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A B S T R A C T

This study compares the differences and efficiencies of investment strategies among anticipative
and adaptive models using three representative decision approaches: the static approach (SA),
semidynamic strategy (or re-assess by static approach, Re-SA), and dynamic programming (DP).
We show that each approach has individual merits and weaknesses. A DP strategy may allow for
relatively aggressive decisions because of opportunities to adapt the decisions later. However, that
strategy may result in a serious downside risk. The suboptimal adaptive strategy, Re-SA, acts as a
good proxy for the DP strategy. Therefore, both SA and Re-SA are important tools for addressing
asset allocation problems.
1. Introduction

Investment strategy decisions can be classified into anticipative models or adaptive models. An anticipative model determines entire
decisions at the valuation date and is prearranged, ignoring the feedback obtained from adaptive information. Since new information
may become available before each decision date, a sensible strategy would be adaptable and take all new information into account, as is
the case with an adaptive model. Both anticipative and adaptive models have been adopted to deal with the asset allocation problems of
life insurance companies and pension funds.

Theoretical solutions for adaptive models rely on dynamic programming (or dynamic control; e.g., Merton, 1971; Vigna & Hab-
erman, 2001; Haberman & Vigna, 2002; Devolder, Bosch, & Dominguez, 2003; Battocchio & Menoncin, 2004; Munk, Sørensen, &
Vinther, 2004; Chiu& Li, 2006; Emms& Haberman, 2007; Hainaut& Devolder, 2007; Delong, Gerrard,& Haberman, 2008; Gao, 2008;
Larsen, 2010; Han&Hung, 2012) and theMartingale method (Boulier, Huang,& Taillard, 2001; Cox&Huang, 1989; Deelstra, Grasselli,
& Koehl, 2003; Wang, Xia, & Zhang, 2007). They reach the same goal by different means. Furthermore, the numerical approach for
adaptive models has been well developed (Brennan, Schwartz,& Lagnado, 1998b, 1998a; Carino et al., 1994; Dempster, 1980; Inganger,
2006; Kusy& Ziemba, 1986; Musumeci&Musumeci, 1999; Ziemba, 2003). However, a perfect adaptive strategy might be impossible or
computationally too heavy to find because of the complicated frameworks of reality. On the other hand, the anticipative model is more
widely applied in the asset allocation issue of life insurance companies and pension funds in practice (Huang, 2010; Huang & Cairns,
2006; Huang& Lee, 2010; Hurlimann, 2002). By ignoring new information, an anticipative model solution is always achievable and can
reduce the time cost associated with numerical approaches.

Despite the widespread application of these two decision models to asset allocation problems, no research has explored their
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differences in detail. This examination is interesting and necessary for both practitioners and researchers. Theoretically, an adaptive
strategy (abbr. DP, dynamic programming) would be superior to an anticipative strategy (abbr. SA, static approach). However, questions
remain: What are the differences among decisions of different models and what are their properties alone? Does the DP strategy always
dominate the SA strategy? In other words, for a given asset return scenario, does the adaptive model certainly offer a superior per-
formance? If not, what risks are associated with using an adaptive model? The purpose of this study is to explore these questions and fill
this gap.

The asset allocation problem of real businesses is complicated and involves a large state space. Often, the DP strategy does not work
in practice, both in the theoretical and numerical approaches. Alternatively, the SA strategy can be easily found by means of numerical
methods. A compromised and suboptimal approach would be to re-assess the investment strategy by SA at every decision date. Spe-
cifically, decision makers can take all new information into account at each decision date and seek a new investment strategy in terms of
SA. Thus, an investigation of the properties and the efficiencies of these strategies is important. We therefore compare the Re-SA against
the SA and DP in this study. Moreover, we demonstrate that this “re-assess by static approach” (Re-SA) method can be a good proxy for
the DP strategy.

Vigna and Haberman (2001) use an independent, two-asset return model and derive a closed-form solution for the dynamic pro-
gramming problem for a defined contribution (DC) pension scheme in a discrete-time framework. They extend the two-asset model to
arbitrary n assets and consider the correlation of asset returns in Haberman and Vigna (2002). In this study, we compare an anticipative
method (SA) with an adaptive method (DP and Re-SA1) based on Vigna & Haberman, 2001 model. For the sake of simplicity, we
compare the three decision approaches in the two-asset version and examine the efficiency by the distribution of objective function
value.

The numerical analysis leads to four main findings. First, with the opportunities to adapt the decision, the initial strategy of DP,
compared with SA, suggests a relatively aggressive decision. Second, the strategy proposed by DP optimizes the objective function better
on average (a lower expected cost), and this confirms that DP is superior to SA. However, the byproduct of DP is higher uncertainty
(variance). From the viewpoint of the mean variance criterion, investors select the approach that optimizes their objective functions
better on average and minimizes the variance of the objective functions simultaneously. Thus, investors would not prefer the adaptive
approach to the anticipative approach on the basis of the mean variance criterion. Third, in addition to a higher variance, the DP strategy
also causes a more serious downside risk. Finally, the strategy and the efficiency of Re-SA are very similar to those of DP. The decision-
making method Re-SA, as we propose herein, can be a satisfactory proxy for finding the solution of DP.

To the best of our knowledge, this study is the first investigation on the properties and the efficiencies of SA and DP for long-term
asset allocation problems. Although DP is superior theoretically, we identify the merits and weaknesses of each approach. In particular,
we propose the Re-SA strategy, which might be easier to compute in practice, as an alternative for DP. This study lays out the properties,
efficiencies and risks associated with each strategy. Our investigation provides useful insights to investors, risk managers, DC partici-
pants and pension fund managers.

For simplicity throughout this article, we use the term “optimal dynamic investment strategy” to refer to the optimal investment
decision proposed by DP, whereas “optimal static investment strategy” indicates the optimal investment decision proposed by SA. The
structure of this article is as follows. In the next section, we introduce Vigna and Haberman’s (2001) model and the corresponding
optimal dynamic investment strategy, as well as the process for determining the optimal static strategy and the process for Re-SA.
Sections 3 and 4 present the numerical results, such that we compare the strategies and the efficiencies between DP and SA in Sec-
tion 3 and consider the numerical results for Re-SA in Section 4. Section 5 discusses the robustness of our inferences to the investment
horizon. Finally, Section 6 is dedicated to the conclusions.

2. The asset allocation problem

This study employs the DC pension plan model of Vigna and Haberman (2001) to investigate the asset allocation issues associated
with the SA, Re-SA and DP strategies. The upcoming subsection illustrates the problem of Vigna and Haberman (2001) briefly. We
describe the problems of the SA strategy and the Re-SA strategy in the succeeding subsections. Since there is no closed-form solution for
the optimal static investment strategy, we use a numerical approach to find it.

2.1. Vigna and Haberman’s model2

Consider an employee entering into a DC pension scheme at time 0. Contributions are to be paid yearly, in advance. The contribution
rate (c) and the retirement date (n) are fixed, and no decrement other than retirement exists. The annual salary available is constant for
all t and assumed to be 1, without loss of generality.

The fund can be invested in two assets: a low-risk asset and a high-risk asset. The logarithm return rates from time t� 1 to t of the low-
risk asset and the high-risk asset are denoted by μðtÞ and λðtÞ, respectively. Annual investment returns from the two assets are
lognormally distributed, so μðtÞ and λðtÞ are normally distributed, with

μðtÞeN�μ; σ21� and λðtÞeN�λ; σ22�; (1)
1 Re-SA is an adaptive strategy since it is derived from the information available at each decision date.
2 Please see Vigna and Haberman (2001) for more details.

132



H.-C. Huang, Y.-T. Lee International Review of Economics and Finance 68 (2020) 131–149
where

μ� λ and σ2
1 � σ22:

Furthermore, μðtÞ and λðtÞ are independent for any t and are independent and identically distributed through time. The level of the fund
at time t, denoted by FðtÞ, follows the recurrence relationship:

Fðtþ 1Þ¼ ½FðtÞþ c��ð1�ωðtÞÞeμðtþ1Þ þωðtÞeλðtþ1Þ�; (2)

where ωðtÞ is the proportion of the fund invested in the high-risk asset at the inception of the (t þ 1)th year (i.e., time t).
The employee intends to reach a sequence of yearly targets, F*ðtÞ, at each time point t, t¼ 1, 2,…, n. The final target F*ðnÞ is defined

by

F*ðnÞ¼Fð0Þenr* þ c
Xn

j¼1

eðnþ1�jÞr* ; with r* ¼ 1
2

�
μþ λþ 0:5

�
σ21 þ σ22

��
: (3)

The target at time 1, F*ð1Þ, is

F*ð1Þ¼ ðFð0Þþ cÞer* ; (4)

and the interim targets fF*ðtÞgt¼2;:::;n�1 are interpolated linearly from F*ð1Þ to F*ðnÞ.
The employee’s concern is how closely his portfolio follows the targets. The cost incurred at time t, CðtÞ, is defined as a quadratic

function:

CðtÞ¼ ½FðtÞ � F*ðtÞ�2; for t ¼ 1; 2;…; n � 1; and (5)

CðnÞ¼ θ½FðnÞ � F*ðnÞ�2; θ > 1: (6)

A large weight, θ, is imposed on the final target since the well-being after the employee’s retirement is dependent on the final fund
level. The total future cost at time t, GðtÞ, is defined as the sum of the discounted future costs:

GðtÞ¼
Xn

s¼t

νs�tCðsÞ; (7)

where ν is a subjective discount rate. We define ℑt as the σ-field generated by all information available at time t,

ℑt ¼ σfFð0Þ;Fð1Þ; :::;FðtÞ;ωð0Þ; :::;ωðt� 1Þg; for t¼ 0; 1;…; n� 1: (8)

For any given t, the employee’s task is to choose an optimal ωðtÞ that minimizes the expectation of the total future cost,GðtÞ, based on the
information revealed by ℑt . A formal description of the problem and the closed-form solution for the optimal dynamic investment
strategy is presented in Appendix A.

