
ticity (GARCH) option pricing techniques to determine the
value of deposit insurance. By using a simple model, Lee
et al. (2005) derive a closed-form solution for calculating
deposit insurance premiums under capital forbearance as an
option for delaying the resolution of undercapitalised financial
institutions.

In addition to capital forbearance, recent studies incorpo-
rate early closure policies and stochastic interest rates into the
deposit insurance pricing formula using a Merton-type set-
ting. Hwang et al. (2009) apply the ‘down-and-out’ put option
formula to determine the regulatory threshold-defined as the
lower barrier of the option for deposit insurance-while explic-
itly considering bankruptcy costs and closure policies. On the
basis of the calibration of pricing parameters, Chuang et al.
(2009) calculate deposit insurance premiums under stochas-
tic interest rates for Taiwan’s banks by applying the two-step
maximum-likelihood-estimation method. These methods con-
sider the various risks that the deposit scheme faces when
providing fair, risk-based deposit insurance premiums.

Hannan and Prager (2006) find that larger banks offer lower
deposit interest rates than smaller banks, because small banks
need to increase their competitiveness to attract deposit fund-
ing progressively. Wagner (2010) analyzes the influence of
competition in the deposit market and infers that a highly
competitive deposit market increases the deposit rate and thus
increases a bank’s risk-taking incentives. A study by Hakenes

and Schnabel (2011) focus on bank size and bank risk-taking
and find that small banks may raise the deposit rate to increase
their customer base and accept risky projects. A bank with
small size or poor reputations may pay high capital costs
to attract depositors. Both decreasing loan rates and increas-
ing deposit rates are coupled with a reduction in the bank
interest margin (Saunders and Schumacher 2000), and a low
bank margin increases the incentives of the bank to search for
yields (Delis and Kouretas 2011). Dell’Ariccia et al. (2014)
mention that the competition for providing high deposit rate
exacerbates agency problems and increases bank’s risk-taking
activities. To mitigate the risk of high deposit interest rate
spread, we considered deposit premiums in our risk-based
model and characterised the deposit rate spread as a risk func-
tion that is proportional to the credit risk of a bank’s loan
position.

Although deposit insurance reduces the risk of bank runs, it
simultaneously reduces the incentive for depositors to mon-
itor a bank’s risk (Demirgüç-Kunt and Detriagache 2002,
Laeven 2002, Anginer et al. 2014). Wheelock and Kumb-
hakar (1995) investigate whether security banks are riskier
because of moral hazard, adverse selection, or both and deter-
mined that the Kansas deposit insurance system may suffer
from problems related to both adverse selection and moral
hazard. The moral hazard problem is likely to plague deposit
insurance schemes because it creates incentives for banks
to accept greater risk and engage in risky activities with
impunity (Laeven 2002).

If a security bank’s asset value cannot meet the capital stan-
dard but does not decrease below the forbearance threshold at
the time of the audit, the security bank can extend its opera-
tions for a certain grace period (Nagarajan and Sealey 1995,
Kane 2001, Lee et al. 2005). During the grace period, the
security bank is asked to increase its capital to satisfy the ade-
quacy requirement. Hakenes and Schnabel (2011) find that the
stricter the capital requirement is, the higher is the deposit rate
provided by a bank. Moreover, the bank may choose a risky
project without conveying this fact to the investors. Accord-
ing to their model, banks react to stricter capital requirements
by taking more equity. Our deposit insurance model including
both risk-taking activities and moral hazard problem during
the grace period into account. And we further specify the
mechanism in Section 2.3.

The deposit insurance is a part of the financial system safety
net but reduces the incentives of depositors to monitor banks,
thus leading to excessive risks.† According to existing litera-
ture, the moral hazard problem is related to a bank’s risk, so
we resort the moral hazard into the bank’s asset allocation.

† Demirguc-Kunt and Detragiache (2002) find that deposit insurance
exacerbates moral hazard problems in a bank lending scenario and
is associated with a high likelihood of a banking crisis. So and Wei
(2004) observe that the effect of moral hazard on fair insurance pre-
miums is more significant than the effect of bank’s equity and charter
values. An insurer should be able to deter banks’ risky behavior
and close problematic banks when necessary. Therefore, VanHoose
(2007) specifies that the fair pricing framework for deposit insur-
ance is crucial to mitigate moral hazard problems. Anginer et al.
(2014) investigate the relations between deposit insurance and moral
hazard for different periods. Their study finds that deposit insurance
increases moral hazard and makes financial systems more vulnerable
to crises during normal times.
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Boyle and Lee (1994) and Duan and Yu (1994) model moral
hazard as increasing asset variance. Hooks and Robinson
(2002) mention that the structure of a bank’s assets mea-
sured by portfolio concentrations can be a good proxy for risk
and obtained evidence on moral hazard incentives by attempt-
ing to quantify shifts in banks’ ex-ante risk-taking activities.
Mazumdar and Yoon (1996) and So and Wei (2004) reveal
that the use of capital requirements to combat moral haz-
ard may be difficult and that the adoption of asset portfolio
restrictions as a measure may be more effective.

So and Wei (2004) and Lee et al. (2005) consider a moral
hazard parameter associated with the equity value of the asset
portfolio to amplify a bank’s risk. Such an assumption rep-
resents that deposit guarantees may exacerbate moral hazard,
thus leading to inefficient and risky investments. We resort
moral hazard in the deposit insurance to the bank’s asset
allocation. In our proposed deposit insurance model, as the
structure of a bank’s asset is specified, we can represent the
bank’s risk based on the risk at each position of the bank
assets.

The study related to this paper is that by Chen (2017), who
estimates the deposit insurance premiums from the bank’s
CDS spread, that is, it proposes insurance deposit premiums
under the assumption that the bank’s asset value follows a
normal firm value diffusion process with a constant volatility
which is implied by credit spreads. In contrast to Chen (2017),
our bank asset model is more flexible and we involve vari-
ous deposit insurance policies and moral hazard risk into our
model to provide a more comprehensive premium framework.

The remainder of this paper is organised as follows:
Section 2 establishes the structures of the bank asset and for-
mulates the deposit insurance schemes as the payoff function
of a bank’s asset and deposit liabilities. Section 3 derives the
risk-based deposit insurance premiums, taking into account
closure policies, stochastic interest rate, and moral hazard.
On the basis of the proposed premium formula, we use a
scenario to demonstrate how risk factors affect premiums.
Section 4 employs Washington Mutual (WaMu) as an exam-
ple to describe the market-based technique that calibrates the
volatility of bank assets and the hedging effect of using credit
derivatives. Section 5 concludes this paper.

2. Deposit insurance schemes

2.1. Bank asset model

In this section, we first verify the assumptions of the risk-
free rate, which can be represented by the Treasury yield. The
stochastic risk-free rate r(t) is assumed to adopt the Vasicek
(1977) model and leads to the following explicit formula:

dr(t) = κ(θ − r(t))dt + σrdW P
r (t) (1)

where κ represents the mean-reverting force measurement,
θ stands for the long-term mean of the risk-free rate, σr is
the volatility of the risk-free rate, and W P

r (t) is a Wiener
process. Therefore, we define the riskless money market

account (MMA) M (t) = exp
{∫ t

0 r(s)ds
}

as the numeraire for

the pricing deposit premium.

Banks provide a personal saving rate (deposit rate) for
drawing funds on the basis of their own financial condition.
Therefore, the dynamics process of deposit liabilities D(t)
should increase with the deposit rate r(t)+ ε, where ε is the
difference between the deposit rate and the risk-free rate; this
measure is denoted as the deposit rate spread. Specifically,

dD(t) = (r(t)+ ε)D(t)dt (2)

where the dynamics of deposit liabilities have no uncertainty
risk except for the risk-free rate risks.

As documented in the literature, deposit insurance schemes
generate a moral hazard problem (Grossman 1992, Whee-
lock and Kumbhakar 1995, Gropp and Versala 2004, Cull
et al. 2005, Beck et al. 2006). When a moral hazard exists,
a bank may engage in excessive risk-taking to realise an addi-
tional profit in order to cover the extra deposit interest. Thus,
the bank’s risk should include the risk of moral hazard caused
by the deposit rate spread. In addition, the deposit may be
subjected to a default risk; as we discuss below, that risk
cannot be completely covered through the deposit insurance
scheme designed in our model. On the basis of the specifi-
cation of riskless money market accounts M (t) and a bank’s
outstanding deposit liabilities, D(t), deposit liabilities as can
be expressed as

D(t) = D(0) exp

{∫ t

0
r(s)ds + εt

}
= D(0)M (t) exp{εt} (3)

Table 1 presents the statistical reports of the financial state-
ments of FDIC-insured institutions from the FDIC website†
and presents the asset allocation of all commercial banks
insured by the FDIC from 1999 to 2018. Table 1 demonstrates
that the total percentage of bank assets in reserve, securities,
and loans‡ is greater than 90%; that is, the risk of banks’
assets derives mostly from these three components.