2.2. Optimal static investment strategy

The static investment strategy means that the employee sets target allocations, weights of each asset, beforehand and then peri-
odically rebalances the portfolio back to those targets. The weights of each asset are determined at the inception of the pension plan and
will not change hereafter. In this model, the employee’s objective is to determine a series of weights that minimize the expectation of the
total future cost at time 0:

min
fπS0g

E½Gð0Þjℑ0� ¼ ¼min
fπS0g

Xn

s¼0

νsE½CðsÞjℑ0�; (9)

where fπS0g ¼ fω0ð0Þ;ω0ð1Þ; :::;ω0ðn�1Þg and the optimal static weights are unchanged over time.3 In the DC pension plan model, there
is no closed-form solution for the optimal static investment strategy.

2.3. Re-assess by static approach (Re-SA)

In asset allocation practice, the weights of each asset may change over time as new information becomes available. The proposed Re-
SA strategy uses the initial weight of the optimal static investment strategy and reassesses the static asset allocation problem at the next
3 We use a subscript 0 to indicate that weights are determined at time 0. The superscript S indicates a static investment strategy.
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Table 1
Sets of parameters of the asset model.51.

μ λ σ1 σ2

Case 1 4% 6% 5% 15%
Case 2 4% 6% 2.5% 10%
Case 3 4% 6% 10% 20%
Case 4 4% 6% 2.5% 20%
Case 5 2% 4% 5% 15%
Case 6 2% 6% 5% 15%

Fig. 1. Investment strategies: SA and DP.
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decision date. At the valuation date (t¼ 0), the weights of each asset for Re-SA are the weights for SA. For any given t, the employee finds
the optimal static investment strategy again:

min
fπSt g

E½GðtÞjℑt� ¼ ¼min
fπSt g

Xn

s¼t

νs�tE½CðsÞjℑt �; (10)

where fπSt g ¼ fωtðtÞ;ωtðt þ 1Þ; :::;ωtðn � 1Þg. That is, at time t, the employee finds the optimal static investment strategy, fπS*t g ¼
fω*

t ðtÞ;ω*
t ðt þ 1Þ; :::;ω*

t ðn � 1Þg, that minimizes E½GðtÞjℑt � and takes ω*
t ðtÞ as the weight of the high-risk asset.

3. Numerical results: SA and DP

For our numerical analysis, in line with Vigna and Haberman (2001), we choose the following parameters: c¼ 12%, ν ¼ 0:95, θ ¼ 2
and Fð0Þ ¼ 0. For simplicity, the length of future service n is equal to 10. Short selling is allowed. The optimal function “fminsearch” in
MATLAB is employed to find the optimal static investment strategy.

We simulate future asset return scenarios using Equation (1). To obtain the optimal static investment strategy, we first simulate 100
groups, each containing 1000 paths for each asset, and find the optimal static investment strategy for each group numerically. We then
use the average of the 100 strategies (weights) as the optimal static investment strategy4. In subsection 3.1, we use one specific group,
4 Conceptually, the sample mean will tend toward the real optimal static investment strategy according to the weak law of large numbers.
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Table 2
Simulated statistics (Case 1).

Case 1, F*ð1Þ ¼ 0:1269 F*ð10Þ ¼ 1:6565

Pr(DP < SA), G(0) 0.6402
(0.0146)

Pr(DP < SA), G(10) 0.6005
(0.0143)
DP SA
G(0) G(10) F10/F*10 G(0) G(10) F10/F*10

Mean 0.1282*** 0.0626*** 0.9524*** 0.1340 0.0673 0.9496
(0.0041) (0.0030) (0.0031) (0.0038) (0.0029) (0.0029)

St. dev. 0.1228 0.0906 0.0956*** 0.1131*** 0.0843*** 0.0985
(0.0068) (0.0064) (0.0024) (0.0044) (0.0044) (0.0024)

1st 0.0088*** 1.1E-5** 0.7257 0.0095 1.4E-5 0.7456***
(0.0010) (6.9E-6) (0.0131) (0.0012) (1.0E-5) (0.0087)

5th 0.0176*** 2.5E-4*** 0.7972 0.0193 3.2E-4 0.7977
(0.0012) (7.1E-5) (0.0063) (0.0014) (8.3E-5) (0.0051)

25th 0.0466*** 0.0064*** 0.8897*** 0.0520 0.0082 0.8803
(0.0019) (0.0008) (0.0044) (0.0021) (0.0009) (0.0042)

50th 0.0892*** 0.0284*** 0.9514*** 0.0999 0.0353 0.9435
(0.0036) (0.0020) (0.0036) (0.0040) (0.0025) (0.0036)

75th 0.1666*** 0.0818*** 1.0130 0.1818 0.0950 1.0117**
(0.0069) (0.0054) (0.0039) (0.0074) (0.0055) (0.0043)

95th 0.3696 0.2398 1.1099*** 0.3633*** 0.2396 1.1208
(0.0175) (0.0143) (0.0074) (0.0145) (0.0120) (0.0074)

99th 0.5850 0.4210 1.1863*** 0.5192*** 0.3713*** 1.2029
(0.0459) (0.0386) (0.0151) (0.0312) (0.0250) (0.0168)

Note: For a given benchmark, the value of the superior strategy is marked in bold. In addition, we use Welch’s t-test to examine if each pair of samples,
observations from DP and from SA, comes from distributions with equal means. We use a two-tailed test and apply *, ** and *** as the 10%, 5% and 1%
levels of significance, respectively (see also Appendix D, Case 1, DP vs. SA). All pairs of samples, except for the 95th percentile of G(10) and the 5th
percentile of Fð10Þ=F*ð10Þ, come from distributions with different means at the 95% significance level.
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1000 paths of the 10-year asset return process, to compare the strategies of SA and DP. To assess efficiency and compare the effect of
different investment strategies (the numerical results in subsection 3.2), we use all of the 100 groups.

In this study, the asset return parameters of Case 1 (see Table 1) serve as the basis for the analysis; we also conduct a sensitivity test
for other cases.

3.1. Investment strategies

Fig. 1 compares the pattern of investment strategies between SA and DP. The optimal static investment strategy and the average of
the optimal dynamic investment strategy (based on 1000 simulation paths) are displayed in the upper plot of Fig. 1. The strategy
suggested by SA leads to a relatively conservative decision, probably because there is no opportunity to adjust the decision later. The
strategy proposed by DP, instead, is information adapted, so it uses all information available before each decisionmoment, including the
potential reaction in the future. With these opportunities to adapt the decision, the strategy suggested by DP allows for a relatively
aggressive decision.

The lower plot of Fig. 1 illustrates some scenarios with optimal dynamic investment strategies over the 1000 paths. Three specific
illustrated tracks refer to the scenarios corresponding to the 5th, 50th, and 95th percentiles of the final fund level, according to the
optimal dynamic investment strategy. Specifically, we sort the final fund level in ascending order first and then consider the simulated
asset return path and weights that bring in the p-th percentile of the final fund level. For the “5th of DP” scenario, the fund level in later
years was generally lower, and the DP decision would propose holding more high-risk assets. For the “95th of DP” scenario, superior
performance establishes a higher fund level a few years before retirement, so the proportion of high-risk assets decreases, coming close
to 0 at time 8 and even negative at time 9, to achieve the predetermined target.

3.2. Efficiency

To assess efficiency and compare the effects of different investment strategies, we analyze the distributions of several critical var-
iables6: total future cost at time 0 (G(0)), total future cost at retirement (G(10)), and final fund level. For the distribution of the final fund
5 The first five cases are in line with Vigna and Haberman (2001). By adding the last case, we can investigate the effect of each parameter
separately. For example, the effect of changing the mean of the low-risk asset can be studied by comparing Case 6 with Case 1.
6 In the DC plan model of Vigna and Haberman (2001), the employee’s initial target is to minimize the expectation of the total future cost, G(0),

and his final target is to make the final fund level as close to the final target as possible, which is measured by G(10). Although we do not compare the
total future cost for interim periods, i.e., G(1), G(2), …, G(9), the analyzed variables, G(0) and G(10), do include the information on future costs over
the interim periods.
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Fig. 2. Simulated cdf of G(0).111

Fig. 3. Simulated cdf of F(10)/F*(10).121
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level, we use the ratio Fð10Þ=F*ð10Þ. This ratio indicates the percentage of the target achieved at retirement and enables the comparison
among the different cases.