Because bank assets fluctuate closely and stably around a
given financial strategy, we assume in this paper that the allo-
cation of bank assets consists of the following: (1) the amount
held in reserves and cash§, R(t); (2) the loan position, with
price process L(t); and (3) the investment position, with price
process S(t). The investment position includes securities and
trading account assets, hereinafter referred to as securities.
The reserve position is allocated among a fixed proportion, γ ,

of bank assets, where ω is the fraction of bank assets invested
in securities, and the remaining fraction 1 − γ − ω comprises

† https://www5.fdic.gov/sdi/main.asp?formname = compare
‡ In the table, reserves are defined as ‘cash and due from depository
institutions’ of a banking report, and the term securities represents
‘securities’, ‘federal funds sold and reverse repurchase agreements’,
and the ‘trading asset account’ of the balance sheets from the banking
report at the FDIC.
§ We assumed that the reserve position enhances with the risk-free
interest rate although cash has no interest because cash accounts for a
small percentage of this subject. The reserve position includes “Cash
and Balances Due’ in the bank’s balance sheet. Based on the statis-
tics in the deposit institutions’ balance sheet provided by FDIC, the
‘total noninterest bearing balances’ account for 11.7% and 13.3%
of ‘Cash and Balances Due’ in 2017/12/31 and 2018/12/31, respec-
tively. Moreover, the reserve is less than approximately 10% of the
bank’s assets. For simplicity, we assumed that the reserve position
enhances with the risk-free rate in a bank’s asset model.
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Table 1. Asset Allocation of FDIC-insured Commercial Banks from 1999 to 2018.

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

Total assets 5,735 6,246 6,552 7,077 7,602 8,416 9,041 10,092 11,176 12,309
Reserves 366 370 390 384 387 388 400 433 482 1,042

(6.39) (5.92) (5.96) (5.42) (5.10) (4.61) (4.43) (4.29) (4.31) (8.46)
Securities 1,530 1,663 1,793 2,044 2,237 2,441 2,515 2,815 3,104 3,374

(26.68) (26.63) (27.37) (28.88) (29.42) (29.00) (27.81) (27.90) (27.78) (27.41)
Loans 3,430 3,751 3,812 4,079 4,352 4,833 5,313 5,913 6,537 6,682

(59.81) (60.06) (58.18) (57.64) (57.25) (57.43) (58.77) (58.59) (58.49) (54.28)
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Total assets 11,823 12,065 12,649 13,391 13,673 14,475 14,893 15,628 16,218 16,728
Reserves 977 923 1,196 1,334 1,633 1,854 1,686 1,738 1,833 1,617

(8.26) (7.65) (9.45) (9.96) (11.94) (12.81) (11.32) (11.12) (11.30) (9.67)
Securities 3,308 3,530 3,713 3,978 3,760 3,945 3,966 4,174 4,271 4,511

(27.98) (29.25) (29.36) (29.71) (27.50) (27.25) (26.63) (26.71) (26.33) (26.96)
Loans 6281 6,377 6,540 6,896 7,115 7,518 8,061 8,492 8,893 9,346

(53.13) (52.85) (51.71) (51.50) (52.03) (51.94) (54.12) (54.34) (54.83) (55.87)

Table 1 presents the asset allocation of all commercial banks that the FDIC insured from 1999 to 2018 and indicates that the total percentage
of bank assets in reserves, securities, and loans is greater than 90%. The data source is the statistical reports of the financial statements of
FDIC-insured institutions from the FDIC website, and the dollar figures are in billions. The numbers in parentheses represent the proportion
of the correspondent items to total assets. ‘Reserves’ represents the ‘cash and due from depository institutions’ from the banking report, and
‘Securities’ includes the ‘securities’, ‘Federal funds sold and reverse repurchase agreements’, and ‘trading asset account’ of the balance sheet
from the FDIC banking report.

outstanding loans. The dynamics of bank assets, A(t), evolve
in accordance with the following†:

dR(t)

R(t)
= r(t)dt (4)

dL(t)

L(t)
= (r(t)+ ε + λ− φκ(θ − r(t)))dt

+ φdr(t)+ σc(1 + ε)dW P
L (t) (5)

dS(t)

S(t)
= μdt + σSdW P

S (t) (6)

dA(t)

A(t)
= γ

dR(t)

R(t)
+ ω

dS(t)

S(t)
+ (1 − γ − ω)

dL(t)

L(t)
(7)

where φ denotes the instantaneous interest rate elasticity
parameter of the loans. φdr(t) represents the variation in the
interest rate dr(t) that has an influence on the variation in the
bank’s loan position, and the interest rate elasticity parameter
φ amplifies the degree of the influence. φdr(t) is termed as
the interest rate elasticity. λ is the interest rate spread, which
is the difference between loan interest rates and the personal
savings rate. W P

L (t) is the Wiener process under the physi-
cal probability measure and represents the uncertainty of the

† The details of how to obtain Equation (5) can be found in the
Appendix in Duan et al. (1995), where they describe the dynamics
of a bank’s asset as containing credit risk and interest rate risk. They
project the bank’s asset, which shows the Wiener process credit risk
on the interest rate variable to yield dVt/Vt =μdt + φvdrt + ψdWt.
A given interest rate process is drt: represents the interest rate risk
by stochastic variation against time, and it can adjust the size of the
variation of interest risk by multiplying φv, which is interpreted as
the instantaneous interest rate elasticity. Lee and Yu (2002) and Lo
et al. (2013) also adopted the model; they assume that the dynamic
of the insurer’s assets and insurer’s liability follow the Wiener pro-
cess of interest rate elasticity to characterize an asset that is sensitive
to interest rates risks. Based on Duan et al. (1995), we further con-
sider the interest rate spread and the deposit rate spread on the bank’s
liability dynamic as control variables for credit risks.

loan position. We assume W P
L (t) is independent of W P

r (t). σc

denotes the constant credit risk, orthogonal to the interest rate
risk, and we assume that the credit risk of banks is propor-
tional to deposit rate spreads. σc(1 + ε)dW P

L (t) denotes that
the credit risk is not only controlled by the constant credit risk
σc but also associated with the deposit rate spread (1 + ε).
According to Duan et al. (1995) and Chuang et al. (2009), the

total loan risk can be expressed as σL =
√
φ2σ 2

r + σ 2
c (1 + ε)2.

The security dynamics follow Black–Scholes dynamics, with
an instantaneous rate of return, μ > 0; the volatility param-
eter for the securities market is σS . The term W P

S (t) is the
Wiener process under the physical probability measure rep-
resenting the securities market risk, which is independent of
W P

L (t) and W P
r (t). The dynamics of reserves and cash posi-

tions increase with the risk-free interest rate and are held at a
constant reserves-to-assets ratio, γ .

The bank’s asset dynamics result from Equations (4)–(6),
which express that a bank’s assets are weighted by reserves
and cash, investments, and loan positions. The asset dynamics
can be derived as follows:

dA(t)

A(t)
= (ωμ+ (1 − ω)r(t)+ (1 − γ − ω)(ε + λ))dt

+ σdW P
A (t) (8)

where σ =
√
ω2σ 2

S + (1 − γ − ω)2(φ2σ 2
r + σ 2

c (1 + ε)2)

refers to the total risk of bank assets, and W P
A (t) is a Wiener

process for bank assets.

2.2. Early closure and capital forbearance policies

Valuation models such as those of Merton (1977) and Ronn
and Verma (1986) assume that the regulatory authorities can
monitor a bank’s assets only at the maturity of an insurance
contract; in other words, at the time of an audit. Accord-
ing to Brockman and Turtle (2003) and Episcopos (2008),
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bank creditors and depositors do not wait for the maturity
date of debts or deposits. A bank can go bankrupt before the
audit date if its asset value is lower than a specific threshold,
which causes debt holders and depositors to withdraw their
money. Therefore, the bankruptcy during the audit window
period should be considered when evaluating the risk of early
closure.

To explicitly model regulations for an early closure, we
assume that the maintenance ratio, η ∈ (0, 1), represents the
minimum asset-to-debt ratio required to keep the bank func-
tioning. In other words, if the bank’s asset value is lower
than its maintenance working capital level, ηD(t), during
the contract period, then the bank is considered bankrupt.
We follow Hwang et al. (2009) who use a barrier option
approach with the first passage time model to incorporate cap-
ital forbearance and bankruptcy costs in the deposit insurance
premiums. Accordingly, we define the first passage time τ ,
which is where the bank assets fall enough to breach the main-
tenance working capital level. We define the first hitting time
as follows:

τ = inf{t > 0|A(t) ≤ ηD(t)} (9)

In our model, if τ is no later than the auditing time, the banks
will be taken over or become bankrupt immediately when
their assets fall and hit the early closure threshold, ηD(τ ),
which is even lower than the capital forbearance threshold.
That is, if the bank defaults before the time of the audit, in
the case of premature closure, it will not be able to meet the
conditions for capital forbearance and a grace period.

Similar approaches are adopted in a previous study for
deposit insurance premiums and firm values of insurance
companies. Grosen and Jørgensen (2002) use the barrier
option framework to analyze the market value of life insur-
ance companies: they introduce the risk of a premature default
to the valuation of a life insurance contract with a simple
knock-out barrier option. Chen and Suchanecki (2007) illus-
trate the price of the issued life insurance contract in the
standard Parisian down-and-out option framework and con-
sider the first passage time for the premature closure of the
insurance company. Episcopos (2008) argues that the insurer
owns a down-and-in call option on the bank assets, so that the
barrier option theory can be applied to the contingent claims
of a regulated bank. This action addresses the problem of early
bank closure.

At the first hitting time for premature closure, the bank’s
asset value equals the maintenance working capital. Accord-
ingly, the deposit insurance payoff at the time τ can be
expressed as follows:

P(τ ) = (1 − η)D(τ ) (10)

which is a threshold on the underlying asset whose price
breaches the maintenance working capital level, resulting
in default. The insurer pays deposit insurer compensation
(1 − η)D(τ ) to depositors when the bank defaults. Merton’s
(1977) original deposit insurance pricing model and other
deposit insurance pricing models (Ronn and Verma 1986, Lee
et al. 2005) do not allow for premature default because default
can occur only when a claim matures. In our scenario, we first
investigate passage time structural models corresponding to

various specifications of the basic components of a credit risk
model.

So and Wei (2004) specify that capital forbearance and the
capital ratio play key roles in determining the deposit insur-
ance premium. In our model, if the bank can operate until
audit time T1, then the regulatory authority examines the value
of a bank’s assets at that time. The assumptions of capital
forbearance are similar to those of Duan and Yu (1994): the
regulator offers the security bank capital forbearance for a
grace period, , if its asset value cannot meet the capital
standard, αD(T1), but does not fall below the capital forbear-
ance threshold βD(T1), where β is greater than maintenance
ratio η. The financially distressed bank can extend its oper-
ations until the time of the next audit, T2, which is T 1 +Δ

if the insuring agent promises to restore the asset value to
a level higher than the bank’s outstanding deposit liabilities,
D(T2). Once the bank’s value drops below the capital forbear-
ance threshold, βD(T1), at time T1, or D(T2) at time T2, the
regulator takes over the depository institution.

The early closure policy is designed for bankruptcy before
the auditing time. Before the auditing time, a reasonable main-
tenance ratio η must be less than the capital forbearance
threshold parameter (η < β < 1)† in our model. The bank
asset should always be higher than the minimum maintenance
capital, that is, A(τ ) > ηD(τ ), to avoid the bank from being
overtaken. Here, η < β < 1 implies that if a bank keeps oper-
ating until the auditing time T1, the condition (1 − η)D(τ ) >
D(τ )− A(τ ) for τ < T1 must be held. When the system
reaches the auditing time, this condition will not be a large
shock for the bank asset over time because we adopted Ito’s
process, which is a continuous-time model as the bank asset
model.

In the context of deposit insurance, regardless of whether
the security bank closes or is taken over, the liquidation of
insured deposits must restore the asset value. The payoffs
of the deposit insurance contract at time T1 without default
before the audit can be expressed as follows:

P(T1) =

⎧⎪⎨
⎪⎩

0 if A(T1) > αD(T1)

F(T1, T2) if αD(T1) ≥ A(T1) > βD(T1)

D(T1)− A(T1) if otherwise
(11)

where F(T1, T2) denotes the value of the capital forbear-
ance and the grace period with maturity T2 at audit time T1.
Equation (11) can be regarded as the payoff for a compound
option that is a generalised writer-extendible put option. A
pricing model of retractable and extendible bonds is presented
by Brennan and Schwartz (1977) and Ananthanarayanan and
Schwartz (1980). Longstaff (1990) extends the work of those
authors to develop holder- and writer-extendible options and
applied those options to evaluate real estate options, war-
rants, extendible bonds, and American options. In this paper,
we model the deposit insurance scheme as a general writer-
extendible option when the bank works until audit time T1.
If the bank’s assets are greater than the capital standard, the
deposit insurance payoff equals zero. However, if the asset

† In our scenario analysis in section 3.2, the basic parameter setting
is β = 0.97 and η = 0.8.
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value cannot satisfy the capital standard, the deposit insur-
ance payoff is a writer-extendible put option in which the
underlying asset is the bank asset value and the strike price
is the capital forbearance threshold βD(T1). If the asset value
is lower than βD(T1) at time T1, the deposit insurer pays
the difference between the deposit liabilities and the bank’s
assets to cover the deposit losses; otherwise, the results lead to
another put option with maturity T2. Longstaff (1990) demon-
strates that a deposit insurance payoff can degenerate into a
writer-extendible put option with a time-variant strike price if
parameter α tends to infinity and β = 1.

On the basis of the capital forbearance for deposit insur-
ance, the general extendible put option is in force because the
bank’s assets are lower than αD(T1) but do not fall below
the capital forbearance threshold, βD(T1). The financially dis-
tressed bank can extend its operations until the time of the
next audit, T2, if the insuring agent promises to restore the
asset value of the bank’s outstanding deposit liabilities, D(T2).
The option is extended with time to maturity,Δ, and the strike
price, which is the bank’s outstanding deposit liabilities at T2.
Therefore, the payoff at time T2 can be written as follows:

F(T2, T2) =
{

0 if A(T2) ≥ D(T2)

D(T2)− A(T2) if otherwise
(12)

When the asset value cannot increase above the deposit lia-
bilities at audit time T2, the claim amount is the difference
between the bank’s deposit liabilities and its asset value.
According to the Basel Accord, banks are required to main-
tain 8% of their risk-weighted assets as their minimum equity
capital standard. For simplicity, we assume the risk-weighted
asset value at the current time is A(t) and the total deposit
debt is D(t). Because A(t)− D(t) over A(t) must be greater
than 8% to meet the capital adequacy ratio, the capital stan-
dard A(t)/D(t) is required to be greater than 1.087. Therefore,
in this paper, the capital standard parameter α is set at 1.087
(see also Lee et al. 2005).

Note that we do not need to consider the capital forbearance
for early closure, because the maintenance ratio is less than
the capital forbearance threshold parameter. If a bank’s capital
adequacy ratio is less than its maintenance ratio, it certainly
fails to satisfy the forbearance threshold. Hence, the regulator
should take over the bank directly. Therefore, the early closure
policy does not conflict with the forbearance and grace period.

2.3. Bank risk-taking and moral hazard

To illustrate the risk-taking behavior of a bank which pro-
vides a high deposit rate, we considered deposit premiums
in our risk-based model and characterised the deposit rate
spread as a risk function that is proportional to the credit risk
of a bank’s loan position. It may be assumed that when a
bank provides a higher deposit rate spread than other banks,
it broadens the lending conditions and accepts a greater credit
risk for a higher return to compensate for the additional pay-
ment. Thus, higher the probability of risk-taking operations,
the higher should be the insurance premiums charged by the
deposit insurance corporations.

We further consider moral hazards in our premium pricing
model. In an earlier study on the valuation of deposit insur-
ance, So and Wei (2004) and Lee et al. (2005) incorporate the
moral hazard problem and deposit insurance premium under
forbearance through a risk-shifting portfolio strategy. That is,
a moral hazard operation may occur in the forbearance period.
The security bank may adjust the underlying holdings of its
security positions by increasing the number of high-yielding
securities it holds or by increasing the weight of investment
positions, which typically exhibit high yields and offer profits
quicker.

By contrast, some studies documented that banks are asked
to increase their capital and decrease their risks under the
forbearance policy. Kahn and Santos (2005) find that the reg-
ulatory authority has supervisory powers to force the bank
to shut down when it is in a poor financial condition, which
improves the bank’s investment decisions in the forbearance
problem. Altunbas et al. (2007) document that the capital reg-
ulation in banking is effective for increasing capital ratios
without substantially shifting their portfolio toward riskier
assets. It is reasonable that the supervision authority pays
more attention to banks whose asset value cannot meet the
capital standard. Delis and Kouretas (2011) point out that the
effective regulatory and supervisory power over these banks
may hold the key to a more prudent bank behavior.

Anginer et al. (2014) find that a good supervision can
enhance the positive effects of deposit insurance during tur-
bulent periods and reduce the negative effects due to moral
hazard during normal times. To construct a flexible deposit
insurance model including the moral hazard, our model was
developed using a framework similar to that proposed by Lee
et al. (2005). This framework sets a moral hazard intensity to
increase the risk-taking activities in the grace period. We con-
sidered another portfolio share ω̃ of a high-risk asset (securi-
ties) during the grace period. If the portfolio share is higher
than that in the regular case, that is, ω̃ > ω, the moral hazard
problem in the deposit insurance is represented. The opposite
case, that is, ω̃ < ω, represents that an enhanced supervision
reduces bank’s risk-taking activities. Depending on banks’
asset dynamics in Equation (8), the portfolio share gives a
weight to securities and leads to a different volatility of banks’

asset risk σ̃ =
√
ω̃2σ 2

S + (1 − γ − ω̃)
2
(φ2σ 2

r + σ 2
c (1 + ε)2)

in the grace period.