In this subsection, we first calculate the value of G(0), G(10) and F(10)/F*(10) over the 1000 paths for each group. The average and
the sample standard deviation of a group serve as an observation for the mean and an observation for the standard deviation, and we
have 100 observations from the 100 groups. In addition, by sorting the value of G(0), G(10) and/or F(10)/F*(10) in ascending order of a
group, we have an observation for each percentile and we again have 100 observations from 100 groups. We report estimates for the
mean, standard deviation, and percentiles (1st, 5th, 25th, 50th, 75th, 95th and 99th) over the simulations. Table 2 presents the
simulated statistics of Case 1. We only present the numerical results for Case 1 in this subsection; the numerical results of other cases are
in Appendix B (see columns of DP and of SA).7

The values in Table 2 are based on 100 groups, and each group provides an estimate, so we provide the average and the standard
deviation over the 100 estimates. The value without brackets is the average, and the value in brackets presents the standard deviation.
As Table 2 reveals, the means of G(0) and G(10) with DP (0.1282 and 0.0626) are smaller than those of SA (0.1340 and 0.0673).
7 The properties that we discussed for Case 1 in this subsection still exist for other cases.
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Fig. 4. The SA, Re-SA, and DP strategies.
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However, the standard deviations indicate opposite relationships, such that they are smaller for SA (0.1131 and 0.0843) than for DP
(0.1228 and 0.0906). According to the mean variance criterion, investors should select the approach that minimizes both the expected
total future costs and variance simultaneously. In terms of the mean variance criterion, investors would not always prefer DP to SA.

For each benchmark, G(0), G(10), or Fð10Þ=F*ð10Þ, a better strategy leads to a smaller value for G(0) and G(10) or a value closer to 1
for Fð10Þ=F*ð10Þ. For example, the distribution of G(0) with DP leads to a smaller value at the 1st, 5th, 25th, 50th, and 75th percentiles,
but it produces a greater cost in the 95th and 99th percentiles. The distribution of G(10) indicates similar properties. Fig. 2 depicts the
numerical cumulative distribution function (cdf) of G(0) over one simulation group (i.e., 1000 simulation paths); it reveals that the
strategy proposed by DP suffers a large right-tail (downside) risk. For example, the probability that G(0) is greater than 0.4, a higher total
future cost at time 0, is nearly 0.05 with DP but decreases to 0.03 for SA. Therefore, the strategy proposed by DP raises more outliers,
leading to a higher standard deviation. Figure C-1 in Appendix C provides the corresponding data over 100,000 simulation paths.8

To appreciate a scenario with outliers, we also observe the distribution of Fð10Þ=F*ð10Þ. In Table 2, the distribution with DP,
compared to that with SA, leads to a value that is closer to 1 in most percentiles but farther from 1 in the 1st, 5th and 75th percentiles.9

This result implies a greater downside risk of using DP, such that the final fund level may be much lower than the target. Fig. 3 confirms
this finding by depicting the simulated cdf of Fð10Þ=F*ð10Þ for this simulation group. The left tail of DP is longer than that of SAwhen the
value is less than 0.8. When investment performance is poor, the DP strategy would require a higher proportion of high-risk assets, and
that would lead to a much lower final fund level once investment performance became poor again in subsequent periods.10 Figure C-2 in
Appendix C depicts the corresponding figure over 100,000 simulation paths.

The two probability values at the top of Table 2 reinforce the notion that DP is a superior tool on average (mean criterion). The
investment target is to minimize the expectation of the total future cost at time t. Therefore, if one approach leads to a smaller total future
cost at time t in a simulation path, that approach is better than the other approach in this path, conditional on time t. Accordingly, we
12 For a detailed review of the figure, we draw the differences between the distance from the order statistics of F(10)/F*(10) to 1 with DP and that
with SA, i.e., the difference in the horizontal distance from each line to 1, in Figure C-3 (see the blue line of the right plot).
12 For a detailed review of the figure, we draw the differences between the distance from the order statistics of F(10)/F*(10) to 1 with DP and that
with SA, i.e., the difference in the horizontal distance from each line to 1, in Figure C-3 (see the blue line of the right plot).
8 We gather the 100 groups, each containing 1000 simulation paths, to produce the 100,000 paths.
9 For the 75th percentile, the value of Fð10Þ=F*ð10Þ is close to 1 and the relative size is unsteady.

10 Alternatively, larger values of Fð10Þ=F*ð10Þ are not risk. For example, though the 95th percentile of SA (1.1208) is greater than that of DP
(1.1099), which results in greater costs, investors should prefer SA because it leads to a higher final fund level.
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Table 3
Simulated statistics over three approaches (Case 1).

Case 1, F*ð1Þ ¼ 0:1269 F*ð10Þ ¼ 1:6565

DP Re-SA SA
Pr(DP < ReSA) Pr(DP < SA) Pr(ReSA < DP) Pr(ReSA < SA) Pr(SA < DP) Pr(SA < ReSA)

G(0) 0.6354 0.6402 0.3646 0.6133 0.3598 0.3867
(0.0137) (0.0146) (0.0137) (0.0149) (0.0146) (0.0149)

G(10) 0.5657 0.6005 0.4343 0.5926 0.3995 0.4074
(0.0144) (0.0143) (0.0144) (0.0156) (0.0143) (0.0156)
G(0) G(10) F10/F*10 G(0) G(10) F10/F*10 G(0) G(10) F10/F*10

Mean 0.1282 0.0626 0.9524 0.1284 0.0624 0.9506 0.1340 0.0673 0.9496
(0.0041) (0.0030) (0.0031) (0.0039) (0.0029) (0.0031) (0.0038) (0.0029) (0.0029)

St. dev. 0.1228 0.0906 0.0956 0.1185 0.0889 0.0945 0.1131 0.0843 0.0985
(0.0068) (0.0064) (0.0024) (0.0060) (0.0060) (0.0023) (0.0044) (0.0044) (0.0024)

1st 0.0088 1.1E-05 0.7257 0.0093 1.2E-05 0.7283 0.0095 1.4E-05 0.7456
(0.0010) (7.E�06) (0.0131) (0.0011) (9.E�06) (0.0126) (0.0012) (1.E�05) (0.0087)

5th 0.0176 2.5E-04 0.7972 0.0186 2.5E-04 0.7974 0.0193 3.2E-04 0.7977
(0.0012) (7.E�05) (0.0063) (0.0013) (7.E�05) (0.0061) (0.0014) (8.E�05) (0.0051)

25th 0.0466 0.0064 0.8897 0.0484 0.0065 0.8884 0.0520 0.0082 0.8803
(0.0019) (0.0008) (0.0044) (0.0019) (0.0008) (0.0043) (0.0021) (0.0009) (0.0042)

50th 0.0892 0.0284 0.9514 0.0913 0.0288 0.9494 0.0999 0.0353 0.9435
(0.0036) (0.0020) (0.0036) (0.0036) (0.0021) (0.0035) (0.0040) (0.0025) (0.0036)

75th 0.1666 0.0818 1.0130 0.1677 0.0821 1.0106 0.1818 0.0950 1.0117
(0.0069) (0.0054) (0.0039 (0.0068) (0.0053) (0.0040 (0.0074) (0.0055) (0.0043)

95th 0.3696 0.2398 1.1099 0.3635 0.2373 1.1067 0.3633 0.2396 1.1208
(0.0175) (0.0143) (0.0074) (0.0172) (0.0134) (0.0073) (0.0145) (0.0120) (0.0074)

99th 0.5850 0.4210 1.1863 0.5646 0.4121 1.1823 0.5192 0.3713 1.2029
(0.0459) (0.0386) (0.0151) (0.0463) (0.0376) (0.0154) (0.0312) (0.0250) (0.0168)

Note: Values without brackets are the average, and values in brackets present the standard deviation. For a given benchmark, the value of the best
strategy is marked in bold, and the value of the secondary strategy is marked in italics. Values of DP and SA are identical with values in Table 2.
Appendix D (Case 1) presents the two-tailed Welch’s t-test for each pair of samples.
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calculate the probability that DP performs better than SA over the 100 groups of simulations. We use the estimated probability over one
group as one observation. The average of the 100 observations is equal to the probability estimated directly from the 100,000 simulation
paths.

For a specific simulation path, a better strategy would produce a smaller G(0), smaller G(10), and smaller jFð10Þ =F*ð10Þ � 1j. As
Table 2 shows, the probability that DC performs better than SA is 64.02% according to G(0) and 60.05% by G(10); both are greater than
one-half. The probability that DP performs better than SA, as determined by G(10) and jFð10Þ =F*ð10Þ � 1j, is equivalent. Hence, DP is
superior to SA on average.