3. Risk-based deposit insurance premiums

3.1. Closed-form formula for deposit insurance premiums

On the basis of the asset dynamics under the physical measure
in Equation (8), we adopt the standard practice of changing
the probability measure to prevent arbitrage opportunities in
the risk-neutral probability measure. The dynamics of the rel-
ative bank asset with respect to the money market account
should be a martingale under the risk-neutral measure (Q);
thus, the dynamics of bank assets are as follows:

dA(t) = r(t)A(t)dt + σA(t)dW Q
A (t) (13)
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where σ =
√
ω2σ 2

S + (1 − γ − ω)2(φ2σ 2
r + σ 2

c (1 + ε)2) is

referred to as the total risk of bank assets, and W Q
A (t) rep-

resents the Wiener processes under the risk-neutral measure.
The bank’s assets and liability are essential criteria for

determining whether a bank has failed. To simplify the for-
mula, we use the asset-to-debt ratio as a variable for the
insurance payment. The relative values of assets and debts
eliminate the effect on if risk-free rates on returns, and the
influence of risk-free rates is observed only in the volatility
of bank assets. By applying Itô’s lemma, we can express the
relative dynamics of a bank’s assets as follows:

d
A(t)

D(t)
= A(t)

D(t)
(−εdt + σdW Q

A (t)) (14)

In line with the deposit insurance schemes mentioned in
Section 2, the risk-based premium that the security bank pays
to the deposit insurer can be divided into the following three
components:

P(0) = EQ

[
P(τ )

M (τ )
I{τ<T1}

]
+ EQ

[
P(T1)

M (T1)
I{
τ≥T1, A(T1)

D(T1)
≤β
}
]

+ EQ

[
P(T1)

M (T1)
I{
τ≥T1,β< A(T1)

D(T1)
<α
}
]

(15)

The closed-form solution of the risk-based deposit insurance
premium comprises an audit window component (the first
term in Equation (15), denoted as P a), capital forbearance
component (the second term in Equation (15), P c), and a
grace period component (P, the third term in Equation (15)).
These are expressed as follows:

Pa = (1 − η)D(0)e
v−u
σ2 B(η)

[
�(c1(η, u))+ e

2u
σ2 B(η)

�(c1(η, −u))

]
(16)

Pc = D(0)eεT1

[
(�(c1(β, v)))−�(c1(η, v))

−e
2v
σ2 B(η)

(�(c2(β, η, v))−�(−c1(η, −v)))

]

− A(0)eεT1

[
(�(c1(β, ṽ))−�(c1(η, ṽ)))

−e

(
2v
σ2 +2

)
B(η)

(�(c2(β, η, ṽ))−�(−c1(η, −ṽ)))

]
(17)

P = eεT1

(
D(0)

{
N(c1(α, ν), e1(ν), δ)− N(c1(β, ν), e1(ν), δ)

−e
2vB(η)
σ2 [N(c2(α, η, ν), e2(ν), δ)− N(c2(β, η, ν), e2(ν), δ)]

}

+A(0)

{
N(c1(α, ν̃), e1(ν̃), δ)− N(c1(β, ν̃), e1(ν̃), δ)

−e

(
2v
σ2 +2

)
B(η)

[N(c2(α, η, ν̃), e2(ν̃), δ)− N(c2(β, η, ν̃), e2(ν̃), δ)]

})

(18)

where

v = −ε − σ 2

2
,

σ =
√
ω2σ 2

S + (1 − γ − ω)2(φ2σ 2
r + σ 2

c (1 + ε)2),

u =
√

v2 − 2σ 2εṽ = v + σ 2, c1(x, z) = B(x)− zT1

σ
√

T1
,

c2(x, y, z) = B(x)− 2B(y)− zT1

σ
√

T1
, e1(ν) = B(1)− νT2

σ
√

T2
,

e2(ν) = B(1)− 2B(η)− νT2

σ
√

T2
, B(x) = ln

xD(0)

A(0)
,

δ =
√

T1

T2
, N(c, e, δ) =

∫ c

−∞
�(

e − δZ√
1 − δ2

)ϕ(Z)dZ.

where ϕ(·) and �(·) are the probability density and cumula-
tive distribution functions of the standard normal distribution,
respectively. Additional details are provided in the appendix.

P a denotes the early closure component, which is used to
evaluate the present value of the payment for banks that reach
the default threshold before audit time T1 such that the reg-
ulator must implement the bankruptcy process. Similarly, P c

is presented as the capital forbearance component because its
value is similar to that of a down-and-out put option whose
strike price is the capital forbearance threshold βD(T1) at
maturity time T1. Although the bank may not go bankrupt,
if it reaches the regulatory closure point, βD(T1), then the
regulator takes over the bank. The depositor can still obtain
a rebate on the basis of the difference between the regulatory
closure point and the deposit insurance amount. The rebate
should be reflected in the premium as P c. P is regarded
as a grace period component because its value depends on a
regulatory delay. An undercapitalised institution can improve
its financial position by continuing to work during the grace
period.

As shown in Equation (15), the risk-based deposit insur-
ance premium consists of the following components: the
audit window, the capital forbearance, and the grace period,
Pa + Pc + PΔ. In our pricing model, the moral hazard is con-
sidered in the grace period component, and we specify the
moral hazard through another weight in the portfolio share
ω̃ to adjust for the volatility of the bank’s asset. As shown
in section 2.3, if we consider the moral hazard in the risk-
based premiums, the total risk of the bank’s asset becomes

σ̃ =
√
ω̃2σ 2

S + (1 − γ − ω̃)
2
(φ2σ 2

r + σ 2
c (1 + ε)2). We define

the grace period component of premium with moral haz-
ard as P̃Δ which is the same as P̃Δ defined in Equation
(18), except the total bank’s risk is changed from σ =√
ω2σ 2

S + (1 − γ − ω)2(φ2σ 2
r + σ 2

c (1 + ε)2) to σ̃ . Therefore,
the premium with moral hazard can be expressed as Pa +
Pc + P̃Δ.

3.2. Scenario analysis of premiums

In this section, we numerically investigate the proposed model
to determine how the value of deposit insurance under closure
policies that consider early closure and forbearance varies
with respect to critical parameters such as the capital forbear-
ance threshold, the length of the grace period, and the cross
effects of the two. Moreover, we analyse how asset allocation
and moral hazard affect deposit insurance premiums. On the
basis of the parameters used by Lee et al. (2005) and Chuang
et al. (2009) unless otherwise specified, the following param-
eters are used throughout: A(0) = 100, D(0) = 90, γ = 0.1,
ω = 0.25, σS = 0.3, σc = 0.1, σr = 0.01, ε = 0, κ = 0.1, θ =
0.05, φ = −0.5, T1 = 1,  = 0.5, α = 1.087, β = 0.97, and
η = 0.8.

Table 2 depicts the relationship between the deposit insur-
ance premium and closure policies crossed with the debt-to-
asset ratio. The closure policies comprise the early closure
and capital forbearance provisions. A regulator cannot exam-
ine a bank’s business operations until the audit period ends,
unless the bank cannot function. Therefore, the probability
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and cost of bankruptcy depend on maintaining the ratio η. As
the sensitivity analysis demonstrates in Table 2, the deposit
insurance premium decreases with the maintenance ratio but
increases with the debt-to-asset ratio. A low maintenance ratio
reduces the opportunity of early closure but increases future
risk. Therefore, low maintenance lowers the premium of the
early closure component but increases the premium of the
capital forbearance and grace components. Integrating these
three components, we observe that premiums and mainte-
nance ratios are adversely related. However, the premium is
dominated by the debt-to-asset ratio because that ratio most
directly reflects the risks of operations and bankruptcy. A high
debt-to-asset ratio represents a high risk of bankruptcy and
thereby requires a high premium per deposit.

The forbearance provision is interpreted through β and ,
which are the capital forbearance threshold and the grace
period length, respectively. According to the analysis in
Table 2, the premium formula reveals that when the value of β
is low, the risk of bankruptcy at the audit time is low, but the
risk at the end of the grace period is high. Combining these
two components, we determine that the premium decreases
with high capital forbearance thresholds. Conversely, due to
the grace period component, the higher the  is, the higher
the premium is. This case can be considered a European put
with a long time to maturity and high costs. Furthermore, if
moral hazard in the grace period is considered, the premium
rises because it increases the weight of bank assets allocated
in investment positions and raises banks’ operational risks
during the grace period.

If the moral hazard is considered in the deposit insur-
ance, the premium rises because we take another weighting

of the portfolio share ω̃ > ω to adjust the total risk of the
bank’s asset in the grace period. The bank increases the
weight of bank assets allocated in investment positions and
increases its operational risks during the grace period. Hence,
the premiums with moral hazards are Pa + Pc + P̃Δ as per the
pricing formula in Equation (15). The premiums Pa and Pc

are defined in Equation (16) and Equation (17). P̃Δ is defined
in equation (18), except the total risk of the bank’s asset

is σ̃ =
√
ω̃2σ 2

S + (1 − γ − ω̃)
2
(φ2σ 2

r + σ 2
c (1 + ε)2), which

has a more substantial weight allocated in the investment
positions.

Deposit premiums for the credit market (loan position) and
the securities market (investment position) that cross alterna-
tive portfolio shares for bank asset allocation ω are reported
in Table 3. An increase in credit risk or security market risk
volatility is reflected in high deposit premiums. If the weight
of securities decreases and most assets are allocated in loan
positions, credit risk has a significant effect on premiums. As
expected, security market risk appears to have an increasing
influence as the weight of securities increases. This finding
reveals that asset allocation is a key determinant of the deposit
premium in the case of fixed market risk.

3.3. Extreme case analysis

Most banks pursue growth and are currently in ‘too big to
fail’ states; thus, not only can bank managers obtain high
salaries and enhance their personal prestige but banks can
also gain benefits from low funding costs and enjoy substan-
tial safety-net benefits (Benston et al. 1995, Carbó-Valverde

Table 2. Scenario Analysis of Deposit Insurance Premium with Closure Policies.

Maintain ratio (η) Forbearance threshold (β) Grace period ()

0.85 0.9 0.95 0.9 0.95 1 0.25 0.5 1

Debt-to-asset ratio = 0.88
DI premium 88.52 88.23 80.52 92.75 91.15 78.45 70.72 88.52 117.26

Early closure component 5.99 21.17 38.93 0.97 0.97 0.97 0.97 0.97 0.97
Capital forbearance component 36.94 21.79 2.48 12.97 33.45 48.49 41.95 41.95 41.95
Grace period component 45.60 45.28 39.11 78.80 56.73 28.99 27.80 45.60 74.34

DI with moral hazard 127.73 127.40 117.66 136.09 132.64 111.31 111.53 127.73 157.21
Debt-to-asset ratio = 0.90
DI premium 125.49 124.88 111.54 131.61 129.21 112.13 103.96 125.50 159.98

Early closure component 11.96 37.56 61.95 2.21 2.21 2.21 2.21 2.21 2.21
Capital forbearance component 56.69 31.12 3.14 22.94 54.39 75.26 66.44 66.44 66.44
Grace period component 56.84 56.20 46.45 106.46 72.60 34.65 35.31 56.85 91.33

DI with moral hazard 172.79 172.07 155.13 185.41 179.95 150.58 153.23 172.80 208.01
Debt-to-asset ratio = 0.92
DI premium 172.03 170.80 148.92 180.42 177.00 155.26 147.24 172.05 211.47

Early closure component 22.49 62.96 93.54 4.71 4.71 4.71 4.71 4.71 4.71
Capital forbearance component 82.15 41.67 3.68 38.20 83.81 111.18 99.93 99.93 99.93
Grace period component 67.39 66.18 51.70 137.50 88.48 39.37 42.60 67.41 106.83

DI with moral hazard 226.16 224.67 196.87 244.12 235.98 197.84 203.68 226.18 266.29

The early closure provision is determined on the basis of the maintain ratio, η, and the forbearance provision is interpreted on the basis of
β and , which are the capital forbearance thresholds. DI refers to the insurance premium per deposit in basis points. The basic setting of
the deposit insurance contract’s time to maturity is assumed to be 1 year, the minimum capital requirement α is set at 1.087, the capital
forbearance threshold β = 0.97, maintain ratio η = 0.8, and grace period  = 0.5. The bank’s asset allocation in its investment position
is the proportion of ω = 0.25 and its reserve asset ratio γ = 0.1. The volatility of the security market, credit market, and interest rate are
σ s = 0.3, σ c = 0.1, and σ r = 0.01, respectively. The interest rate elasticity is ϕ = − 0.5. Ignore the impact of the deposit rate spread; in
other words, ε = 0. In the case of a moral hazard, the weight of the bank’s assets on securities is replaced by ω̃ = 0.35 during the grace
period component: the premiums are Pa + Pc + P̃ in section 3.1.
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Table 3. Deposit Insurance Premium with Asset Allocation.

Credit risk (σ c) 0.1 0.1 0.1 0.05 0.1 0.2

Security market risk (σ s) 0.05 0.1 0.2 0.3 0.3 0.3

Weights on securities ω = 0.1
DI premium 70.65 71.87 76.77 11.24 84.91 205.92

Early closure component 0.10 0.11 0.16 0.00 0.29 18.70
Capital forbearance component 30.19 30.95 34.03 1.63 39.28 114.86
Grace period component 40.36 40.81 42.57 9.61 45.35 72.37

Weights on securities ω = 0.3
DI premium 29.04 39.42 83.17 112.11 153.78 218.24

Early closure component 0.00 0.00 0.26 1.27 5.65 23.23
Capital forbearance component 7.79 12.57 38.15 57.42 84.97 120.82
Grace period component 21.25 26.85 44.77 53.42 63.16 74.19

Weights on securities ω = 0.5
DI premium 8.13 33.13 152.21 304.17 318.51 341.77

Early closure component 0.00 0.00 5.40 70.46 80.78 98.82
Capital forbearance component 0.94 9.58 83.97 149.45 152.15 155.41
Grace period component 7.19 23.54 62.84 84.26 85.58 87.53

The deposit premiums for the credit market and security market risk cross alternative portfolio shares, ω, for the bank assets in the investment
position. DI refers to the insurance premium per deposit in basis points. The contract time to maturity is assumed to be 1 year, and the other
parameters are set as follows: A(0) = 100, D(0) = 90, and the initial debt-to-asset ratio is 0.9. The minimum capital requirement, α, is set
at 1.087, β = 0.97, the length of the grace period is  = 0.5, and the maintain ratio is η = 0.8. The reserve asset ratio is γ = 0.1. The
volatility of the interest rate is σ r = 0.01, and the interest rate elasticity is ϕ = − 0.5. The deposit rate spread is ε = 0.

et al. 2013, Demirgüç-Kunt and Huizinga 2013). However,
bank size is correlated with risk. Large banks can suffer sub-
stantially and become risky because of international capital
markets, especially during financial recessions.

To stabilise the global financial environment and avoid
bank panics that could lead to severe financial crises, gov-
ernments and financial supervisory authorities provide these
large banks with financial support and special supervisory
mechanisms, considering the potential costs of their failure to

the economy (Mishkin et al. 2006, Moshirian 2011). Being
too big to fail can be considered an extreme type of capi-
tal forbearance; thus, we estimate the risk to deposit insurers
for these large banks on the basis of extreme forbearance
provisions by reducing the maintenance ratio and forbear-
ance threshold to close to zero and extending the forbearance
period to several years.

Table 4 shows the deposit premiums of specific large banks
with extreme closure policies. Compared with the standard

Table 4. Deposit Insurance Premium with Extreme Case.

Standard case Extreme case

ω ω

0.15 0.25 0.35 0.15 0.25 0.35

Debt-to-asset ratio = 80/100
DI premium 7.66 15.44 36.06 39.85 67.51 129.70
Early closure component 0.00 0.03 0.46 0.00 0.00 0.00
Capital forbearance component 1.45 4.06 13.29 0.00 0.00 0.00
Grace period component 6.20 11.35 22.33 39.85 67.51 129.70
Debt-to-asset ratio = 85/100
DI premium 32.19 51.19 91.32 133.35 184.94 282.59
Early closure component 0.04 0.31 2.98 0.00 0.00 0.00
Capital forbearance component 10.42 20.25 43.33 0.00 0.00 0.00
Grace period component 21.73 30.64 45.01 133.35 184.94 282.59
Debt-to-asset ratio = 90/100
DI premium 96.01 129.44 190.77 308.98 379.43 501.91
Early closure component 0.57 2.57 13.90 0.00 0.00 0.00
Capital forbearance component 46.60 69.08 106.91 0.00 0.00 0.00
Grace period component 48.84 57.80 69.96 308.98 379.43 501.91
Debt-to-asset ratio = 95/100
DI premium 221.28 266.51 343.39 549.02 629.89 765.09
Early closure component 4.94 14.57 49.16 0.00 0.00 0.00
Capital forbearance component 141.20 171.60 207.08 0.00 0.00 0.00
Grace period component 75.14 80.34 87.15 549.02 629.89 765.09

This table presents the deposit premiums of specific large banks with extreme closure policies. Compared with the standard case, the deposit
premium is higher in the extreme case. DI refers to the insurance premium per deposit in basis points. The parameters in the standard case are
α = 1.087, β = 0.97,  = 0.5, η = 0.8, γ = 0.1, σ r = 0.05, ϕ = − 0.5, σ s = 0.3, ε = 0, and σ c = 0.1. The parameters in the extreme
case are the same as those of the standard case except that  = 5, β = 0.1, and η = 0.1.
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case, the deposit premiums are higher in the extreme case.
This finding reveals that the deposit insurer assumes consid-
erably higher risks to cover the deposits for large banks. The
most influential factors for insurance premium deposits are
the debt-to-asset ratio, followed by the weight of asset alloca-
tion. The lower the debt-to-asset ratio is, the higher the impact
of the weights of security investments is. This relationship
reveals that bank asset allocation and total risk result directly
from the insurance premium decision.