4. Re-assess by SA

In this section, we compare the strategies and the efficiencies among SA, Re-SA, and DP. For the Re-SA strategy, the fund level at time
1 is calculated according to the realized scenario and we thus have 1000 fund levels in 1000 paths of a group. We next need to determine
the investment weight at time 1 for the fund level of each path. For scenarios of the future 9 years, we do not resimulate the rate of
return. Alternatively, we use the existing random sample, the simulated rate of returns from time 1 to the end of the investment horizon
for each group, as a return rate scenario. We again find the optimal static investment strategy for each group (scenario) numerically and
use the average of the 100 strategies as the optimal static investment strategy for a specific path. This procedure is iterative until the last
decision date.

The upper-left plot of Fig. 4 illustrates the mean strategy pattern of the three decision methods. We consider the specific group, the
group used in subsection 3.1 and Figs. 2 and 3, as the realized scenario. The average of the strategies suggested by Re-SA is close to that
of SA during the initial years, and then it gradually approximates the average of the strategies suggested by DP. In the remainder of
Fig. 4, in line with the lower plot of Fig. 1, we illustrate potential investment strategy scenarios corresponding to the 5th, 50th, and 95th
percentiles of the final fund level. It is obvious that, over the three specific scenarios, the strategic pattern proposed by Re-SA appears
similar to what we find in the upper-left plot. The strategy suggested by Re-SA is close to that of SA initially and then approaches the DP
strategy gradually. Thus, the efficiency of Re-SA falls in between that of DP and SA.

Table 3 reports the mean, standard deviation, and percentiles, as well as the probability that one approach performs better than the
other for Case 1. Using rule G(0), the probability that DP performs better than Re-SA is 63.54% over the 100,000 paths; the probability
that DP performs better than SA is 64.02%; and the probability that Re-SA performs better than SA is 61.33%. When performance is
measured by G(10), these respective values are 56.57%, 60.05%, and 59.26%. Thus, the performance of DP is superior to Re-SA (and
SA), and the performance of Re-SA is superior to SA in more than half of the paths. Table 3, an extension of Table 2, presents the
numerical results for Case 1 and results for other cases are presented in Appendix B.

Theoretically, the mean of G(0) for DP should be the smallest among three strategies and the numerical results in Table 3, as well as
tables in Appendix B, confirm this prediction. A further observation from Table 3 is that the means with Re-SA and with DP, as well as
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Fig. 5. Simulated cdf of G(0) and F(10)/F*(10)131.

Table 4
Kolmogorov-Smirnov goodness-of-fit hypothesis test.

DP vs. Re-SA DP vs. SA Re-SA vs. SA

Case 1
G(0) 0.9519 0.0279 0.1048
G(10) 0.9999 0.0525 0.0748
Fð10Þ=F*ð10Þa 0.9672 0.1168 0.2350
Case 2
G(0) 0.0214 0.0000 0.0050
G(10) 0.8228 0.0000 0.0000
Fð10Þ=F*ð10Þ 0.3344 0.0001 0.0043
Case 3
G(0) 1.0000 0.3072 0.6028
G(10) 1.0000 0.3935 0.5654
Fð10Þ=F*ð10Þ 1.0000 0.5654 0.6785
Case 4
G(0) 0.1298 0.0001 0.0068
G(10) 0.3632 0.0000 0.0006
Fð10Þ=F*ð10Þ 0.3632 0.0002 0.0019
Case 5
G(0) 0.9790 0.1441 0.2140
G(10) 1.0000 0.0464 0.0666
Fð10Þ=F*ð10Þ 0.9995 0.2575 0.3935
Case 6
G(0) 0.0525 0.0000 0.0006
G(10) 0.5654 0.0000 0.0000
Fð10Þ=F*ð10Þ 0.2575 0.0000 0.0004

a This is equivalent to testing Fð10Þ with two approaches drawn from the same underlying population because F*ð10Þ is a constant.

H.-C. Huang, Y.-T. Lee International Review of Economics and Finance 68 (2020) 131–149
their standard deviations, are very close (an exception is the mean of Fð10Þ=F*ð10Þ). Furthermore, most percentiles of Re-SA are close to
DP, which suggests that the outcome reached from an investment strategy determined by Re-SA would be very close to that of DP.

Our final contribution is to demonstrate this inference. Again, we consider the group used in subsection 3.1, and Figs. 2 and 3, as the
realized scenario. The upper plot of Fig. 5 depicts the cdf of G(0) and the lower plot depicts the cdf of Fð10Þ=F*ð10Þ among the three
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Fig. 6. Simulated cdfs of the differences in G(0).

Table 5
Maximum and minimum values of the differences in G(0).

Minimum Maximum

DP – Re-SA �0.0285 0.1439
DP – SA �0.2442 0.6203
Re-SA – SA �0.2447 0.5161
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strategies. The cdfs for Re-SA and for DP are nearly identical. Table 4 contains the p-value of the Kolmogorov-Smirnov goodness-of-fit
hypothesis test for the 6 cases, with the null hypothesis being that the corresponding random samples are drawn from the same un-
derlying continuous population. For example, in Case 1, the p-value is 0.9519 for the null hypothesis that G(0) with DP and G(0) with Re-
SA are drawn from the same underlying population; it is 0.9999 and 0.9672 when considering the distribution of G(10) and
Fð10Þ=F*ð10Þ. When considering DP and Re-SA, except G(0) for Case 2, Table 4 suggests that we do not reject the null hypothesis at the
5% significance level for all cases. Conversely, we reject the null hypothesis at the 5% significance level for Cases 2, 4 and 6 when
comparing DP (or Re-SA) and SA. Furthermore, a consistent conclusion is that the p-value when considering DP vs. Re-SA is always far
greater than the p-value for the other two combinations. This indicates that among three potential combinations, DP and Re-SA share a
distribution likeness.

To thoroughly confirm our inference, we still need to show that, for a specific simulation path, the G(0)s (G(10), and/or
Fð10Þ=F*ð10Þ) of Re-SA and of DP are close to each other. Therefore, we check the distribution of the differences using pairwise ob-
servations for each simulation path. Fig. 6 depicts the cdf of the differences for G(0), and Table 5 displays the maximum and minimum
values of the differences. Differences between DP and Re-SA are nearly 0 (the blue line in Fig. 6); they are located within an extremely
concentrated interval, with a maximum of 0.1439 and minimum of �0.0285 (Table 5) over the 1000 simulation paths. Thus, the nu-
merical results of DP and Re-SA are very similar.

Fig. 6 and Table 5 also confirm that the downside risk would be greater if a strategy were decided by DP (or Re-SA). The distribution
of the differences between DP (Re-SA) and SA is right-tailed, with a maximum of 0.6203 (0.5161) and minimum of�0.2442 (�0.2447).
The values of the differences are negative when the performance of DP (Re-SA) is better than SA, and positive otherwise. Thus, there are
extreme outliers when the performance of SA is better than DP (Re-SA), which implies a greater downside risk of using an adaptive
investment strategy.

5. Robustness analysis for the investment horizon

The investment horizon for a life insurance company or a pension fund may be very long, such as 20 or 30 years. However, the
duration of the aggregate liabilities is shorter. For example, the typical pension plan has a duration of approximately 15 (McCaulay,
2013). In this section, we examine the robustness of our inference for a large n. We consider only Case 1 and a 15-year investment
13 In line with Figs. 2 and 3, we draw the horizontal distance of the lines in Figure C-3.
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Fig. 7. The SA, Re-SA, and DP strategies for n ¼ 15.
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horizon for robustness analysis14.
Fig. 7, similar to Fig. 4, depicts the investment strategies for a 15-year horizon. The upper-left plot of Fig. 7 shows the mean patterns

of the three strategies over 1000 paths, and the other 3 plots illustrate potential investment strategy scenarios corresponding to the 5th,
50th, and 95th percentiles of the final fund level. Likewise, the strategy suggested by Re-SA is near that of SA initially and then ap-
proaches the DP strategy gradually.

Table 6, similar to Table 3, presents the mean, standard deviation and percentiles, as well as the probability that one approach
performs better than the other for Case1.15 Again, the performance of DP is superior to Re-SA (and SA), and the performance of Re-SA is
superior to SA in more than half of the paths. In addition, DP (and Re-SA) has a better performance over most percentiles (1st, 5th, 25th,
50th and 75th) for G(0) and G(15). However, the SA strategy is better than DP, in the viewpoint of G(0) and G(15), when there is a poor
investment performance (95th and 99th percentiles).

Table 7, similar to Table 4, presents the p-value of the Kolmogorov-Smirnov goodness-of-fit hypothesis test among three potential
combinations. For combination DP vs. Re-SA, Table 4 suggests that we do not reject the null hypothesis at the 5% significance level when
considering the distribution of G(15) and Fð15Þ=F*ð15Þ but reject it when considering G(0). However, the p-value for DP vs. Re-SA
(0.0464) is much greater than that for DP vs. SA (0.0000) and Re-SA vs. SA (0.0011). DP and Re-SA still share much distribution
likeness among the three combinations.