4. Risk management with CDS

On September 25, 2008, WaMu bank, the 118-year-old bank-
ing giant failed; consequently, the FDIC assumed control of
the bank. It was among the largest bankruptcies in history.
Although the FDIC quickly sold the banking subsidiaries to
JPMorgan Chase Bank, this case provides an example for
examining the risks that the FDIC faced. In this section, we
use WaMu’s financial statement and its CDS’ market price to
calibrate the volatility parameter for the security market σS ,
credit risk σc, and interest rate elasticity φ. Subsequently, we
evaluate the theoretical deposit insurance premium for WaMu
by using the proposed risk-based model. Finally, we compare
the differences in cash flows to determine whether the deposit
insurance corporation used CDSs to hedge the credit risk of
the insured bank.

Because bank risk is derived mainly from bank asset
volatility, which greatly influences deposit insurance premi-
ums, an appropriate estimation of the volatility of bank risk is
critical in pricing the insurance premium deposit. Calibrating
the volatility of bank assets through market trading informa-
tion, such as that of the CDS market is a considerable method
for use before pricing the insurance premium deposit. CDSs
are described by referring to the cash flows of the premium
leg and default leg. The present value of the premium leg
is obtained on the basis of the present value of all payments
made by the protection buyer:

CDSpremium = K
n∑

i=1

B(0, ti)Q(ti) (19)

where K is the fixed insurance payment dependent on the
period, B(0,ti) represents the present value of a zero coupon
bond with maturity ti, and Q(ti) denotes the probability of
survival.

In the premium leg, the recovery rate and default probabil-
ity must be determined first. We can obtain the recovery rate
by using Moody’s Default & Recovery Database, and we set
the recovery rate R = 0.57 for WaMu. The default probability
curve can be calculated using the bootstrap procedure to ascer-
tain the default probability curve from market CDS spreads;
subsequently, we apply the cubic spline to determine the sur-
vival probability at each CDS payment date. Thus, we acquire
the value of the premium leg by discounting the expected cash
flows.

The default leg is a contingent payoff made by the protec-
tion seller in case of default, and it can be formulated as the

expected present value of the par value minus the recovery
rate as follows:

CDSdefault =
∫ T

0
(1 − R)B(0, t)(1 − Q(t))dt (20)

where T denotes the maturity period of the CDS, and R
reflects the recovery rate in case of a credit event. The fair
spread for the CDS is determined by letting two legs be equal.

To determine market-based deposit insurance premiums,
we attempt to calibrate the volatility parameter for the secu-
rity market, credit risk, and interest rate elasticity on the basis
of the implied information in the CDS market. The alterna-
tive expression of the default leg can be derived using the
first passage time theory under the debt-to-asset ratio dynam-
ics described in Equation (14). We assume that the discount
rate for the CDS payment when a default event occurs is a
constant number, which is the initial risk-free rate, r0.

CDSdefault = (1 − R)

(
D(0)

A(0)

) v−ũ
σ2

[
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(
ln(D(0)

A(0) )− ũT

σ
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)

+
(

D(0)

A(0)

) 2ũ
σ2

�

(
ln(D(0)

A(0) )+ ũT

σ
√

T

)]
(21)

where ũ =
√

v2 + 2σ 2r0. Subsequently, we use Equation (21)
to evaluate the value of the CDS default leg rather than
Equation (20). Given the bank’s initial assets and debts, we
can use a series of CDS spreads to calibrate the volatility of a
bank’s assets by setting the premium leg, Equation (19), to be
equal to the default leg to Equation (21).

The objective function to calibrate the volatility parame-
ters is defined as the difference between Equation (19) and
Equation (21)

arg min
φ,σS ,σc

∥∥∥∥∥∥∥∥∥∥∥∥

K
∑
ti≤T

B(0, ti)Q(ti)−
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) 2ũ
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ln( D(0)
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σ
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)]

∥∥∥∥∥∥∥∥∥∥∥∥
(22)

where the bank’s asset risk

σ =
√
ω2σ 2

S + (1 − γ − ω)2(φ2σ 2
r + σ 2

c (1 + ε)2)

is the function of φ, σS , and σc. The quarterly coupon pay-
ment time from now to maturity is denoted by ti. T is the time
to maturity of the CDS, and we may take more than three
CDSs with different maturities to calibrate φ, σS , and σc. For
instance, if we take the CDSs with a maturity of 1-, 2-, 3-,
4-, 5-year, then we have a five-valued vector for T from 1–5
as an objective function with the same control variable φ, σS ,
and σc. We applied the nonlinear least-square solver to cali-
brate the parameters by minimising the objective function in
Equation (22). The other notations in Equation (22) referring
Equation (16), (19), and (21).

Corresponding to the trading period in which WaMu’s
CDS was actively traded in the market, we calibrate the
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Figure 1. Term structure of WaMu’s CDS spreads.

model parameters at the following dates: September 1, 2004;
September 2, 2005; September 1, 2006; September 4, 2007;
and September 2, 2008, and evaluate the 1-year deposit
insurance premiums for these dates. The term structure of
WaMu’s CDS spreads is presented in Figure 1. Based on these
spreads, the default probabilities and model parameters that
we calibrate are presented in Table 5.

Table 5 shows that the default probability significantly
increased on September 2, 2008, and WaMu indeed failed
in 2008. The default probability, volatility of the security
market, credit risk, and interest rate elasticity in the model
dramatically increased in value in 2008.

Given the calibrated parameters from the CDS market in
the proposed model, we use the information in the bank’s
financial statements to evaluate the annul deposit insurance
premiums. The total assets, total liability, reserve position (γ )
ratio, and investment position (ω) of WaMu, and the annual

premiums on one deposit from 2004 to 2008 are listed in
Table 6.

The annual deposit insurance premiums in 2004 and 2005
were 0.04 and 0.06 bps, respectively, for each dollar of
deposit, which decreased to 0.006 bps in 2006. Because the
CDS spread increased in 2007, the credit risk is also reflected
in the premiums, which increased to 0.6 bps. In the year
WaMu failed, 2008, the premiums increased significantly to
301 bps, which represents the FDIC should have charged 3%
of WaMu’s deposit as premiums.

Next, a numerical experiment is designed to determine the
optimal hedge ratio, h, which represents the percentage of
premiums used to purchase the CDSs can minimise the vari-
ance of cash-flow of deposit insurers. The FDIC was sued by
WaMu for US$13 billion after the sale of its banking oper-
ations to JPMorgan; thus, we may assume that this amount
represents the underwriting losses of the FDIC for covering
WaMu.

We may assume a portion of annual premiums are used
to purchase 1-year CDSs and no capital forbearance case
for simplicity. By using historical market data, we simu-
late WaMu’s assets and deposit liabilities by setting A(0) =
301947 million, D(0) = 276689 million, γ = 0.0227, ω =
0.1036, σS = 0.0768, σc = 0.0461, and φ = 0.0673, which
are the averages of the values in Tables 5 and 6. The inter-
est rate parameters are calibrated from daily Treasury yield
curve rates: κ = 0.2723, θ = 0.0549, σr = 0.0079, and the
initial interest rate is given as 0.0340. The remaining contract
parameters are as follows: T = 1,  = 0, ε = 0 α = β = 1,
and η = 0.8.

We generate 100,000 sample paths to simulate the pay-
ments as the secured bank becomes insolvent, and we solve
the optimal hedge ratio by minimising the variance in the

Table 5. Default Probabilities and Model Parameters Calibrated from WaMu’s CDSs.

2004/9/1 2005/9/1 2006/9/1 2007/9/4 2008/9/2

Default probabilities within selected years
1-year 0.0027 0.0013 0.0013 0.0179 0.4047
2-year 0.0059 0.0048 0.0037 0.0355 0.4953
3-year 0.0098 0.0126 0.0071 0.0528 0.5416
4-year 0.0198 0.0238 0.0128 0.0716 0.5815
5-year 0.0357 0.0385 0.0208 0.0921 0.6218
6-year 0.0477 0.0522 0.0273 0.1072 0.6374
7-year 0.0557 0.0652 0.0332 0.1173 0.6538
8-year 0.0661 0.0795 0.0413 0.1302 0.6767
9-year 0.0783 0.0950 0.0515 0.1461 0.6975
10-year 0.0927 0.1117 0.0633 0.1640 0.7168
Calibrated parameters
σs 0.0357 0.0329 0.0330 0.0465 0.2356
σc 0.0215 0.0198 0.0198 0.0279 0.1414
φ 0.0471 − 0.1442 0.0340 0.0290 0.3702

Table 6. Financial Ratios and Premiums of WaMu.