6. Conclusions

In this article, we examine the differences and the efficiencies of investment strategies for anticipative and adaptive models. Three
investment strategies, SA, Re-SA, and DP, are subject to comparison, and we find that the investment strategy with SA is the most
conservative, followed by the average investment scenarios with Re-SA and then DP. The strategy suggested by DP may allow for
relatively aggressive decisions by posing subsequent adaptation opportunities.

The numerical results show that both models, anticipative and adaptive, have individual merits and weaknesses. The performance of
DP is better than that of SA and Re-SA in more than half of the simulation paths; likewise, the performance of Re-SA is better than SA.
14 The runtime cost is exponentially increasing by n and has been very large for n ¼ 15.
15 In Table 6, we consider only 10 groups (estimates) for the 15-year horizon because of the runtime cost. Furthermore, in line with Tables 2 and 3,
the SA (and the Re-SA) strategy is determined by the average of the 100 optimal static investment strategies over 100 groups.
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Table 6
Simulated statistics over three approaches (Case 1 and n ¼ 15).

Case 1, F*ð1Þ ¼ 0:1269 F*ð15Þ ¼ 2:9071

DP Re-SA SA
Pr(DP < ReSA) Pr(DP < SA) Pr(ReSA < DP) Pr(ReSA < SA) Pr(SA < DP) Pr(SA < ReSA)

G(0) 0.7224 0.7295 0.2776 0.6753 0.2705 0.3247
(0.0152) (0.0085) (0.0152) (0.0120) (0.0085) (0.0120)

G(10) 0.5933 0.6511 0.4067 0.6399 0.3489 0.3601
(0.0152) (0.0142) (0.0152) (0.0109) (0.0142) (0.0109)
G(0) G(15) F15/F*15 G(0) G(15) F15/F*15 G(0) G(15) F15/F*15

Mean 0.8263 0.2957 0.9457 0.8353 0.2917 0.9398 0.8954 0.3385 0.9371
(0.0307) (0.0138) (0.0042) (0.0259) (0.0130) (0.0040) (0.0257) (0.0145) (0.0040)

St. dev. 0.8161 0.4939 0.1206 0.7199 0.4544 0.1167 0.6718 0.4232 0.1267
(0.0426) (0.0205) (0.0028) (0.0324) (0.0200) (0.0026) (0.0308) (0.0262) (0.0030)

1st 0.0626 4.1E-05 0.6294 0.0791 3.6E-05 0.6419 0.0798 7.0E-05 0.6850
(0.0051) (3.E�05) (0.0134) (0.0068) (2.E�05) (0.0138) (0.0083) (4.E�05) (0.0103)

5th 0.1218 0.0009 0.7448 0.1454 0.0008 0.7467 0.1511 0.0016 0.7457
(0.0057) (0.0003) (0.0085) (0.0080) (0.0003) (0.0073) (0.0103) (0.0004) (0.0059)

25th 0.3148 0.0256 0.8722 0.3558 0.0269 0.8671 0.3962 0.0412 0.8473
(0.0110) (0.0027) (0.0043) (0.0102) (0.0030) (0.0037) (0.0166) (0.0036) (0.0040)

50th 0.5737 0.1137 0.9478 0.6163 0.1188 0.9419 0.7077 0.1774 0.9268
(0.0215) (0.0066) (0.0039) (0.0203) (0.0064) (0.0039) (0.0199) (0.0064) (0.0047)

75th 1.0362 0.3526 1.0203 1.0785 0.3669 1.0124 1.2316 0.4857 1.0148
(0.0424) (0.0175) (0.0049) (0.0361) (0.0196) (0.0041) (0.0430) (0.0268) (0.0051)

95th 2.3462 1.2091 1.1378 2.2538 1.1512 1.1279 2.2446 1.1850 1.1612
(0.1937) (0.0795) (0.0087) (0.1464) (0.0627) (0.0071) (0.1265) (0.0580) (0.0082)

99th 3.9962 2.3652 1.2405 3.5173 2.1848 1.2287 2.9892 1.8616 1.2700
(0.2367) (0.1682) (0.0269) (0.1861) (0.1798) (0.0271) (0.1642) (0.1597) (0.0235)

Note: For a given benchmark, the value of the best strategy is marked in bold, and the value of the secondary strategy is marked in italics. Appendix D
(Case 1, n ¼ 15) presents the two-tailed Welch’s t-test for each pair of samples.

Table 7
Goodness-of-fit hypothesis test (n ¼ 15).

DP vs. Re-SA DP vs. SA Re-SA vs. SA

G(0) 0.0464 0.0000 0.0011
G(15) 0.9519 0.0000 0.0002
Fð15Þ=F*ð15Þ 0.4253 0.0000 0.0031
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The DP decision is better able to produce the smallest cost, which is the best decision method from the point of view of expectations.
However, DP suffers greater variance and may result in serious downside risks. This property of the DP strategy is important to, but may
be ignored by, investors and risk managers. Finally, the strategy, and thus the investment performance, of Re-SA is very similar to that of
DP. As the DP strategy is often unreachable in practice, the Re-SA decision-making method that we propose herein can be a satisfactory
proxy for finding the DP strategy.
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Appendix A. Optimal dynamic investment strategy

In the model of Vigna and Haberman (2001), the value function at time t is defined as

JðℑtÞ¼min
fπtg

E½GðtÞjℑt �; (A-1)

where fπtg ¼ ffωðsÞgs¼t;tþ1;:::;n�1g represents the set of the future possible investment strategies. The objective of the employee is to
choose a feasible investment strategy that minimizes the expectation of the total future cost. Bellman’s optimality principle gives

JðℑtÞ¼min
fπtg

E

"Xn

s¼t

vs�tCðsÞjℑt

#
¼min

ωðtÞ
fCðtÞþ vE½Jðℑtþ1Þjℑt �

)
; (A-2)

and according to Vigna and Haberman (2001), the corresponding optimal dynamic investment strategy is

ω*ðtÞ¼ Qtþ1V
Ptþ1ðFðtÞ þ cÞD�W

D
; for t¼ 0; 1;…; n� 1; (A-3)

where the sequences fPtgt¼1;:::;n and fQtgt¼1;:::;n are provided recursively by

Pt ¼ 1þ νHPtþ1; and Qt ¼ F*ðtÞ � νcHPtþ1 � νKQtþ1; (A-4)

with Pn ¼ θ and Qn ¼ θF*ðnÞ. Furthermore, D, H, K, V, and W are given respectively by

D¼ e2μþ2σ21 þ e2λþ2σ22 � 2eμþλþ0:5ðσ21þσ22Þ; (A-5)

H¼ 1
D

h
e2μþ2λþσ21þσ22

�
eσ

2
1þσ22 � 1

�i
; (A-6)

K¼ 1
D
eμþλþ0:5ðσ21þσ22Þ

h
eμþ0:5σ21 þ eλþ0:5σ22 � eμþ1:5σ21 � eλþ1:5σ22

i
; (A-7)

V ¼ eλþ0:5σ22 � eμþ0:5σ21 ; and ðA� 8ÞW ¼ eμþλþ0:5ðσ21þσ22Þ � e2μþ2σ21 : (A-9)

For more details, please see Vigna and Haberman (2001).

Appendix B. Probability that DP Performs Better than SA and Simulated Statistics for Cases 2–6

Table B1
Simulated statistics over three approaches (Case 2)

Case 2, F*ð1Þ ¼ 0:1265 F*ð10Þ ¼ 1:6215
DP
 Re-SA
143
SA
Pr(DP < ReSA)
 Pr(DP < SA)
 Pr(ReSA < DP)
 Pr(ReSA < SA)
 Pr(SA < DP)
 Pr(SA < ReSA)
G(0)
 0.7405
 0.7526
 0.2595
 0.6800
 0.2475
 0.3200

(0.0137)
 (0.0133)
 (0.0137)
 (0.0136)
 (0.0133)
 (0.0136)
G(10)
 0.6090
 0.6779
 0.3910
 0.6564
 0.3221
 0.3436

(0.0151)
 (0.0140)
 (0.0151)
 (0.0150)
 (0.0140)
 (0.0150)
G(0) G(10) F10/F*10 G(0) G(10) F10/F*10 G(0) G(10) F10/F*10
Mean
 0.0662
 0.0228
 0.9671
 0.0668
 0.0226
 0.9640
 0.0708
 0.0258
 0.9633

(0.0025)
 (0.0015)
 (0.0020)
 (0.0021)
 (0.0013)
 (0.0019)
 (0.0019)
 (0.0011)
 (0.0018)
St. dev.
 0.0740
 0.0421
 0.0570
 0.0641
 0.0383
 0.0548
 0.0570
 0.0322
 0.0596

(0.0069)
 (0.0056)
 (0.0018)
 (0.0044)
 (0.0039)
 (0.0016)
 (0.0020)
 (0.0015)
 (0.0014)
1st
 0.0041
 2.6E-06
 0.8030
 0.0051
 3.0E-06
 0.8119
 0.0048
 5.4E-06
 0.8354

(0.0006)
 (2.E�06)
 (0.0138)
 (0.0007)
 (2.E�06)
 (0.0116)
 (0.0006)
 (3.E�06)
 (0.0058)
5th
 0.0082
 6.7E-05
 0.8675
 0.0101
 7.6E-05
 0.8687
 0.0103
 1.2E-04
 0.8690

(0.0006)
 (2.E�05)
 (0.0055)
 (0.0007)
 (2.E�05)
 (0.0053)
 (0.0008)
 (3.E�05)
 (0.0033)
25th
 0.0219
 0.0018
 0.9347
 0.0255
 0.0019
 0.9317
 0.0286
 0.0031
 0.9217
(continued on next page)
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Table B1 (continued )
G(0)
 G(10)
 F10/F*10
 G(0)
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G(10)
 F10/F*10
 G(0)
 G(10)
 F10/F*10
(0.0009)
 (0.0002)
 (0.0029)
 (0.0010)
 (0.0002)
 (0.0028)
 (0.0013)
 (0.0004)
 (0.0027)

50th
 0.0427
 0.0082
 0.9713
 0.0472
 0.0087
 0.9675
 0.0544
 0.0135
 0.9606
(0.0019)
 (0.0006)
 (0.0021)
 (0.0018)
 (0.0007)
 (0.0021)
 (0.0020)
 (0.0010)
 (0.0024)

75th
 0.0821
 0.0256
 1.0040
 0.0855
 0.0268
 0.9999
 0.0971
 0.0365
 1.0020
(0.0037)
 (0.0020)
 (0.0021)
 (0.0035)
 (0.0020)
 (0.0021)
 (0.0034)
 (0.0021)
 (0.0027)

95th
 0.2032
 0.0928
 1.0519
 0.1899
 0.0908
 1.0468
 0.1860
 0.0926
 1.0654
(0.0124)
 (0.0073)
 (0.0035)
 (0.0097)
 (0.0067)
 (0.0035)
 (0.0065)
 (0.0045)
 (0.0043)

99th
 0.3579
 0.1976
 1.0891
 0.3088
 0.1820
 1.0827
 0.2574
 0.1432
 1.1109
(0.0341)
 (0.0279)
 (0.0074)
 (0.0251)
 (0.0216)
 (0.0075)
 (0.0131)
 (0.0098)
 (0.0081)
Note: For a given benchmark, the value of the best strategy is marked in bold, and the value of the secondary strategy is marked in italics. Appendix D
(Case 2) presents the two-tailed Welch’s t-test for each pair of samples.

Table B2
Simulated statistics over three approaches (Case 3)

Case 3, F*ð1Þ ¼ 0:1277 F*ð10Þ ¼ 1:7197
DP
 Re-SA
 SA
Pr(DP < ReSA)
 Pr(DP < SA)
 Pr(ReSA < DP)
 Pr(ReSA < SA)
 Pr(SA < DP)
 Pr(SA < ReSA)
G(0)
 0.5598
 0.5698
 0.4402
 0.5643
 0.4302
 0.4357

(0.0148)
 (0.0141)
 (0.0148)
 (0.0151)
 (0.0141)
 (0.0151)
G(10)
 0.5249
 0.5581
 0.4751
 0.5579
 0.4419
 0.4421

(0.0154)
 (0.0167)
 (0.0154)
 (0.0169)
 (0.0167)
 (0.0169)
G(0) G(10) F10/F*10 G(0) G(10) F10/F*10 G(0) G(10) F10/F*10
Mean
 0.3058
 0.1963
 0.9504
 0.3059
 0.1959
 0.9495
 0.3175
 0.2064
 0.9475

(0.0101)
 (0.0095)
 (0.0055)
 (0.0100)
 (0.0094)
 (0.0055)
 (0.0107)
 (0.0099)
 (0.0052)
St. dev.
 0.3020
 0.2934
 0.1752
 0.3000
 0.2920
 0.1748
 0.2997
 0.2877
 0.1792

(0.0264)
 (0.0364)
 (0.0047)
 (0.0263)
 (0.0364)
 (0.0047)
 (0.0222)
 (0.0288)
 (0.0048)
1st
 0.0218
 3.7E-05
 0.5976
 0.0219
 3.8E-05
 0.5976
 0.0217
 4.1E-05
 0.6093

(0.0023)
 (3.E�05)
 (0.0162)
 (0.0022)
 (3.E�05)
 (0.0159)
 (0.0025)
 (2.E�05)
 (0.0135)
5th
 0.0422
 8.2E-04
 0.6896
 0.0424
 8.4E-04
 0.6894
 0.0429
 9.6E-04
 0.6878

(0.0026)
 (0.0002)
 (0.0086)
 (0.0027)
 (0.0002)
 (0.0083)
 (0.0031)
 (0.0003)
 (0.0081)
25th
 0.1093
 0.0212
 0.8291
 0.1098
 0.0212
 0.8285
 0.1138
 0.0244
 0.8201

(0.0046)
 (0.0027)
 (0.0072)
 (0.0047)
 (0.0027)
 (0.0072)
 (0.0048)
 (0.0028)
 (0.0067)
50th
 0.2113
 0.0934
 0.9357
 0.2123
 0.0934
 0.9349
 0.2234
 0.1050
 0.9285

(0.0079)
 (0.0066)
 (0.0068)
 (0.0079)
 (0.0065)
 (0.0068)
 (0.0087)
 (0.0074)
 (0.0067)
75th
 0.3992
 0.2600
 1.0539
 0.4002
 0.2603
 1.0528
 0.4248
 0.2829
 1.0531

(0.0173)
 (0.0138)
 (0.0078)
 (0.0174)
 (0.0138)
 (0.0075)
 (0.0184)
 (0.0141)
 (0.0080)
95th
 0.8784
 0.7111
 1.2585
 0.8748
 0.7090
 1.2567
 0.8934
 0.7228
 1.2699

(0.0453)
 (0.0435)
 (0.0160)
 (0.0447)
 (0.0434)
 (0.0161)
 (0.0401)
 (0.0439)
 (0.0162)
99th
 1.3788
 1.2677
 1.4333
 1.3664
 1.2561
 1.4316
 1.3372
 1.2446
 1.4445

(0.0993)
 (0.1432)
 (0.0364)
 (0.0995)
 (0.1398)
 (0.0361)
 (0.0877)
 (0.1374)
 (0.0331)
Note: For a given benchmark, the value of the best strategy is marked in bold, and the value of the secondary strategy is marked in italics. Appendix D
(Case 3) presents the two-tailed Welch’s t-test for each pair of samples.

Table B3
Simulated statistics over three approaches (Case 4)

Case 4, F*ð1Þ ¼ 0:1274 F*ð10Þ ¼ 1:6956
DP
 Re-SA
 SA
Pr(DP < ReSA)
 Pr(DP < SA)
 Pr(ReSA < DP)
 Pr(ReSA < SA)
 Pr(SA < DP)
 Pr(SA < ReSA)
G(0)
 0.7358
 0.7373
 0.2642
 0.6706
 0.2627
 0.3294

(0.0135)
 (0.0141)
 (0.0135)
 (0.0141)
 (0.0141)
 (0.0141)
G(10)
 0.7022
 0.7074
 0.2978
 0.6617
 0.2927
 0.3383

(0.0146)
 (0.0159)
 (0.0146)
 (0.0157)
 (0.0159)
 (0.0157)
G(0) G(10) F10/F*10 G(0) G(10) F10/F*10 G(0) G(10) F10/F*10
Mean
 0.1423
 0.0583
 0.9246
 0.1429
 0.0585
 0.9218
 0.1476
 0.0621
 0.9211

(0.0046)
 (0.0029)
 (0.0023)
 (0.0041)
 (0.0027)
 (0.0022)
 (0.0036)
 (0.0022)
 (0.0021)
St. dev.
 0.1376
 0.0839
 0.0667
 0.1225
 0.0779
 0.0637
 0.1080
 0.0645
 0.0676

(0.0084)
 (0.0068)
 (0.0020)
 (0.0062)
 (0.0053)
 (0.0018)
 (0.0031)
 (0.0023)
 (0.0017)
1st
 0.0073
 1.3E-05
 0.7344
 0.0090
 1.6E-05
 0.7454
 0.0083
 2.3E-05
 0.7805

(0.0011)
 (1.E�05)
 (0.0145)
 (0.0013)
 (1.E�05)
 (0.0119)
 (0.0014)
 (2.E�05)
 (0.0062)
5th
 0.0160
 0.0003
 0.8051
 0.0201
 0.0004
 0.8084
 0.0195
 0.0005
 0.8164

(0.0012)
 (1.E�04)
 (0.0065)
 (0.0015)
 (1.E�04)
 (0.0056)
 (0.0016)
 (1.E�04)
 (0.0033)
25th
 0.0496
 0.0070
 0.8858
 0.0571
 0.0082
 0.8835
 0.0623
 0.0117
 0.8738