2003/12/31 2004/12/31 2005/12/31 2006/12/31 2007/12/31

Total Asset (in million) 234680 272927 330706 345610 325808
Total Liability (in million) 215927 251795 300694 315612 299415
Reserve Position (γ ) 0.0378 0.0172 0.0193 0.0231 0.0159
Security Position (ω) 0.1653 0.0732 0.0862 0.0815 0.1120
Loan Position 0.7969 0.9096 0.8945 0.8954 0.8721
Premiums per dollar 4.08e-06 6.36e-06 5.80e-07 6.64e-05 0.0301
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Figure 2. Standard deviations of deposit insurance payments under
various hedge ratios.

present value of the payment function:

min
h

Var(f (T)e−rT · 1{τ≥T} + f (τ )e−rτ · 1{τ<T})

where f (t) = D(t)− A(t)− h · Pa(0)+ Pc(0)

CDSpremium(0)
· 10000000

(23)

In Equation (23), τ is the first time that bank assets drop
to breach the maintenance working capital level. D(t)− A(t)
represents the amount of deposit insurance that should be paid
by the insurer when the bank fails. Pa(0) + Pc(0) is the premi-
ums without capital forbearance. (Pa(0)+ Pc(0))/CDSpremium

stands for units of the CDSs which the FDIC uses all received
premiums to buy, and the CDSpremium is the cost for one CDS
contract at a notional amount of $10 million. The relationship
between the variance of the objective function and the hedg-
ing ratio is displayed in Figure 2, and we choose the optimal
hedge ratio, h = 0.12. That is, the FDIC has minimum vari-
ance of cash-flow by using 12% of the annual premiums of
WaMu to buy WaMu’s 1-year CDS.†

However, there are some concerns about the CDS market.
Allen and Carletti (2006) show the credit risk transfer can be
beneficial when banks face uniform demand for liquidity, but
it can also induce contagion and increase the risk of crises.
Heyde and Heyer (2010) point out the CDS creates a channel
of contagion because it allows the banks to have contingent
claims on each other. The criticism of the CDS, including that
CDS is largely harmful to firms because it decreases the effi-
ciency of the bond market and experiences no improvement
in liquidity (Das et al. 2014). The CDS price is inconsistency
derived from the private price’s providers because it is an
Over-The-Counter (OTC) market (Mayordomo et al. 2014).
And the CDS market more effectively contribute to price
discover than stock market only during the tranquil times
(Lovreta and Forte 2015).

† The deposit insurance is an insurance contract between a bank and
an insurer, and a CDS links the insurer and investors in the credit
market. If an insurer takes part of the deposit insurance premium to
buy the CDS, then a part of the bank’s risk that the insurer bears
is essentially transferred to the CDS market. In this manner, the
bank’s total asset risk remains at the same level, but the cash-flow
variation of the insurer decreases because the insurer receives less
premium and bears less risk of the bank. The CDS sellers (protection
seller) receive CDS premiums from insurers and provide protection
to insurers on the bank deposits.

Beside the studies mentioned above, the CDS is a very con-
centrated market and is contracting at a fast pace in recent
years. Deposit insurance corporations provide deposit insur-
ance that guarantees the safety of depositor accounts and
charges insurance premiums from depository institutions that
maintain the deposit insurance funds. If the deposit insurer
involved too much in the CDS market, the financial safety
net system may be affected by risk contagion and undermine
the effect of the risk isolation. The CDS market allows us
to calibrate the bank’s asset risk. But, if the deposit insurer
intends to hedge through the CDSs, it needs to consider the
consequences in term of financial stability carefully.

5. Conclusion

Analysing premiums on the basis of the necessary conditions
required by deposit insurance—including minimum capital
requirements, capital forbearance thresholds, grace periods,
early closure regularity, and the prevention of moral hazard—
is a common concern in the literature. This paper constructs
an explicit deposit insurance scheme and derives a closed-
form pricing formula for fair premiums that comprises three
components: early closure, capital forbearance, and a grace
period.

To determine the importance of risk factors and insurance
policies, we use scenario analysis to ascertain how the debt-
to-asset ratio, policy instruments, weights of asset allocation,
credit and security market risks, and moral hazard affect pre-
miums. We extend a long grace period to demonstrate how
much risk the deposit insurance corporation assumes in the
case of banks that are too big to fail. The numerical results
reveal that insurance premiums increase quickly with the
debt-to-asset ratio and the additional moral hazard in the grace
period, and the ratio of asset allocations has a substantial influ-
ence on premiums because of the various risks in the security
and loan markets. Moreover, the premiums increase as the
capital forbearance threshold decreases when the increment
of the grace period component is larger than the decrement of
the capital forbearance component.

The main advantage of the closed-form solutions of the pro-
posed model is that calibrating the model’s parameters from
the market is easy. Rather than using historical deposit insur-
ance premiums, we propose calibrating the parameters on the
basis of credit derivatives and evaluating the risk-based pre-
miums according to the expected equilibrium of credit market
participants on the future credit risk of the bank.

The deposit insurance corporations act as the bank’s ulti-
mate credit risk taker. We suggest that deposit insurers charge
more premiums from risky banks and determine proper pre-
miums for its insurance on the basis of the active credit deriva-
tives market. Risk-based premiums depend on ascertaining
the bank’s risk through the active credit market and sub-
sequently evaluating the premiums under the option pricing
framework, including the comprehensive deposit insurance
scheme.

By applying the proposed premiums pricing formula, we
use WaMu as an example to illustrate how to calibrate the
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model parameters from the credit market and derive the risk-
based premiums. In the year WaMu failed, the premiums
increased significantly to 301 bps, which represents the FDIC
should have charged 3% of WaMu’s deposit as premiums.
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Appendix: The Closed-Form Solution for Deposit
Insurance Premium

The risk-based premium of deposit insurance paid by the deposit
insurer to the security bank is the expected discounted insurance
payoff under a risk-neutral probability measure and can be decom-
posed into three parts, as shown in Equation (14). The first part is
the default premium of the security bank before the time of the audit.
Second, the default premium of the security bank will be made when
the bank’s value drops below the capital forbearance threshold at the
time of the audit. Finally, the deposit insurance must pay the default
premium when the regulator takes over the depository institution
during or at the end of the grace period:

P(0) = EQ
[

P(τ )

M (τ )
I{τ<T1}

]

+ EQ
[

P(T1)

M (T1)
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[
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}] .

To price the risk-based premium of deposit insurance, we show the
asset value and the asset-debt ratio of the discounted bank, according
to the model assumptions:
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where D(t) = D(0)eεtM (t) denotes the deposit liability that
increases with the money market account, v = −ε − σ 2/2, σ =√
ω2σ 2

S + (1 − γ − ω)2σ 2
L + g(ε) represents the total risk of the

bank’s assets as weighted by loan position and investing position,
σL = √

φ2σ 2
r + σ 2

c represents the risk of the loan position that incor-

porates interest rate risk, σS is the secondary market risk, and
d=

indicates equal in distribution. The three components of the deposit
insurance premium are derived in the following lemmas.

Lemma 1 The premium of the audit window component is given by
the following:
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where v = −ε − σ 2/2 and u = √
v2 − 2σ 2ε.

Proof According to the definition of early closure that τ =
inf{t|A(t) ≤ ηD(t)} comes before T1 and the theorem of the first pas-
sage time, we obtain the probability of default before the time of the
audit as follows:
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Let fτ (t) = PrQ[τ ∈ dt] = 1
∂T1
∂PrQ
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be

the density function of τ that occurs instantaneously. A further

straightforward calculation yields fτ (t) = |y|√
2πσ 2t3

e
(y−vt)2

−2σ2 t , where y =
ln( ηD(0)

A(0) ).

EQ
[

P(τ )

M (τ )
I{τ<T1}

]

= ξε(1 − η)D(0)EQ[eετ I{τ<T1}]

= ξε(1 − η)D(0)
∫ T1

0
eεt

|y|√
2πσ 2t3

e
(y−vt)2

−2σ2 t dt

= ξε(1 − η)D(0)e
v−u
σ2 ln

(
ηD(0)
A(0)

) [
�

(
ln ηD(0)

A(0) − uT1

σ
√

T1

)

+e
2u
σ2 ln

(
ηD(0)
A(0)

)
�

(
ln ηD(0)

A(0) + uT1

σ
√

T1

)]

�

Lemma 2 The deposit insurance premium of a capital forbearance
component is calculated as follows:

EQ
[

P(T1)

M (T1)
I{
τ≥T1, A(T1)

D(T1)
<β
}]
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= ξεD(0)e
εT1

[
(�(c1(β, v)))−�(c1(η, v)))

−e
2vB(η)
σ2 (�(c2(β, η, v))−�(−c1(η, −v)))

]

− A(0)

[
(�(c1(β, ṽ))−�(c1(η, ṽ)))

−e

(
2v
σ2 +2

)
B(η)

(�(c2(β, η, ṽ))−�(−c1(η, ṽ)))

]

where B(x) = ln
(

xD(0)
A(0)

)
, c1(x, z) = B(x)−zT1

σ
√

T1
, c2(x, y, z) =

B(x)−2B(y)−zT1

σ
√

T1
, v = −ε − σ 2/2, and ṽ = v + σ 2.