(0.0023)
 (0.0008)
 (0.0037)
 (0.0022)
 (0.0009)
 (0.0035)
 (0.0031)
 (0.0014)
 (0.0030)
(continued on next page)
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Table B3 (continued )
G(0)
 G(10)
 F10/F*10
 G(0)
145
G(10)
 F10/F*10
 G(0)
 G(10)
 F10/F*10
50th
 0.1012
 0.0281
 0.9309
 0.1088
 0.0309
 0.9271
 0.1235
 0.0418
 0.9170

(0.0042)
 (0.0022)
 (0.0027)
 (0.0040)
 (0.0022)
 (0.0026)
 (0.0044)
 (0.0027)
 (0.0028)
75th
 0.1872
 0.0750
 0.9699
 0.1899
 0.0779
 0.9654
 0.2080
 0.0923
 0.9642

(0.0079)
 (0.0049)
 (0.0025)
 (0.0075)
 (0.0046)
 (0.0024)
 (0.0068)
 (0.0042)
 (0.0032)
95th
 0.4103
 0.2165
 1.0219
 0.3829
 0.2095
 1.0165
 0.3579
 0.1934
 1.0383

(0.0207)
 (0.0140)
 (0.0037)
 (0.0165)
 (0.0121)
 (0.0036)
 (0.0101)
 (0.0069)
 (0.0050)
99th
 0.6530
 0.3930
 1.0577
 0.5796
 0.3629
 1.0516
 0.4693
 0.2737
 1.0942

(0.0509)
 (0.0419)
 (0.0071)
 (0.0391)
 (0.0333)
 (0.0071)
 (0.0202)
 (0.0155)
 (0.0101)
Note: For a given benchmark, the value of the best strategy is marked in bold, and the value of the secondary strategy is marked in italics. Appendix D
(Case 4) presents the two-tailed Welch’s t-test for each pair of samples.

Table B4
Simulated statistics over three approaches (Case 5)

Case 5, F*ð1Þ ¼ 0:1244 F*ð10Þ ¼ 1:4727
DP
 Re-SA
 SA
Pr(DP < ReSA)
 Pr(DP < SA)
 Pr(ReSA < DP)
 Pr(ReSA < SA)
 Pr(SA < DP)
 Pr(SA < ReSA)
G(0)
 0.6055
 0.6199
 0.3945
 0.6031
 0.3801
 0.3970

(0.0137)
 (0.0134)
 (0.0137)
 (0.0150)
 (0.0134)
 (0.0150)
G(10)
 0.5779
 0.5926
 0.4221
 0.5851
 0.4074
 0.4149

(0.0140)
 (0.0154)
 (0.0140)
 (0.0168)
 (0.0154)
 (0.0168)
G(0) G(10) F10/F*10 G(0) G(10) F10/F*10 G(0) G(10) F10/F*10
Mean
 0.0807
 0.0473
 0.9505
 0.0808
 0.0473
 0.9492
 0.0846
 0.0506
 0.9483

(0.0027)
 (0.0022)
 (0.0030)
 (0.0026)
 (0.0022)
 (0.0029)
 (0.0026)
 (0.0021)
 (0.0028)
St. dev.
 0.0824
 0.0669
 0.0919
 0.0806
 0.0663
 0.0912
 0.0777
 0.0630
 0.0948

(0.0046)
 (0.0045)
 (0.0022)
 (0.0042)
 (0.0043)
 (0.0022)
 (0.0032)
 (0.0031)
 (0.0023)
1st
 0.0049
 8.5E-06
 0.7345
 0.0050
 8.8E-06
 0.7360
 0.0052
 1.0E-05
 0.7508

(0.0005)
 (5.E�06)
 (0.0120)
 (0.0005)
 (6.E�06)
 (0.0117)
 (0.0007)
 (6.E�06)
 (0.0089)
5th
 0.0096
 2.0E-04
 0.8013
 0.0099
 2.0E-04
 0.8011
 0.0104
 2.4E-04
 0.8017

(0.0006)
 (5.E�05)
 (0.0060)
 (0.0007)
 (6.E�05)
 (0.0058)
 (0.0007)
 (5.E�05)
 (0.0050)
25th
 0.0262
 0.0050
 0.8897
 0.0268
 0.0050
 0.8888
 0.0288)
 0.0062
 0.8819

(0.0011)
 (0.0005)
 (0.0042)
 (0.0011)
 (0.0005)
 (0.0041)
 (0.0012)
 (0.0007)
 (0.0039)
50th
 0.0532
 0.0219
 0.9492
 0.0541
 0.0221
 0.9478
 0.0594
 0.0268
 0.9425

(0.0023)
 (0.0016)
 (0.0034)
 (0.0023)
 (0.0016)
 (0.0034)
 (0.0025)
 (0.0018)
 (0.0035)
75th
 0.1050
 0.0626
 1.0090
 0.1060
 0.0629
 1.0073
 0.1153
 0.0719
 1.0082

(0.0047)
 (0.0040)
 (0.0038)
 (0.0047)
 (0.0041)
 (0.0038)
 (0.0050)
 (0.0040)
 (0.0043)
95th
 0.2443
 0.1789
 1.1025
 0.2417
 0.1783
 1.1003
 0.2436
 0.1804
 1.1128

(0.0122)
 (0.0105)
 (0.0071)
 (0.0115)
 (0.0101)
 (0.0071)
 (0.0108)
 (0.0093)
 (0.0071)
99th
 0.3909
 0.3098
 1.1758
 0.3823
 0.3056
 1.1733
 0.3555
 0.2786
 1.1911

(0.0327)
 (0.0278)
 (0.0151)
 (0.0301)
 (0.0277)
 (0.0149)
 (0.0224)
 (0.0201)
 (0.0151)
Note: For a given benchmark, the value of the best strategy is marked in bold, and the value of the secondary strategy is marked in italics. Appendix D
(Case 5) presents the two-tailed Welch’s t-test for each pair of samples.

Table B5
Simulated statistics over three approaches (Case 6)

Case 6, F*ð1Þ ¼ 0:1257 F*ð10Þ ¼ 1:5613
DP
 Re-SA
 SA
Pr(DP < ReSA)
 Pr(DP < SA)
 Pr(ReSA < DP)
 Pr(ReSA < SA)
 Pr(SA < DP)
 Pr(SA < ReSA)
G(0)
 0.6921
 0.7316
 0.3079
 0.6887
 0.2684
 0.3113

(0.0137)
 (0.0128)
 (0.0137)
 (0.0140)
 (0.0128)
 (0.0140)
G(10)
 0.6584
 0.6791
 0.3416
 0.6526
 0.3209
 0.3474

(0.0142)
 (0.0143)
 (0.0142)
 (0.0153)
 (0.0143)
 (0.0153)
G(0) G(10) F10/F*10 G(0) G(10) F10/F*10 G(0) G(10) F10/F*10
Mean
 0.1079
 0.0584
 0.9475
 0.1102
 0.0599
 0.9403
 0.1253
 0.0722
 0.9377

(0.0048)
 (0.0035)
 (0.0033)
 (0.0041)
 (0.0032)
 (0.0032)
 (0.0040)
 (0.0031)
 (0.0032)
St. dev.
 0.1384
 0.1038
 0.0959
 0.1216
 0.0969
 0.0933
 0.1142
 0.0875
 0.1046

(0.0152)
 (0.0129)
 (0.0029)
 (0.0087)
 (0.0088)
 (0.0026)
 (0.0046)
 (0.0044)
 (0.0026)
1st
 0.0060
 8.0E-06
 0.6814
 0.0063
 8.5E-06
 0.6891
 0.0072
 1.5E-05
 0.7253

(0.0006)
 (4.E�06)
 (0.0221)
 (0.0007)
 (6.E�06)
 (0.0176)
 (0.0008)
 (9.E�06)
 (0.0089)
5th
 0.0114
 0.0002
 0.7841
 0.0123
 0.0002
 0.7812
 0.0144
 0.0004
 0.7784

(0.0007)
 (4.E�05)
 (0.0088)
 (0.0007)
 (5.E�05)
 (0.0079)
 (0.0012)
 (1.E�04)
 (0.0052)
25th
 0.0301
 0.0048
 0.8914
 0.0342
 0.0054
 0.8840
 0.0419
 0.0093
 0.8637

(0.0013)
 (0.0005)
 (0.0044)
 (0.0016)
 (0.0005)
 (0.0043)
 (0.0022)
 (0.0011)
 (0.0042)
50th
 0.0626
 0.0223
 0.9515
 0.0703
 0.0244
 0.9440
 0.0887
 0.0398
 0.9304
(continued on next page)
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Table B5 (continued )
G(0)
 G(10)
 F10/F*10
 G(0)
146
G(10)
 F10/F*10
 G(0)
 G(10)
 F10/F*10
(0.0028)
 (0.0017)
 (0.0038)
 (0.0032)
 (0.0019)
 (0.0036)
 (0.0043)
 (0.0028)
 (0.0040)

75th
 0.1301
 0.0676
 1.0083
 0.1400
 0.0729
 1.0004
 0.1730
 0.1039
 1.0033
(0.0067)
 (0.0045)
 (0.0037)
 (0.0069)
 (0.0049)
 (0.0035)
 (0.0076)
 (0.0059)
 (0.0053)

95th
 0.3548
 0.2328
 1.0943
 0.3432
 0.2367
 1.0846
 0.3594
 0.2518
 1.1215
(0.0246)
 (0.0179)
 (0.0066)
 (0.0203)
 (0.0170)
 (0.0065)
 (0.0155)
 (0.0121)
 (0.0080)

99th
 0.6633
 0.4846
 1.1663
 0.5844
 0.4631
 1.1539
 0.5127
 0.3807
 1.2094
(0.0669)
 (0.0660)
 (0.0147)
 (0.0539)
 (0.0506)
 (0.0138)
 (0.0276)
 (0.0244)
 (0.0174)
Note: For a given benchmark, the value of the best strategy is marked in bold, and the value of the secondary strategy is marked in italics. Appendix D
(Case 6) presents the two-tailed Welch’s t-test for each pair of samples.

Appendix C

Fig. C1. Simulated cdf of G(0) over 100,000 paths (100 groups of 1000 simulation paths).

Fig. C2. Simulated cdf of F(10)/F*(10) over 100,000 paths (100 groups of 1000 simulation paths).



Fig. C3. The horizontal distance between the simulated lines.

The blue line on the left plot depicts the horizontal distance between the two simulated cdfs in Fig. 2; it also depicts the horizontal
distance between the cdf with DP and that with SA in the upper plot of Fig. 5. The red line on the left plot depicts the horizontal distance
between the cdf with DP and that with Re-SA in the upper plot of Fig. 5. A negative value indicates that DP has a smaller G(0) and a better
performance than SA (Re-SA). SA is better than DP over large percentiles, which corresponds to a larger error (i.e., a larger total future
cost at time 0).

The blue line on the right plot depicts the difference between the distance from the order statistics of F(10)/F*(10) to 1 with DP and
that with SA, i.e., the difference between the horizontal distances from each line to 1, in Fig. 3 (and the lower plot of Fig. 5). The red line
of the right plot depicts the difference between the distance with DP and that with Re-SA in the lower plot of Fig. 5. A negative value
indicates that DP is closer to 1 and has a better performance than SA (Re-SA). SA is superior to DP when the final fund level is small,
which implies that DP suffers a larger downside risk.

Furthermore, both red lines (the difference between DP and Re-SA) are very close to zero compared to the blue line. This indicates
that Re-SA can be a good proxy for DP.

Appendix D. Welch’s t-test for each pair of samples (Symbols *, ** and *** represent the 10%, 5% and 1% levels of
significance; two-tailed test)
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DP vs. Re-SA DP vs. SA Re-SA vs. SA
147
G(0)
 G(10)
 F10/F*10
 G(0)
 G(10)
 F10/F*10
 G(0)
 G(10)
 F10/F*10
Case 1

Mean
 –
 –
 ***
 ***
 ***
 ***
 ***
 ***
 **

St. dev.
 ***
 *
 ***
 ***
 ***
 ***
 ***
 ***
 ***

1st
 ***
 –
 –
 ***
 **
 ***
 –
 *
 ***

5th
 ***
 –
 –
 ***
 ***
 –
 ***
 ***
 –
25th
 ***
 –
 **
 ***
 ***
 ***
 ***
 ***
 ***

50th
 ***
 –
 ***
 ***
 ***
 ***
 ***
 ***
 ***

75th
 –
 –
 ***
 ***
 ***
 **
 ***
 ***
 *

95th
 **
 –
 ***
 ***
 –
 ***
 –
 –
 ***

99th
 ***
 –
 *
 ***
 ***
 ***
 ***
 ***
 ***

Case 2

Mean
 *
 –
 ***
 ***
 ***
 ***
 ***
 ***
 ***

St. dev.
 ***
 ***
 ***
 ***
 ***
 ***
 ***
 ***
 ***

1st
 ***
 *
 ***
 ***
 ***
 ***
 ***
 ***
 ***
(continued on next page)
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(continued )
DP vs. Re-SA
 DP vs. SA
148
Re-SA vs. SA
G(0)
 G(10)
 F10/F*10
 G(0)
 G(10)
 F10/F*10
 G(0)
 G(10)
 F10/F*10
5th
 ***
 ***
 –
 ***
 ***
 **
 *
 ***
 –
25th
 ***
 ***
 ***
 ***
 ***
 ***
 ***
 ***
 ***

50th
 ***
 ***
 ***
 ***
 ***
 ***
 ***
 ***
 ***

75th
 ***
 ***
 ***
 ***
 ***
 ***
 ***
 ***
 ***

95th
 ***
 *
 ***
 ***
 –
 ***
 ***
 **
 ***

99th
 ***
 ***
 ***
 ***
 ***
 ***
 ***
 ***
 ***

Case 3

Mean
 –
 –
 –
 ***
 ***
 ***
 ***
 ***
 ***

St. dev.
 –
 –
 –
 –
 –
 ***
 –
 –
 ***

1st
 –
 –
 –
 –
 –
 ***
 –
 –
 ***

5th
 –
 –
 –
 *
 ***
 –
 –
 ***
 –
25th
 –
 –
 –
 ***
 ***
 ***
 ***
 ***
 ***

50th
 –
 –
 –
 ***
 ***
 ***
 ***
 ***
 ***

75th
 –
 –
 –
 ***
 ***
 –
 ***
 ***
 –
95th
 –
 –
 –
 **
 *
 ***
 ***
 **
 ***

99th
 –
 –
 –
 ***
 –
 **
 **
 –
 ***

Case 4

Mean
 –
 –
 ***
 ***
 ***
 ***
 ***
 ***
 **

St. dev.
 ***
 ***
 ***
 ***
 ***
 ***
 ***
 ***
 ***

1st
 ***
 *
 ***
 ***
 ***
 ***
 ***
 ***
 ***

5th
 ***
 ***
 ***
 ***
 ***
 ***
 ***
 ***
 ***

25th
 ***
 ***
 ***
 ***
 ***
 ***
 ***
 ***
 ***

50th
 ***
 ***
 ***
 ***
 ***
 ***
 ***
 ***
 ***

75th
 **
 ***
 ***
 ***
 ***
 ***
 ***
 ***
 ***

95th
 ***
 ***
 ***
 ***
 ***
 ***
 ***
 ***
 ***

99th
 ***
 ***
 ***
 ***
 ***
 ***
 ***
 ***
 ***

Case 5

Mean
 –
 –
 ***
 ***
 ***
 ***
 ***
 ***
 **

St. dev.
 ***
 –
 **
 ***
 ***
 ***
 ***
 ***
 ***

1st
 –
 –
 –
 ***
 **
 ***
 ***
 *
 ***

5th
 **
 –
 –
 ***
 ***
 –
 ***
 ***
 –
25th
 ***
 –
 –
 ***
 ***
 ***
 ***
 ***
 ***

50th
 ***
 –
 ***
 ***
 ***
 ***
 ***
 ***
 ***

75th
 –
 –
 ***
 ***
 ***
 –
 ***
 ***
 –
95th
 –
 –
 **
 –
 –
 ***
 –
 –
 ***

99th
 *
 –
 –
 ***
 ***
 ***
 ***
 ***
 ***

Case 6

Mean
 ***
 ***
 ***
 ***
 ***
 ***
 ***
 ***
 ***

St. dev.
 ***
 ***
 ***
 ***
 ***
 ***
 ***
 ***
 ***

1st
 ***
 –
 ***
 ***
 ***
 ***
 ***
 ***
 ***

5th
 ***
 ***
 **
 ***
 ***
 ***
 ***
 ***
 ***

25th
 ***
 ***
 ***
 ***
 ***
 ***
 ***
 ***
 ***

50th
 ***
 ***
 ***
 ***
 ***
 ***
 ***
 ***
 ***

75th
 ***
 ***
 ***
 ***
 ***
 ***
 ***
 ***
 ***

95th
 ***
 –
 ***
 –
 ***
 ***
 ***
 ***
 ***

99th
 ***
 **
 ***
 ***
 ***
 ***
 ***
 ***
 ***

Case 1, n ¼ 15

Mean
 –
 –
 ***
 ***
 ***
 ***
 ***
 ***
 –
St. dev.
 ***
 ***
 ***
 ***
 ***
 ***
 ***
 ***
 ***

1st
 ***
 –
 *
 ***
 –
 ***
 –
 *
 ***

5th
 ***
 –
 –
 ***
 ***
 –
 –
 ***
 –
25th
 ***
 –
 **
 ***
 ***
 ***
 ***
 ***
 ***

50th
 ***
 *
 ***
 ***
 ***
 ***
 ***
 ***
 ***

75th
 **
 –
 ***
 ***
 ***
 **
 ***
 ***
 –
95th
 –
 *
 **
 –
 –
 ***
 –
 –
 ***

99th
 ***
 **
 –
 ***
 ***
 **
 ***
 ***
 ***
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