Proof To compute the joint probability of the no-default event
before the time of the audit and the default event at the time of the
audit, we can also evaluate the joint probability of the asset-debt
ratio A(T1)/D(T1) lower than b1 at maturity and the minimum of
the ratio min

0≤s≤T1

(A(s)/D(s)) higher than b2 before maturity under the

risk-neutral measure as follows:

PrQ
(

A(T1)

D(T1)
< b1, min

0≤s≤T1

A(s)

D(s)
> b2

)

= PrQ
(

vT1 + σWQ(T1) < ln

(
b1D(0)

A(0)

)
,

min
0≤s≤T1

(vs + σWQ(s)) > ln

(
b2D(0)

A(0)

))

=
⎡
⎣�

⎛
⎝ ln

(
b1D(0)

A(0)

)
− vT1

σ
√

T1

⎞
⎠−�

(
ln( b2D(0)

A(0) )− vT1

σ
√

T1

)⎤⎦

− e
2v
σ2 ln

(
b2D(0)

A(0)

) ⎡⎣�
⎛
⎝ ln

(
b1D(0)

A(0)

)
− 2 ln

(
b2D(0)

A(0)

)
− vT1

σ
√

T1

⎞
⎠

−�
⎛
⎝− ln

(
b2D(0)

A(0)

)
− vT1

σ
√

T1

⎞
⎠
⎤
⎦ (A2)

where �(·) denotes the cumulative function of standard normal
distribution.

The default premium of the security bank when the bank’s value
drops below the capital forbearance threshold at the time of the audit
can be derived as follows:

EQ
[

P(T1)

M (T1)
I{
τ≥T1, A(T1)

D(T1)
<β
}]

= EQ
[
ξεD(0)e

εT1 I{
τ>T1, A(T1)

D(T1)
<β
}]

− EQ
[
ξεA(0)e

vT1+σW Q(T1)I{
τ>T1, A(T1)

D(T1)
<β
}]

= ξεe
εT1

(
D(0)PrQ

(
A(T1)

D(T1)
< β, min

0≤s≤T1

A(s)

D(s)
> η

)

−A(0)PrQ̃
(

A(T1)

D(T1)
< β, min

0≤s≤T1

A(s)

D(s)
> η

))

According to the Girsanov theorem, Q̃ is another measure related to
the Q measure, and the Brownian motion under Q̃ will be dWQ

A,t =
dWQ̃

A,t + σdt. Appling the results of Equation (A2), we have the

following:

EQ
[

P(T1)

M (T1)
I{
τ≥T1, A(T1)

D(T1)
<β
}]

= ξεD(0)e
εT1

[
(�(c1(β, v)))−�(c1(η, v)))

−e
2vB(η)
σ2 (�(c2(β, η, v))−�(−c1(η, −v)))

]
− ξεA(0)e

εT1

[
(�(c1(β, ṽ))−�(c1(η, ṽ)))

−e

(
2v
σ2 +2

)
B(η)

(�(c2(β, η, ṽ))−�(−c1(η, −ṽ)))

]

Hence, we complete the proof of lemma 2. �

Lemma 3 The deposit insurance premium of the grace period
component is represented as the following:

EQ
[

P(T1)

M (T1)
I{
τ>T1,β< A(T1 )

D(T1)
<α
}]

= ξεe
εT1

(
D(0)

{
N(c1(α, ν), e1(ν), δ)− N(c1(β, ν), e1(ν), δ)

−e
2vB(η)
σ2 [N(c2(α, η, ν), e2(ν), δ)− N(c2(β, η, ν), e2(ν), δ)]

}

+A(0)

{
N(c1(α, ν̃), e1(ν̃), δ)− N(c1(β, ν̃), e1(ν̃), δ)

−e

(
2v
σ2 +2

)
B(η)

[N(c2(α, η, ν̃), e2(ν̃), δ)− N(c2(β, η, ν̃), e2(ν̃), δ)]

})

where N(c, e, δ) = ∫ c
−∞�( e−δZ√

1−δ2
)ϕ(Z)dZ, ϕ(Z) represents the

probability density function of standard normal distribution, δ =√
T1/T2, v = −ε − σ 2/2, ṽ = v + σ 2, B(x) = ln xD(0)

A(0)
, c1(x, z) =

B(x)−zT1

σ
√

T1
, c2(x, y, z) = B(x)−2B(y)−zT1

σ
√

T1
, e1(ν) = B(1)−νT2

σ
√

T2
, and e2(ν) =

B(1)−2B(η)−νT2

σ
√

T2
.

Proof

EQ
[

P(T1)

M (T1)
I{
τ>T1,β< A(T1)

D(T1)
<α
}]

= EQ
[

ξε

M (T1)
EQ
[

M (T1)

M (T2)
max{D(T2)− A(T2), 0}

∣∣∣∣β < A(T1)

D(T1)
< α, min

0≤s≤T1

A(s)

D(s)
> η

]]

= EQ
[
ξεD(0)e

εT1�(b2)I{
τ>T1,β< A(T1)

D(T1)
<α
}]

− EQ
[
ξεA(0)e

νt+σW Q(t)�(b1)I{
τ>T1,β< A(T1)

D(T1)
<α
}]

= ξεD(0)e
εT1 EQ

[
�(b2)I{

τ>T1,β< A(T1)
D(T1)

<α
}]

− ξεA(0)e
εT1 EQ̃

[
�(b1)I{

τ>T1,β< A(T1)
D(T1)

<α
}]

= ξεe
εT1

(
D(0)

∫ B(α)

B(β)

∫ x

B(η)
�(b2)f (x, y)dydx

−A(0)
∫ B(α)

B(β)

∫ x

B(η)
�(b1)f

′(x, y)dydx

)
(A3)

where b1 = − ln A(T1)
D(T1)

−νΔ
σ
√
Δ

, b2 = b1 − σ
√
Δ, and B(z) = ln zD(0)

A(0) .

The f (x, y) takes the first derivative of Equation (A2) with respect

to a∗ = ln
(

b1D(0)
A(0)

)
and b∗ = ln( b2D(0)

A(0) ), and then we obtain the joint
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probability density as follows:

f (x, y) =
∂2 Pr

(
vT1 + σWQ(T1) < a∗, min

0≤s≤T1
(vs + σWQ(s)) > b∗

)
∂a∗∂b∗

∣∣∣∣∣∣ a∗ = x,
b∗ = y

= 2(x − 2y)

σ 2T1

√
2πσ 2T1

e
− (x−2y)2

2σ2T1
+
(

vx
σ2 − v2T1

2σ2

)

f ′(x, y) is the joint probability density function of Equation (A2)
under another measure Q̃, where the relative asset dynamic under

the Q̃ measure is A(t)
D(t) = A(0)

D(0) exp{(ν + σ 2)t + σWQ̃(t))}. Thus, as
with f (x, y), we can verify the following:

f ′(x, y) = 2(x − 2y)

σ 2T1

√
2πσ 2T1

× exp

{
− (x − 2y)2

2σ 2T1
+
(
(ν + σ 2)x

σ 2 − (ν + σ 2)
2
T1

2σ 2

)}
.

The first term of Equation (A3) can be computed as follows:

ξεD(0)e
εT1

∫ B(α)

B(β)

∫ x

B(η)
�(b2)f (x, y)dydx

= ξεD(0)e
εT1

∫ B(α)

B(β)

∫ x

B(η)
�

(
−

ln A(T1)
D(T1)

+ νΔ

σ
√
Δ

)

×
⎛
⎝ 2(x − 2y)

σ 2T1

√
2πσ 2T1

e
− (x−2y)2

2σ2T1
+
(
νx
σ2 − ν2T1

2σ2

)⎞
⎠ dydx

= ξεD(0)e
εT1

∫ B(α)

B(β)
�

(
B(1)− x − νΔ

σ
√
Δ

)

× 1√
2πσ 2T1

e
νx
σ2 − ν2T1

2σ2

(∫ x

B(η)

2(x − 2y)

σ 2T1
e
− (x−2y)2

2σ2T1 dy

)
dx

= ξεD(0)e
εT1

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫ c1(α,ν)
c1(β,ν) �

(
B(1)−σ√

T1Z−νT2

σ
√


)
e− Z2

2√
2π

dZ

−e
2vB(η)
σ2

∫ c2(α,η,ν)
c2(β,η,ν) �

(
B(1)−2B(η)−σ√

T1Z̃−νT2

σ
√


)
e− Z̃2

2√
2π

dZ̃

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

= ξεD(0)e
εT1

⎧⎨
⎩

[N(c1(α, ν), e1(ν), δ)− N(c1(β, ν), e1(ν), δ)]

−e
2vB(η)
σ2 [N(c2(α, η, ν), e2(ν), δ)
−N(c2(β, η, ν), e2(ν), δ)]

⎫⎬
⎭

where Z = (x − νT1)/σ
√

T1 and Z̃ = (x − 2B(η)− νT1)/σ
√

T1 are
changing variables to simplify the integrations. Similarly, the second
term in Equation (A3) can be derived as the following:

ξεA(0)e
εT1

∫ B(α)

B(β)

∫ x

B(η)
�(b1)f

′(x, y)dydx

= ξεA(0)e
εT1

⎧⎪⎨
⎪⎩

N(c1(α, ν̃), e1(ν̃), δ)− N(c1(β, ν̃), e1(ν̃), δ)

−e

(
2v
σ2 +2

)
B(η)

(N(c2(α, η, ν̃), e2(ν̃), δ)
−N(c2(β, η, ν̃), e2(ν̃), δ))

⎫⎪⎬
⎪⎭

Hence, we complete the calculation of lemma 3. �
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